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Abstract

Neuronal dysfunction and cognitive deterioration in Alzheimer’s disease (AD) are likely caused
by multiple pathophysiological factors. However, evidence in humans remains scarce,
necessitating improved non-invasive techniques and integrative mechanistic models. Here, we
introduce personalized brain activity models incorporating functional MRI, amyloid- (AB) and
tau-PET from AD-related participants (N=132). Within the model assumptions,
electrophysiological activity is mediated by toxic protein deposition. Our integrative subject-
specific approach uncovers key patho-mechanistic interactions, including synergistic Ap and tau
effects on cognitive impairment and neuronal excitability increases with disease progression. The
data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker
concentrations (p-tau217, p-tau231, p-taul81, GFAP). Furthermore, our results reproduce
hallmark AD electrophysiological alterations (theta band activity enhancement and alpha
reductions) which occur with AB-positivity and after limbic tau involvement. Microglial activation
influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in
mapping neuroprotective vs detrimental phenotypes. Mechanistic brain activity models can
further clarify intricate neurodegenerative processes and accelerate preventive/treatment

interventions.
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Introduction

Alzheimer’s disease (AD) is defined by synaptic and neuronal degeneration and loss
accompanied by amyloid beta (AB) plaques and tau neurofibrillary tangles (NFTs) (Iturria-Medina
et al., 2018; Jack et al., 2018; Maestu et al., 2021). In-vivo animal experiments indicate that both
AP and tau pathologies synergistically interact to impair neuronal circuits (Busche & Hyman,
2020). For example, the hypersynchronous epileptiform activity observed in over 60% of AD cases
(Vossel et al., 2017) may be generated by surrounding AP and/or tau deposition yielding neuronal
network hyperactivity (Tok et al., 2022; Vossel et al., 2017). Cortical and hippocampal network
hyperexcitability precedes memory impairment in AD models (Kazim et al., 2017; Targa Dias
Anastacio et al., 2022). In an apparent feedback loop, endogenous neuronal activity, in turn,
regulates AP aggregation, in both animal models and computational simulations (Bero et al., 2011;
de Haan et al.,, 2017). Multiple other factors involved in AD pathogenesis -remarkably,
neuroinflammatory dysregulations- also seemingly influence neuronal firing and act on
hypo/hyperexcitation patterns (Iturria-Medina et al., 2016; Kwon & Koh, 2020; Shen et al., 2018).
Thus, mounting evidence suggest that neuronal excitability changes are a key mechanistic event
appearing early in AD and a tentative therapeutic target to reverse disease symptoms (Busche &
Hyman, 2020; Lauterborn et al., 2021; Maestud et al., 2021; Targa Dias Anastacio et al., 2022).
However, the exact patterns of A, tau and other disease factors’ neuronal activity alterations in
AD’s neurodegenerative progression are unclear as in-vivo and non-invasive measuring of

neuronal excitability in human subjects remains impractical.

Brain imaging and electrophysiological monitoring constitute a reliable readout for brain
network degeneration likely associating with AD’s neuro-functional alterations (Babiloni et al.,

2013; Iturria-Medina et al., 2017; Maestu et al., 2021; Sanchez-Rodriguez et al., 2018; Yang et al.,
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2018). Patients present distinct resting-state blood-oxygen-level-dependent (BOLD) signal content
in the low frequency fluctuations range (0.01-0.08 Hz) (Yang et al., 2018, 2020). These
differences increase with disease progression, from cognitively unimpaired (CU) controls to mild
cognitive impairment (MCI) to AD, correlating with performance on cognitive tests (Yang et al.,
2018). Another characteristic functional change is the slowing of the electro-(magneto-)
encephalogram (E/MEG), with the signal shifting towards low frequency bands (Babiloni et al.,
2013; Sanchez-Rodriguez et al., 2018). Electrophysiological spectral changes associate with brain
atrophy and with losing connections to hub regions including the hippocampus, occipital and
posterior areas of the default mode network (Maestu et al., 2019). All these damages are known
to occur in parallel with cognitive impairment (Maesti et al., 2019). Disease processes also
manifest differently given subject-specific genetic and environmental conditions (Iturria-Medina
etal., 2018, 2021). Models of multiple pathological markers and physiology represent a promising
avenue for revealing the connection between individual AD fingerprints and cognitive deficits

(Maestu et al., 2021; Sanchez-Rodriguez et al., 2018; van Nifterick et al., 2022).

In effect, large-scale neuronal dynamical models of brain re-organization have been used
to test disease-specific hypotheses by focusing on the corresponding causal mechanisms (Deco et
al., 2018; Luppi et al., 2022; Stefanovski et al., 2019). By considering brain topology (the structural
connectome (Sanchez-Rodriguez et al., 2018)) and regional profiles of a pathological agent (Deco
et al., 2018), it is possible to recreate how a disorder develops, providing supportive or conflicting
evidence on the validity of a hypothesis (Luppi et al., 2022). Generative models follow average
activity in relatively large groups of excitatory and inhibitory neurons (neural masses), with large-
scale interactions generating E/MEG signals and/or functional MRI observations (Iturria-Medina

& Evans, 2021). Through neural mass modeling, personalized virtual brains were built to describe
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AP pathology effects on AD-related EEG slowing (Stefanovski et al., 2019). Simulated resting-
state functional MRI across the AD spectrum was used to estimate biophysical parameters
associated with cognitive deterioration (Zimmermann et al., 2018). In addition, different
intervention strategies to counter neuronal hyperactivity in AD have been tested (de Haan et al.,
2017; van Nifterick et al., 2022). Notably, comprehensive computational approaches combining
pathophysiological patterns and functional network alterations allow the quantification of non-
observable biological parameters (Falcon et al., 2016) like neuronal excitability values in a subject-
specific basis (Deco et al., 2018; Iturria-Medina et al., 2018, 2021; Luppi et al., 2022; Maestu et
al., 2021; Sanchez-Rodriguez et al., 2018), facilitating the design of personalized treatments

targeting the root cause(s) of functional alterations in AD.

Here, we considerably extend previous mechanistic brain models of disease progression in
four fundamental ways. First, we develop a personalized whole-brain neural mass model
integrating multilevel, multifactorial pathophysiological profiles to clarify their causal impact on
neuronal activity alterations. Second, using individual in-vivo functional MRI together with Ap-
and tau- positron emission tomography (PET), we infer and quantify the combined impact of these
relevant AD pathophysiological factors on neuronal excitability. Third, we investigate the
associations between the obtained subject-specific pathophysiological neuronal activity
affectations and clinically applicable blood-plasma biomarkers (p-tau217, p-tau231, p-taul8l,
GFAP) as well as cognitive integrity. Fourth, we reproduce hallmark AD electrophysiological
alterations and pinpoint their associated critical toxic protein accumulation stages. Overall, our
results expand previous understandings of neuropathological impact on AD, namely the
emergence of neuronal hyperactivity (Busche & Hyman, 2020; Lauterborn et al., 2021; Maestu et

al., 2021; Targa Dias Anastacio et al., 2022), slowing of the E/MEG signals (Babiloni et al., 2013;
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Sanchez-Rodriguez et al., 2018) and the existence of synergistic multifactorial interactions
(Busche & Hyman, 2020; Iturria-Medina et al., 2018). These findings support the premise of using
integrative neural mass models to decode multilevel mechanisms in complex neurological

disorders.

Results

Modeling pathophysiological impacts on whole-brain neuronal activity

A personalized generative framework to study the combined pathophysiological effect of
AP and tau on neuronal activity was formulated in terms of a whole-brain neuronal mass model
(see Figure 1, Methods, Personalized integrative neuronal activity simulator). This model assumes
that, at each brain region, neuronal excitability is potentially mediated by the local
pathophysiological burden, specifically by PET-measured accumulation of A plaques, tau tangles
and the combined AP and tau deposition (their synergistic interaction). In addition, the neuronal
populations interact via nervous fibers, potentially propagating pathophysiological effects across
each individual brain’s anatomical connectome (Iturria-Medina et al., 2018; Iturria-Medina &
Evans, 2015). Altogether, this framework serves to generate continuous pathophysiologically-
mediated neuronal activities, which are transformed into BOLD signals by a hemodynamic-
metabolic module. The individual model parameters quantifying the brain-wide subject-specific
influence of each neuropathological factor (or their synergistic interaction) on neuronal excitability
are identified by maximizing the similarity between the generated and observed BOLD data. These

estimated parameters serve to reconstruct hidden electrophysiological signals, neuronal
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excitability spatial profiles, and to study additive relationships with plasma biomarkers and

cognitive integrity.

Data from one hundred thirty-two individuals from the Translational Biomarkers in Aging

and Dementia cohort (TRIAD, https://triad.tnl-mcgill.com/) were used in the study, including CU

(N=81), MCI (N=35) and AD (N=16) participants (Supplementary file 1—table 1). All subjects
were cognitively profiled —e.g., MMSE (Folstein et al., 1975), MoCA (Nasreddine et al., 2005)—
and underwent structural and resting-state functional MRI and A ('8 F-NAV4694)-, tau ('*F-MK-
6240)- and microglial activation ('C-PBR28)-PET. From the fMRI signals, regional fractional
amplitudes of low-frequency fluctuations (fALFF) values were obtained, a measure consistently
identified as a reliable neuronal activity biomarker of AD’s progression (Iturria-Medina et al.,
2018; Yang et al., 2018, 2020). From all the PET images, the corresponding mean Standardized
Uptake Value Ratios (SUVRs) (Iturria-Medina et al., 2018; Pascoal et al., 2021; Therriault et al.,
2021) were extracted for 66 bilateral regions of interest (Methods, Image processing). Individuals
also had measures of plasma p-tau (Ashton et al., 2021a; Karikari et al., 2020; Therriault,
Vermeiren, et al., 2022; Triana-Baltzer et al., 2021) and glial fibrillary acidic protein (Benedet et

al., 2021) (Methods, Plasma biomarkers).
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b) Personalized pathophysiological activity decoder c) Hidden biophysical guantities and
pathological mechanisms
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Figure 1. Schematic Personalized Pathophysiological Activity Decoder. (a) Individuals
underwent a multimodal assessment including structural and resting-state functional MRI, AP and
tau-PET, clinically relevant plasma biomarkers, and cognitive evaluations. (b) In the Alzheimer’s
disease model, the subject’s neuronal excitability profile is defined as a function of AP, tau and
the synergistic interaction of AP and tau. Regional excitatory and inhibitory firing rates are
influenced by the local pathophysiological profiles and the signals coming from other regions via
the anatomical connectome. The regional neuronal signals generate BOLD indicators through
metabolic/hemodynamic transformations. By maximizing the similarity between the generated and
observed BOLD data, the set of subject-specific influences of the pathophysiological AP, tau and
Ap-tau factors on neuronal activity are quantified. (¢) These estimated pathophysiological
influences serve to recover electrophysiological activity producing the real individual BOLD

signals, and to study individual excitability profiles and their relationship with independent AD

(plasma) markers and cognitive deterioration.

Reproducing hallmark electrophysiological alterations in AD progression
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A desired attribute of biologically-defined generative tools in clinical applications is to
reproduce and mechanistically clarify reported pathophysiological observations. We obtained
subject-specific relative contributions of the considered pathophysiological factors on neuronal
activity (Supplementary file 1—figure 1) and reconstructed proxy quantities for electro-
(magneto)encephalographic (E/MEG) sources in each brain region. Subsequently, we aimed to test
the proposed pathophysiological activity generator’s ability to recreate reported spectral changes
in AD, i.e., increases of theta band power (4-8 Hz) and decreases of power in the lower alpha band
(alphal, 8-10 Hz) (Babiloni et al., 2013; Sanchez-Rodriguez et al., 2018; van Nifterick et al.,
2022). Among the quantities contributing to the E/MEG model output, we also closely studied
excitatory firings and changes to their magnitude given the influence of the toxic protein
depositions (Methods, Personalized integrative neuronal activity simulator). The participants
were, after individual parameter identification, separated into groups (Supplementary file 1—table
2) according to their clinical diagnosis (CU, MCI, AD) and AB-positivity or in-vivo Braak staging
(Braak & Braak, 1991; Therriault, Pascoal, et al., 2022). We performed statistical tests on the
reconstructed quantities of interest to understand the generalized AP and tau effects on neuronal

activity —see also Methods, Statistical analyses, and Supplementary file 1—table 3.

We observed that the standardized ratio of power in the theta band (4-8 Hz) was higher for
AP+ groups than for AB- (Figure 2a). Conversely, the alphal (8—-10 Hz) power decreased with Af-
positivity. Finally, the average excitatory firings were generally higher for AB+ subjects. Similar
results were observed across Braak stages (Figure 2b). Differences between all, theta and alphal
power and mean excitatory activity, were observed for subjects in Braak 0 (non-significant tau
neurofibrillary tangle involvement) and the advanced limbic (Braak III-IV) and isocortical stages

(Braak V-VI) and, furthermore, for Braak I-II (transentorhinal) and Braak V-VI subjects.
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Figure 2. Electrophysiological impacts by Ap, tau, Af-tau. From left to right: ratio of power in
the theta band (4—8 Hz) of the regional excitatory input currents (the E'MEG is proportional to the
excitatory input current), ratio of power in the alphal band (8—10 Hz) and mean excitatory firings
(over all regions and time points). Each of the quantities was standardized using the mean and s.d.
from all subjects, for visualizing general trends. Participants were then grouped according to
clinical diagnosis and (a) AB-positivity and (b) Braak stages. In the box-and-whisker plot, the
central lines indicate the group medians, with the bottom and top edges of each box denoting the
25th and 75th percentiles, respectively. Whiskers extend to the maximum and minimum values
while data points that are deemed outliers for the group are plotted individually with circles. The
results of ANCOVA post-hoc t-tests for the above-mentioned groups, with the corresponding
electrophysiological quantity as response variable and age and sex as covariates are also shown. *

represents significance level p < 0.05, ** means significance level p < 0.01 and *** is p < 0.001.
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Differences in neuronal excitability associate with clinical states and disease progression

Seeking to find mechanisms underlying the observed electrophysiological patterns, we
reconstructed the biophysical quantity that changes due to the influence of the pathophysiological
factors in our model: neuronal excitability. Figure 3 and Figure 3—figure supplement 1 show
excitability values for all brain regions of interest and subjects. The combined action of the
pathological factors either increases (“hyper”) or decreases (“hypo”) regional excitability around

a certain baseline normal value.

We found significant differences of neuronal excitability due to A positivity and Braak
stages. Firstly, we observed significant discrimination between all AB- and AR+ groups (Figure 3),
i.e.: CU(AB-) and CU(AB+), MCI(AB+), AD(AB+) (p < 0.001, sex and age adjusted); MCI(AB-)
and CU(AB+), MCI(AB+), AD(AB+) (p <0.05, sex and age adjusted). Additionally, we discovered
similar differences between Braak O participants and those in all later stages, and for Braak I-II,
and Braak V-VI (Figure 3—figure supplement 1). Subjects in advanced disease stages generally
presented hyperexcitability profiles, while most of the AB- and Braak O, I-II participants were

largely characterized by a slight hypoexcitability.

11


https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.21.529377; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Al N w"\ ) 2
¥ \y & N v
00\ “g} O)\ \39\ ?9\
- <0.001 <0.001 <0001 | CU(AS)
Neuronal excitability R

CUAG+)

TU(A.B') ——————————————————————————————————————————————————————————————————— Hyper 0224

0
T MCI(AS)
ol — ——————— e e —— . — Normal
3 Cuas)
MCI(A3+)
-
AD(A+) £
T n
D) e
8 SO n i i O
e RN A N "(t’.g\éd\\@'%?p R
> \‘:}P’ S & P & \&,@g\’f@&é\é L S5
A v FANT R Fe o
Regions

Figure 3. Neuronal excitabilities under the influence of Ap, tau and Af-tau. Inferred neuronal
excitability values for the brain regions of interest (“y”’-axis) and all subjects (“x’-axis).
Participants were grouped according to clinical diagnosis and Ap-positivity in this figure, to
understand AB’s contribution to the individually estimated biological profiles. Within a group,
subjects appear according to their existing ordering in the anonymized database. Warm colors
represent hyperexcitability of the region in the subject’s brain and cool colors denote hypoexcitable
states. Results of ANCOVA post-hoc t-tests for the above-mentioned groups, with the average
intra-brain excitability values as response variable and age and sex as covariates appear in the

upper right. P-values in bold fonts represent differences at a 5% significance level or lower.
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Figure 3—figure supplement 1. Neuronal excitabilities under the influence of A, tau and
ApP-tau. Participants were grouped according to Braak stages in this figure, to understand tau’s
contribution to the individually estimated biological profiles. Inferred neuronal excitability values
for the brain regions of interest (“y”-axis) and all subjects (“x”-axis). Within a group, subjects
appear according to their existing ordering in the anonymized database. Warm colors represent
hyperexcitability of the region in the subject’s brain and cool colors denote hypoexcitable states.
Results of ANCOVA post-hoc t-tests for the above-mentioned groups, with the average intra-brain
excitability values as response variable and age and sex as covariates appear in the upper right

corner. P-values in bold fonts represent differences at a 5% significance level or lower.

Neuronal hyperexcitability relates to high levels of plasma AD biomarkers
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In this section, we investigated the relationship between the obtained individual excitability
values and blood biomarkers of AD pathophysiology, which constitute accessible alternatives to
neuroimaging indicators (Ashton et al., 2021b; Benedet et al., 2021; Therriault, Vermeiren, et al.,
2022; Tissot et al., 2021). Figure 4 shows the relationships between the average intra-brain
excitabilities and the plasma biomarkers p-taul81, p-tau231 and p-tau217 (phosphorylated tau
indicators) and glial fibrillary acidic protein —GFAP, a measure of reactive astrogliosis and
neuronal damage (Benedet et al., 2021). Notably, we observed that high levels of the plasma

biomarkers significantly relate to the participants’ neuronal hyperactivation.
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Figure 4. Neuronal excitabilities and AD plasma biomarkers. Spearman’s correlation analyses
between the participants’ plasma biomarkers and their estimated average intra-brain excitabilities,

for (a) p-taul81, (b) p-tau231, (¢) p-tau217 and (d) GFAP. The error bands denote 95% confidence

intervals (CIs).
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Synergistic Ap and tau interaction strongly relates to cognitive performance

Finally, we proceeded to estimate the pathophysiological factors’ effects on cognitive
impairment through the changes in neuronal activity, measured with the individual weights
contributing to neuronal excitability. Table 1 shows the results of regression analyses taking
MMSE and MoCA scores as response variables, and the obtained personalized models’ influences
of AP, tau and the AB-tau interaction as predictors, while adjusting for sex, age and education
(Methods, Statistical analyses). We observed that both the AB’s solo influence on neuronal activity
and the AP-tau synergistic interaction term were significant predictors of MMSE and MoCA
evaluations (p < 0.05). The coefficients of these terms in the linear models were positive in all
cases. Thus, highly negative influences of the studied pathophysiological factors —yielding
hyperexcitability in the model (Methods, Personalized integrative neuronal activity simulator)—

are linked to low cognitive scores.

Table 1. Multiple linear regression analysis investigating the pathological effects on neuronal

activity as predictors of MMSE and MoCA scores.

B 95% ClI of B p
Intercept 22.463 [15.591 29.335] <0.001
BAB 0.791 [0.092 1.489] 0.027
eTa“ 0.138 [-0.581 0.857] 0.705
9AB~Tau 1.040 [0.371 1.710] 0.002
Sex -1.505 [-2.872 -0.139] 0.031
Age 0.064 [-0.025 0.152] 0.156
Education 0.095 [-0.096 0.286] 0.326

.~ MoCAscores

B 95% ClI of 8 p

Intercept 18.702 [8.656 28.748] <0.001
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HAB 1.598 [0.618 2.579] 0.002
eTa“ -0.020 [-0.973 0.932] 0.967
HAB'Ta“ 1.006 [0.009 2.004] 0.048
Sex -2.379 [ -4.298 -0.460] 0.015
Age 0.096 [-0.034 0.226] 0.148
Education 0.046 [-0.222 0.314] 0.735

The influences of AP plaques (49;1 A ), tau tangles (65%%) and the interaction of AP and tau (9;1 A 'Tau) on

neuronal activity, sex, age and education were considered as predictors. Reported values are obtained
coefficients (), the 95% confidence intervals and the p-values for the t-statistic of the two-sided hypothesis
tests. Significant pathophysiological terms (5% level) are highlighted. MMSE: R?=0.18, p < 0.001; MoCA:

R?=0.19, p <0.001. MMSE, Mini-Mental State examination; MoCA, Montreal Cognitive Assessment.

Discussion

We developed an integrative biophysical framework to map pathophysiological influences
on neuronal activity, with application to AD. Previous work has investigated how pathological
electrophysiological activity emerges in generative models that consider the influence of isolated
biological factors, such as AP plaques (Stefanovski et al., 2019) or in several possible AD synaptic
dysfunction scenarios (de Haan et al., 2017; van Nifterick et al., 2022). Despite the high
computational value of these works, realistic biological information could have been estimated
from the data under certain constraints, to validate the mechanistic simulations. On the other hand,
highly data-driven models (not intended to replicate neuronal activity features) were used to
individually characterize multifactorial dynamic interactions propagating through anatomical and

vascular networks in the AD spectrum (Adewale et al., 2021; Iturria-Medina et al., 2017, 2018;
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Khan et al., 2022). Building on the strengths of both mechanistic and data-driven models, our
hybrid approach decodes, for the first time, the subject-specific simultaneous and combined
pathological neuronal activity contributions of relevant disease factors: AP and tau, evaluated
through individual functional MRI and PET biomarkers. Altogether, we observed increased
neuronal excitability with AD progression, which also predicted increased plasma biomarkers

concentrations and cognitive impairment.

Our findings confirm previous observations (Babiloni et al., 2013; Busche & Hyman, 2020;
Maestu et al., 2021; Targa Dias Anastacio et al., 2022; Tok et al., 2022; Vossel et al., 2017) and
cast new light on microscopical pathological processes that are inaccessible to traditional
neuroimaging methods. Through considering the influence of multiple pathophysiological factors,
we have retrieved the AD electrophysiological hallmark: enhancement of theta band activity
together with alpha decreases, as disease progresses (Babiloni et al., 2013; Sanchez-Rodriguez et
al., 2018) from BOLD signals. Our results also indicate that CU(AB+) and/or Braak III-IV are the
stages from which these electrophysiological biomarkers become abnormal. These groups contain
subjects who are not cognitively impaired but present significant Af deposition (Therriault et al.,
2021) and/or have widespread temporal and parietal tau aggregation detectable by tau PET (Braak
& Braak, 1991). A recent study, also on subjects from the TRIAD cohort, found reduced, clinically
significant delayed recall and recognition memory tests performance at Braak III and IV stages as
well (Fernandez Arias et al., 2023). Additionally, multicenter research has shown that CU(AB+)
subjects, independently of tau status, present substantially increased risk of short-term (3-5 years)
conversion to mild cognitive impairment, compared to CU(AB-) (Ossenkoppele et al., 2022). Our
observations reaffirm this evidence. AB+ and post-Braak II individuals may be the most likely

candidates to benefit from early disease interventions modifying the cognitive decline that
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associates with patho-electrophysiological activity (Babiloni et al., 2013; Maestu et al., 2019;

Sanchez-Rodriguez et al., 2018).

No previous direct in-vivo evidence for AD-associated neuronal hyperactivity existed thus
far in humans, although proxy measurements (Celone et al., 2006), post-mortem studies
(Lauterborn et al., 2021) and animal models (Busche & Hyman, 2020) have suggested a similar
mechanism. In this study, by assuming a toxic protein influence model (4p, tau, Af-tau) we
inferred neuronal excitability values from the individual PET-functional MRI datasets. Given the
experimental conditions (equal nominal parameters, anatomical connectivities and model
assumptions), the estimation of the pathophysiological influences is totally unsupervised with each
subject’s model being blind to the others’ imaging data and clinical assessments. As such, the
broad association of subjects in advanced disease stages with hyperactivity —and conversely— is
only driven by the individual PET datasets and the maximization of the similarity between the real
resting-state functional MRI and the simulated BOLD signals. The progression towards
hyperexcitation with disease worsening was equally evident for a simplified model with separate
contributions by AP and tau only (Supplementary file 1—figures 2-3). Increased excitability was
also associated with high levels of plasma biomarkers (blood phosphorylated tau and GFAP) which
are sensitive to incipient AD pathology (Ashton et al., 2021b, 2022; Benedet et al., 2021; Mila-
Aloma et al., 2022; Tissot et al., 2021) and disease progression, especially p-tau217 (Ashton et al.,
2021b; Therriault, Vermeiren, et al., 2022), further demonstrating the strong biomarker capabilities
of our estimated excitability parameters. Additionally, we observed that the more hyperactive the
existing excitatory neuronal populations of a subject were (given by negative influence values of

the significant factors in our model), the greater the participant’s cognitive dysfunction, thus
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supporting a direct link among neuronal excitability, pathophysiological burden, and cognitive

integrity.

Beyond AD-related protein deposition, our method can also investigate the influence of
other critical factors. It has been hypothesized, and to some extent observed (Kwon & Koh, 2020;
Shen et al., 2018; Targa Dias Anastacio et al., 2022), that microglial activation, a probable marker
for neuroinflammation (Nutma et al., n.d.-a; Pascoal et al., 2021), affects excitability and neuronal
activity in AD. Consequently, we performed a set of complimentary experiments where we
recreated the obtained results in a model that also considers deviations to neuronal excitability due
to microglial activation —measured with 18kDa Translocator Protein PET. However, we did not
find separation between clinical groups in terms of the estimated neuronal excitabilities when the
microglial activation factor was considered (Supplementary file 1—figures 4-5). Moreover, the
synergistic interaction of AP and tau was the factor that better predicted cognitive impairment,
with no significant effect by the microglial activation term (Supplementary file 1—table 4). We
attribute this effect to technical limitations associated with the acquisition of microglial activation.
Unlike the AP and tau PET SUVRs data, which showed extended statistically significant
differences across all brain regions for CU and AD participants (two-sampled t-test, p < 0.05),
microglial activation images exhibited differences in only 24 regions (i.e., approx. 36%;
Supplementary file 1—table 5). Microglial activation is thought to have a neuroprotective
character (M2-phenotype) at early disease stages (Kwon & Koh, 2020; Shen et al., 2018). On the
other hand, excessive activation of microglia seemingly becomes detrimental in clinical AD (M1-
phenotype) by releasing pro-inflammatory cytokines that may exacerbate AD progression (Kwon
& Koh, 2020; Pascoal et al., 2021; Shen et al., 2018). Nevertheless, modern neuroinflammation

PET tracers are not specific to these two different phenotypes as no consistent targets have been
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discovered (Shen et al., 2018). Thus, our extended results albeit being relatively uninformative in
terms of AD-affectations to neuronal excitability, capture intrinsic microglial activation PET

mapping insufficiencies (Nutma et al., n.d.-b).

Our methodology also has limitations. We provide partial validation for the results of the
in-silico, data-informed approach in the context of the literature only, by reconstructing functional
network quantities with well-documented AD affectations for a posteriori analysis and by studying
relationships with reliable markers of disease progression independently collected in our cohort
subjects (plasma concentrations, cognitive scores). This strategy for analyzing the inferred values
stems from the lack of ground-truth in-vivo excitability measurements. Although we used state-of-
the-art fMRI experiments in this study (TR = 68 1ms, spatial resolution = 2.5x2.5x2.5 mm?), more
detailed spatiotemporal dynamics could be captured with novel ultra high-resolution functional
imaging techniques (Tan Toi et al., n.d.). On the other hand, by using average anatomical
connectivity, we have singled-out the mechanisms by which toxic protein deposition and
neuroinflammation are associated with pathological neuronal activity. Personalized therapeutic
interventions (Iturria-Medina et al., 2018) would require precise individual profiles for increased
efficiency. In such applications, including the connectomes’ individual variability may be
beneficial. Regarding the neuro-physical model for the influence of pathophysiological factors,
two aspects should be considered in future work. Firstly, extending the intra-regional neuronal
interactions with additional excitatory and inhibitory populations, pursuing a finer descriptive
scale, will also enable us to account for additional significant disease factors such as neuronal
atrophy (Iturria-Medina et al., 2016). Secondly, the effects on inhibitory firings should be explored
separately as well. Pyramidal (excitatory) neurons greatly outnumber any other neuronal

population, making them the most likely proteinopathies target (Maestu et al., 2021). However,
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inhibitory populations are key in maintaining healthy firing balances (Maestu et al., 2021) and
interacting with glial cells (Mederos & Perea, 2019). Finally, the focus of this study was limited
to capturing abnormalities in AD by AP and tau’s combined action. The model inputs will require
modifications to measure neuronal excitability contributions in other neurodegenerative conditions
given their characteristic neuropathological factors. For example, dopamine transporter (DaT)
123]_FP-CIT scans can be used to quantify dopaminergic deficiency consistent with Parkinsonism
and associated disorders (Nichols et al., 2018). Ongoing efforts pursue developing alpha-synuclein
protein PET radiotracers that do not also bind to AP (Roshanbin et al., 2022). Replacing the AD-
pathophysiology with such quantified maps in our framework may well help advance the
characterization of neuronal excitability dysfunction in the Parkinsonian circuit (Picconi et al.,

2012).

Our approach has major implications to disease hypothesis testing. Generative models
(Luppi et al., 2022) in works by Iturria-Medina et al. (Iturria-Medina et al., 2017, 2018), Deco et
al. (Deco et al., 2018, 2021), Sotero et al. (Sanchez-Rodriguez et al., 2018; Sotero & Trujillo-
Barreto, 2008), de Haan et al. (de Haan et al., 2017; van Nifterick et al., 2022) among others, focus
on better comprehending neurological conditions. The models considered in the present study
reflect plausible biophysical mechanisms determining neuronal activity abnormalities in the AD
spectrum (Busche & Hyman, 2020; Kwon & Koh, 2020; Maestu et al., 2021; Targa Dias Anastacio
et al., 2022). Critical mechanistic information on the underlying activity-generating processes is
obtained, as well as about their relationship with clinical and cognitive profiles, as all these disease-
informative variables are tracked in our comprehensive methodology. Importantly, we observed
that the synergistic interaction of AP and tau, and A} separate contributions are the most significant

factors influencing aberrant neuronal activity, AD progression and symptomatology. The relative
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preponderance of AP’s effect with respect to tau’s was somewhat expected as AP plaques
generalize to many cortical areas early in the disease, while NFT spreading increases rapidly in
temporal and parietal regions only (Insel et al., 2020). These pathological progression patterns,
measured by PET uptake, inform our individual dynamical models. A critical methodological
contribution is the capacity to resolve complex biological processes hidden to current non-invasive
imaging and -electrophysiological monitoring techniques, e.g., the neural masses’ firing
excitabilities. For future work, we aim to further clarify the specific molecular features responsible
for the differences in excitability values across clinical stages. By doing so, we expect to gain
additional insights into AD pathophysiology that could boost diagnostic accuracy and preclinical
applications. This pathophysiological activity decoder is equally applicable to other intricate
multifactorial neurological disorders by considering their relevant disease factors. Computational
disease modeling may further unveil the complex mechanisms of neurodegeneration and aid

providing efficient treatment at a personalized level.

Methods

Participants

We selected individuals from the Translational Biomarkers in Aging and Dementia (TRIAD)

cohort (https://triad.tnl-mcgill.com/). The study was approved by the Douglas Mental Institute

Research Board and all participants gave written consent. All subjects underwent MRI, resting-
state fMRI, AP (8 F-NAV4694)-, tau ("*F-MK-6240)- and neuroinflammation (''C-PBR28)- PET
scans, together with a complete cognitive evaluation, including the Mini-Mental State Examination

(MMSE) and the Montreal Cognitive Assessment (MoCA). We chose baseline assessments in all
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cases. Only participants with “cognitively unimpaired” (N=81), “mild cognitive impairment”
(N=35), or “probable Alzheimer’s disease” (N=16) clinical and pathophysiological diagnoses were

considered (Tissot et al., n.d.).
Image processing

MRI: Brain structural T1-weighted 3D images were acquired for all subjects on a 3 T Siemens
Magnetom scanner using a standard head coil. T1 space sequence was performed in sagittal plane
in 1 mm isotropic resolution; TE 2.96 ms, TR 2300 ms, slice thickness 1 mm, flip angle 9 deg,
FOV read 256 mm, 192 slices per slab. The images were processed following a standard pipeline
(Iturria-Medina et al., 2018), namely: non-uniformity correction using the N3 algorithm,
segmentation into grey matter, white matter and cerebrospinal fluid (CSF) probabilistic maps
(SPM12, www. fil.ion.ucl.ac.uk/spm) and standardization of grey matter segmentations to the MNI
space (Evans et al., 1994) using the DARTEL tool (Ashburner, 2007). Each map was modulated
to preserve the total amount of signal/tissue. We selected 66 (bilateral) cortical regions in the
Desikian-Killiany-Touriner (DKT) (Klein & Tourville, 2012) atlas (Supplementary file 1—table
5). Subcortical regions, e.g., in the basal ganglia, were not considered given their tendency to

present PET off-target binding (Vogel et al., 2020; Young et al., 2020).

fMRI: The resting-state fMRI acquisition parameters were: Siemens Magnetom Prisma, echo
planar imaging, 860 time points, TR = 681 ms, TE = 32.0 ms, flip angle = 50 deg, number of slices
= 54, slice thickness = 2.5 mm, spatial resolution = 2.5x2.5x2.5 mm?, EPI factor = 88. We applied
a minimal preprocessing pipeline (Iturria-Medina et al., 2018) including motion correction and
spatial normalization to the MNI space (Evans et al., 1994) using the registration parameters
obtained for the structural T1 image, and removal of the linear trend. We calculated the fractional

amplitude of low-frequency fluctuations (fALFF) (Yang et al., 2018), a regional proxy indicator
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for neuronal activity that has shown high sensibility to disease progression. Briefly, we
transformed the signals for each voxel to the frequency domain and computed the ratio of the
power in the low-frequency range (0.01-0.08 Hz) to that of the entire BOLD frequency range (0—
0.25 Hz) with code from the RESTplus toolbox (Jia et al., 2019). The fALFF values were

ultimately averaged over the voxels according to their belonging to brain regions.

Diffusion Weighted MRI (DW-MRI): High angular resolution diffusion imaging (HARDI) data was
acquired for N = 128 in the Alzheimer's Disease Neuroimaging Initiative (ADNI)
(adni.loni.usc.edu). The authors obtained approval from the ADNI Data Sharing and Publications
Committee for data use and publication, see documents http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf and http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf, respectively. For each diffusion
scan, 46 separate images were acquired, with 5 bo images (no diffusion sensitization) and 41
diffusion-weighted images (b = 1000 s/mm?). ADNI aligned all raw volumes to the average bo
image, corrected head motion and eddy current distortions. Region-to-region anatomical
connection density matrices were obtained using a fully automated fiber tractography algorithm
(Iturria-Medina et al., 2007) and intravoxel fiber distribution reconstruction (Tournier et al.,
2008). For any subject and pair of regions k and [ , the Cj; measure (0 < (< 1, Cjr= Cy;) reflects
the fraction of the region's surface involved in the axonal connection with respect to the total
surface of both regions. More details can be found in a previous publication where ADNI’s DW-
MRI was utilized (Iturria-Medina et al., 2018). We averaged the ADNI subject-specific
connectivity matrices (Iturria-Medina et al., 2018; Sanchez-Rodriguez et al., 2021) to utilize a

single, representative anatomical network across our calculations on the TRIAD dataset.
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PET: Study participants had AR ("*F-NAV4694), tau ("*F-MK-6240) and translocator protein
microglial activation (!!C-PBR28) PET imaging in a Siemens high-resolution research tomograph.
A bolus injection of '*F-NAV4694 was administered to each participant and brain PET imaging
scans were acquired approximately 40-70 min post-injection. The images were reconstructed using
an ordered subset expectation maximization (OSEM) algorithm on a 4D volume with three frames
(3 % 600 s) (Therriault et al., 2021). 8F-MK-6240 PET scans of 20 min (4 x 300 s) were acquired
at 90-110 min after the intravenous bolus injection of the radiotracer (Pascoal et al., 2020). ''C-
PBR28 images were acquired at 60—90 min after tracer injection and reconstructed using the
OSEM algorithm on a 4D volume with 6 frames (6 x 300 s) (Pascoal et al., 2021). Images were
preprocessed according to four main steps (Jagust et al., 2010): 1) dynamic co-registration
(separate frames were co-registered to one another lessening the effects of patient motion), 2)
across time averaging, 3) re-sampling and reorientation from native space to a standard voxel
image grid space (“AC-PC” space), and 4) spatial smoothing to produce images of a uniform
isotropic resolution of 8 mm FWHM. Using the registration parameters obtained for the
participants’ structural T1 images, all PET images were spatially normalized to the MNI space.
BF-MK-6240 images were meninges-striped in native space before performing any
transformations to minimize the influence of meningeal spillover. SUVR values for the DKT grey

matter regions were calculated using the cerebellar gray matter as the reference region.

The DKT atlas was separately used to define the ROIs for tau-PET Braak stage-segmentation
(Braak & Braak, 1991; Therriault, Pascoal, et al., 2022) which consisted of: Braak I (pathology
confined to the transentorhinal region of the brain), Braak II (entorhinal and hippocampus), Braak
Il (amygdala, parahippocampal gyrus, fusiform gyrus and lingual gyrus), Braak IV (insula,

inferior temporal, lateral temporal, posterior cingulate and inferior parietal), Braak V
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(orbitofrontal, superior temporal, inferior frontal, cuneus, anterior cingulate, supramarginal gyrus,
lateral occipital, precuneus, superior parietal, superior frontal and rostromedial frontal) and Braak
VI (paracentral, postcentral, precentral and pericalcarine) (Braak et al., 1995). All image
processing was performed in MATLAB 2021b (The MathWorks Inc., Natick, MA, USA) with the

aid of the specific tools and algorithms specified above.

Plasma biomarkers

Blood biomarkers were quantified with Single molecule array (Simoa) assays (Quanterix,
Billerica, MA). These measurements included tau phosphorylated at threonine 181 (p-taul81)
(Tissot et al., 2021), tau phosphorylated at threonine 231 (p-tau231) (Ashton et al., 2021b), tau
phosphorylated at threonine 217 (p-tau217) (Therriault, Vermeiren, et al., 2022; Triana-Baltzer et
al., 2021) and glial fibrillary acidic protein (GFAP) (Benedet et al., 2021) and have been previously

reported.

Personalized integrative neuronal activity simulator

Electrophysiological model: The individual electrophysiological brain activity is realized through
coupled Wilson-Cowan (WC) modules (Abeysuriya et al., 2018; Daffertshofer & van Wijk, 2011;
Gjorgjieva et al., 2016; Meijer et al., 2015; Wilson & Cowan, 1972). In this simple formulation,
the variables of interest are the firing rates of the excitatory and inhibitory neural masses, E (t) and
I(t), respectively. Neural masses are average neuronal populations describing the dynamic
behavior of similar neurons within a given spatial domain, i.e., brain regions (Jansen & Rit, 1995;
Sanchez-Rodriguez et al., 2018; Wilson & Cowan, 1972). In WC, the excitatory and inhibitory
populations are locally coupled. Moreover, the excitatory population is further stimulated by other

local inputs (P) and cortico-cortical connections, C (Image processing, Diffusion Weighted MRI).
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In effect, each [ region influences the dynamics of the k region by the quantity % CikE;, where 17 is

a global scaling coupling strength and N is the total number of regions (N = 66). We performed
a dynamical system analysis (Daffertshofer & van Wijk, 2011; Deco et al., 2009; Gjorgjieva et al.,
2016; Wilson & Cowan, 1972) and obtained common P and 7 values simulating plausible
electrophysiological oscillations and BOLD signals (Supplementary file 1—figure 6a) for all

participants. The parameters used in this study are reported in Supplementary file 1—table 6.

All the inputs (both local and external) received by a neuron are integrated in time when their sum
surpasses a certain threshold, (6; or 8;) (Daffertshofer & van Wijk, 2011). In the neural mass

framework, this integration is achieved by means of a sigmoidal activation function (Wilson &

1
1+exp[—a(x—06)] - 1+explaf]

Cowan, 1972), S(x) = . Compared to the “baseline” firings obtained by

using the canonical values reported in the literature, regional excitability can be higher
(hyperexcitability) or lower (hypoexcitability) depending on whether the firing rate function is
shifted to lower or higher input current values, respectively (Supplementary file 1—figure 6b). In
our approach, the regional activity profiles are determined by the excitatory firing, a simplification
based on the much larger excitatory prevalence in the cortex (Lauterborn et al., 2021; Maestu et
al., 2021). We suppose that the regional excitatory firing thresholds are mediated by the following

disease factors: AP plaques (with a subject-specific contribution weight given by 9; A ), tau tangles

(A1) and the interaction of amyloid and tau (@ ; s 'Tau). These effects are simplistically written as
linear fluctuations from the normal baseline value due to the participant’s regional accumulation

of each factor (Supplementary file 1—figure 6¢), with the SUVRs normalized to the [0,1] interval

(Supplementary file 1—figure 7), to preserve the dynamical properties of the desired solution:

Opr = 0o+ 077 - ABy + 6L - Taw, + 0577 - AR, - Taw, (1)
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A negative contribution by a factor (9,;:1 k , gfat or 9; s %) means that the pathological
accumulation of such a biomarker tends to decrease the firing threshold thus yielding

hyperexcitability. Given the inverse relationship existing between firing thresholds and effective

firing rates, we define regional excitability as 1 / Oz

The evolution of the average firing rates E(t) and I(t) is then given by the following set of
differential equations (Daffertshofer & van Wijk, 2011; Gjorgjieva et al., 2016; Wilson & Cowan,

1972):

Be=—[~Ec+S(xi)] @

: 1
Ik = ’[_I[_Ik +S(x1,k)]

n
Xgx = CggEx — Cgly + P +N E CuEr
1=1,1%k

Xix = CgrEx — Cply

Here, the terms xp, and x;, are known as the input currents. A synthetic EEG signal is
proportional to the regional excitatory input current (Meijer et al., 2015). Since the BOLD signal
is related to the afferent neuronal input (Logothetis et al., 2001), we utilized the total action
potential arriving to the neuronal populations from other local and external populations as the
proxy electrophysiological quantities of interest feeding the metabolic/hemodynamic model by

Sotero et al. (Sotero & Trujillo-Barreto, 2008; Valdes-Sosa et al., 2009).

Metabolic/hemodynamic model: This biophysical model reflects the role that excitatory and

inhibitory activities play in generating the BOLD signal (Sotero et al., 2009; Sotero & Trujillo-

28


https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.21.529377; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Barreto, 2007, 2008; Valdes-Sosa et al., 2009). All variables are normalized to baseline values.
Changes in glucose consumption (gg , and g; ) are linked to the excitatory and inhibitory (g x

and ¢; ;) neuronal inputs in region k:

IEk = ZEK

-2 1 h
Zpg = %_EZE,k - %_EZ (gE,k - 1) + i (fE,k - 1)

ik = Z1k

-2 1 h
Zig = %_Izl,k - %_12 (gl,k - 1) + %—j (fl,k - 1)

The metabolic rates of oxygen for excitatory (mg ;) and inhibitory (m, ;) activities, and the total

oxygen consumption, m,, are obtained from the glucose variables.

2 —x(t)

me k() = o . JEK ()
0

2
my(t) = g1, (t)

ymg  (t) +my(t)
y+1

my(t) =

1
1+ exp [c (d — gE,k(t))]

x(t) =

Next, CBF dynamics (f;) is modeled as follows (Friston et al., 2000), assuming that CBF is

coupled to excitatory activity:

fk=3’k
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_ -2 1
Vi = Z}’k - ?(fk — D+ u(&ex—1)
The outputs of the metabolic and vascular models are converted to normalized cerebral blood

volume (by,) and deoxy-hemoglobin (q;,) content through the Balloon model (Buxton et al., 1998):
. 1
b, = _(fk - fout)
Ho

1

=gyl
qk ", k out bk

1
fout = bk(

The BOLD signal is obtained by using a linear observation equation as in:
BOLD,(t) = Vo(a;(1 — qi) — a,(1 — by))

where a; = 4.3Y,Ey - TE + eryEy - TE and a, = eryEy - TE + € — 1 are parameters that depend
on the experimental conditions (field strength, TE) (Archila-Meléndez et al., 2020; Deco et al.,
2018; Obata et al., 2004; Simon & Buxton, 2015). The interpretation and specific parameter values
of the metabolic/hemodynamic transformations resulting in the simulated BOLD signal can be
found in Supplementary file 1—table 7. The sets of equations above were solved, for each
individual dataset, with an explicit Runge-Kutta (4,5) method, ode45, as implemented in

MATLAB 2021b (The MathWorks Inc., Natick, MA, USA) and a timestep of 0.001s.

Parameter estimation: For each participant, we compute the regional fALFF values of the
simulated BOLD signals and maximize their similarity (correlation) with the subject’s real BOLD
indicators (Supplementary file 1—figure 6d). The estimation of the optimal pathological

Tau HA,BTau
E »YE

influences set (0,;1 A ,0 ) was performed via surrogate optimization (MATLAB 2021b’s
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surrogateopt). This parameter optimization method performs few objective function evaluations
hence it is well-suited for expensive functions as it is the case of our high-dimensional BOLD-
simulating dynamical system. We constrained the pathological influences on a small interval
around the nominal parameter value (Supplementary file 1—table 6) (Abeysuriya et al., 2018;
Daffertshofer & van Wijk, 2011; Gjorgjieva et al., 2016; Meijer et al., 2015; Wilson & Cowan,
1972) to compare results across subjects and disease states. Then, we performed optimization
iterations until no new feasible points were found in the allowed interval through 20 sequences of
random sample points, guaranteeing that the global minimum was attained (Supplementary file

I—pseudocode 1).

Interpreting the pathophysiological effects on neuronal activity: The obtained pathological

influences (6,7, 05, 67T

) describe subject-specific interactions determining brain activity.
We use these weights to reconstruct otherwise hidden electrophysiological quantities of interest.
Individual neuronal excitability patterns (van Nifterick et al., 2022) are mapped through equation
(1) and can be related to separate measurements like plasma biomarkers for AD (Ashton et al.,
2021b; Benedet et al., 2021; Tissot et al., 2021). Grand average excitatory activities are found by
averaging the firing rates E} (t) over the regions and time points (van Nifterick et al., 2022), for
every subject. Likewise, the input currents of equation (2) are used as proxy measures for cortical
sources of resting-state EEG (Meijer et al., 2015). We perform a Fast Fourier Transformation
power analysis of the neural masses’ signals and determine the relative power of the traditional
rhythms, in particular: theta (4-8 Hz) and alpha 1 (8-10 Hz) frequency band oscillations (van

Nifterick et al., 2022). Additionally, we investigate the relationship of the obtained

pathophysiological influences with cognition (Folstein et al., 1975; Nasreddine et al., 2005).

Statistical analyses
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Clinical diagnosis and PET-imaging AP status (determined visually by consensus of two
neurologists blinded to the diagnosis) were used to divide the cohort for analyses of the results.
Separately, we employed another division based on the conventional unambiguous Braak grouping
(Braak & Braak, 1991) of I-1I (transentorhinal stages), III-IV (limbic) and V-VI (isocortical), to
assess trends in terms of intracellular tau neurofibrillary changes. Group-differences in the
electrophysiological quantities of interest (average intra-brain theta and alphal power, excitatory
firing activity and excitability) were evaluated with ANCOV A post-hoc t-tests, i.e., we looked at
the effects of the clinical groups and AP positivity/Braak stages on the corresponding quantity,
accounting for age and sex. The average theta and alphal power and excitatory firing activity were
box-cox and z-score transformed across subjects. The associations between excitability and plasma
biomarkers were tested using Spearman’s Rho correlation (large-sample approximation). In
addition, to assess the relationship between the pathophysiological factors and cognitive integrity
we fitted multiple linear regression models wusing the following specifications:

MMSE score ~1 + 9;_4!? + 6% + H;ﬁ'Tau + sex + age + education and

MoCA score ~ 1 + H;E + 6% + G;E'Tau + sex + age + education. Each of the factors

were standardized using the mean and s.d. from all subjects.

Data availability

The data that support the findings of this study are available by submitting a data share request via

https://triad.tnl-mcgill.com/contact-us/. Data are not publicly available due to them containing

information that could compromise research participant privacy/consent. All the data collected
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under the TRIAD cohort is governed by the policies set by the Research Ethics Board Office of

the McGill University, Montreal and the Douglas Research Center, Verdun.

Code availability

The code utilized in this article for the neuronal activity simulations and quantification of the
pathological effects conforms to the Open Source Definition and will be freely available with
publication at the Neuroinformatics for Personalized Medicine lab’s website (NeuroPM,

https://www.neuropm-lab.com/publication-codes.html).

Acknowledgments

LSR was partially supported by funding from the Fonds de recherche du Québec — Santé and the
Healthy Brains for Healthy Lives (HBHL) initiative. This project was undertaken thanks in part to
the following funding awarded to YIM: the Canada Research Chair tier-2, the CIHR Project Grant
2020, and the Weston Family Foundation’s AD Rapid Response 2018 and Transformational
Research in AD 2020. In addition, we used the computational infrastructure of the McConnell
Brain Imaging Center at the Montreal Neurological Institute, supported in part by the Brain
Canada Foundation, through the Canada Brain Research Fund, with the financial support of
Health Canada and sponsors. PRN, GB, JT and JF are supported by the Canadian Institutes of
Health Research (CIHR) [MOP-11-51-31; RFN 152985, 159815, 162303], Canadian Consortium
of Neurodegeneration and Aging (CCNA; MOP-11-51-31 -team 1), Weston Brain Institute, the

Alzheimer’s Association [NIRG-12-92090, NIRP-12-259245], Brain Canada Foundation (CFI

33


https://www.neuropm-lab.com/publication-codes.html
https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.21.529377; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Project 34874; 33397), the Fonds de Recherche du Québec — Santé (FRQS; Chercheur Boursier,
2020-VICO-279314) and the Colin J. Adair Charitable Foundation. HZ is a Wallenberg Scholar
supported by grants from the Swedish Research Council (#2022-01018), the European Union’s
Horizon Europe research and innovation programme under grant agreement No 101053962,
Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery
Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer's
Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the
Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen for
Gamla Tjénarinnor, Hjdrnfonden, Sweden (#F02022-0270), the European Union’s Horizon 2020
research and innovation programme under the Marie Sktodowska-Curie grant agreement No
860197 (MIRIADE), the European Union Joint Programme — Neurodegenerative Disease
Research (JPND2021-00694), and the UK Dementia Research Institute at UCL (UKDRI-1003).
KB 1is supported by the Swedish Research Council (#2017-00915 and #2022-00732), the
Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615), the Swedish
Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjirnfonden, Sweden
(#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the
Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and
#ALFGBG-965240), the European Union Joint Program for Neurodegenerative Disorders
(JPND2019-466-236), the National Institute of Health (NIH), USA, (grant #1 RO1AG068398-01),
the Alzheimer’s Association 2021 Zenith Award (ZEN-21-848495), and the Alzheimer’s
Association 2022-2025 Grant (SG-23-1038904 QC). TKK was funded by the Swedish Research

Council (Vetenskapsradet #2021-03244), the Alzheimer’s Association Research Fellowship

34


https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.21.529377; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(#AARF-21-850325), the Swedish Alzheimer Foundation (Alzheimerfonden), the Aina (Ann)

Wallstroms and Mary-Ann Sjobloms stiftelsen, and the Emil och Wera Cornells stiftelsen.

Author contributions

Lazaro M. Sanchez-Rodriguez: Conceptualization, Methodology, Software, Formal analysis,

Investigation, Data curation, Writing - original draft, Visualization.

Gleb Bezgin: Data curation, Formal analysis, Resources, Writing - review & editing.

Felix Carbonell: Formal analysis, Resources, Writing - review & editing.

Joseph Therriault: Formal analysis, Resources, Writing - review & editing.

Jaime Fernandez-Arias: Formal analysis, Resources, Writing - review & editing.

Stijn Servaes: Data curation, Writing - review & editing.

Nesrine Rahmouni: Data curation, Writing - review & editing.

Cecile Tissot: Data curation, Writing - review & editing.

Jenna Stevenson: Data curation, Writing - review & editing.

Thomas K. Karikari: Data curation, Writing - review & editing.

Nicholas J. Ashton: Data curation, Writing - review & editing.

Andréa L. Benedet: Data curation, Writing - review & editing.

Henrik Zetterberg: Data curation, Writing - review & editing.

Kaj Blennow: Data curation, Writing - review & editing.

35


https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.21.529377; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Gallen Triana-Baltzer: Data curation, Writing - review & editing.
Hartmuth C. Kolb: Data curation, Writing - review & editing.

Pedro Rosa-Neto: Data curation, Resources, Writing - review & editing, Project administration,

Funding acquisition.

Yasser Iturria-Medina: Conceptualization, Methodology, Investigation, Resources, Writing -

review & editing, Supervision, Project administration, Funding acquisition.

Competing interests

HZ has served at scientific advisory boards and/or as a consultant for Abbvie, Acumen, Alector,
Alzinova, ALZPath, Annexon, Apellis, Artery Therapeutics, AZTherapies, CogRx, Denali, Eisai,
Nervgen, Novo Nordisk, Optoceutics, Passage Bio, Pinteon Therapeutics, Prothena, Red Abbey
Labs, reMYND, Roche, Samumed, Siemens Healthineers, Triplet Therapeutics, and Wave, has
given lectures in symposia sponsored by Cellectricon, Fujirebio, Alzecure, Biogen, and Roche,
and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the
GU Ventures Incubator Program (outside submitted work). KB has served as a consultant, at
advisory boards, or at data monitoring committees for Acumen, ALZPath, BioArctic, Biogen,
Eisai, Julius Clinical, Lilly, Novartis, Ono Pharma, Prothena, Roche Diagnostics, and Siemens
Healthineers, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which
is a part of the GU Ventures Incubator Program, outside the work presented in this paper. The

other authors declare no competing interests.

36


https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.21.529377; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

List of Supplementary Files

Supplementary file 1

Supplementary Figures 1-7, Supplementary Tables 1-7 and Supplementary Pseudocode.

37


https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.21.529377; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

References

Abeysuriya, R. G., Hadida, J., Sotiropoulos, S. N., Jbabdi, S., Becker, R., Hunt, B. A. E., Brookes, M. J.,
& Woolrich, W. (2018). A biophysical model of dynamic balancing of excitation and inhibition in
fast oscillatory large-scale networks.

Adewale, Q., Khan, A. F., Carbonell, F., & Iturria-Medina, Y. (2021). Integrated transcriptomic and
neuroimaging brain model decodes biological mechanisms in aging and Alzheimer’s disease. ELife,
10. https://doi.org/10.7554/eLife.62589

Archila-Meléndez, M. E., Sorg, C., & Preibisch, C. (2020). Modeling the impact of neurovascular
coupling impairments on BOLD-based functional connectivity at rest. Neurolmage, 218(January).
https://doi.org/10.1016/j.neuroimage.2020.116871

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neurolmage, 38(1), 95-113.
https://doi.org/10.1016/j.neuroimage.2007.07.007

Ashton, N. J., Janelidze, S., Mattsson-Carlgren, N., Binette, A. P., Strandberg, O., Brum, W. S., Karikari,
T. K., Gonzdlez-Ortiz, F., di Molfetta, G., Meda, F. J., Jonaitis, E. M., Koscik, R. L., Cody, K.,
Betthauser, T. J., Li, Y., Vanmechelen, E., Palmqvist, S., Stomrud, E., Bateman, R. J., ... Hansson,
0. (2022). Differential roles of Ap42/40, p-tau231 and p-tau217 for Alzheimer’s trial selection and
disease monitoring. Nature Medicine. https://doi.org/10.1038/s41591-022-02074-w

Ashton, N. J., Pascoal, T. A., Karikari, T. K., Benedet, A. L., Lantero-Rodriguez, J., Brinkmalm, G.,
Snellman, A., Scholl, M., Troakes, C., Hye, A., Gauthier, S., Vanmechelen, E., Zetterberg, H., Rosa-
Neto, P., & Blennow, K. (2021a). Plasma p-tau231: a new biomarker for incipient Alzheimer’s
disease pathology. Acta Neuropathologica, 141(5), 709-724. https://doi.org/10.1007/s00401-021-
02275-6

Ashton, N. J., Pascoal, T. A., Karikari, T. K., Benedet, A. L., Lantero-Rodriguez, J., Brinkmalm, G.,
Snellman, A., Scholl, M., Troakes, C., Hye, A., Gauthier, S., Vanmechelen, E., Zetterberg, H., Rosa-
Neto, P., & Blennow, K. (2021b). Plasma p-tau231: a new biomarker for incipient Alzheimer’s
disease pathology. Acta Neuropathologica, 141(5), 709-724. https://doi.org/10.1007/s00401-021-
02275-6

Babiloni, C., Lizio, R., Del Percio, C., Marzano, N., Soricelli, A., Salvatore, E., Ferri, R., Cosentino, F. I.
I., Tedeschi, G., Montella, P., Marino, S., De Salvo, S., Rodriguez, G., Nobili, F., Vernieri, F.,
Ursini, F., Mundi, C., Richardson, J. C., Frisoni, G. B., & Rossini, P. M. (2013). Cortical Sources of
Resting State EEG Rhythms are Sensitive to the Progression of Early Stage Alzheimer’s Disease.
Journal of Alzheimer’s Disease, 34(4), 1015-1035. https://doi.org/10.3233/JAD-121750

Benedet, A. L., Mila-Aloma, M., Vrillon, A., Ashton, N. J., Pascoal, T. A., Lussier, F., Karikari, T. K.,
Hourregue, C., Cognat, E., Dumurgier, J., Stevenson, J., Rahmouni, N., Pallen, V., Poltronetti, N.
M., Salvadé, G., Shekari, M., Operto, G., Gispert, J. D., Minguillon, C., ... Sudrez-Calvet, M.
(2021). Differences between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels
across the Alzheimer Disease Continuum. JAMA Neurology, 78(12), 1471-1483.
https://doi.org/10.1001/jamaneurol.2021.3671

Bero, A. W., Yan, P., Roh, J. H., Cirrito, J. R., Stewart, F. R., Raichle, M. E., Lee, J. M., & Holtzman, D.
M. (2011). Neuronal activity regulates the regional vulnerability to amyloid-B 2 deposition. Nature
Neuroscience, 14(6), 750-756. https://doi.org/10.1038/nn.2801

38


https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.21.529377; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta
Neuropathologica, 82(4), 239-259. https://doi.org/10.1007/BF00308809

Braak, H., Braak, E., & Braak, E. (1995). Staging of Alzheimer’s Disease-Related Neurofibrillary
Changes. In Neurobiology of Aging (Vol. 16, Issue 95).

Busche, M. A., & Hyman, B. T. (2020). Synergy between amyloid-f and tau in Alzheimer’s disease.
Nature Neuroscience, 23(10), 1183-1193. https://doi.org/10.1038/s41593-020-0687-6

Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes
during brain activation: The balloon model. Magnetic Resonance in Medicine, 39(6), 855-864.
https://doi.org/10.1002/mrm.1910390602

Celone, K. A., Calhoun, V. D., Dickerson, B. C., Atri, A., Chua, E. F., Miller, S. L., DePeau, K., Rentz,
D. M, Selkoe, D. J., Blacker, D., Albert, M. S., & Sperling, R. A. (2006). Alterations in memory
networks in mild cognitive impairment and Alzheimer’s disease: An independent component
analysis. Journal of Neuroscience, 26(40), 10222-10231.
https://doi.org/10.1523/INEUROSCI.2250-06.2006

Daffertshofer, A., & van Wijk, B. C. M. (2011). On the Influence of Amplitude on the Connectivity
between Phases. Frontiers in Neuroinformatics, 5(July), 6. https://doi.org/10.3389/fninf.2011.00006

de Haan, W., van Straaten, E. C. W, Gouw, A. A., & Stam, C. J. (2017). Altering neuronal excitability to
preserve network connectivity in a computational model of Alzheimer’s disease. PLoS
Computational Biology, 13(9). https://doi.org/10.1371/journal.pcbi.1005707

Deco, G., Cruzat, J., Cabral, J., Knudsen, G. M., Carhart-Harris, R. L., Whybrow, P. C., Logothetis, N.
K., & Kringelbach, M. L. (2018). Whole-Brain Multimodal Neuroimaging Model Using Serotonin
Receptor Maps Explains Non-linear Functional Effects of LSD. Current Biology, 28(19), 3065-
3074.e6. https://doi.org/10.1016/j.cub.2018.07.083

Deco, G., Jirsa, V., Mcintosh, A. R., Sporns, O., & Ko, R. (2009). Key role of coupling , delay , and noise
in resting brain fluctuations. 106(25). https://doi.org/10.1073/pnas.0901831106

Deco, G., Kringelbach, M. L., Arnatkeviciute, A., Oldham, S., Sabaroedin, K., Rogasch, N. C., Aquino,
K. M., & Fornito, A. (2021). Dynamical consequences of regional heterogeneity in the brain’s
transcriptional landscape. In Sci. Adv (Vol. 7). https://www.science.org

Evans, A. C., Kamber, M., Collins, D. L., & MacDonald, D. (1994). An MRI-Based Probabilistic Atlas of
Neuroanatomy. In Magnetic Resonance Scanning and Epilepsy (pp. 263-274). Springer US.
https://doi.org/10.1007/978-1-4615-2546-2_48

Falcon, M. L, Jirsa, V., & Solodkin, A. (2016). A new neuroinformatics approach to personalized
medicine in neurology: The Virtual Brain. In Current Opinion in Neurology (Vol. 29, Issue 4, pp.
429-436). Lippincott Williams and Wilkins. https://doi.org/10.1097/WC0.0000000000000344

Fernandez Arias, J., Therriault, J., Thomas, E., Lussier, F. Z., Bezgin, G., Tissot, C., Servaes, S.,
Mathotaarachchi, S. S., Schoemaker, D., Stevenson, J., Rahmouni, N., Kang, M. S., Pallen, V.,
Poltronetti, N. M., Wang, Y.-T., Kunach, P., Chamoun, M., Quispialaya S, K. M., Vitali, P., ...
Rosa-Neto, P. (2023). Verbal memory formation across PET-based Braak stages of tau
accumulation in Alzheimer’s disease. Brain Communications, 5(3).
https://doi.org/10.1093/braincomms/fcad146

39


https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.21.529377; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Folstein, M. F., Folstein, S. E., & Mchugh, P. R. (1975). ‘MINI-MENTAL STATE’ A PRACTICAL
METHOD FOR GRADING THE COGNITIVE STATE OF PATIENTS FOR THE CLINICIAN*.
In J. gsychiaf. Res (Vol. 12). Pergamon Press.

Friston, K. J., Mechelli, A., Turner, R., & Price, C. J. (2000). Nonlinear responses in fMRI: The balloon
model, Volterra kernels, and other hemodynamics. Neurolmage, 12(4), 466—477.
https://doi.org/10.1006/nimg.2000.0630

Gjorgjieva, J., Evers, J. F., & Eglen, S. J. (2016). Homeostatic activity-dependent tuning of recurrent
networks for robust propagation of activity. Journal of Neuroscience, 36(13), 3722-3734.
https://doi.org/10.1523/JNEUROSCI.2511-15.2016

Insel, P. S., Mormino, E. C., Aisen, P. S., Thompson, W. K., & Donohue, M. C. (2020). Neuroanatomical
spread of amyloid B and tau in Alzheimer’s disease: implications for primary prevention. Brain
Communications, 2(1), 1-11. https://doi.org/10.1093/braincomms/fcaa007

Iturria-Medina, Y., Canales-Rodriguez, E. J., Melie-Garcia, L., Valdés-Hernandez, P. A., Martinez-
Montes, E., Aleman-G6émez, Y., & Sanchez-Bornot, J. M. (2007). Characterizing brain anatomical
connections using diffusion weighted MRI and graph theory. Neurolmage, 36(3), 645-660.
https://doi.org/10.1016/j.neuroimage.2007.02.012

Iturria-Medina, Y., Carbonell, F., Assadi, A., Adewale, Q., Khan, A. F., Baumeister, T. R., & Sanchez-
Rodriguez, L. (2021). Integrating molecular, histopathological, neuroimaging and clinical
neuroscience data with NeuroPM-box. Communications Biology, 4(1).
https://doi.org/10.1038/s42003-021-02133-x

Iturria-Medina, Y., Carbonell, F. M., & Evans, A. C. (2018). Multimodal imaging-based therapeutic
fingerprints for optimizing personalized interventions: Application to neurodegeneration.
Neurolmage, 179(May), 40-50. https://doi.org/10.1016/j.neuroimage.2018.06.028

Iturria-Medina, Y., Carbonell, F. M., Sotero, R. C., Chouinard-Decorte, F., & Evans, A. C. (2017).
Multifactorial causal model of brain (dis)organization and therapeutic intervention: Application to
Alzheimer’s disease. Neurolmage, 152(February), 60-77.
https://doi.org/10.1016/j.neuroimage.2017.02.058

Iturria-Medina, Y., & Evans, A. C. (2015). On the central role of brain connectivity in neurodegenerative
disease progression. In Frontiers in Aging Neuroscience (Vol. 7, Issue MAY). Frontiers Media S.A.
https://doi.org/10.3389/fnagi.2015.00090

Iturria-Medina, Y., & Evans, A. C. (2021). Networks-Mediated Spreading of Pathology in
Neurodegenerative Diseases. In Brain Network Dysfunction in Neuropsychiatric Illness (pp. 171-
186). Springer International Publishing. https://doi.org/10.1007/978-3-030-59797-9_9

Iturria-Medina, Y., Sotero, R. C., Toussaint, P. J., Mateos-Perez, J. M., Evans, A. C., & Initiative, T. A.
D. N. (2016). Early role of vascular dysregulation on late-onset Alzheimer’s disease based on
multifactorial data-driven analysis. Nat Commun, 7(May), 11934.
https://doi.org/10.1038/ncomms 11934

Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M.,
Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K.
P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., ... Silverberg, N. (2018). NIA-AA

40


https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.21.529377; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Research Framework: Toward a biological definition of Alzheimer’s disease. In Alzheimer’s and
Dementia (Vol. 14, Issue 4, pp. 535-562). Elsevier Inc. https://doi.org/10.1016/j.jalz.2018.02.018

Jagust, W. J., Bandy, D., Chen, K., Foster, N. L., Landau, S. M., Mathis, C. A., Price, J. C., Reiman, E.
M., Skovronsky, D., & Koeppe, R. A. (2010). The Alzheimer’s Disease Neuroimaging Initiative
positron emission tomography core. Alzheimer’s and Dementia, 6(3), 221-229.
https://doi.org/10.1016/j.jalz.2010.03.003

Jansen, B. H., & Rit, V. G. (1995). Electroencephalogram and visual evoked potential generation in a
mathematical model of coupled cortical columns. Biological Cybernetics, 73(4), 357-366.
https://doi.org/10.1007/BF00199471

Jia, X. Z., Wang, J., Sun, H. Y., Zhang, H., Liao, W., Wang, Z., Yan, C. G., Song, X. W., & Zang, Y. F.
(2019). RESTplus: an improved toolkit for resting-state functional magnetic resonance imaging data
processing. In Science Bulletin (Vol. 64, Issue 14, pp. 953-954). Elsevier B.V.
https://doi.org/10.1016/j.scib.2019.05.008

Karikari, T. K., Ashton, N. J., Rodriguez, J. L., Scholl, M., Hoglund, K., Brinkmalm, G., Zetterberg, H.,
Blennow, K., A Pascoal, C. T., Benedet, A. L., Chamoun, M., Savard, M., Kang, M. S., Therriault,
J., Gauthier, S., Rosa-Neto, P., Pascoal, T. A., Masserweh, G., Soucy, J., ... Blennow, K. (2020).
Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and
prediction modelling study using data from four prospective cohorts. In Articles Lancet Neurol (Vol.
19). www.thelancet.com/neurology

Kazim, S. F., Chuang, S. C., Zhao, W., Wong, R. K. S., Bianchi, R., & Igbal, K. (2017). Early-onset
network hyperexcitability in presymptomatic Alzheimer’s disease transgenic mice is suppressed by
passive immunization with anti-human APP/AP antibody and by mGluRS blockade. Frontiers in
Aging Neuroscience, 9(MAR). https://doi.org/10.3389/fnagi.2017.00071

Khan, A. F., Adewale, Q., Baumeister, T. R., Carbonell, F., Zilles, K., Palomero-Gallagher, N., & Iturria-
Medina, Y. (2022). Personalized brain models identify neurotransmitter receptor changes in
Alzheimer’s disease. Brain : A Journal of Neurology, 145(5), 1785-1804.
https://doi.org/10.1093/brain/awab375

Klein, A., & Tourville, J. (2012). 101 Labeled Brain Images and a Consistent Human Cortical Labeling
Protocol. Frontiers in Neuroscience, 6(DEC), 1-12. https://doi.org/10.3389/fnins.2012.00171

Kwon, H. S., & Koh, S. H. (2020). Neuroinflammation in neurodegenerative disorders: the roles of
microglia and astrocytes. In Translational Neurodegeneration (Vol. 9, Issue 1). BioMed Central
Ltd. https://doi.org/10.1186/s40035-020-00221-2

Lauterborn, J. C., Scaduto, P., Cox, C. D., Schulmann, A., Lynch, G., Gall, C. M., Keene, C. D., &
Limon, A. (2021). Increased excitatory to inhibitory synaptic ratio in parietal cortex samples from
individuals with Alzheimer’s disease. Nature Communications, 12(1), 2603.
https://doi.org/10.1038/s41467-021-22742-8

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological
investigation of the basis of the fMRI signal.

Luppi, A. I, Cabral, J., Cofre, R., Destexhe, A., Deco, G., & Kringelbach, M. L. (2022). Dynamical
models to evaluate structure—function relationships in network neuroscience. In Nature Reviews
Neuroscience. Springer Nature. https://doi.org/10.1038/s41583-022-00646-w

41


https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.21.529377; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Maestt, F., Cuesta, P., Hasan, O., Fernandéz, A., Funke, M., & Schulz, P. E. (2019). The Importance of
the Validation of M/EEG With Current Biomarkers in Alzheimer’s Disease. Frontiers in Human
Neuroscience, 13(February), 1-10. https://doi.org/10.3389/fnhum.2019.00017

Maestt, F., de Haan, W., Busche, M. A., & DeFelipe, J. (2021). Neuronal Excitation/Inhibition
imbalance: a core element of a translational perspective on Alzheimer pathophysiology. Ageing
Research Reviews, 69, 101372, https://doi.org/10.1016/j.arr.2021.101372

Mederos, S., & Perea, G. (2019). GABAergic-astrocyte signaling: A refinement of inhibitory brain
networks. In GLIA (Vol. 67, Issue 10, pp. 1842—-1851). John Wiley and Sons Inc.
https://doi.org/10.1002/glia.23644

Meijer, H. G. E., Eissa, T. L., Kiewiet, B., Neuman, J. F., Schevon, C. A., Emerson, R. G., Goodman, R.
R., McKhann, G. M., Marcuccilli, C. J., Tryba, A. K., Cowan, J. D., van Gils, S. A., & van
Drongelen, W. (2015). Modeling focal epileptic activity in the Wilson-cowan model with
depolarization block. Journal of Mathematical Neuroscience, 5, 7. https://doi.org/10.1186/s13408-
015-0019-4

Mila-Aloma, M., Ashton, N. J., Shekari, M., Salvado, G., Ortiz-Romero, P., Montoliu-Gaya, L., Benedet,
A. L., Karikari, T. K., Lantero-Rodriguez, J., Vanmechelen, E., Day, T. A., Gonzéilez-Escalante, A.,
Sénchez-Benavides, G., Minguillon, C., Fauria, K., Molinuevo, J. L., Dage, J. L., Zetterberg, H.,
Gispert, J. D., ... Blennow, K. (2022). Plasma p-tau231 and p-tau217 as state markers of amyloid-f
pathology in preclinical Alzheimer’s disease. Nature Medicine, 28(9), 1797-1801.
https://doi.org/10.1038/541591-022-01925-w

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, 1., Cummings, J.
L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for

mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695-699.
https://doi.org/10.1111/j.1532-5415.2005.53221 .x

Nichols, K. J., Chen, B., Tomas, M. B., & Palestro, C. J. (2018). Interpreting 1231—-ioflupane dopamine
transporter scans using hybrid scores. European Journal of Hybrid Imaging, 2(1).
https://doi.org/10.1186/s41824-018-0028-0

Nutma, E., Fancy, N., Weinert, M., Marzin, M. C., Muirhead, R. C., Falk, I., de Bruin, J., Hollaus, D.,
Anink, J., Story, D., Chandran, S., Tang, J., Saito, T., Saido, T. C., Wiltshire, K., Beltran-Lobo, P.,
Philips, A., Antel, J., Healy, L., ... Owen, D. (n.d.-a). Translocator protein is a marker of activated

microglia in rodent models but not human neurodegenerative diseases.
https://doi.org/10.1101/2022.05.11.491453

Nutma, E., Fancy, N., Weinert, M., Marzin, M. C., Muirhead, R. C., Falk, 1., de Bruin, J., Hollaus, D.,
Anink, J., Story, D., Chandran, S., Tang, J., Saito, T., Saido, T. C., Wiltshire, K., Beltran-Lobo, P.,
Philips, A., Antel, J., Healy, L., ... Owen, D. (n.d.-b). Translocator protein is a marker of activated
microglia in rodent models but not human neurodegenerative diseases.

https://doi.org/10.1101/2022.05.11.491453

Obata, T., Liu, T. T., Miller, K. L., Luh, W., Wong, E. C., Frank, L. R., & Buxton, R. B. (2004).
Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas :
application of the balloon model to the interpretation of BOLD transients. 21, 144—153.
https://doi.org/10.1016/j.neuroimage.2003.08.040

42


https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.21.529377; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Ossenkoppele, R., Pichet Binette, A., Groot, C., Smith, R., Strandberg, O., Palmqvist, S., Stomrud, E.,
Tideman, P., Ohlsson, T., Jogi, J., Johnson, K., Sperling, R., Dore, V., Masters, C. L., Rowe, C.,
Visser, D., van Berckel, B. N. M., van der Flier, W. M., Baker, S., ... Hansson, O. (2022). Amyloid
and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline.
Nature Medicine, 28(11), 2381-2387. https://doi.org/10.1038/s41591-022-02049-x

Pascoal, T. A., Benedet, A. L., Ashton, N. J., Kang, M. S., Therriault, J., Chamoun, M., Savard, M.,
Lussier, F. Z., Tissot, C., Karikari, T. K., Ottoy, J., Mathotaarachchi, S., Stevenson, J., Massarweh,
G., Scholl, M., de Leon, M. J., Soucy, J. P., Edison, P., Blennow, K., ... Rosa-Neto, P. (2021).
Microglial activation and tau propagate jointly across Braak stages. Nature Medicine, 27(9), 1592—
1599. https://doi.org/10.1038/s41591-021-01456-w

Pascoal, T. A., Therriault, J., Benedet, A. L., Savard, M., Lussier, F. Z., Chamoun, M., Tissot, C.,
Qureshi, M. N. I, Kang, M. S., Mathotaarachchi, S., Stevenson, J., Hopewell, R., Massarweh, G.,
Soucy, J.-P., Gauthier, S., & Rosa-Neto, P. (2020). 18F-MK-6240 PET for early and late detection
of neurofibrillary tangles. Brain, 143(9), 2818-2830. https://doi.org/10.1093/brain/awaal 80

Picconi, B., Piccoli, G., & Calabresi, P. (2012). Synaptic Dysfunction in Parkinson’s Disease (pp. 553—
572). https://doi.org/10.1007/978-3-7091-0932-8_24

Roshanbin, S., Xiong, M., Hultqvist, G., Soderberg, L., Zachrisson, O., Meier, S., Ekmark-Lewén, S.,
Bergstrom, J., Ingelsson, M., Sehlin, D., & Syvénen, S. (2022). In vivo imaging of alpha-synuclein
with antibody-based PET. Neuropharmacology, 208.
https://doi.org/10.1016/j.neuropharm.2022.108985

Sanchez-Rodriguez, L. M., Iturria-Medina, Y., Baines, E. A., Mallo, S. C., Dousty, M., & Sotero, R. C.
(2018). Design of optimal nonlinear network controllers for Alzheimer’s disease. PLOS
Computational Biology, 14(5), e1006136. https://doi.org/10.1371/journal.pcbi. 1006136

Sanchez-Rodriguez, L. M., Iturria-Medina, Y., Mouches, P., & Sotero, R. C. (2021). Detecting brain
network communities: Considering the role of information flow and its different temporal scales.
Neurolmage, 225(Jan), 117431. https://doi.org/10.1016/j.neuroimage.2020.117431

Shen, Z., Bao, X., & Wang, R. (2018). Clinical PET imaging of microglial activation: Implications for
microglial therapeutics in Alzheimer’s disease. In Frontiers in Aging Neuroscience (Vol. 10, Issue
OCT). Frontiers Media S.A. https://doi.org/10.3389/fnagi.2018.00314

Simon, A. B., & Buxton, R. B. (2015). Understanding the dynamic relationship between cerebral blood
flow and the BOLD signal: Implications for quantitative functional MRI. Neurolmage, 116, 158—
167. https://doi.org/10.1016/j.neuroimage.2015.03.080

Sotero, R. C., & Trujillo-Barreto, N. J. (2007). Modelling the role of excitatory and inhibitory neuronal
activity in the generation of the BOLD signal. Neurolmage, 35(1), 149-165.
https://doi.org/10.1016/j.neuroimage.2006.10.027

Sotero, R. C., & Trujillo-Barreto, N. J. (2008). Biophysical model for integrating neuronal activity, EEG,
fMRI and metabolism. Neurolmage, 39, 290-309. https://doi.org/10.1016/j.neuroimage.2007.08.001

Sotero, R. C., Trujillo-Barreto, N. J., Jiménez, J. C., Carbonell, F., & Rodriguez-Rojas, R. (2009).
Identification and comparison of stochastic metabolic/hemodynamic models (sMHM) for the
generation of the BOLD signal. Journal of Computational Neuroscience, 26(2), 251-269.
https://doi.org/10.1007/s10827-008-0109-3

43


https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.21.529377; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Stefanovski, L., Triebkorn, P., Spiegler, A., Diaz-Cortes, M. A., Solodkin, A., Jirsa, V., McIntosh, A. R.,
& Ritter, P. (2019). Linking Molecular Pathways and Large-Scale Computational Modeling to
Assess Candidate Disease Mechanisms and Pharmacodynamics in Alzheimer’s Disease. Frontiers in
Computational Neuroscience, 13(August), 1-27. https://doi.org/10.3389/fncom.2019.00054

Tan Toi, P., Jae Jang, H., Min, K., Kim, S.-P., Lee, S.-K., Lee, J., Kwag, J., & Park, J.-Y. (n.d.). In vivo
direct imaging of neuronal activity at high temporospatial resolution. https://www.science.org

Targa Dias Anastacio, H., Matosin, N., & Ooi, L. (2022). Neuronal hyperexcitability in Alzheimer’s
disease: what are the drivers behind this aberrant phenotype? In Translational Psychiatry (Vol. 12,
Issue 1). Springer Nature. https://doi.org/10.1038/s41398-022-02024-7

Therriault, J., Benedet, A. L., Pascoal, T. A., Savard, M., Ashton, N. J., Chamoun, M., Tissot, C., Lussier,
F., Kang, M. S., Bezgin, G., Wang, T., Fernandes-Arias, J., Massarweh, G., Vitali, P., Zetterberg,
H., Blennow, K., Saha-Chaudhuri, P., Soucy, J. P., Gauthier, S., & Rosa-Neto, P. (2021).
Determining amyloid-b positivity using 18F-AZD4694 PET imaging. In Journal of Nuclear
Medicine (Vol. 62, Issue 2, pp. 247-252). Society of Nuclear Medicine Inc.
https://doi.org/10.2967/jnumed.120.245209

Therriault, J., Pascoal, T. A., Lussier, F. Z., Tissot, C., Chamoun, M., Bezgin, G., Servaes, S., Benedet, A.
L., Ashton, N. J., Karikari, T. K., Lantero-Rodriguez, J., Kunach, P., Wang, Y. T., Fernandez-Arias,
J., Massarweh, G., Vitali, P., Soucy, J. P., Saha-Chaudhuri, P., Blennow, K., ... Rosa-Neto, P.
(2022). Biomarker modeling of Alzheimer’s disease using PET-based Braak staging. Nature Aging,
2(6), 526-535. https://doi.org/10.1038/s43587-022-00204-0

Therriault, J., Vermeiren, M., Servaes, S., Tissot, C., Ashton, N. J., Benedet, A. L., Karikari, T. K.,
Lantero-Rodriguez, J., Brum, W. S., Lussier, F. Z., Bezgin, G., Stevenson, J., Rahmouni, N.,
Kunach, P., Wang, Y.-T., Fernandez-Arias, J., Socualaya, K. Q., Macedo, A. C., Ferrari-Souza, J.
P., ... Rosa-Neto, P. (2022). Association of Phosphorylated Tau Biomarkers With Amyloid Positron
Emission Tomography vs Tau Positron Emission Tomography. JAMA Neurology.
https://doi.org/10.1001/jamaneurol.2022.4485

Tissot, C., L. Benedet, A., Therriault, J., Pascoal, T. A., Lussier, F. Z., Saha-Chaudhuri, P., Chamoun, M.,
Savard, M., Mathotaarachchi, S. S., Bezgin, G., Wang, Y. T., Fernandez Arias, J., Rodriguez, J. L.,
Snellman, A., Ashton, N. J., Karikari, T. K., Blennow, K., Zetterberg, H., de Villers-Sidani, E., ...
Rosa-Neto, P. (2021). Plasma pTaul81 predicts cortical brain atrophy in aging and Alzheimer’s
disease. Alzheimer’s Research and Therapy, 13(1). https://doi.org/10.1186/s13195-021-00802-x

Tissot, C., Servaes, S., Lussier, F., Pedro Ferrari Souza, J., Therriault, J., Cristina Lukasewicz Ferreira, P.,
Bezgin, G., Bellaver, B., Teixeira Leffa, D., Mathotaarachchi, S. S., Stevenson, J. B., Rahmouni, N.,
Su Kang, M., Pallen, V. B., Margherita-Poltronetti, N., Wang, Y.-T., Fernandez-Arias, J., Benedet,
A. L., Zimmer, E. R., ... Professor of Psychiatry, A. (n.d.). The association of age-related and off-
target retention with longitudinal quantification of [ 18 F]MK6240 tau-PET in target regions.
https://doi.org/10.1101/2022.05.24.22275386

Tok, S., Maurin, H., Delay, C., Crauwels, D., Manyakov, N. V., Van Der Elst, W., Moechars, D., &
Drinkenburg, W. H. I. M. (2022). Pathological and neurophysiological outcomes of seeding human-
derived tau pathology in the APP-KI NL-G-F and NL-NL mouse models of Alzheimer’s Disease.
Acta Neuropathologica Communications, 10(1). https://doi.org/10.1186/s40478-022-01393-w

44


https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.21.529377; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Tournier, J. D., Yeh, C. H., Calamante, F., Cho, K. H., Connelly, A., & Lin, C. P. (2008). Resolving
crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted
imaging phantom data. Neurolmage, 42(2), 617-625.
https://doi.org/10.1016/j.neuroimage.2008.05.002

Triana-Baltzer, G., Moughadam, S., Slemmon, R., van Kolen, K., Theunis, C., Mercken, M., & Kolb, H.
C. (2021). Development and validation of a high-sensitivity assay for measuring p217-+tau in
plasma. Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring, 13(1).
https://doi.org/10.1002/dad2.12204

Valdes-Sosa, P. A., Sanchez-Bornot, J. M., Sotero, R. C., Iturria-Medina, Y., Aleman-Gomez, Y., Bosch-
Bayard, J., Carbonell, F., & Ozaki, T. (2009). Model driven EEG/fMRI fusion of brain oscillations.
Human Brain Mapping, 30(9), 2701-2721. https://doi.org/10.1002/hbm.20704

van Nifterick, A. M., Gouw, A. A., van Kesteren, R. E., Scheltens, P., Stam, C. J., & de Haan, W. (2022).
A multiscale brain network model links Alzheimer’s disease-mediated neuronal hyperactivity to
large-scale oscillatory slowing. Alzheimer’s Research & Therapy, 14(1), 101.
https://doi.org/10.1186/s13195-022-01041-4

Vogel, J. W., Iturria-Medina, Y., Strandberg, O. T., Smith, R., Levitis, E., Evans, A. C., & Hansson, O.
(2020). Spread of pathological tau proteins through communicating neurons in human Alzheimer’s
disease. Nature Communications, 11(1), 2612. https://doi.org/10.1038/s41467-020-15701-2

Vossel, K. A., Tartaglia, M. C., Nygaard, H. B., Zeman, A. Z., & Miller, B. L. (2017). Epileptic activity
in Alzheimer’s disease: causes and clinical relevance. The Lancet Neurology, 16(4), 311-322.
https://doi.org/10.1016/S1474-4422(17)30044-3

Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of
model neurons. Biophysical Journal, 12(1), 1-24. https://doi.org/10.1016/S0006-3495(72)86068-5

Yang, L., Yan, Y., Li, Y., Hu, X,, Lu, J., Chan, P., Yan, T., & Han, Y. (2020). Frequency-dependent
changes in fractional amplitude of low-frequency oscillations in Alzheimer’s disease: a resting-state
fMRI study. Brain Imaging and Behavior, 14(6), 2187-2201. https://doi.org/10.1007/s11682-019-
00169-6

Yang, L., Yan, Y., Wang, Y., Hu, X., Lu, J., Chan, P., Yan, T., & Han, Y. (2018). Gradual Disturbances
of the Amplitude of Low-Frequency Fluctuations (ALFF) and Fractional ALFF in Alzheimer
Spectrum. Frontiers in Neuroscience, 12(December), 1-16.
https://doi.org/10.3389/fnins.2018.00975

Young, P. N. E., Estarellas, M., Coomans, E., Srikrishna, M., Beaumont, H., Maass, A., Venkataraman,
A. v., Lissaman, R., Jiménez, D., Betts, M. J., McGlinchey, E., Berron, D., O’Connor, A., Fox, N.
C., Pereira, J. B., Jagust, W., Carter, S. F., Paterson, R. W., & Scholl, M. (2020). Imaging
biomarkers in neurodegeneration: Current and future practices. In Alzheimer’s Research and
Therapy (Vol. 12, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13195-020-00612-7

Zimmermann, J., Perry, A., Breakspear, M., Schirner, M., Sachdev, P., Wen, W., Kochan, N. A,
Mapstone, M., Ritter, P., McIntosh, A. R., & Solodkin, A. (2018). Differentiation of Alzheimer’s
disease based on local and global parameters in personalized Virtual Brain models. Neurolmage:
Clinical, 19, 240-251. https://doi.org/10.1016/j.nicl.2018.04.017

45


https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

