

1 Defining Early Steps in *B. subtilis* Biofilm Biosynthesis.

2

3 Christine A. Arbour,^{[a]‡} Rupa Nagar,^{[b]‡} Hannah M. Bernstein,^[a] Soumi Ghosh,^[a] Yusra Al-
4 Sammarraie,^[b] Helge C. Dorfmüller,^[b] Michael A. J. Ferguson,^[c] Nicola R. Stanley-
5 Wall,^{*[b]} Barbara Imperiali^{*[a]}

6

7 [a] Department of Biology and Department of Chemistry, Massachusetts Institute of
8 Technology, Cambridge, MA 02139 (USA)

9 [b] Division of Molecular Microbiology, School of Life Sciences, University of Dundee,
10 Dundee, DD1 5EH, UK.

11 [c] Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University
12 of Dundee, Dundee, DD1 5EH, UK.

13 ‡ C.A.A. and R.N. contributed equally to this work.

14

15 **Keywords:** chemoenzymatic synthesis • bacillosamine • genetic complementation •
16 biofilm

17 **For correspondence:**

18 Nicola Stanley-Wall: n.r.stanleywall@dundee.ac.uk (0000-0002-5936-9721)

19 Barbara Imperiali: imper@mit.edu (0000-0002-5749-7869)

20

21

22 **ABSTRACT:**

23 The *Bacillus subtilis* extracellular biofilm matrix includes an exopolysaccharide that is
24 critical for the architecture and function of the community. To date, our understanding of
25 the biosynthetic machinery and the molecular composition of the exopolysaccharide of *B.*
26 *subtilis* remains unclear and incomplete. This report presents synergistic biochemical and
27 genetic studies built from a foundation of comparative sequence analyses targeted at
28 elucidating the activities of the first two membrane-committed steps in the
29 exopolysaccharide biosynthetic pathway. By taking this approach, we determined the
30 nucleotide sugar donor and lipid-linked acceptor substrates for the first two enzymes in
31 the *B. subtilis* biofilm exopolysaccharide biosynthetic pathway. EpsL catalyzes the first
32 phosphoglycosyl transferase step using UDP-di-*N*-acetyl bacillosamine as phospho-
33 sugar donor. EpsD is a GT-B fold glycosyl transferase that facilitates the second step in
34 the pathway that utilizes the product of EpsL as an acceptor substrate and UDP-*N*-acetyl
35 glucosamine as the sugar donor. Thus, the study defines the first two monosaccharides
36 at the reducing end of the growing exopolysaccharide unit. In doing so we provide the
37 first evidence of the presence of bacillosamine in an exopolysaccharide synthesized by a
38 Gram-positive bacterium.

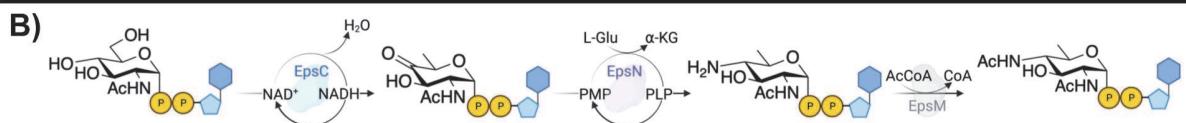
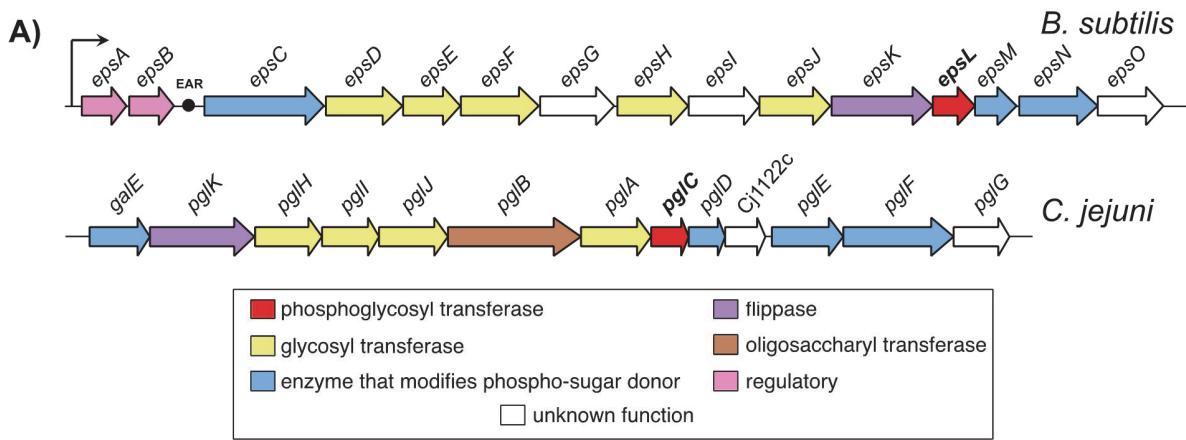
39

40 **IMPORTANCE:**

41 Biofilms are the communal way of life that microbes adopt to increase survival. Key to our
42 ability to systematically promote or ablate biofilm formation is a detailed understanding of
43 the biofilm matrix macromolecules. Here we identify the first two essential steps in the
44 *Bacillus subtilis* biofilm matrix exopolysaccharide synthesis pathway. Together our
45 studies and approaches provide the foundation for the sequential characterization of the
46 steps in exopolysaccharide biosynthesis, using prior steps to enable chemoenzymatic
47 synthesis of the undecaprenol diphosphate-linked glycan substrates.

48 **INTRODUCTION**

49 Biofilms are self-associating microbial systems that contain surface-adherent
50 individuals within an extracellular matrix (1). The non-pathogenic bacterium, *Bacillus*
51 *subtilis* (*Bs*), has been used extensively for understanding biofilm formation due to its
52 ease of genetic manipulation and its extensive applied uses across diverse sectors of our
53 economy (2). The *B. subtilis* biofilm matrix contains multiple specific components: BsIA (a
54 hydrophobin-like protein that confers hydrophobicity and structure to the community),
55 fibers of the protein TasA (required for the structural integrity of biofilm), extracellular DNA
56 (eDNA, important at early stages of biofilm formation), poly- γ -glutamic acid (γ -PGA,
57 possible function in water retention), and an exopolysaccharide (EPS) (3).



58 The EPS is the main carbohydrate component of the *B. subtilis* matrix and is critical
59 for biofilm architecture and biofilm function (4, 5). Despite considerable interest in
60 understanding biofilm biosynthesis and regulation, the individual building blocks for this
61 macromolecular glycoconjugate have not been determined. Biosynthesis of EPS is
62 dependent on enzymes expressed from a 15-gene *epsABCDEFGHIJKLMNO* (*epsA–O*)
63 operon, which has a similarity with the *Campylobacter jejuni pgl* operon (**Figure 1A**) (6).
64 These enzymes have been annotated based on sequence analysis as a phosphoglycosyl
65 transferase (PGT), glycosyl transferases (GTs), uridine diphosphate sugar (UDP-sugar)
66 modifiers, a regulatory enzyme, and a flippase (5, 7, 8). However, most of the membrane-
67 associated enzymes that are involved in the biosynthesis of exopolysaccharide in *B.*
68 *subtilis* have not been biochemically characterized. Furthermore, analysis of
69 exopolysaccharide composition has afforded conflicting information. Even studies of the
70 same strain of *B. subtilis* (namely NCIB 3610) provided different carbohydrate
71 compositions depending on the bacterial growth conditions and/or methods of extraction
72 and purification (6). For example, when grown in a glutamic acid and glycerol-rich media,
73 an EPS fraction contained glucose, *N*-acetylgalactosamine (GalNAc), and galactose
74 (Gal) (9, 10). The same strain grown in lysogeny broth (LB) media that included
75 magnesium and manganese divalent cations, produced an EPS fraction containing
76 mannose and glucose (11, 12). Furthermore, growth in a minimal media supplemented
77 with glucose (MMG) produced an EPS fraction containing poly-*N*-acetylglucosamine
78 (GlcNAc) (5).

79 UDP-*N,N'*-diacetylbacillosamine (UDP-diNAcBac) is a prokaryote-specific
80 nucleotide sugar donor (13). The monosaccharide component, diNAcBac, was originally
81 discovered in *Bacillus licheniformis* (14). Based on *in vitro* activity and sequence
82 similarity, EpsC, EpsN, and EpsM are proposed to produce UDP-diNAcBac in *B. subtilis*
83 (**Figure 1B**). EpsC contains the sequence motifs found in other dehydratases and is a
84 UDP-GlcNAc 4,6-dehydratase that converts UDP-*N*-acetylglucosamine (UDP-GlcNAc) to
85 UDP-2,6-dideoxy-2-acetamido 4-keto glucose (UDP-4-keto) (15). It catalyzes the NAD⁺-
86 dependent elimination of water across C5 and C6, while oxidizing C4 of UDP-GlcNAc.
87 The resulting α,β -unsaturated ketone is reduced by hydride addition at C6, followed by
88 tautomerization and regeneration of NAD⁺ to provide the UDP-4-keto sugar and cofactor
89 for a new catalytic cycle. The penultimate enzyme, EpsN, is a pyridoxal 5'-phosphate
90 (PLP)-dependent aminotransferase that transfers an amine from L-glutamate to the C4
91 of UDP-4-ketosugar to provide UDP-2,6-dideoxy 2-acetamido 4-amino glucose (UDP-4-
92 amino) (16). The subsequent enzyme, EpsM, is an acetyltransferase that transfers an
93 acetyl group from acetyl coenzyme A (AcCoA) onto UDP-4-amino sugar to provide UDP-
94 diNAcBac (17). To further support the assignment of these Eps enzymes, isofunctional
95 homologs in *Campylobacter*, in particular *C. jejuni* (PgIF, PgIE, PgID) (**Figure 1A**), have
96 been biochemically characterized and shown to make UDP-diNAcBac in a similar fashion
97 (13, 18-20). Consistent with this, EpsCNM from *B. subtilis* and PgIFED from *C. jejuni* (Cj)
98 have 54, 64, and 50% sequence similarity, respectively (15).

99 Our overarching goal is to elucidate the composition and structure of the *B. subtilis*
100 biofilm matrix EPS. Given the inconsistencies obtained from direct analysis of the
101 extracted EPS material, we elected to start by determining the identity of the individual
102 monosaccharides at the reducing end of the exopolysaccharide. In this work, we
103 investigate and define the substrate specificity of two enzymes encoded within the *eps*
104 operon, EpsL and EpsD, annotated as a phosphoglycosyl transferase and glycosyl
105 transferase, respectively, using biochemical and genetic complementation approaches.
106 We present experimental evidence supporting the designation of EpsL as a PGT which
107 installs diNAcBac as the first monosaccharide onto a undecaprenol phosphate (UndP)
108 carrier. We also identify EpsD as the second enzyme, and the first GT, in the pathway
109 that likely installs GlcNAc onto the diNAcBac-appended lipid anchor. Thus, a key

110 polyprenol-diphosphate-linked disaccharide is proposed and can be made available
111 through chemoenzymatic synthesis. Therefore, our work sets the stage for future analysis
112 of downstream glycosyltransferase reactions in the EPS pathway.

113

115

Figure 1. Comparison of glycoconjugate synthesis in *B. subtilis* and *C. jejuni*. **A)** The
116 *epsA*-O operon of *B. subtilis* and the *pgl* operon of *C. jejuni* drawn broadly to scale. EAR
117 represents the *eps*-associated RNA (21) situated between *epsB* and *epsC*. **B)** The
118 biosynthesis of UDP-diNAcBac in *B. subtilis* catalyzed by EpsCNM.

119

120

121 **Results**

122

123 **Characterizing the phosphoglycosyl transferase (EpsL) in the EPS**
124 **biosynthetic pathway.** Phosphoglycosyl transferases (PGTs) are enzymes responsible
125 for catalyzing the first membrane-committed step in many essential glycosylation
126 pathways by transferring a sugar-phosphate onto a lipid acceptor carrier. PGTs are
127 represented by two distinct membrane topologies, mono- and polytopic, (22) and perform
128 mechanistically-distinct modes of catalysis (23). The monoPGTs comprise three families:
129 small, long, and bifunctional enzymes. The sequence similarity network (SSN) of small
130 monoPGTs provided an uncharacterized enzyme from *B. subtilis*, EpsL (24). *B. subtilis*
131 EpsL contains the key residues that are the hallmarks of the monoPGTs catalytic domain
132 and other signature motifs (**Figure 2**) (25). These include a basic (KR) motif near the N-
133 terminus and helix-break-helix (SP) motif in the membrane-associated domain that
134 contribute to the membrane reentrant topology of the enzyme. Additionally, the catalytic
135 dyad (DE) that is responsible for covalent catalysis, and the uridine-binding residues
136 (PRP) are present. Furthermore, EpsL is similar to small monoPGTs from other Gram-
137 positive bacteria (*Staphylococcus aureus* (Sa) 42% identity), a PGT that has been shown
138 to use UDP-D-FucNAc as the sugar-phosphate donor substrate (26). However, higher
139 sequence similarity is observed with PglCs from *Campylobacter* (*C. concisus* (Cc) 58%, *C.*
140 *jejuni* (Cj) 59% identity) and *Helicobacter pullorum* (Hp) (60% identity) (**Figure 2**). Based
141 on sequence similarity with monoPGTs from *C. concisus* and *C. jejuni*, we hypothesized
142 that EpsL uses UDP-diNAcBac. This is consistent with the conclusion that EpsCNM
143 synthesize this particular UDP-sugar (15-17).

<i>B.subtilis</i> EpsL1-202	1 ---MILKRLFDLTAIAFLLCCTSVI	ILFTIAVVRLKIGSPVFFKQVRPGLHGKPF	FTLYKFRTMTD	ER-D	65
<i>H.pullorum</i> PgIC1-203	1 MYKNL KPILDLFLAFLLIIIFSP	I LIVALLIKLKGSP I	LFTQERPG LNGK	I	FRYKFRTMSD
<i>C.jejuni</i> PgIC1-200	1 MYEKVFKR IFDFLALAVLVLW FSP	V LITALLKI-TQGSV	FTQNRPGLDEK	I	FKIYKF
<i>C.concisis</i> PgIC1-201	1 MYRNFLKRV DILGALFLL ITSP	II ATAIFVYFKVSRD	FTQARPG LNEK	I	FKIYKF
<i>S.aureus</i> CapSM1-185	1 ---MKRFLFDVWSIYGLVVL SP	LL ITALLIKHMESPGP A F	KQKRP TINN ELF	N YI	FRMSK IDTPN

<i>B.subtilis</i> EpsL1-202	66	SKGNLNPDEVR LTKTGLR LIRKLS I	D	ELPQLLNVLKGDLSLVCPRP	L	LMYDYLPL-YTEKQARRH	EVKPGI	133
<i>H.pullorum</i> PgIC1-203	69	SKGDLLSDELRLKGFGKLIRKSSL	D	ELPQLFNVLKGEAMSFGVCPRP	L	LVVEYLKL-YNQEQA	KRHNVKPGI	136
<i>C.jejuni</i> PgIC1-200	68	EKGELLSDELRLKAFKGIVRSLSL	D	ELDQLLFNVLKGDMSFGVCPRP	L	LVVEYLPL-YNKEQKL	LRHKVPGI	135
<i>C.concisus</i> PgIC1-201	69	ANGELLPDQRLKGFGKLIRKSSL	D	ELPQLFNVLKGDMSFGVCPRP	L	LVVEYLPI-YNETQKHR	HDVPGI	136
<i>S.aureus</i> CapSM1-185	65	VATDLMDSTSYTKTGVKIRTS	I	DELQQLNVLKGEAMSFGVCPRP	A	LYNOYELIEKRTKANVHT	IRPGV	133

<i>B.subtilis</i> EpsL1-202	134	TGWAQI	NGRNAI	SWEKKF	E LDVWYV	DNWSF	FLDLKIL	C LTVRKVLV	SEI	IQQT	NHVT	AER	FTG	SGD	VSS	202	
<i>H.pullorum</i> PgIC1-203	137	TGWAQV	NGRNAI	SWEEKF	L DVYVV	EHIS	FMLDCKI	L YMTFF	KVLKRKD	I	NSNTN	ITMEK	FTG	NKSE	---	203	
<i>C.jejuni</i> PgIC1-200	136	TGWAQV	NGRNAI	SWQKKF	E LDVYVV	VKNIS	F LLDLKIM	F L TALKVL	KRGVS	K	E GHVTT	E	FNG	KN	---	200	
<i>C.concisis</i> PgIC1-201	137	TGLAQV	NGRNAI	SWEKKF	F EYDVY	VAKNLIS	FMLDVKIA	L ALQTI	E KV	KLRGVS	K	E GQATTE	K	FNG	KN	---	201
<i>S.aureus</i> CapSM1-185	134	TGLAQV	VMGRD	ITDDOKV	A YDH	Y LTH	OSMMLD	Y	Y	TKI	KI	NV	T	SEGV	VH	---	185

PGT	Identity (%)				
	Bs EpsL	Hp PgIC	Cj PgIC	Cc PgIC	Sa CapM
Bs EpsL		60	59	58	41
Hp PgIC	77		68	62	45
Cj PgIC	74	84		72	42
Cc PgIC	72	76	82		43
Sa CapM	66	65	62	65	
Similarity (Positive %)					

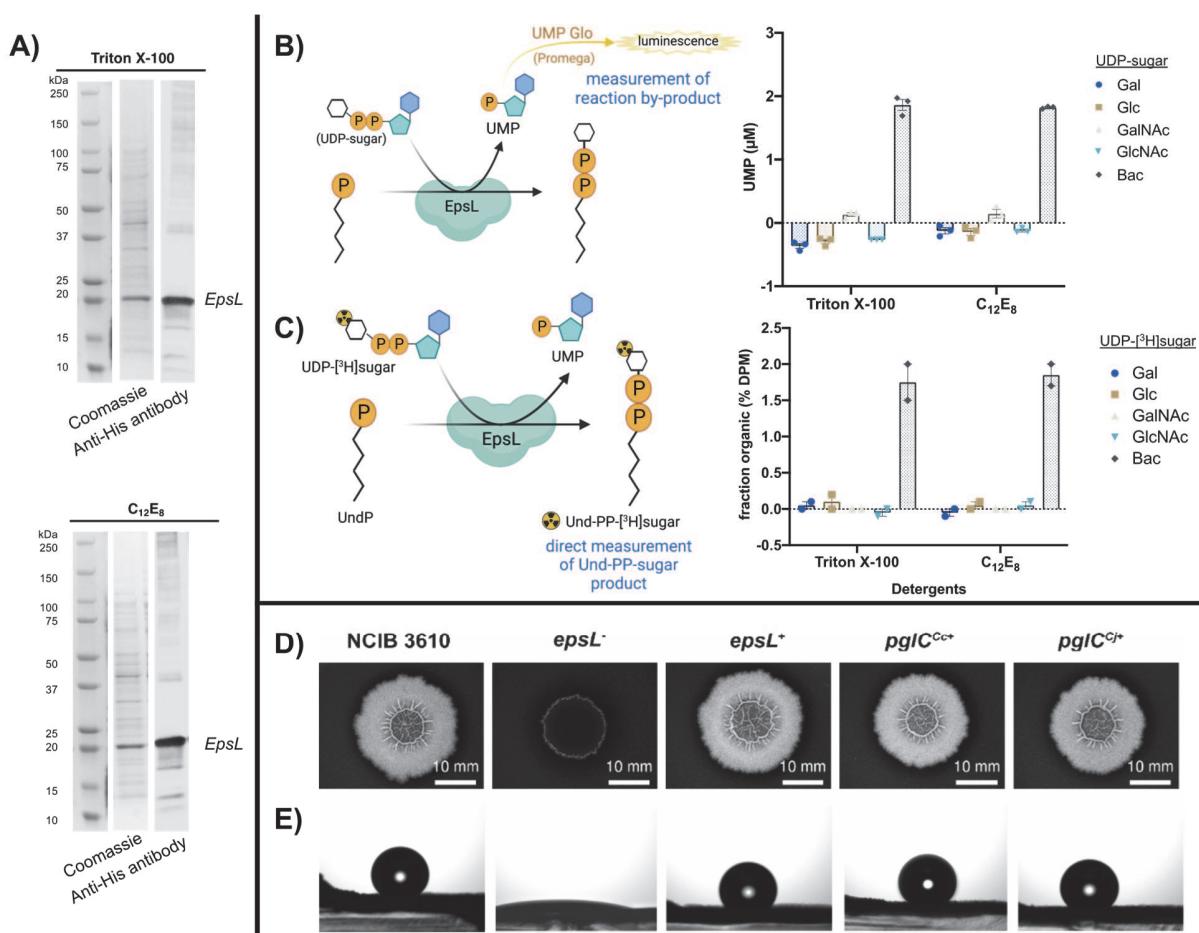
KR (positive inside)
SP (helix-break-helix)
DE (catalytic dyad)
PRP (uridine-binding)

144

Figure 2. Protein sequence comparison of select monotopic phosphoglycosyl transferases (monoPGTs). Sequence alignment of *Bs* EpsL with monoPGTs from Gram-positive and Gram-negative bacteria made in Jalview.(27, 28) The basic local alignment search tool (BLAST) was used to obtain percent identity and similarity from accession numbers: *Bs* EpsL (P71062), *Hp* PgIC (E1B268), *Cj* PgIC (Q0P9D0), *Cc* PgIC (A7ZET4), *Sa* CapM (P95706) with more details in the supporting information (**Table S1**).

152

Biochemical and genetic evaluation of EpsL substrate specificity. To test the hypothesis that EpsL uses UDP-diNAcBac as the phospho-sugar donor substrate, heterologous expression of *epsL* was carried out in *E. coli* following a previously described protocol for monotopic PGTs from *C. concisus* and *C. jejuni* (23, 29, 30). After isolation of the cell envelope fraction, eight detergents were screened to evaluate the solubilization efficiency and purity of the enzyme (**Figure S1**) (**Table S2**). The detergent solubilization screen provided two detergents, Triton X-100 and octaethylene glycol monododecyl ether (C₁₂E₈), that efficiently solubilized EpsL, while minimizing the solubilization of undesired proteins from the cell envelope fraction. For that reason, EpsL was solubilized and purified in Triton X-100 and C₁₂E₈ on a preparative scale for downstream applications (**Figure 3A**) (**Figure S2**).


163

The activity of solubilized and purified EpsL was evaluated. This was achieved through a substrate screen with five UDP-sugar donors and UndP as a lipid acceptor

165 using two complementary biochemical assays; UMP Glo® and a radioactivity-based
166 assay (**Figure 3B-C**). The standard commercial ^3H -labeled and unlabeled UDP-sugars
167 (UDP-Gal, UDP-Glc, UDP-GalNAc, and UDP-GlcNAc) were used for the screens (**Figure**
168 **S3**). Additionally, UDP-diNAcBac and UDP-[^3H]diNAcBac, both prepared via
169 chemoenzymatic methods, were used (**Scheme S1**) (**Figure S4**). The UMP Glo® assay
170 developed by Promega monitors the production of UMP over the course of a reaction
171 (**Figure 3B**) (31). This indirect measurement of reaction progress is excellent for initial
172 screens of PGTs. However, to quantify the reaction more directly, an assay that monitors
173 the reaction product is needed. For that reason, we employed a radioactivity-based assay
174 to directly measure the formation of the Und-PP-sugar following liquid-liquid extraction of
175 the Und-PP-linked product (**Figure 3C**) (**Figure S5**). We additionally monitored reaction
176 progress in non-radioactive reactions by normal phase silica thin layer chromatography
177 (TLC) **Figure S6**). During the reaction, a new product was formed that had the same
178 retention factor (R_f) as the authentic standard Und-PP-diNAcBac from *C. concisus* PgIC
179 (32) providing biochemical evidence that EpsL can use UDP-diNAcBac as donor
180 substrate in the presence of the UndP acceptor.

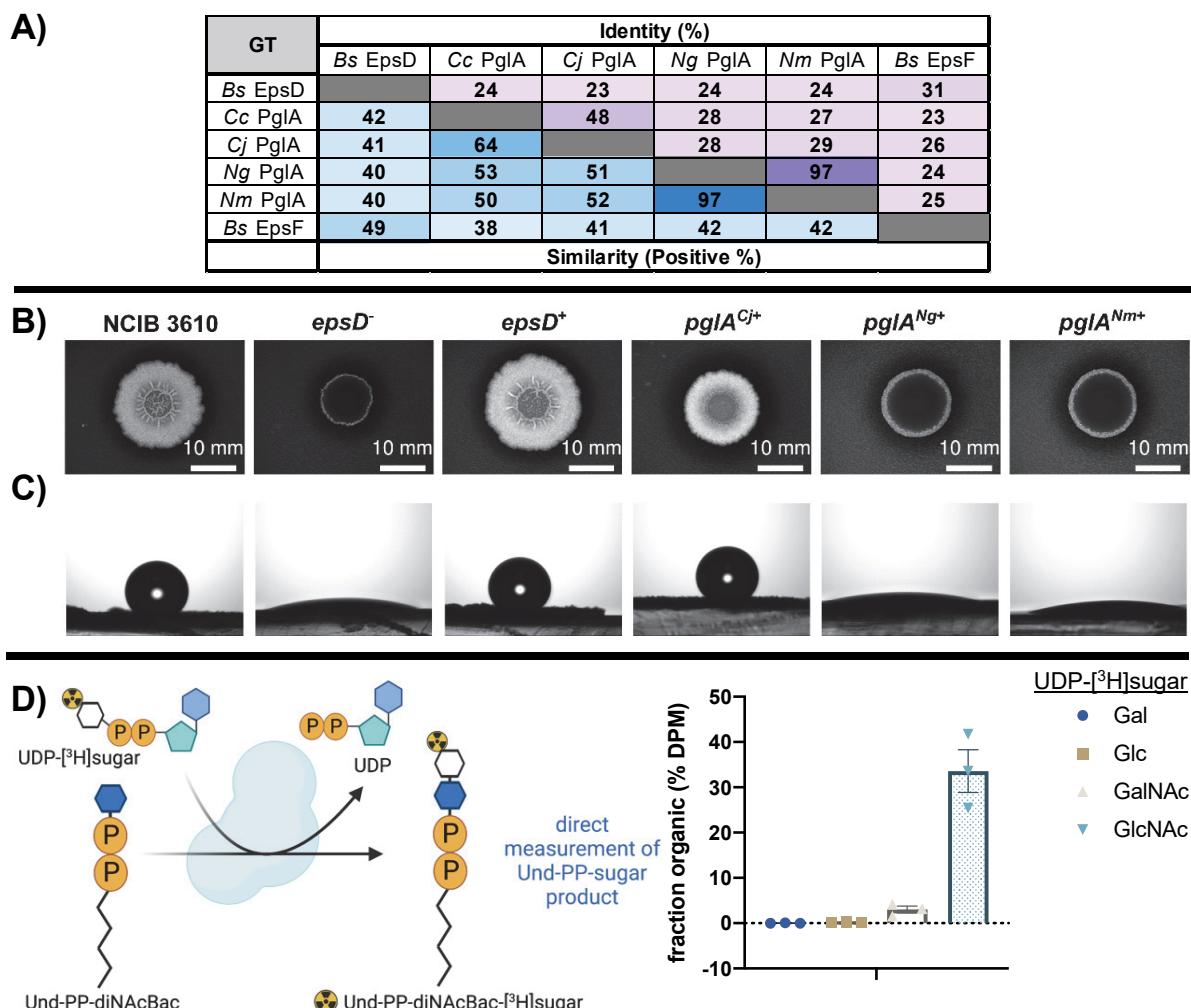
181 We proposed that if EpsL was a PGT that installs diNAcBac as the first
182 monosaccharide in the EPS pathway, then PgIC of *Campylobacter* should be able to
183 substitute for EpsL activity *in vivo*. In the absence of *epsL*, *B. subtilis* is unable to form the
184 rugose, hydrophobic colony biofilms on agar plates typical of those formed by strain NCIB
185 3610 (**Figure 3D**). Therefore the *B. subtilis* *epsL* deletion strain was genetically
186 complemented with the PGT coding sequences from *C. jejuni* and *C. concisus* (PgIC)
187 (**Table S3-6**). The coding sequences were placed under the control of an IPTG inducible
188 promoter and integrated into the chromosome at the ectopic *amyE* gene in the *epsL*
189 deletion strain. The *B. subtilis* *epsL* coding region was used as a positive control (see
190 **Table S3**) (**Figure S7**). In each case, in the presence of 25 μM IPTG, the genetic
191 complementation of the *epsL* deletion strain by the *pglC* coding region was noted. The
192 presence of *pglC* provided full recovery of the rugose colony biofilm architecture to the
193 *epsL* deletion strain (**Figure 3D**). Additionally, recovery of both the area occupied by the
194 mature colony biofilm (**Figure S7B**) and surface hydrophobicity (**Figure 3E**) (**Figure S7C**)
195 was observed to a level that was indistinguishable from the analysis of the NCIB 3610

196 parental strain. Taken together with the bioinformatic analysis, our biochemical and
 197 genetic data support the designation of EpsL as a PGT that installs diNAcBac as the first
 198 monosaccharide at the reducing end of the *B. subtilis* EPS.

199
 200 **Figure 3.** Purification and biochemical and phenotypic characterization of EpsL. **A)** *B.*
 201 *subtilis* EpsL purification visualized by SDS-PAGE (Coomassie) and anti-His antibody
 202 western blots. **B)** Complementary biochemical activity assays of *B. subtilis* EpsL. A
 203 luminescence-based assay, UMP Glo, which measured the UMP byproduct of the PGT
 204 reaction. Error bars are given for mean ± SEM, n = 3. **C)** A radioactivity-based assay that
 205 measures the Und-PP-[³H]sugar product. Error bars are given for mean ± SEM, n = 2. **D)**
 206 and **E)** Genetic complementation of Δ epsL-*Bs* mutant with *pglC* of *Campylobacter*. **D)**
 207 represents colony biofilm morphologies of wild-type (*B. subtilis* NCIB 3610) Δ epsL mutant
 208 (*epsL*⁻ - NRS5907) and genetically complemented strains (*epsL*⁺ - NRS5942, *pglC*^{CC+} -
 209 NRS6692, *pglC*^{CC+} - NRS6618, see **Table S3**). The colony biofilms were grown at 30 °C
 210 for 48 hours prior to imaging. **E)** represents the respective sessile water drop analysis of
 211 the colony biofilms with a 5 μl water droplet on top. The representative images were taken
 212 after 5 min, except *epsL*⁻ where the image was taken at 0 min due to extreme
 213 hydrophilicity of the surface in absence of biofilm.

214

215 **Substrate specificity of EpsD, the first glycosyl transferase in the EPS pathway.** By
216 determining the first membrane-committed step in the EPS pathway, we were provided
217 with an experimental system where we could use the product of EpsL (Und-PP-
218 diNAcBac) to study the first glycosyl transferase in the pathway. As the structures of
219 glycosyl transferases are relatively similar it is not possible to predict the substrate
220 specificity from sequence alone. In the *Campylobacter pgl* pathways, the PglA enzyme is
221 responsible for the second step in the glycan biosynthetic pathway, catalyzing the transfer
222 of GalNAc from UDP-GalNAc to Und-PP-diNAcBac (32). There are five GTs encoded by
223 the *epsA-O* operon: EpsD, EpsE, EpsF, EpsH, and EpsJ (**Figure 1A**). Of these, EpsD
224 and EpsF are the most similar to PglA at the sequence level (**Figure 4A**) (**Table S7**). Both
225 belong to GT-4 family in the CAZy classification (33) and AlphaFold structural analysis
226 suggests that both possess a GT-B fold, like PglA. In contrast, the remaining GTs
227 encoded by *epsA-O* operon, EpsE, EpsH and EpsJ, belong to GT-2 family and are
228 predicted to have GT-A folds. Therefore, based on the sequence similarities of EpsD and
229 EpsF to PglA and their GT structural fold analyses, we predicted either EpsD or EpsF
230 could be the first glycosyltransferase in EPS pathway.


231

232 Based on the hypothesis that EpsD or EpsF could be the PglA homologue in *B.*
233 *subtilis* (**Figure 4A**), we tested whether PglA could functionally substitute for either EpsD
234 or EpsF *in vivo*. We therefore investigated the genetic complementation *B. subtilis* *epsD*
235 and *epsF* deletion strains by the PglA coding sequences from *C. jejuni* and other related
236 UDP-Gal transferase enzymes from *Neisseria gonorrhoeae* (*Ng*) and *Neisseria*
237 *meningitidis* (*Nm*) (**Figure 4B**) (**Figure S8A**). The *epsD* and *epsF* deletion strains of *B.*
238 *subtilis* are unable to form the wild-type rugose, hydrophobic colony biofilms on agar
239 plates (**Figure 4B**) (**Figure S8A**). The *pglA* genes were placed under the control of an
240 IPTG inducible promoter and integrated into the chromosome at the ectopic *amyE* gene
241 in the *epsD* and *epsF* deletion strains. The *B. subtilis* *epsD* and *epsF* coding regions were
242 used as the respective positive controls (see **Table S3**), (**Figure 4B**), (**Figure S8A-B**). In
243 the presence of 25 μ M IPTG, the genetic complementation of the *epsD* deletion strain by
244 *pglA* gene of *C. jejuni* resulted in partial recovery of biofilm formation, whereas

245 complementation with *pglA* genes from *Neisseria* did not recover the biofilm phenotype
246 (**Figure 4B**). In the case of *pglA* from *C. jejuni*, in addition to a partial rescue of biofilm
247 architecture, there was recovery of both the area occupied by the mature colony biofilm
248 (**Figure S8C**) and surface hydrophobicity (**Figure 4C**) (**Figure S8D**). The measurements
249 quantified in each case were indistinguishable from those obtained from the analysis of
250 the NCIB 3610 parental strain. In contrast, although the *epsF* deletion strain could be fully
251 complemented by the *epsF* coding region, expression of the *pglA* genes were unable to
252 recover the biofilm formation (**Figure S8A**). This conclusion is supported by AlphaFold
253 modeling of the *Bs* EpsD, EpsF and *Cj* PglA structures where EpsD and PglA (rsmd 1.4Å)
254 share an overall higher structural similarity than EpsF and PglA (rsmd 4.1Å) (**Figure S9**).
255

256 We next took a biochemical approach to confirm the activity of EpsD by using the
257 purified Und-PP-diNAcBac from chemoenzymatic synthesis. To investigate the identity of
258 the UDP-sugar donor for EpsD we used heterologous expression of EpsD in *E. coli*
259 (**Figure S10**). Initial attempts to detergent solubilize EpsD were made and provided
260 protein as assessed by SDS-PAGE (**Figure S11**). However, the enzyme was no longer
261 active once solubilized from the cell envelope fraction (Arbour, Bernstein, Ghosh,
262 Imperiali, unpublished data). For that reason, we determined the UDP-sugar substrate
263 using the cell envelope fraction of *E. coli* expressing the *epsD* using a radioactivity-based
264 assay with Und-PP-diNAcBac, the substrate produced from EpsL (**Figure 4D**) (**Figure**
265 **S12**). The panel of donor substrates used for the activity assay were tritiated,
266 commercially-available UDP-[³H]sugars, namely UDP-[³H]Gal, UDP-[³H]Glc, UDP-
267 [³H]GalNAc, and UDP-[³H]GlcNAc. We determined that in the presence of UDP-
268 [³H]GlcNAc, EpsD converts 35% of the total amount of UDP-[³H]GlcNAc to Und-PP-
269 diNAcBac-[³H]GlcNAc. Additionally, under identical conditions, low transfer (4%) of
270 [³H]GalNAc to Und-PP-diNAcBac-[³H]GalNAc was observed (**Figure 4D**). Therefore, we
271 conclude that EpsD can use Und-PP-diNAcBac as an acceptor substrate for the transfer
272 of GlcNAc. Regarding the stereochemistry of the new glycosidic linkage, we examined
273 the sequences of EpsD with PglA from *C. jejuni* and *C. concisus* and the structural overlay
274 of AlphaFold models of EpsD and PglA (*C. concisus*) (**Figure S13**). These analyses
275 strongly suggest that EpsD follows a similar mechanistic course affording an α -1,3-

276 linkage, which is achieved through a retaining GT mechanism.(34) Additionally, EpsD
 277 displays substrate promiscuity by accepting UDP-GalNAc as a less preferred substrate
 278 (**Figure 4**).

279 **Figure 4.** Sequence comparison and biochemical and phenotypic analysis of EpsD. **A)**
 280 Sequence identity of *B. subtilis* EpsD with characterized PglAs from Gram-negative
 281 bacteria. Accession numbers: *Bs* EpsD (P71053), *Cc* PglA (A7ZET5), *Cj* PglA
 282 (A0A2U0QT38), *Ng* PglA (Q5F602), *Nm* PglA (Q9K1D9), and *Bs* EpsF (P71055). **B)** and
 283 **C)** Genetic complementation of *Bs* Δ epsD mutant with *pglA* of *Campylobacter* and
 284 *Neisseria*. **B)** represents colony biofilm morphologies of wild-type (*B. subtilis* NCIB 3610),
 285 Δ epsD mutant (*epsD*⁻ - NRS5905) and genetically complemented strains (*epsD*⁺ -
 286 NRS5930, *pglA*^{*Cj*+} - NRS6605, *pglA*^{*Ng*+} - NRS6619, *pglA*^{*Nm*+} - NRS6620). The colony
 287 biofilms were grown at 30°C for 48 hours prior to imaging. **C)** represents the respective
 288 sessile water drop analysis of the colony biofilms with a 5 μ l water droplet on top. The
 289 representative images of wild-type, *epsD*⁺ and *pglA*^{*Cj*+} were taken after 5 min, whereas
 290 *pglA*^{*Ng*+} and *pglA*^{*Nm*+} were taken after 10 min.

291 the images of *epsD*⁻ mutant, *pglA*^{N_g+} and *pglA*^{N_m+} were taken at 0 min due to extreme
292 hydrophilicity of the surface in absence of biofilm. **D)** Biochemical determination of
293 substrate specificity of *Bs* EpsD with Und-PP-diNAcBac as an acceptor substrate in a
294 radioactive-based assay. Error bars are given for mean \pm SEM, n = 3.

295 **Discussion**

296 It is extremely challenging to elucidate the structures of complex glycoconjugates
297 directly from bacterial extracts. A case in point is the major polysaccharide found in the
298 extracellular matrix of *B. subtilis* biofilms, which has remained undefined, despite
299 considerable experimentation for many years. This is an important area of research as
300 biofilm formation is a prevalent behavior displayed across multiple microbial species and
301 exopolysaccharide production is highly correlated with biofilm formation (35). In this study,
302 we have applied complementary biochemical and genetic approaches to establish the
303 function of essential enzymes that catalyze key early steps in biofilm biosynthesis from
304 the *Bacillus subtilis* *epsA-O* operon. Overall, the sequences of protein encoded by the
305 operon support the expression of enzymes involved in UDP-sugar biosynthesis as well
306 as several GTs and a PGT with unknown substrate specificity and roles in biofilm
307 biosynthesis, however, in the absence of targeted analysis, the *eps* pathway cannot be
308 defined.

309

310 **EpsL is a functional PGT that utilizes UDP-diNAcBac.** Bioinformatic analysis
311 suggested that many of the genes in the *epsA-O* cluster showed similarity to the *pgl* gene
312 cluster, which is responsible for the general protein N-glycosylation pathway in *C. jejuni*
313 (32, 36). As the *pgl* gene cluster had been biochemically characterized and shown to be
314 involved in the biosynthesis of UDP-diNAcBac and a heptasaccharide product containing
315 diNAcBac at the reducing end of the glycan (37), this similarity provided the foundation
316 for exploration of the function of selected enzymes in the *B. subtilis* EPS pathway.
317 Previous sequence analysis and *in vitro* characterization of EpsCNM suggested that
318 these enzymes are responsible for the biosynthesis of UDP-diNAcBac (15-17). Sequence
319 analysis also identified EpsL as a close homolog of the *C. jejuni* and *C. concisus* PglCs,
320 which are structurally and biochemically well-characterized PGTs (**Figure 2**) (32). The
321 identification of a PGT is noteworthy as these enzymes catalyze phosphosugar transfer
322 from UDP-diNAcBac to a polyprenol phosphate carrier as the first membrane-associated
323 step in many glycoconjugate assembly pathways (38).

324 Thus, we designed a strategy to implement an *in vitro* biochemical activity assay
325 using UndP as the acceptor substrate and a series of [³H]-labeled and unlabeled UDP-

326 sugars, including UDP-diNAcBac. Following heterologous expression, solubilization, and
327 purification, EpsL was used to screen enzyme activity *in vitro*. Complementary assays
328 using either radiolabeled sugars or the UMP-Glo® assay were applied to confirm that
329 EpsL prefers UDP-diNAcBac as phosphosugar donor and affords the Und-PP-diNAcBac
330 product (**Figure 3B-C**). These *in vitro* biochemical assay results were supported by
331 genetic analyses using biofilm formation as the phenotypic readout. This revealed that
332 the *B. subtilis* *epsL* deletion mutant could be genetically complemented by the *pglC*
333 coding sequence of *C. jejuni* (**Figure 3D**). Thus, we conclude that EpsL catalyzes the first
334 step in EPS biosynthesis pathway to form Und-PP-diNAcBac. Moreover, we show the
335 first experimental evidence of the function of a UDP-diNAcBac utilizing PGT in a Gram-
336 positive bacterium and the presence of diNAcBac as the first sugar at the reducing end
337 of EPS in *B. subtilis*. These findings are significant; diNAcBac was first discovered in
338 *Bacillus licheniformis* (14), however, to date the diNAcBac sugar has only been described
339 in N- and O-linked glycoproteins, lipopolysaccharide (LPS), and the capsular
340 polysaccharide (CPS) of diverse Gram-negative bacteria (13).

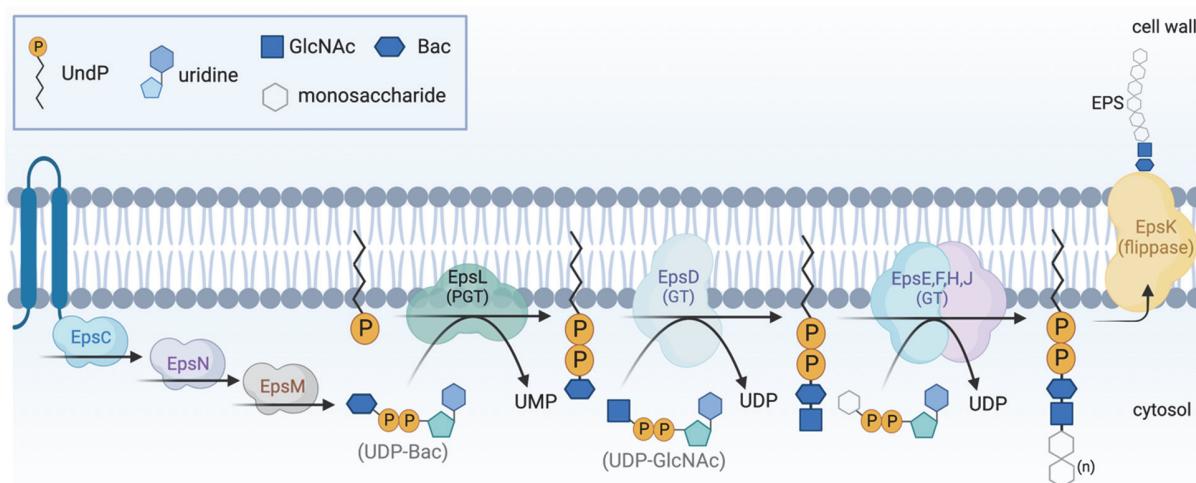
341

342 **EpsD is a UDP-GlcNAc-dependent N-acetyl glucosamine transferase in *B. subtilis*.**
343 The successful characterization of the first step in EPS pathway provided the Und-PP-
344 diNAcBac substrate for exploring the next enzyme in the EPS biosynthesis. In this case,
345 although the *epsA-O* gene cluster revealed five candidate GTs with predicted GT-A or
346 GT-B fold, the assignment of structure to functional specificity could not be definitively
347 predicted. However, the similarity of *epsA-O* cluster genes with *C. jejuni* N-glycosylation
348 pathway genes helped us to narrow down the candidates to EpsD and EpsF as possible
349 GTs for the subsequent step in the pathway. Our bioinformatic analysis suggested that
350 both EpsD and EpsF share similarity with PglA of *C. jejuni* and selected *Neisseria* sp.
351 (**Figure 4A**) and we additionally knew that both EpsF and EpsD were essential for biofilm
352 formation in *B. subtilis* (5). The possibility that EpsF was the next enzyme in the
353 biosynthetic pathway was ruled out by the inability of *pglA* genes of *C. jejuni* and *Neisseria*
354 sp. to rescue the biofilm formation upon expression in *epsF* deletion mutant of *B. subtilis*
355 (**Figure S8A**). However, comparable experiments with EpsD provided new insight as
356 genetic complementation with the *C. jejuni* *pglA* was able to partially rescue the biofilm-

357 negative phenotype in the *epsD* deletion mutant of *B. subtilis* (**Figure 4B**). In contrast, the
358 expression of two *pglA* variants, which catalyze the addition of Gal in the second step of
359 the *Neisseria* *pgl* pathway(39) did not rescue the phenotype in the *epsD* deletion mutant.
360 Although, the partial complementation of *pglA* of *C. jejuni* in *epsD* deletion mutant did not
361 confirm the preference of EpsD for GalNAc it provided the possibility that the preferred
362 sugar substrate could be the related HexNAc sugar, GlcNAc. This hypothesis was
363 supported by using a biochemical approach where the cell envelope fraction of *E. coli*
364 expressing EpsD was used to assess activity using Und-PP-diNAcBac and four different
365 commercially available ³H-labeled UDP-sugars as donor substrates. The *in vitro* assay
366 results provided further insight into the EpsD sugar substrate selectivity; EpsD showed a
367 clear preference for UDP-GlcNAc over the other UDP-sugars tested with significant
368 conversion UDP-[³H]GlcNAc to Und-PP-diNAcBac-[³H]GlcNAc (**Figure 4D**). This
369 supports the function of EpsD in the second step in the EPS pathway. Interestingly, EpsD
370 was also able to transfer [³H]GalNAc to Und-PP-diNAcBac although with far lower
371 efficiency. This donor substrate promiscuity displayed by EpsD not only explains the
372 partial genetic complementation of *epsD* deletion mutant of *B. subtilis* with *pglA* of *C.*
373 *jejuni* but also provides insight into the step downstream. As previously established, PglA
374 transfers GalNAc onto Und-PP-diNAcBac in *C. jejuni* N-glycans (32, 40). Thus the partial
375 complementation observed upon expressing *pglA* in the *B. subtilis* *epsD* deletion mutant
376 suggests that Und-PP-diNAcBac-GalNAc is not a preferred acceptor for the next GT in
377 the *B. subtilis* EPS biosynthetic pathway, resulting in the observed partial biofilm
378 phenotype. It also suggests possible acceptor substrate promiscuity of the next GT in
379 line.

380

381 **Summarizing new insights into the *Bacillus subtilis* EPS biosynthetic pathway**


382 The characterization of EpsL and EpsD in this study has set the foundation for
383 characterizing the remaining GTs in the EPS biosynthesis pathway, which would
384 ultimately enable us to define the EPS sugar composition and structure. Based on the
385 experimental evidence provided in this study, we propose the current EPS glycosylation
386 pathway (**Figure 5**). EpsCNM have already been shown to biosynthesize UDP-diNAcBac
387 (15-17). EpsL is a PGT that transfers diNAcBac onto Und-P converting it to Und-PP-

388 diNAcBac. EpsD further extends this glycan by transferring GlcNAc onto the product from
389 EpsL thus converting it to Und-PP-diNAcBac-GlcNAc. These findings also indicate a
390 divergence in the *B. subtilis* EPS glycosylation pathway after the synthesis of Und-PP-
391 diNAcBac (as diNAcBac-GlcNAc-) compared to *C. jejuni* (diNAcBac-GalNAc-) and *N.*
392 *gonorrhoeae* (diNAcBac-Gal-) pathways. Homologs of EpsL and EpsD are present
393 broadly across the *B. subtilis* clade. This suggests the presence of similar glycosylation
394 pathways and exopolysaccharides in many *Bacillus* species and provides an opportunity
395 to explore the diversity of diNAcBac-containing clusters and the associated
396 exopolysaccharides.

397

398 **Overarching Conclusion**

399 The study of glycoconjugate biosynthesis pathways requires a concerted effort of
400 different approaches as individual bioinformatic, biochemical, and genetic approaches
401 often provide incomplete details. In this study, we establish the sequential
402 characterization of the *B. subtilis* EPS steps by applying biochemical assays and
403 phenotypic screening to the first two membrane-associated processes in the pathway –
404 EpsL and EpsD. The major advantage of addressing steps in the pathway in their
405 biosynthetic order is that the characterization of each enzyme provides the substrate for
406 investigating the following step. Additionally, as enzyme expression and isolation (either
407 in a cell envelope fraction or in a detergent-solubilized form) is included in the process, it
408 enables the chemoenzymatic synthesis of products for additional analysis and use in
409 related pathways. The established enzyme assays also provide the opportunity for small
410 molecule inhibitor screening, both individually (EpsL or EpsD) or as biosynthetic partners
411 (EpsL and EpsD). Taken together, these studies set a clear course for analysis of the
412 downstream EPS glycosylation pathway and the development of a complete picture of
413 EPS structure.

414

415 **Figure 5.** The proposed biofilm matrix exopolysaccharide biosynthetic pathway in *B.*
416 *subtilis*. EpsCNM synthesize UDP-diNAcBac, which severs as a donor substrate for EpsL.
417 EpsL transfers diNAcBac onto Und-P and EpsD catalyzes the second step and transfers
418 GlcNAc from a UDP-GlcNAc sugar donor. The next GTs functioning downstream are to
419 be characterized.
420

421 **Acknowledgements**

422 We thank Natalie Bamford for reading the manuscript and providing helpful input.
423 The work at the University of Dundee was funded by the Biotechnology and Biological
424 Science Research Council (BBSRC) [BB/P001335/1, BB/R012415/1]. We thank the
425 National Institute of Health (NIH) for financial support to B.I. (GM039334 and GM131627)
426 and C.A.A. (F32GM136023).

427 **Figures 1B, Figure 3B-C, Figure 4D and Figure 5** were created with BioRender.com.

428

429 **Credit Statement**

430 C.A.A., H.M.B., R.N., N.S.W., H.D. M.A.J.F., Y.A.S., B.I. designed this study, C.A.A.,
431 R.N., S.G., Y.A.S., H.M.B. collected the data, and all authors interpreted the data. All
432 authors were involved in the writing and editing of the manuscript.

433

434

435 **Authors**

436 Christine A. Arbour (0000-0001-6056-296X)
437 Rupa Nagar (0000-0003-2127-3115)
438 Hannah M. Bernstein (0000-0003-0871-0376)
439 Soumi Ghosh (0000-0001-6101-014)
440 Yusra Al-Samarraie
441 Helge C. Dorfmüller (0000-0003-1288-044X)
442 Michael A. J. Ferguson (0000-0003-1321-8714)

443 **References**

- 444 1. Sharma D, Misba L, Khan AU. 2019. Antibiotics versus biofilm: an emerging battleground
445 in microbial communities. *Antimicrob Resist Infect Control* 8:76.
- 446 2. Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R. 2013. Sticking together: building a
447 biofilm the *Bacillus subtilis* way. *Nat Rev Microbiol* 11:157-168.
- 448 3. Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács ÁT. 2021. *Bacillus subtilis* biofilm
449 formation and social interactions. *Nat Rev Microbiol* 19:600-614.
- 450 4. Branda SS, Chu F, Kearns DB, Losick R, Kolter R. 2006. A major protein component of the
451 *Bacillus subtilis* biofilm matrix. *Mol Microbiol* 59:1229-1238.
- 452 5. Roux D, Cywes-Bentley C, Zhang YF, Pons S, Konkol M, Kearns DB, Little DJ, Howell PL,
453 Skurnik D, Pier GB. 2015. Identification of Poly-N-acetylglucosamine as a Major
454 Polysaccharide Component of the *Bacillus subtilis* Biofilm Matrix. *J Biol Chem* 290:19261-
455 72.
- 456 6. Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. 2001. Fruiting body
457 formation by *Bacillus subtilis*. *Proc Natl Acad Sci USA* 98:11621-11626.
- 458 7. Zhu B, Stülke J. 2017. SubtiWiki in 2018: from genes and proteins to functional network
459 annotation of the model organism *Bacillus subtilis*. *Nucleic Acids Res* 46:D743-D748.
- 460 8. Guttenplan SB, Blair KM, Kearns DB. 2010. The EpsE Flagellar Clutch Is Bifunctional and
461 Synergizes with EPS Biosynthesis to Promote *Bacillus subtilis* Biofilm Formation. *PLoS
462 Genet* 6:e1001243.
- 463 9. Cairns LS, Hobley L, Stanley-Wall NR. 2014. Biofilm formation by *Bacillus subtilis*: new
464 insights into regulatory strategies and assembly mechanisms. *Mol Microbiol* 93:587-598.
- 465 10. Chai Y, Beauregard PB, Vlamakis H, Losick R, Kolter R. 2013. Galactose Metabolism Plays
466 a Crucial Role in Biofilm Formation by *Bacillus subtilis*. *mBio* 4:e00555-12.
- 467 11. Jones SE, Paynich ML, Kearns DB, Knight KL. 2014. Protection from Intestinal Inflammation
468 by Bacterial Exopolysaccharides. *J Immun* 192:4813-4820.
- 469 12. Azulay DN, Abbasi R, Ben Simhon Ktorza I, Remennik S, Reddy M A, Chai L. 2018.
470 Biopolymers from a Bacterial Extracellular Matrix Affect the Morphology and Structure of
471 Calcium Carbonate Crystals. *Cryst Growth Des* 18:5582-5591.
- 472 13. Morrison MJ, Imperiali B. 2014. The Renaissance of Bacillosamine and Its Derivatives:
473 Pathway Characterization and Implications in Pathogenicity. *Biochemistry* 53:624-638.
- 474 14. Sharon N. 2007. Celebrating the golden anniversary of the discovery of bacillosamine, the
475 diamino sugar of *Bacillus*. *Glycobiology* 17:1150-1155.
- 476 15. Kaundinya CR, Savithri HS, Krishnamurthy Rao K, Balaji PV. 2018. In vitro characterization
477 of N-terminal truncated EpsC from *Bacillus subtilis* 168, a UDP-N-acetylglucosamine 4,6-
478 dehydratase. *Arch Biochem Biophys* 657:78-88.
- 479 16. Kaundinya CR, Savithri HS, Rao KK, Balaji PV. 2018. EpsN from *Bacillus subtilis* 168 has
480 UDP-2,6-dideoxy 2-acetamido 4-keto glucose aminotransferase activity *in vitro*.
481 *Glycobiology* 28:802-812.
- 482 17. Kaundinya CR, Savithri HS, Rao KK, Balaji PV. 2018. EpsM from *Bacillus subtilis* 168 has
483 UDP-2,4,6-trideoxy-2-acetamido-4-amino glucose acetyltransferase activity *in vitro*.
484 *Biochem Biophys Res Commun* 505:1057-1062.

485 18. Schoenhofen IC, McNally DJ, Vinogradov E, Whitfield D, Young NM, Dick S, Wakarchuk
486 WW, Brisson J-R, Logan SM. 2006. Functional Characterization of
487 Dehydratase/Aminotransferase Pairs from *Helicobacter* and *Campylobacter*: Enzymes
488 Distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways. *J Biol
489 Chem* 281:723-732.

490 19. Olivier NB, Imperiali B. 2008. Crystal Structure and Catalytic Mechanism of PgID from
491 *Campylobacter jejuni*. *J Biol Chem* 283:27937-27946.

492 20. Olivier NB, Chen MM, Behr JR, Imperiali B. 2006. *In Vitro* Biosynthesis of UDP-*N,N'*-
493 Diacetylbacillosamine by Enzymes of the *Campylobacter jejuni* General Protein
494 Glycosylation System. *Biochemistry* 45:13659-13669.

495 21. Irnov I, Winkler WC. 2010. A regulatory RNA required for antitermination of biofilm and
496 capsular polysaccharide operons in *Bacillales*. *Mol Microbiol* 76:559-575.

497 22. Ray LC, Das D, Entova S, Lukose V, Lynch AJ, Imperiali B, Allen KN. 2018. Membrane
498 association of monotopic phosphoglycosyl transferase underpins function. *Nat Chem Biol*
499 14:538-541.

500 23. Das D, Kuzmic P, Imperiali B. 2017. Analysis of a dual domain phosphoglycosyl transferase
501 reveals a ping-pong mechanism with a covalent enzyme intermediate. *Proc Natl Acad Sci
502 USA* 114:7019-7024.

503 24. O'Toole KH, Imperiali B, Allen KN. 2021. Glycoconjugate pathway connections revealed
504 by sequence similarity network analysis of the monotopic phosphoglycosyl transferases.
505 *Proc Natl Acad Sci USA* 118:e2018289118.

506 25. Entova S, Billod J-M, Swiecicki J-M, Martín-Santamaría S, Imperiali B. 2018. Insights into
507 the key determinants of membrane protein topology enable the identification of new
508 monotopic folds. *eLife* 7:e40889.

509 26. Rausch M, Deisinger JP, Ulm H, Müller A, Li W, Hardt P, Wang X, Li X, Sylvester M, Engeser
510 M, Vollmer W, Müller CE, Sahl HG, Lee JC, Schneider T. 2019. Coordination of capsule
511 assembly and cell wall biosynthesis in *Staphylococcus aureus*. *Nat Commun* 10:1404.

512 27. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2—
513 a multiple sequence alignment editor and analysis workbench. *Bioinformatics* 25:1189-
514 1191.

515 28. Troshin PV, Procter JB, Barton GJ. 2011. Java bioinformatics analysis web services for
516 multiple sequence alignment—JABAWS:MSA. *Bioinformatics* 27:2001-2002.

517 29. Lukose V, Luo L, Kozakov D, Vajda S, Allen KN, Imperiali B. 2015. Conservation and
518 Covariance in Small Bacterial Phosphoglycosyltransferases Identify the Functional
519 Catalytic Core. *Biochemistry* 54:7326-7334.

520 30. Walvoort MTC, Lukose V, Imperiali B. 2016. A Modular Approach to
521 Phosphoglycosyltransferase Inhibitors Inspired by Nucleoside Antibiotics. *Chem Eur J*
522 22:3856-3864.

523 31. Das D, Walvoort MTC, Lukose V, Imperiali B. 2016. A Rapid and Efficient Luminescence-
524 based Method for Assaying Phosphoglycosyltransferase Enzymes. *Sci Rep* 6:33412.

525 32. Glover KJ, Weerapana E, Imperiali B. 2005. *In vitro* assembly of the
526 undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked
527 glycosylation. *Proc Natl Acad Sci USA* 102:14255-14259.

528 33. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2008. The
529 Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.
530 Nucleic Acids Res 37:D233-D238.

531 34. Lairson LL, Henrissat B, Davies GJ, Withers SG. 2008. Glycosyltransferases: Structures,
532 Functions, and Mechanisms. Annual Review of Biochemistry 77:521-555.

533 35. Poulin MB, Kuperman LL. 2021. Regulation of Biofilm Exopolysaccharide Production by
534 Cyclic Di-Guanosine Monophosphate. Front Microbiol 12.

535 36. Szymanski CM, Yao R, Ewing CP, Trust TJ, Guerry P. 1999. Evidence for a system of general
536 protein glycosylation in *Campylobacter jejuni*. Mol Microbiol 32:1022-1030.

537 37. Young NM, Brisson J-R, Kelly J, Watson DC, Tessier L, Lanthier PH, Jarrell HC, Cadotte N,
538 St. Michael F, Aberg E, Szymanski CM. 2002. Structure of the N-Linked Glycan Present on
539 Multiple Glycoproteins in the Gram-negative Bacterium, *Campylobacter jejuni* J Biol Chem
540 277:42530-42539.

541 38. O'Toole KH, Bernstein HM, Allen KN, Imperiali B. 2021. The surprising structural and
542 mechanistic dichotomy of membrane-associated phosphoglycosyl transferases. Biochem
543 Soc Trans 49:1189-1203.

544 39. Hartley MD, Morrison MJ, Aas FE, Børrud B, Koomey M, Imperiali B. 2011. Biochemical
545 Characterization of the O-Linked Glycosylation Pathway in *Neisseria gonorrhoeae*
546 Responsible for Biosynthesis of Protein Glycans Containing N,N'-Diacetylglucosamine.
547 Biochemistry 50:4936-4948.

548 40. Linton D, Dorrell N, Hitchen PG, Amber S, Karlyshev AV, Morris HR, Dell A, Valvano MA,
549 Aebi M, Wren BW. 2005. Functional analysis of the *Campylobacter jejuni* N-linked protein
550 glycosylation pathway. Mol Microbiol 55:1695-1703.

551