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Abstract  

Neuronal dysfunction and cognitive deterioration in Alzheimer’s disease (AD) are likely caused 

by multiple pathophysiological factors. However, evidence in humans remains scarce, 

necessitating improved non-invasive techniques and integrative mechanistic models. Here, we 

introduce personalized brain activity models incorporating functional MRI, amyloid-β (Aβ) and 

tau-PET from AD-related participants (N=132). Within the model assumptions, 

electrophysiological activity is mediated by toxic protein deposition. Our integrative subject-

specific approach uncovers key patho-mechanistic interactions, including synergistic Aβ and tau 

effects on cognitive impairment and neuronal excitability increases with disease progression. The 

data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker 

concentrations (p-tau217, p-tau231, p-tau181, GFAP). Furthermore, our results reproduce 

hallmark AD electrophysiological alterations (theta band activity enhancement and alpha 

reductions) which occur with Aβ-positivity and after limbic tau involvement.  Microglial activation 

influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in 

mapping neuroprotective vs detrimental phenotypes.  Mechanistic brain activity models can 

further clarify intricate neurodegenerative processes and accelerate preventive/treatment 

interventions.  
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Introduction   

Alzheimer’s disease (AD) is defined by synaptic and neuronal degeneration and loss 

accompanied by amyloid beta (Aβ) plaques and tau neurofibrillary tangles (NFTs) (Iturria-Medina 

et al., 2018; Jack et al., 2018; Maestú et al., 2021). In-vivo animal experiments indicate that both 

Aβ and tau pathologies synergistically interact to impair neuronal circuits (Busche & Hyman, 

2020). For example, the hypersynchronous epileptiform activity observed in over 60% of AD cases 

(Vossel et al., 2017) may be generated by surrounding Aβ and/or tau deposition yielding neuronal 

network hyperactivity (Tok et al., 2022; Vossel et al., 2017). Cortical and hippocampal network 

hyperexcitability precedes memory impairment in AD models (Kazim et al., 2017; Targa Dias 

Anastacio et al., 2022). In an apparent feedback loop, endogenous neuronal activity, in turn, 

regulates Aβ aggregation, in both animal models and computational simulations (Bero et al., 2011; 

de Haan et al., 2017). Multiple other factors involved in AD pathogenesis -remarkably, 

neuroinflammatory dysregulations- also seemingly influence neuronal firing and act on 

hypo/hyperexcitation patterns (Iturria-Medina et al., 2016; Kwon & Koh, 2020; Shen et al., 2018). 

Thus, mounting evidence suggest that neuronal excitability changes are a key mechanistic event 

appearing early in AD and a tentative therapeutic target to reverse disease symptoms (Busche & 

Hyman, 2020; Lauterborn et al., 2021; Maestú et al., 2021; Targa Dias Anastacio et al., 2022). 

However, the exact patterns of Aβ, tau and other disease factors’ neuronal activity alterations in 

AD’s neurodegenerative progression are unclear as in-vivo and non-invasive measuring of 

neuronal excitability in human subjects remains impractical.  

Brain imaging and electrophysiological monitoring constitute a reliable readout for brain 

network degeneration likely associating with AD’s neuro-functional alterations (Babiloni et al., 

2013; Iturria-Medina et al., 2017; Maestú et al., 2021; Sanchez-Rodriguez et al., 2018; Yang et al., 
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2018). Patients present distinct resting-state blood-oxygen-level-dependent (BOLD) signal content 

in the low frequency fluctuations range (0.01–0.08 Hz) (Yang et al., 2018, 2020). These 

differences increase with disease progression, from cognitively unimpaired (CU) controls to mild 

cognitive impairment (MCI) to AD, correlating with performance on cognitive tests (Yang et al., 

2018). Another characteristic functional change is the slowing of the electro-(magneto-) 

encephalogram (E/MEG), with the signal shifting towards low frequency bands (Babiloni et al., 

2013; Sanchez-Rodriguez et al., 2018). Electrophysiological spectral changes associate with brain 

atrophy and with losing connections to hub regions including the hippocampus, occipital and 

posterior areas of the default mode network (Maestú et al., 2019).  All these damages are known 

to occur in parallel with cognitive impairment (Maestú et al., 2019). Disease processes also 

manifest differently given subject-specific genetic and environmental conditions (Iturria-Medina 

et al., 2018, 2021). Models of multiple pathological markers and physiology represent a promising 

avenue for revealing the connection between individual AD fingerprints and cognitive deficits 

(Maestú et al., 2021; Sanchez-Rodriguez et al., 2018; van Nifterick et al., 2022).  

In effect, large-scale neuronal dynamical models of brain re-organization have been used 

to test disease-specific hypotheses by focusing on the corresponding causal mechanisms (Deco et 

al., 2018; Luppi et al., 2022; Stefanovski et al., 2019). By considering brain topology (the structural 

connectome (Sanchez-Rodriguez et al., 2018)) and regional profiles of a pathological agent (Deco 

et al., 2018), it is possible to recreate how a disorder develops, providing supportive or conflicting 

evidence on the validity of a hypothesis (Luppi et al., 2022). Generative models follow average 

activity in relatively large groups of excitatory and inhibitory neurons (neural masses), with large-

scale interactions generating E/MEG signals and/or functional MRI observations (Iturria-Medina 

& Evans, 2021). Through neural mass modeling, personalized virtual brains were built to describe 
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Aβ pathology effects on AD-related EEG slowing (Stefanovski et al., 2019). Simulated resting-

state functional MRI across the AD spectrum was used to estimate biophysical parameters 

associated with cognitive deterioration (Zimmermann et al., 2018). In addition, different 

intervention strategies to counter neuronal hyperactivity in AD have been tested (de Haan et al., 

2017; van Nifterick et al., 2022). Notably, comprehensive computational approaches combining 

pathophysiological patterns and functional network alterations allow the quantification of non-

observable biological parameters (Falcon et al., 2016) like neuronal excitability values in a subject-

specific basis (Deco et al., 2018; Iturria-Medina et al., 2018, 2021; Luppi et al., 2022; Maestú et 

al., 2021; Sanchez-Rodriguez et al., 2018), facilitating the design of personalized treatments 

targeting the root cause(s) of functional alterations in AD.  

Here, we considerably extend previous mechanistic brain models of disease progression in 

four fundamental ways. First, we develop a personalized whole-brain neural mass model 

integrating multilevel, multifactorial pathophysiological profiles to clarify their causal impact on 

neuronal activity alterations. Second, using individual in-vivo functional MRI together with Aβ- 

and tau- positron emission tomography (PET), we infer and quantify the combined impact of these 

relevant AD pathophysiological factors on neuronal excitability. Third, we investigate the 

associations between the obtained subject-specific pathophysiological neuronal activity 

affectations and clinically applicable blood-plasma biomarkers (p-tau217, p-tau231, p-tau181, 

GFAP) as well as cognitive integrity. Fourth, we reproduce hallmark AD electrophysiological 

alterations and pinpoint their associated critical toxic protein accumulation stages. Overall, our 

results expand previous understandings of neuropathological impact on AD, namely the 

emergence of neuronal hyperactivity (Busche & Hyman, 2020; Lauterborn et al., 2021; Maestú et 

al., 2021; Targa Dias Anastacio et al., 2022), slowing of the E/MEG signals (Babiloni et al., 2013; 
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Sanchez-Rodriguez et al., 2018) and the existence of synergistic multifactorial interactions 

(Busche & Hyman, 2020; Iturria-Medina et al., 2018). These findings support the premise of using 

integrative neural mass models to decode multilevel mechanisms in complex neurological 

disorders. 

 

Results   

Modeling pathophysiological impacts on whole-brain neuronal activity 

A personalized generative framework to study the combined pathophysiological effect of 

Aβ and tau on neuronal activity was formulated in terms of a whole-brain neuronal mass model 

(see Figure 1, Methods, Personalized integrative neuronal activity simulator). This model assumes 

that, at each brain region, neuronal excitability is potentially mediated by the local 

pathophysiological burden, specifically by PET-measured accumulation of Aβ plaques, tau tangles 

and the combined Aβ and tau deposition (their synergistic interaction). In addition, the neuronal 

populations interact via nervous fibers, potentially propagating pathophysiological effects across 

each individual brain’s anatomical connectome (Iturria-Medina et al., 2018; Iturria-Medina & 

Evans, 2015). Altogether, this framework serves to generate continuous pathophysiologically-

mediated neuronal activities, which are transformed into BOLD signals by a hemodynamic-

metabolic module. The individual model parameters quantifying the brain-wide subject-specific 

influence of each neuropathological factor (or their synergistic interaction) on neuronal excitability 

are identified by maximizing the similarity between the generated and observed BOLD data. These 

estimated parameters serve to reconstruct hidden electrophysiological signals, neuronal 
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excitability spatial profiles, and to study additive relationships with plasma biomarkers and 

cognitive integrity.   

Data from one hundred thirty-two individuals from the Translational Biomarkers in Aging 

and Dementia cohort (TRIAD, https://triad.tnl-mcgill.com/) were used in the study, including CU 

(N=81), MCI (N=35) and AD (N=16) participants (Supplementary file 1—table 1). All subjects 

were cognitively profiled –e.g., MMSE (Folstein et al., 1975), MoCA (Nasreddine et al., 2005)– 

and underwent structural and resting-state functional MRI and Aβ (18F-NAV4694)-, tau (18F-MK-

6240)- and microglial activation (11C-PBR28)-PET. From the fMRI signals, regional fractional 

amplitudes of low-frequency fluctuations (fALFF) values were obtained, a measure consistently 

identified as a reliable neuronal activity biomarker of AD’s progression (Iturria-Medina et al., 

2018; Yang et al., 2018, 2020). From all the PET images, the corresponding mean Standardized 

Uptake Value Ratios (SUVRs) (Iturria-Medina et al., 2018; Pascoal et al., 2021; Therriault et al., 

2021) were extracted for 66 bilateral regions of interest (Methods, Image processing).  Individuals 

also had measures of plasma p-tau (Ashton et al., 2021a; Karikari et al., 2020; Therriault, 

Vermeiren, et al., 2022; Triana-Baltzer et al., 2021) and glial fibrillary acidic protein (Benedet et 

al., 2021) (Methods, Plasma biomarkers). 
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Figure 1. Schematic Personalized Pathophysiological Activity Decoder. (a) Individuals 

underwent a multimodal assessment including structural and resting-state functional MRI, Aβ and 

tau-PET, clinically relevant plasma biomarkers, and cognitive evaluations. (b) In the Alzheimer’s 

disease model, the subject’s neuronal excitability profile is defined as a function of Aβ, tau and 

the synergistic interaction of Aβ and tau. Regional excitatory and inhibitory firing rates are 

influenced by the local pathophysiological profiles and the signals coming from other regions via 

the anatomical connectome. The regional neuronal signals generate BOLD indicators through 

metabolic/hemodynamic transformations. By maximizing the similarity between the generated and 

observed BOLD data, the set of subject-specific influences of the pathophysiological Aβ, tau and 

Aβ·tau factors on neuronal activity are quantified. (c) These estimated pathophysiological 

influences serve to recover electrophysiological activity producing the real individual BOLD 

signals, and to study individual excitability profiles and their relationship with independent AD 

(plasma) markers and cognitive deterioration. 

 

Reproducing hallmark electrophysiological alterations in AD progression   
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A desired attribute of biologically-defined generative tools in clinical applications is to 

reproduce and mechanistically clarify reported pathophysiological observations. We obtained 

subject-specific relative contributions of the considered pathophysiological factors on neuronal 

activity (Supplementary file 1—figure 1) and reconstructed proxy quantities for electro-

(magneto)encephalographic (E/MEG) sources in each brain region. Subsequently, we aimed to test 

the proposed pathophysiological activity generator’s ability to recreate reported spectral changes 

in AD, i.e., increases of theta band power (4–8 Hz) and decreases of power in the lower alpha band 

(alpha1, 8–10 Hz) (Babiloni et al., 2013; Sanchez-Rodriguez et al., 2018; van Nifterick et al., 

2022). Among the quantities contributing to the E/MEG model output, we also closely studied 

excitatory firings and changes to their magnitude given the influence of the toxic protein 

depositions (Methods, Personalized integrative neuronal activity simulator). The participants 

were, after individual parameter identification, separated into groups (Supplementary file 1—table 

2) according to their clinical diagnosis (CU, MCI, AD) and Aβ-positivity or in-vivo Braak staging 

(Braak & Braak, 1991; Therriault, Pascoal, et al., 2022). We performed statistical tests on the 

reconstructed quantities of interest to understand the generalized Aβ and tau effects on neuronal 

activity –see also Methods, Statistical analyses, and Supplementary file 1—table 3. 

We observed that the standardized ratio of power in the theta band (4–8 Hz) was higher for 

Aβ+ groups than for Aβ- (Figure 2a). Conversely, the alpha1 (8–10 Hz) power decreased with Aβ-

positivity. Finally, the average excitatory firings were generally higher for Aβ+ subjects. Similar 

results were observed across Braak stages (Figure 2b). Differences between all, theta and alpha1 

power and mean excitatory activity, were observed for subjects in Braak 0 (non-significant tau 

neurofibrillary tangle involvement) and the advanced limbic (Braak III-IV) and isocortical stages 

(Braak V-VI) and, furthermore, for Braak I-II (transentorhinal) and Braak V-VI subjects.  
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Figure 2. Electrophysiological impacts by Aβ, tau, Aβ·tau. From left to right: ratio of power in 

the theta band (4–8 Hz) of the regional excitatory input currents (the E/MEG is proportional to the 

excitatory input current), ratio of power in the alpha1 band (8–10 Hz) and mean excitatory firings 

(over all regions and time points). Each of the quantities was standardized using the mean and s.d. 

from all subjects, for visualizing general trends. Participants were then grouped according to 

clinical diagnosis and (a) Aβ-positivity and (b) Braak stages.  In the box-and-whisker plot, the 

central lines indicate the group medians, with the bottom and top edges of each box denoting the 

25th and 75th percentiles, respectively. Whiskers extend to the maximum and minimum values 

while data points that are deemed outliers for the group are plotted individually with circles. The 

results of ANCOVA post-hoc t-tests for the above-mentioned groups, with the corresponding 

electrophysiological quantity as response variable and age and sex as covariates are also shown. * 

represents significance level p < 0.05, ** means significance level p < 0.01 and *** is p < 0.001.  
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Differences in neuronal excitability associate with clinical states and disease progression 

 Seeking to find mechanisms underlying the observed electrophysiological patterns, we 

reconstructed the biophysical quantity that changes due to the influence of the pathophysiological 

factors in our model: neuronal excitability. Figure 3 and Figure 3—figure supplement 1 show 

excitability values for all brain regions of interest and subjects. The combined action of the 

pathological factors either increases (“hyper”) or decreases (“hypo”) regional excitability around 

a certain baseline normal value.  

We found significant differences of neuronal excitability due to Aβ positivity and Braak 

stages. Firstly, we observed significant discrimination between all Aβ- and Aβ+ groups (Figure 3), 

i.e.: CU(Aβ-) and CU(Aβ+), MCI(Aβ+), AD(Aβ+) (p < 0.001, sex and age adjusted); MCI(Aβ-) 

and CU(Aβ+), MCI(Aβ+), AD(Aβ+) (p < 0.05, sex and age adjusted). Additionally, we discovered 

similar differences between Braak 0 participants and those in all later stages, and for Braak I-II, 

and Braak V-VI (Figure 3—figure supplement 1). Subjects in advanced disease stages generally 

presented hyperexcitability profiles, while most of the Aβ- and Braak 0, I-II participants were 

largely characterized by a slight hypoexcitability.  
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Figure 3. Neuronal excitabilities under the influence of Aβ, tau and Aβ·tau. Inferred neuronal 

excitability values for the brain regions of interest (“y”-axis) and all subjects (“x”-axis). 

Participants were grouped according to clinical diagnosis and Aβ-positivity in this figure, to 

understand Aβ’s contribution to the individually estimated biological profiles. Within a group, 

subjects appear according to their existing ordering in the anonymized database. Warm colors 

represent hyperexcitability of the region in the subject’s brain and cool colors denote hypoexcitable 

states. Results of ANCOVA post-hoc t-tests for the above-mentioned groups, with the average 

intra-brain excitability values as response variable and age and sex as covariates appear in the 

upper right. P-values in bold fonts represent differences at a 5% significance level or lower.  
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Figure 3—figure supplement 1. Neuronal excitabilities under the influence of Aβ, tau and 

Aβ·tau. Participants were grouped according to Braak stages in this figure, to understand tau’s 

contribution to the individually estimated biological profiles. Inferred neuronal excitability values 

for the brain regions of interest (“y”-axis) and all subjects (“x”-axis). Within a group, subjects 

appear according to their existing ordering in the anonymized database. Warm colors represent 

hyperexcitability of the region in the subject’s brain and cool colors denote hypoexcitable states. 

Results of ANCOVA post-hoc t-tests for the above-mentioned groups, with the average intra-brain 

excitability values as response variable and age and sex as covariates appear in the upper right 

corner. P-values in bold fonts represent differences at a 5% significance level or lower.  

 

Neuronal hyperexcitability relates to high levels of plasma AD biomarkers 
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In this section, we investigated the relationship between the obtained individual excitability 

values and blood biomarkers of AD pathophysiology, which constitute accessible alternatives to 

neuroimaging indicators (Ashton et al., 2021b; Benedet et al., 2021; Therriault, Vermeiren, et al., 

2022; Tissot et al., 2021). Figure 4 shows the relationships between the average intra-brain 

excitabilities and the plasma biomarkers p-tau181, p-tau231 and p-tau217 (phosphorylated tau 

indicators) and glial fibrillary acidic protein –GFAP, a measure of reactive astrogliosis and 

neuronal damage (Benedet et al., 2021). Notably, we observed that high levels of the plasma 

biomarkers significantly relate to the participants’ neuronal hyperactivation.  

 

 

Figure 4. Neuronal excitabilities and AD plasma biomarkers. Spearman’s correlation analyses 

between the participants’ plasma biomarkers and their estimated average intra-brain excitabilities, 

for (a) p-tau181, (b) p-tau231, (c) p-tau217 and (d) GFAP. The error bands denote 95% confidence 

intervals (CIs). 
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Synergistic Aβ and tau interaction strongly relates to cognitive performance 

Finally, we proceeded to estimate the pathophysiological factors’ effects on cognitive 

impairment through the changes in neuronal activity, measured with the individual weights 

contributing to neuronal excitability.  Table 1 shows the results of regression analyses taking 

MMSE and MoCA scores as response variables, and the obtained personalized models’ influences 

of Aβ, tau and the Aβ·tau interaction as predictors, while adjusting for sex, age and education 

(Methods, Statistical analyses). We observed that both the Aβ’s solo influence on neuronal activity 

and the Aβ·tau synergistic interaction term were significant predictors of MMSE and MoCA 

evaluations (p < 0.05). The coefficients of these terms in the linear models were positive in all 

cases. Thus, highly negative influences of the studied pathophysiological factors –yielding 

hyperexcitability in the model (Methods, Personalized integrative neuronal activity simulator)– 

are linked to low cognitive scores. 

Table 1. Multiple linear regression analysis investigating the pathological effects on neuronal 

activity as predictors of MMSE and MoCA scores. 

  MMSE scores  

 β 95% CI of β p 

Intercept 22.463 [15.591   29.335] < 0.001 

θ
Aβ

 
0.791 [0.092    1.489] 0.027 

θ
Tau

 
0.138 [ -0.581    0.857] 0.705 

θ
Aβ∙Tau

 
1.040 [0.371    1.710] 0.002 

Sex -1.505 [ -2.872   -0.139] 0.031 

Age 0.064 [ -0.025    0.152] 0.156 

Education 0.095 [-0.096    0.286] 0.326 

  MoCA scores  
 β 95% CI of β p 

Intercept 18.702 [8.656   28.748] < 0.001 
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θ
Aβ

 
1.598 [0.618    2.579] 0.002 

θ
Tau

 
-0.020 [ -0.973    0.932] 0.967 

θ
Aβ∙Tau

 
1.006 [0.009    2.004] 0.048 

Sex -2.379 [ -4.298   -0.460] 0.015 
Age 0.096 [ -0.034    0.226] 0.148 
Education 0.046 [-0.222    0.314] 0.735 
    

 

The influences of Aβ plaques (끫欆끫歰끫歨끫歨), tau tangles (끫欆끫歰끫殎끫殎끫殎) and the interaction of Aβ and tau (끫欆끫歰끫歨끫歨∙끫殎끫殎끫殎) on 

neuronal activity, sex, age and education were considered as predictors. Reported values are obtained 

coefficients (끫毺), the 95% confidence intervals and the p-values for the t-statistic of the two-sided hypothesis 

tests. Significant pathophysiological terms (5% level) are highlighted. MMSE: R2=0.18, p < 0.001; MoCA: 

R2=0.19, p < 0.001. MMSE, Mini-Mental State examination; MoCA, Montreal Cognitive Assessment.  

 

Discussion   

We developed an integrative biophysical framework to map pathophysiological influences 

on neuronal activity, with application to AD. Previous work has investigated how pathological 

electrophysiological activity emerges in generative models that consider the influence of isolated 

biological factors, such as Aβ plaques (Stefanovski et al., 2019) or in several possible AD synaptic 

dysfunction scenarios (de Haan et al., 2017; van Nifterick et al., 2022). Despite the high 

computational value of these works, realistic biological information could have been estimated 

from the data under certain constraints, to validate the mechanistic simulations. On the other hand, 

highly data-driven models (not intended to replicate neuronal activity features) were used to 

individually characterize multifactorial dynamic interactions propagating through anatomical and 

vascular networks in the AD spectrum (Adewale et al., 2021; Iturria-Medina et al., 2017, 2018; 
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Khan et al., 2022). Building on the strengths of both mechanistic and data-driven models, our 

hybrid approach decodes, for the first time, the subject-specific simultaneous and combined 

pathological neuronal activity contributions of relevant disease factors: Aβ and tau, evaluated 

through individual functional MRI and PET biomarkers. Altogether, we observed increased 

neuronal excitability with AD progression, which also predicted increased plasma biomarkers 

concentrations and cognitive impairment.  

Our findings confirm previous observations (Babiloni et al., 2013; Busche & Hyman, 2020; 

Maestú et al., 2021; Targa Dias Anastacio et al., 2022; Tok et al., 2022; Vossel et al., 2017) and 

cast new light on microscopical pathological processes that are inaccessible to traditional 

neuroimaging methods. Through considering the influence of multiple pathophysiological factors, 

we have retrieved the AD electrophysiological hallmark: enhancement of theta band activity 

together with alpha decreases, as disease progresses (Babiloni et al., 2013; Sanchez-Rodriguez et 

al., 2018) from BOLD signals. Our results also indicate that CU(Aβ+) and/or Braak III-IV are the 

stages from which these electrophysiological biomarkers become abnormal. These groups contain 

subjects who are not cognitively impaired but present significant Aβ deposition (Therriault et al., 

2021) and/or have widespread temporal and parietal tau aggregation detectable by tau PET (Braak 

& Braak, 1991). A recent study, also on subjects from the TRIAD cohort, found reduced, clinically 

significant delayed recall and recognition memory tests performance at Braak III and IV stages as 

well (Fernández Arias et al., 2023). Additionally, multicenter research has shown that CU(Aβ+) 

subjects, independently of tau status, present substantially increased risk of short-term (3-5 years) 

conversion to mild cognitive impairment, compared to CU(Aβ-) (Ossenkoppele et al., 2022). Our 

observations reaffirm this evidence. Aβ+ and post-Braak II individuals may be the most likely 

candidates to benefit from early disease interventions modifying the cognitive decline that 
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associates with patho-electrophysiological activity (Babiloni et al., 2013; Maestú et al., 2019; 

Sanchez-Rodriguez et al., 2018).   

No previous direct in-vivo evidence for AD-associated neuronal hyperactivity existed thus 

far in humans, although proxy measurements (Celone et al., 2006), post-mortem studies 

(Lauterborn et al., 2021) and animal models (Busche & Hyman, 2020) have suggested a similar 

mechanism. In this study, by assuming a toxic protein influence model (Aβ, tau, Aβ·tau) we 

inferred neuronal excitability values from the individual PET-functional MRI datasets. Given the 

experimental conditions (equal nominal parameters, anatomical connectivities and model 

assumptions), the estimation of the pathophysiological influences is totally unsupervised with each 

subject’s model being blind to the others’ imaging data and clinical assessments. As such, the 

broad association of subjects in advanced disease stages with hyperactivity –and conversely– is 

only driven by the individual PET datasets and the maximization of the similarity between the real 

resting-state functional MRI and the simulated BOLD signals. The progression towards 

hyperexcitation with disease worsening was equally evident for a simplified model with separate 

contributions by Aβ and tau only (Supplementary file 1—figures 2-3).  Increased excitability was 

also associated with high levels of plasma biomarkers (blood phosphorylated tau and GFAP) which 

are sensitive to incipient AD pathology (Ashton et al., 2021b, 2022; Benedet et al., 2021; Milà-

Alomà et al., 2022; Tissot et al., 2021) and disease progression, especially p-tau217 (Ashton et al., 

2021b; Therriault, Vermeiren, et al., 2022), further demonstrating the strong biomarker capabilities 

of our estimated excitability parameters. Additionally, we observed that the more hyperactive the 

existing excitatory neuronal populations of a subject were (given by negative influence values of 

the significant factors in our model), the greater the participant’s cognitive dysfunction, thus 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2023. ; https://doi.org/10.1101/2023.02.21.529377doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

supporting a direct link among neuronal excitability, pathophysiological burden, and cognitive 

integrity.  

Beyond AD-related protein deposition, our method can also investigate the influence of 

other critical factors. It has been hypothesized, and to some extent observed (Kwon & Koh, 2020; 

Shen et al., 2018; Targa Dias Anastacio et al., 2022), that microglial activation, a probable marker 

for neuroinflammation (Nutma et al., n.d.-a; Pascoal et al., 2021), affects excitability and neuronal 

activity in AD. Consequently, we performed a set of complimentary experiments where we 

recreated the obtained results in a model that also considers deviations to neuronal excitability due 

to microglial activation –measured with 18kDa Translocator Protein PET. However, we did not 

find separation between clinical groups in terms of the estimated neuronal excitabilities when the 

microglial activation factor was considered (Supplementary file 1—figures 4-5). Moreover, the 

synergistic interaction of Aβ and tau was the factor that better predicted cognitive impairment, 

with no significant effect by the microglial activation term (Supplementary file 1—table 4). We 

attribute this effect to technical limitations associated with the acquisition of microglial activation. 

Unlike the Aβ and tau PET SUVRs data, which showed extended statistically significant 

differences across all brain regions for CU and AD participants (two-sampled t-test, p < 0.05), 

microglial activation images exhibited differences in only 24 regions (i.e., approx. 36%; 

Supplementary file 1—table 5). Microglial activation is thought to have a neuroprotective 

character (M2-phenotype) at early disease stages (Kwon & Koh, 2020; Shen et al., 2018). On the 

other hand, excessive activation of microglia seemingly becomes detrimental in clinical AD (M1-

phenotype) by releasing pro-inflammatory cytokines that may exacerbate AD progression (Kwon 

& Koh, 2020; Pascoal et al., 2021; Shen et al., 2018). Nevertheless, modern neuroinflammation 

PET tracers are not specific to these two different phenotypes as no consistent targets have been 
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discovered (Shen et al., 2018). Thus, our extended results albeit being relatively uninformative in 

terms of AD-affectations to neuronal excitability, capture intrinsic microglial activation PET 

mapping insufficiencies (Nutma et al., n.d.-b).  

Our methodology also has limitations. We provide partial validation for the results of the 

in-silico, data-informed approach in the context of the literature only, by reconstructing functional 

network quantities with well-documented AD affectations for a posteriori analysis and by studying 

relationships with reliable markers of disease progression independently collected in our cohort 

subjects (plasma concentrations, cognitive scores). This strategy for analyzing the inferred values 

stems from the lack of ground-truth in-vivo excitability measurements. Although we used state-of-

the-art fMRI experiments in this study (TR = 681ms, spatial resolution = 2.5×2.5×2.5 mm3), more 

detailed spatiotemporal dynamics could be captured with novel ultra high-resolution functional 

imaging techniques (Tan Toi et al., n.d.). On the other hand, by using average anatomical 

connectivity, we have singled-out the mechanisms by which toxic protein deposition and 

neuroinflammation are associated with pathological neuronal activity. Personalized therapeutic 

interventions (Iturria-Medina et al., 2018) would require precise individual profiles for increased 

efficiency. In such applications, including the connectomes’ individual variability may be 

beneficial. Regarding the neuro-physical model for the influence of pathophysiological factors, 

two aspects should be considered in future work. Firstly, extending the intra-regional neuronal 

interactions with additional excitatory and inhibitory populations, pursuing a finer descriptive 

scale, will also enable us to account for additional significant disease factors such as neuronal 

atrophy (Iturria-Medina et al., 2016). Secondly, the effects on inhibitory firings should be explored 

separately as well. Pyramidal (excitatory) neurons greatly outnumber any other neuronal 

population, making them the most likely proteinopathies target (Maestú et al., 2021). However, 
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inhibitory populations are key in maintaining healthy firing balances (Maestú et al., 2021) and 

interacting with glial cells (Mederos & Perea, 2019). Finally, the focus of this study was limited 

to capturing abnormalities in AD by Aβ and tau’s combined action. The model inputs will require 

modifications to measure neuronal excitability contributions in other neurodegenerative conditions 

given their characteristic neuropathological factors. For example, dopamine transporter (DaT) 

123I–FP-CIT scans can be used to quantify dopaminergic deficiency consistent with Parkinsonism 

and associated disorders (Nichols et al., 2018). Ongoing efforts pursue developing alpha-synuclein 

protein PET radiotracers that do not also bind to Aβ (Roshanbin et al., 2022). Replacing the AD- 

pathophysiology with such quantified maps in our framework may well help advance the 

characterization of neuronal excitability dysfunction in the Parkinsonian circuit (Picconi et al., 

2012). 

Our approach has major implications to disease hypothesis testing. Generative models 

(Luppi et al., 2022) in works by Iturria-Medina et al. (Iturria-Medina et al., 2017, 2018), Deco et 

al. (Deco et al., 2018, 2021), Sotero et al. (Sanchez-Rodriguez et al., 2018; Sotero & Trujillo-

Barreto, 2008), de Haan et al. (de Haan et al., 2017; van Nifterick et al., 2022) among others, focus 

on better comprehending neurological conditions. The models considered in the present study 

reflect plausible biophysical mechanisms determining neuronal activity abnormalities in the AD 

spectrum (Busche & Hyman, 2020; Kwon & Koh, 2020; Maestú et al., 2021; Targa Dias Anastacio 

et al., 2022). Critical mechanistic information on the underlying activity-generating processes is 

obtained, as well as about their relationship with clinical and cognitive profiles, as all these disease-

informative variables are tracked in our comprehensive methodology. Importantly, we observed 

that the synergistic interaction of Aβ and tau, and Aβ separate contributions are the most significant 

factors influencing aberrant neuronal activity, AD progression and symptomatology. The relative 
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preponderance of Aβ’s effect with respect to tau’s was somewhat expected as Aβ plaques 

generalize to many cortical areas early in the disease, while NFT spreading increases rapidly in 

temporal and parietal regions only (Insel et al., 2020). These pathological progression patterns, 

measured by PET uptake, inform our individual dynamical models. A critical methodological 

contribution is the capacity to resolve complex biological processes hidden to current non-invasive 

imaging and electrophysiological monitoring techniques, e.g., the neural masses’ firing 

excitabilities. For future work, we aim to further clarify the specific molecular features responsible 

for the differences in excitability values across clinical stages. By doing so, we expect to gain 

additional insights into AD pathophysiology that could boost diagnostic accuracy and preclinical 

applications. This pathophysiological activity decoder is equally applicable to other intricate 

multifactorial neurological disorders by considering their relevant disease factors. Computational 

disease modeling may further unveil the complex mechanisms of neurodegeneration and aid 

providing efficient treatment at a personalized level.  

 

Methods   

Participants 

We selected individuals from the Translational Biomarkers in Aging and Dementia (TRIAD) 

cohort (https://triad.tnl-mcgill.com/). The study was approved by the Douglas Mental Institute 

Research Board and all participants gave written consent. All subjects underwent MRI, resting-

state fMRI, Aβ (18F-NAV4694)-, tau (18F-MK-6240)- and neuroinflammation (11C-PBR28)- PET 

scans, together with a complete cognitive evaluation, including the Mini‐Mental State Examination 

(MMSE) and the Montreal Cognitive Assessment (MoCA). We chose baseline assessments in all 
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cases. Only participants with “cognitively unimpaired” (N=81), “mild cognitive impairment” 

(N=35), or “probable Alzheimer’s disease” (N=16) clinical and pathophysiological diagnoses were 

considered (Tissot et al., n.d.).  

Image processing 

MRI: Brain structural T1-weighted 3D images were acquired for all subjects on a 3 T Siemens 

Magnetom scanner using a standard head coil. T1 space sequence was performed in sagittal plane 

in 1 mm isotropic resolution; TE 2.96 ms, TR 2300 ms, slice thickness 1 mm, flip angle 9 deg, 

FOV read 256 mm, 192 slices per slab. The images were processed following a standard pipeline 

(Iturria-Medina et al., 2018), namely: non-uniformity correction using the N3 algorithm, 

segmentation into grey matter, white matter and cerebrospinal fluid (CSF) probabilistic maps 

(SPM12, www.fil.ion.ucl.ac.uk/spm) and standardization of grey matter segmentations to the MNI 

space (Evans et al., 1994) using the DARTEL tool (Ashburner, 2007). Each map was modulated 

to preserve the total amount of signal/tissue. We selected 66 (bilateral) cortical regions in the 

Desikian-Killiany-Touriner (DKT) (Klein & Tourville, 2012) atlas (Supplementary file 1—table 

5). Subcortical regions, e.g., in the basal ganglia, were not considered given their tendency to 

present PET off-target binding (Vogel et al., 2020; Young et al., 2020).   

fMRI: The resting-state fMRI acquisition parameters were: Siemens Magnetom Prisma, echo 

planar imaging, 860 time points, TR = 681 ms, TE = 32.0 ms, flip angle = 50 deg, number of slices 

= 54, slice thickness = 2.5 mm, spatial resolution = 2.5×2.5×2.5 mm3, EPI factor = 88. We applied 

a minimal preprocessing pipeline (Iturria-Medina et al., 2018) including motion correction and 

spatial normalization to the MNI space (Evans et al., 1994) using the registration parameters 

obtained for the structural T1 image, and removal of the linear trend. We calculated the fractional 

amplitude of low-frequency fluctuations (fALFF) (Yang et al., 2018), a regional proxy indicator 
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for neuronal activity that has shown high sensibility to disease progression. Briefly, we 

transformed the signals for each voxel to the frequency domain and computed the ratio of the 

power in the low-frequency range (0.01–0.08 Hz) to that of the entire BOLD frequency range (0–

0.25 Hz) with code from the RESTplus toolbox (Jia et al., 2019). The fALFF values were 

ultimately averaged over the voxels according to their belonging to brain regions.  

Diffusion Weighted MRI (DW-MRI): High angular resolution diffusion imaging (HARDI) data was 

acquired for N = 128 in the Alzheimer's Disease Neuroimaging Initiative (ADNI) 

(adni.loni.usc.edu). The authors obtained approval from the ADNI Data Sharing and Publications 

Committee for data use and publication, see documents http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf and http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf, respectively. For each diffusion 

scan, 46 separate images were acquired, with 5 b0 images (no diffusion sensitization) and 41 

diffusion-weighted images (b = 1000 s/mm2).  ADNI aligned all raw volumes to the average b0 

image, corrected head motion and eddy current distortions. Region-to-region anatomical 

connection density matrices were obtained using a fully automated fiber tractography algorithm 

(Iturria-Medina et al., 2007) and intravoxel fiber distribution reconstruction  (Tournier et al., 

2008). For any subject and pair of regions 끫殰 and 끫殲 , the ∁끫殲끫殲 measure (0 ≤ ∁끫殲끫殲≤ 1, ∁끫殲끫殲= ∁끫殲끫殲) reflects 

the fraction of the region's surface involved in the axonal connection with respect to the total 

surface of both regions. More details can be found in a previous publication where ADNI’s DW-

MRI was utilized (Iturria-Medina et al., 2018). We averaged the ADNI subject-specific 

connectivity matrices (Iturria-Medina et al., 2018; Sanchez-Rodriguez et al., 2021) to utilize a 

single, representative anatomical network across our calculations on the TRIAD dataset. 
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PET: Study participants had Aβ (18F-NAV4694), tau (18F-MK-6240) and translocator protein 

microglial activation (11C-PBR28) PET imaging in a Siemens high-resolution research tomograph. 

A bolus injection of 18F-NAV4694 was administered to each participant and brain PET imaging 

scans were acquired approximately 40-70 min post-injection. The images were reconstructed using 

an ordered subset expectation maximization (OSEM) algorithm on a 4D volume with three frames 

(3 × 600 s) (Therriault et al., 2021). 18F-MK-6240 PET scans of 20 min (4 × 300 s) were acquired 

at 90-110 min after the intravenous bolus injection of the radiotracer (Pascoal et al., 2020). 11C-

PBR28 images were acquired at 60–90 min after tracer injection and reconstructed using the 

OSEM algorithm on a 4D volume with 6 frames (6 × 300 s) (Pascoal et al., 2021). Images were 

preprocessed according to four main steps (Jagust et al., 2010): 1) dynamic co-registration 

(separate frames were co-registered to one another lessening the effects of patient motion), 2) 

across time averaging, 3) re-sampling and reorientation from native space to a standard voxel 

image grid space (“AC-PC” space), and 4) spatial smoothing to produce images of a uniform 

isotropic resolution of 8 mm FWHM.  Using the registration parameters obtained for the 

participants’ structural T1 images, all PET images were spatially normalized to the MNI space. 

18F-MK-6240 images were meninges-striped in native space before performing any 

transformations to minimize the influence of meningeal spillover. SUVR values for the DKT grey 

matter regions were calculated using the cerebellar gray matter as the reference region.  

The DKT atlas was separately used to define the ROIs for tau-PET Braak stage-segmentation 

(Braak & Braak, 1991; Therriault, Pascoal, et al., 2022) which consisted of: Braak I (pathology 

confined to the transentorhinal region of the brain), Braak II (entorhinal and hippocampus), Braak 

III (amygdala, parahippocampal gyrus, fusiform gyrus and lingual gyrus), Braak IV (insula, 

inferior temporal, lateral temporal, posterior cingulate and inferior parietal), Braak V 
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(orbitofrontal, superior temporal, inferior frontal, cuneus, anterior cingulate, supramarginal gyrus, 

lateral occipital, precuneus, superior parietal, superior frontal and rostromedial frontal) and Braak 

VI (paracentral, postcentral, precentral and pericalcarine) (Braak et al., 1995). All image 

processing was performed in MATLAB 2021b (The MathWorks Inc., Natick, MA, USA) with the 

aid of the specific tools and algorithms specified above. 

Plasma biomarkers 

Blood biomarkers were quantified with Single molecule array (Simoa) assays (Quanterix, 

Billerica, MA). These measurements included tau phosphorylated at threonine 181 (p-tau181) 

(Tissot et al., 2021), tau phosphorylated at threonine 231 (p-tau231) (Ashton et al., 2021b), tau 

phosphorylated at threonine 217 (p-tau217) (Therriault, Vermeiren, et al., 2022; Triana-Baltzer et 

al., 2021) and glial fibrillary acidic protein (GFAP) (Benedet et al., 2021) and have been previously 

reported. 

Personalized integrative neuronal activity simulator 

Electrophysiological model: The individual electrophysiological brain activity is realized through 

coupled Wilson-Cowan (WC) modules (Abeysuriya et al., 2018; Daffertshofer & van Wijk, 2011; 

Gjorgjieva et al., 2016; Meijer et al., 2015; Wilson & Cowan, 1972). In this simple formulation, 

the variables of interest are the firing rates of the excitatory and inhibitory neural masses, 끫歰(끫毂) and 끫歸(끫毂), respectively. Neural masses are average neuronal populations describing the dynamic 

behavior of similar neurons within a given spatial domain, i.e., brain regions (Jansen & Rit, 1995; 

Sanchez-Rodriguez et al., 2018; Wilson & Cowan, 1972). In WC, the excitatory and inhibitory 

populations are locally coupled. Moreover, the excitatory population is further stimulated by other 

local inputs (끫殆) and cortico-cortical connections, ∁ (Image processing, Diffusion Weighted MRI). 
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In effect, each 끫殲 region influences the dynamics of the 끫殰 region by the quantity 
끫欄끫殂 ∁끫殲끫殲끫歰끫殲, where 끫欄 is 

a global scaling coupling strength and 끫殂 is the total number of regions (끫殂 = 66). We performed 

a dynamical system analysis (Daffertshofer & van Wijk, 2011; Deco et al., 2009; Gjorgjieva et al., 

2016; Wilson & Cowan, 1972) and obtained common 끫殆 and 끫欄 values simulating plausible 

electrophysiological oscillations and BOLD signals (Supplementary file 1—figure 6a) for all 

participants. The parameters used in this study are reported in Supplementary file 1—table 6. 

All the inputs (both local and external) received by a neuron are integrated in time when their sum 

surpasses a certain threshold, (끫欆끫歰 or 끫欆끫歸) (Daffertshofer & van Wijk, 2011). In the neural mass 

framework, this integration is achieved by means of a sigmoidal activation function (Wilson & 

Cowan, 1972), 끫殌(끫毊) =
11+exp[−끫殎(끫毊−끫欆)]

− 11+exp[끫殎끫欆]
. Compared to the “baseline” firings obtained by 

using the canonical values reported in the literature, regional excitability can be higher 

(hyperexcitability) or lower (hypoexcitability) depending on whether the firing rate function is 

shifted to lower or higher input current values, respectively (Supplementary file 1—figure 6b). In 

our approach, the regional activity profiles are determined by the excitatory firing, a simplification 

based on the much larger excitatory prevalence in the cortex (Lauterborn et al., 2021; Maestú et 

al., 2021). We suppose that the regional excitatory firing thresholds are mediated by the following 

disease factors: Aβ plaques (with a subject-specific contribution weight given by 끫欆끫歰끫歨끫歨), tau tangles 

(끫欆끫歰끫殎끫殎끫殎) and the interaction of amyloid and tau (끫欆끫歰끫歨끫歨∙끫殎끫殎끫殎). These effects are simplistically written as 

linear fluctuations from the normal baseline value due to the participant’s regional accumulation 

of each factor (Supplementary file 1—figure 6c), with the SUVRs normalized to the [0,1] interval 

(Supplementary file 1—figure 7), to preserve the dynamical properties of the desired solution: 

끫欆끫歰,끫殲 = 끫欆0 + 끫欆끫歰끫歨끫歨 ∙ 끫歨끫毺끫殲 + 끫欆끫歰끫殎끫殎끫殎 ∙ 끫殎끫殎끫殎끫殲 + 끫欆끫歰끫歨끫歨∙끫殎끫殎끫殎 ∙ 끫歨끫毺끫殲 ∙ 끫殎끫殎끫殎끫殲  (1) 
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A negative contribution by a factor (끫欆끫歰끫歨끫歨, 끫欆끫歰끫殎끫殎끫殎 or 끫欆끫歰끫歨끫歨∙끫殎끫殎끫殎) means that the pathological 

accumulation of such a biomarker tends to decrease the firing threshold thus yielding 

hyperexcitability. Given the inverse relationship existing between firing thresholds and effective 

firing rates, we define regional excitability as 1 끫欆끫歰,끫殲� . 

The evolution of the average firing rates 끫歰(끫毂) and 끫歸(끫毂) is then given by the following set of 

differential equations (Daffertshofer & van Wijk, 2011; Gjorgjieva et al., 2016; Wilson & Cowan, 

1972):  

끫̇歰끫殲 =
1끫欞끫歰 �−끫歰끫殲 + 끫殌�끫毊끫歰,끫殲�� (2) 

끫歸끫殲 =
1끫欞끫歸 �−끫歸끫殲 + 끫殌�끫毊끫歸,끫殲�� 

끫毊끫歰,끫殲 = 끫歬끫歰끫歰끫歰끫殲 − 끫歬끫歸끫歰끫歸끫殲 + 끫殆 +
끫欄끫殂 � ∁끫殲끫殲끫歰끫殲끫殂
끫殲=1,끫殲≠끫殲  

끫毊끫歸,끫殲 = 끫歬끫歰끫歸끫歰끫殲 − 끫歬끫歸끫歸끫歸끫殲 

Here, the terms 끫毊끫歰,끫殲 and 끫毊끫歸,끫殲 are known as the input currents. A synthetic EEG signal is 

proportional to the regional excitatory input current (Meijer et al., 2015). Since the BOLD signal 

is related to the afferent neuronal input (Logothetis et al., 2001), we utilized the total action 

potential arriving to the neuronal populations from other local and external populations as the 

proxy electrophysiological quantities of interest feeding the metabolic/hemodynamic model by 

Sotero et al. (Sotero & Trujillo-Barreto, 2008; Valdes-Sosa et al., 2009).  

Metabolic/hemodynamic model: This biophysical model reflects the role that excitatory and 

inhibitory activities play in generating the BOLD signal (Sotero et al., 2009; Sotero & Trujillo-
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Barreto, 2007, 2008; Valdes-Sosa et al., 2009). All variables are normalized to baseline values. 

Changes in glucose consumption (끫殨끫歰,끫殲 and 끫殨끫歸,끫殲) are linked to the excitatory and inhibitory (끫欒끫歰,끫殲 

and 끫欒끫歸,끫殲) neuronal inputs in region 끫殰: 

끫̇殨끫歰,끫殲 = 끫毎끫歰,끫殲 

끫̇毎끫歰,끫殲 =
−2끫欰끫歰 끫毎끫歰,끫殲 − 1끫欰끫歰2 �끫殨끫歰,끫殲 − 1� +

ℎ끫歰끫欰끫歰 �끫欒끫歰,끫殲 − 1� 
끫̇殨끫歸,끫殲 = 끫毎끫歸,끫殲 

끫̇毎끫歸,끫殲 =
−2끫欰끫歸 끫毎끫歸,끫殲 − 1끫欰끫歸2 �끫殨끫歸,끫殲 − 1� +

ℎ끫歸끫欰끫歸 �끫欒끫歸,끫殲 − 1� 
The metabolic rates of oxygen for excitatory (끫殴끫歰,끫殲) and inhibitory (끫殴끫歸,끫殲) activities, and the total 

oxygen consumption, 끫殴끫殲, are obtained from the glucose variables.  

끫殴끫歰,끫殲(끫毂) =
2 − 끫毊(끫毂)
2 − 끫毊0 끫殨끫歰,끫殲(끫毂) 

끫殴끫歸,끫殲(끫毂) = 끫殨끫歸,끫殲(끫毂) 

끫殴끫殲(끫毂) =
끫毼끫殴끫歰,끫殲(끫毂) + 끫殴끫歸,끫殲(끫毂)끫毼 + 1

 

끫毊(끫毂) =
1

1 + 끫殤끫毊끫殤 �끫殠 �끫殢 − 끫殨끫歰,끫殲(끫毂)�� 
Next, CBF dynamics (끫殦끫殲) is modeled as follows (Friston et al., 2000), assuming that CBF is 

coupled to excitatory activity:  

끫殦끫殲 = 끫毌끫殲 
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끫̇毌끫殲 =
−2끫欰끫殦 끫毌끫殲 − 1끫欰끫殦2 (끫殦끫殲 − 1) + 끫欎�끫欒끫歰,끫殲 − 1� 

The outputs of the metabolic and vascular models are converted to normalized cerebral blood 

volume (끫殞끫殲) and deoxy-hemoglobin (끫殼끫殲) content through the Balloon model (Buxton et al., 1998): 

끫̇殞끫殲 =
1끫欰0 (끫殦끫殲 − 끫殦끫殸끫殎끫殸) 

끫̇殼끫殲 =
1끫欰0 �끫殴끫殲 − 끫殦끫殸끫殎끫殸 끫殼끫殲끫殞끫殲� 

끫殦끫殸끫殎끫殸 = 끫殞끫殲1끫欂 

The BOLD signal is obtained by using a linear observation equation as in: 

끫歪끫歪끫歪끫歪끫殲(끫毂) = 끫殒0�끫殎1(1 − 끫殼끫殲) − 끫殎2(1 − 끫殞끫殲)� 
where 끫殎1 = 4.3끫毬0끫歰0 ∙ 끫殎끫歰 + 끫欀끫殾0끫歰0 ∙ 끫殎끫歰 and 끫殎2 = 끫欀끫殾0끫歰0 ∙ 끫殎끫歰 + 끫欀 − 1 are parameters that depend 

on the experimental conditions (field strength, 끫殎끫歰) (Archila-Meléndez et al., 2020; Deco et al., 

2018; Obata et al., 2004; Simon & Buxton, 2015). The interpretation and specific parameter values 

of the metabolic/hemodynamic transformations resulting in the simulated BOLD signal can be 

found in Supplementary file 1—table 7.  The sets of equations above were solved, for each 

individual dataset, with an explicit Runge-Kutta (4,5) method, ode45, as implemented in 

MATLAB 2021b (The MathWorks Inc., Natick, MA, USA) and a timestep of 0.001s.  

Parameter estimation: For each participant, we compute the regional fALFF values of the 

simulated BOLD signals and maximize their similarity (correlation) with the subject’s real BOLD 

indicators (Supplementary file 1—figure 6d). The estimation of the optimal pathological 

influences set (끫欆끫歰끫歨끫歨,끫欆끫歰끫殎끫殎끫殎,끫欆끫歰끫歨끫歨∙끫殎끫殎끫殎) was performed via surrogate optimization (MATLAB 2021b’s 
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surrogateopt). This parameter optimization method performs few objective function evaluations 

hence it is well-suited for expensive functions as it is the case of our high-dimensional BOLD-

simulating dynamical system. We constrained the pathological influences on a small interval 

around the nominal parameter value (Supplementary file 1—table 6) (Abeysuriya et al., 2018; 

Daffertshofer & van Wijk, 2011; Gjorgjieva et al., 2016; Meijer et al., 2015; Wilson & Cowan, 

1972) to compare results across subjects and disease states. Then, we performed optimization 

iterations until no new feasible points were found in the allowed interval through 20 sequences of 

random sample points, guaranteeing that the global minimum was attained (Supplementary file 

1—pseudocode 1). 

Interpreting the pathophysiological effects on neuronal activity: The obtained pathological 

influences (끫欆끫歰끫歨끫歨,끫欆끫歰끫殎끫殎끫殎,끫欆끫歰끫歨끫歨∙끫殎끫殎끫殎) describe subject-specific interactions determining brain activity. 

We use these weights to reconstruct otherwise hidden electrophysiological quantities of interest. 

Individual neuronal excitability patterns (van Nifterick et al., 2022) are mapped through equation 

(1) and can be related to separate measurements like plasma biomarkers for AD (Ashton et al., 

2021b; Benedet et al., 2021; Tissot et al., 2021). Grand average excitatory activities are found by 

averaging the firing rates 끫歰끫殲(끫毂) over the regions and time points (van Nifterick et al., 2022), for 

every subject. Likewise, the input currents of equation (2) are used as proxy measures for cortical 

sources of resting-state EEG (Meijer et al., 2015). We perform a Fast Fourier Transformation 

power analysis of the neural masses’ signals and determine the relative power of the traditional 

rhythms, in particular: theta (4–8 Hz) and alpha 1 (8–10 Hz) frequency band oscillations (van 

Nifterick et al., 2022).  Additionally, we investigate the relationship of the obtained 

pathophysiological influences with cognition (Folstein et al., 1975; Nasreddine et al., 2005).  

Statistical analyses 
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Clinical diagnosis and PET-imaging Aβ status (determined visually by consensus of two 

neurologists blinded to the diagnosis) were used to divide the cohort for analyses of the results. 

Separately, we employed another division based on the conventional unambiguous Braak grouping 

(Braak & Braak, 1991) of I-II (transentorhinal stages), III–IV (limbic) and V–VI (isocortical), to 

assess trends in terms of intracellular tau neurofibrillary changes. Group-differences in the 

electrophysiological quantities of interest (average intra-brain theta and alpha1 power, excitatory 

firing activity and excitability) were evaluated with ANCOVA post-hoc t-tests, i.e., we looked at 

the effects of the clinical groups and Aβ positivity/Braak stages on the corresponding quantity, 

accounting for age and sex. The average theta and alpha1 power and excitatory firing activity were 

box-cox and z-score transformed across subjects. The associations between excitability and plasma 

biomarkers were tested using Spearman’s Rho correlation (large-sample approximation). In 

addition, to assess the relationship between the pathophysiological factors and cognitive integrity 

we fitted multiple linear regression models using the following specifications: 끫殀끫殀끫殌끫歰 끫毀끫殠끫毀끫殾끫殤 ~ 1 + 끫欆끫歰끫歨끫歨  + 끫欆끫歰끫殎끫殎끫殎 +   끫欆끫歰끫歨끫歨∙끫殎끫殎끫殎 +  끫毀끫殤끫毊 +  끫殎끫殨끫殤 + 끫殤끫殢끫殎끫殠끫殎끫毂끫殤끫毀끫殤 and 끫殀끫毀끫歬끫歨 끫毀끫殠끫毀끫殾끫殤 ~ 1 + 끫欆끫歰끫歨끫歨  + 끫欆끫歰끫殎끫殎끫殎 +  끫欆끫歰끫歨끫歨∙끫殎끫殎끫殎 +  끫毀끫殤끫毊 +  끫殎끫殨끫殤 + 끫殤끫殢끫殎끫殠끫殎끫毂끫殤끫毀끫殤. Each of the factors 

were standardized using the mean and s.d. from all subjects.  

 

Data availability 

The data that support the findings of this study are available by submitting a data share request via 

https://triad.tnl-mcgill.com/contact-us/. Data are not publicly available due to them containing 

information that could compromise research participant privacy/consent. All the data collected 
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under the TRIAD cohort is governed by the policies set by the Research Ethics Board Office of 

the McGill University, Montreal and the Douglas Research Center, Verdun. 

 

Code availability 

The code utilized in this article for the neuronal activity simulations and quantification of the 

pathological effects conforms to the Open Source Definition and will be freely available with 

publication at the Neuroinformatics for Personalized Medicine lab’s website (NeuroPM, 

https://www.neuropm-lab.com/publication-codes.html).  

 

Acknowledgments  

LSR was partially supported by funding from the Fonds de recherche du Québec – Santé and the 

Healthy Brains for Healthy Lives (HBHL) initiative. This project was undertaken thanks in part to 

the following funding awarded to YIM: the Canada Research Chair tier-2, the CIHR Project Grant 

2020, and the Weston Family Foundation’s AD Rapid Response 2018 and Transformational 

Research in AD 2020. In addition, we used the computational infrastructure of the McConnell 

Brain Imaging Center at the Montreal Neurological Institute, supported in part by the Brain 

Canada Foundation, through the Canada Brain Research Fund, with the financial support of 

Health Canada and sponsors. PRN, GB, JT and JF are supported by the Canadian Institutes of 

Health Research (CIHR) [MOP-11-51-31; RFN 152985, 159815, 162303], Canadian Consortium 

of Neurodegeneration and Aging (CCNA; MOP-11-51-31 -team 1), Weston Brain Institute, the 

Alzheimer’s Association [NIRG-12-92090, NIRP-12-259245], Brain Canada Foundation (CFI 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2023. ; https://doi.org/10.1101/2023.02.21.529377doi: bioRxiv preprint 

https://www.neuropm-lab.com/publication-codes.html
https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 

 

Project 34874; 33397), the Fonds de Recherche du Québec – Santé (FRQS; Chercheur Boursier, 

2020-VICO-279314) and the Colin J. Adair Charitable Foundation. HZ is a Wallenberg Scholar 

supported by grants from the Swedish Research Council (#2022-01018), the European Union’s 

Horizon Europe research and innovation programme under grant agreement No 101053962, 

Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery 

Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer's 

Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the 

Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för 

Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union’s Horizon 2020 

research and innovation programme under the Marie Skłodowska-Curie grant agreement No 

860197 (MIRIADE), the European Union Joint Programme – Neurodegenerative Disease 

Research (JPND2021-00694), and the UK Dementia Research Institute at UCL (UKDRI-1003). 

KB is supported by the Swedish Research Council (#2017-00915 and #2022-00732), the 

Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615), the Swedish 

Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden 

(#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the 

Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and 

#ALFGBG-965240), the European Union Joint Program for Neurodegenerative Disorders 

(JPND2019-466-236), the National Institute of Health (NIH), USA, (grant #1R01AG068398-01), 

the Alzheimer’s Association 2021 Zenith Award (ZEN-21-848495), and the Alzheimer’s 

Association 2022-2025 Grant (SG-23-1038904 QC). TKK was funded by the Swedish Research 

Council (Vetenskapsrådet #2021-03244), the Alzheimer’s Association Research Fellowship 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2023. ; https://doi.org/10.1101/2023.02.21.529377doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 

 

(#AARF-21-850325), the Swedish Alzheimer Foundation (Alzheimerfonden), the Aina (Ann) 

Wallströms and Mary-Ann Sjöbloms stiftelsen, and the Emil och Wera Cornells stiftelsen. 

 

Author contributions 

Lazaro M. Sanchez-Rodriguez: Conceptualization, Methodology, Software, Formal analysis, 

Investigation, Data curation, Writing - original draft, Visualization.  

Gleb Bezgin: Data curation, Formal analysis, Resources, Writing - review & editing.  

Felix Carbonell: Formal analysis, Resources, Writing - review & editing.  

Joseph Therriault: Formal analysis, Resources, Writing - review & editing.  

Jaime Fernandez-Arias: Formal analysis, Resources, Writing - review & editing.  

Stijn Servaes: Data curation, Writing - review & editing.  

Nesrine Rahmouni: Data curation, Writing - review & editing.  

Cecile Tissot: Data curation, Writing - review & editing.  

Jenna Stevenson: Data curation, Writing - review & editing.  

Thomas K. Karikari: Data curation, Writing - review & editing.  

Nicholas J. Ashton: Data curation, Writing - review & editing.  

Andréa L. Benedet: Data curation, Writing - review & editing. 

Henrik Zetterberg: Data curation, Writing - review & editing. 

Kaj Blennow: Data curation, Writing - review & editing. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2023. ; https://doi.org/10.1101/2023.02.21.529377doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 

 

Gallen Triana-Baltzer: Data curation, Writing - review & editing. 

Hartmuth C. Kolb: Data curation, Writing - review & editing. 

Pedro Rosa-Neto: Data curation, Resources, Writing - review & editing, Project administration, 

Funding acquisition. 

Yasser Iturria-Medina: Conceptualization, Methodology, Investigation, Resources, Writing - 

review & editing, Supervision, Project administration, Funding acquisition. 

 

Competing interests 

HZ has served at scientific advisory boards and/or as a consultant for Abbvie, Acumen, Alector, 

Alzinova, ALZPath, Annexon, Apellis, Artery Therapeutics, AZTherapies, CogRx, Denali, Eisai, 

Nervgen, Novo Nordisk, Optoceutics, Passage Bio, Pinteon Therapeutics, Prothena, Red Abbey 

Labs, reMYND, Roche, Samumed, Siemens Healthineers, Triplet Therapeutics, and Wave, has 

given lectures in symposia sponsored by Cellectricon, Fujirebio, Alzecure, Biogen, and Roche, 

and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the 

GU Ventures Incubator Program (outside submitted work). KB has served as a consultant, at 

advisory boards, or at data monitoring committees for Acumen, ALZPath, BioArctic, Biogen, 

Eisai, Julius Clinical, Lilly, Novartis, Ono Pharma, Prothena, Roche Diagnostics, and Siemens 

Healthineers, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which 

is a part of the GU Ventures Incubator Program, outside the work presented in this paper.  The 

other authors declare no competing interests. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2023. ; https://doi.org/10.1101/2023.02.21.529377doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

List of Supplementary Files 

Supplementary file 1 

Supplementary Figures 1-7, Supplementary Tables 1-7 and Supplementary Pseudocode.  

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2023. ; https://doi.org/10.1101/2023.02.21.529377doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 

 

References 

Abeysuriya, R. G., Hadida, J., Sotiropoulos, S. N., Jbabdi, S., Becker, R., Hunt, B. A. E., Brookes, M. J., 

& Woolrich, W. (2018). A biophysical model of dynamic balancing of excitation and inhibition in 

fast oscillatory large-scale networks. 

Adewale, Q., Khan, A. F., Carbonell, F., & Iturria-Medina, Y. (2021). Integrated transcriptomic and 

neuroimaging brain model decodes biological mechanisms in aging and Alzheimer’s disease. ELife, 

10. https://doi.org/10.7554/eLife.62589 

Archila-Meléndez, M. E., Sorg, C., & Preibisch, C. (2020). Modeling the impact of neurovascular 

coupling impairments on BOLD-based functional connectivity at rest. NeuroImage, 218(January). 

https://doi.org/10.1016/j.neuroimage.2020.116871 

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. 

https://doi.org/10.1016/j.neuroimage.2007.07.007 

Ashton, N. J., Janelidze, S., Mattsson-Carlgren, N., Binette, A. P., Strandberg, O., Brum, W. S., Karikari, 

T. K., González-Ortiz, F., di Molfetta, G., Meda, F. J., Jonaitis, E. M., Koscik, R. L., Cody, K., 

Betthauser, T. J., Li, Y., Vanmechelen, E., Palmqvist, S., Stomrud, E., Bateman, R. J., … Hansson, 

O. (2022). Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer’s trial selection and 

disease monitoring. Nature Medicine. https://doi.org/10.1038/s41591-022-02074-w 

Ashton, N. J., Pascoal, T. A., Karikari, T. K., Benedet, A. L., Lantero-Rodriguez, J., Brinkmalm, G., 

Snellman, A., Schöll, M., Troakes, C., Hye, A., Gauthier, S., Vanmechelen, E., Zetterberg, H., Rosa-

Neto, P., & Blennow, K. (2021a). Plasma p-tau231: a new biomarker for incipient Alzheimer’s 

disease pathology. Acta Neuropathologica, 141(5), 709–724. https://doi.org/10.1007/s00401-021-

02275-6 

Ashton, N. J., Pascoal, T. A., Karikari, T. K., Benedet, A. L., Lantero-Rodriguez, J., Brinkmalm, G., 

Snellman, A., Schöll, M., Troakes, C., Hye, A., Gauthier, S., Vanmechelen, E., Zetterberg, H., Rosa-

Neto, P., & Blennow, K. (2021b). Plasma p-tau231: a new biomarker for incipient Alzheimer’s 

disease pathology. Acta Neuropathologica, 141(5), 709–724. https://doi.org/10.1007/s00401-021-

02275-6 

Babiloni, C., Lizio, R., Del Percio, C., Marzano, N., Soricelli, A., Salvatore, E., Ferri, R., Cosentino, F. I. 

I., Tedeschi, G., Montella, P., Marino, S., De Salvo, S., Rodriguez, G., Nobili, F., Vernieri, F., 

Ursini, F., Mundi, C., Richardson, J. C., Frisoni, G. B., & Rossini, P. M. (2013). Cortical Sources of 

Resting State EEG Rhythms are Sensitive to the Progression of Early Stage Alzheimer’s Disease. 

Journal of Alzheimer’s Disease, 34(4), 1015–1035. https://doi.org/10.3233/JAD-121750 

Benedet, A. L., Milà-Alomà, M., Vrillon, A., Ashton, N. J., Pascoal, T. A., Lussier, F., Karikari, T. K., 

Hourregue, C., Cognat, E., Dumurgier, J., Stevenson, J., Rahmouni, N., Pallen, V., Poltronetti, N. 

M., Salvadó, G., Shekari, M., Operto, G., Gispert, J. D., Minguillon, C., … Suárez-Calvet, M. 

(2021). Differences between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels 

across the Alzheimer Disease Continuum. JAMA Neurology, 78(12), 1471–1483. 

https://doi.org/10.1001/jamaneurol.2021.3671 

Bero, A. W., Yan, P., Roh, J. H., Cirrito, J. R., Stewart, F. R., Raichle, M. E., Lee, J. M., & Holtzman, D. 

M. (2011). Neuronal activity regulates the regional vulnerability to amyloid-β 2 deposition. Nature 

Neuroscience, 14(6), 750–756. https://doi.org/10.1038/nn.2801 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2023. ; https://doi.org/10.1101/2023.02.21.529377doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 

 

Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta 

Neuropathologica, 82(4), 239–259. https://doi.org/10.1007/BF00308809 

Braak, H., Braak, E., & Braak, E. (1995). Staging of Alzheimer’s Disease-Related Neurofibrillary 

Changes. In Neurobiology of Aging (Vol. 16, Issue 95). 

Busche, M. A., & Hyman, B. T. (2020). Synergy between amyloid-β and tau in Alzheimer’s disease. 
Nature Neuroscience, 23(10), 1183–1193. https://doi.org/10.1038/s41593-020-0687-6 

Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes 

during brain activation: The balloon model. Magnetic Resonance in Medicine, 39(6), 855–864. 

https://doi.org/10.1002/mrm.1910390602 

Celone, K. A., Calhoun, V. D., Dickerson, B. C., Atri, A., Chua, E. F., Miller, S. L., DePeau, K., Rentz, 

D. M., Selkoe, D. J., Blacker, D., Albert, M. S., & Sperling, R. A. (2006). Alterations in memory 

networks in mild cognitive impairment and Alzheimer’s disease: An independent component 

analysis. Journal of Neuroscience, 26(40), 10222–10231. 

https://doi.org/10.1523/JNEUROSCI.2250-06.2006 

Daffertshofer, A., & van Wijk, B. C. M. (2011). On the Influence of Amplitude on the Connectivity 

between Phases. Frontiers in Neuroinformatics, 5(July), 6. https://doi.org/10.3389/fninf.2011.00006 

de Haan, W., van Straaten, E. C. W., Gouw, A. A., & Stam, C. J. (2017). Altering neuronal excitability to 

preserve network connectivity in a computational model of Alzheimer’s disease. PLoS 

Computational Biology, 13(9). https://doi.org/10.1371/journal.pcbi.1005707 

Deco, G., Cruzat, J., Cabral, J., Knudsen, G. M., Carhart-Harris, R. L., Whybrow, P. C., Logothetis, N. 

K., & Kringelbach, M. L. (2018). Whole-Brain Multimodal Neuroimaging Model Using Serotonin 

Receptor Maps Explains Non-linear Functional Effects of LSD. Current Biology, 28(19), 3065-

3074.e6. https://doi.org/10.1016/j.cub.2018.07.083 

Deco, G., Jirsa, V., Mcintosh, A. R., Sporns, O., & Ko, R. (2009). Key role of coupling , delay , and noise 

in resting brain fluctuations. 106(25). https://doi.org/10.1073/pnas.0901831106 

Deco, G., Kringelbach, M. L., Arnatkeviciute, A., Oldham, S., Sabaroedin, K., Rogasch, N. C., Aquino, 

K. M., & Fornito, A. (2021). Dynamical consequences of regional heterogeneity in the brain’s 

transcriptional landscape. In Sci. Adv (Vol. 7). https://www.science.org 

Evans, A. C., Kamber, M., Collins, D. L., & MacDonald, D. (1994). An MRI-Based Probabilistic Atlas of 

Neuroanatomy. In Magnetic Resonance Scanning and Epilepsy (pp. 263–274). Springer US. 

https://doi.org/10.1007/978-1-4615-2546-2_48 

Falcon, M. I., Jirsa, V., & Solodkin, A. (2016). A new neuroinformatics approach to personalized 

medicine in neurology: The Virtual Brain. In Current Opinion in Neurology (Vol. 29, Issue 4, pp. 

429–436). Lippincott Williams and Wilkins. https://doi.org/10.1097/WCO.0000000000000344 

Fernández Arias, J., Therriault, J., Thomas, E., Lussier, F. Z., Bezgin, G., Tissot, C., Servaes, S., 

Mathotaarachchi, S. S., Schoemaker, D., Stevenson, J., Rahmouni, N., Kang, M. S., Pallen, V., 

Poltronetti, N. M., Wang, Y.-T., Kunach, P., Chamoun, M., Quispialaya S, K. M., Vitali, P., … 

Rosa-Neto, P. (2023). Verbal memory formation across PET-based Braak stages of tau 

accumulation in Alzheimer’s disease. Brain Communications, 5(3). 

https://doi.org/10.1093/braincomms/fcad146 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2023. ; https://doi.org/10.1101/2023.02.21.529377doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 

 

Folstein, M. F., Folstein, S. E., & Mchugh, P. R. (1975). ‘MINI-MENTAL STATE’ A PRACTICAL 

METHOD FOR GRADING THE COGNITIVE STATE OF PATIENTS FOR THE CLINICIAN*. 

In J. gsychiaf. Res (Vol. 12). Pergamon Press. 

Friston, K. J., Mechelli, A., Turner, R., & Price, C. J. (2000). Nonlinear responses in fMRI: The balloon 

model, Volterra kernels, and other hemodynamics. NeuroImage, 12(4), 466–477. 

https://doi.org/10.1006/nimg.2000.0630 

Gjorgjieva, J., Evers, J. F., & Eglen, S. J. (2016). Homeostatic activity-dependent tuning of recurrent 

networks for robust propagation of activity. Journal of Neuroscience, 36(13), 3722–3734. 

https://doi.org/10.1523/JNEUROSCI.2511-15.2016 

Insel, P. S., Mormino, E. C., Aisen, P. S., Thompson, W. K., & Donohue, M. C. (2020). Neuroanatomical 

spread of amyloid β and tau in Alzheimer’s disease: implications for primary prevention. Brain 

Communications, 2(1), 1–11. https://doi.org/10.1093/braincomms/fcaa007 

Iturria-Medina, Y., Canales-Rodríguez, E. J., Melie-García, L., Valdés-Hernández, P. A., Martínez-

Montes, E., Alemán-Gómez, Y., & Sánchez-Bornot, J. M. (2007). Characterizing brain anatomical 

connections using diffusion weighted MRI and graph theory. NeuroImage, 36(3), 645–660. 

https://doi.org/10.1016/j.neuroimage.2007.02.012 

Iturria-Medina, Y., Carbonell, F., Assadi, A., Adewale, Q., Khan, A. F., Baumeister, T. R., & Sanchez-

Rodriguez, L. (2021). Integrating molecular, histopathological, neuroimaging and clinical 

neuroscience data with NeuroPM-box. Communications Biology, 4(1). 

https://doi.org/10.1038/s42003-021-02133-x 

Iturria-Medina, Y., Carbonell, F. M., & Evans, A. C. (2018). Multimodal imaging-based therapeutic 

fingerprints for optimizing personalized interventions: Application to neurodegeneration. 

NeuroImage, 179(May), 40–50. https://doi.org/10.1016/j.neuroimage.2018.06.028 

Iturria-Medina, Y., Carbonell, F. M., Sotero, R. C., Chouinard-Decorte, F., & Evans, A. C. (2017). 

Multifactorial causal model of brain (dis)organization and therapeutic intervention: Application to 

Alzheimer’s disease. NeuroImage, 152(February), 60–77. 

https://doi.org/10.1016/j.neuroimage.2017.02.058 

Iturria-Medina, Y., & Evans, A. C. (2015). On the central role of brain connectivity in neurodegenerative 

disease progression. In Frontiers in Aging Neuroscience (Vol. 7, Issue MAY). Frontiers Media S.A. 

https://doi.org/10.3389/fnagi.2015.00090 

Iturria-Medina, Y., & Evans, A. C. (2021). Networks-Mediated Spreading of Pathology in 

Neurodegenerative Diseases. In Brain Network Dysfunction in Neuropsychiatric Illness (pp. 171–

186). Springer International Publishing. https://doi.org/10.1007/978-3-030-59797-9_9 

Iturria-Medina, Y., Sotero, R. C., Toussaint, P. J., Mateos-Perez, J. M., Evans, A. C., & Initiative, T. A. 

D. N. (2016). Early role of vascular dysregulation on late-onset Alzheimer’s disease based on 

multifactorial data-driven analysis. Nat Commun, 7(May), 11934. 

https://doi.org/10.1038/ncomms11934 

Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., 

Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. 

P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., … Silverberg, N. (2018). NIA-AA 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2023. ; https://doi.org/10.1101/2023.02.21.529377doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 

 

Research Framework: Toward a biological definition of Alzheimer’s disease. In Alzheimer’s and 

Dementia (Vol. 14, Issue 4, pp. 535–562). Elsevier Inc. https://doi.org/10.1016/j.jalz.2018.02.018 

Jagust, W. J., Bandy, D., Chen, K., Foster, N. L., Landau, S. M., Mathis, C. A., Price, J. C., Reiman, E. 

M., Skovronsky, D., & Koeppe, R. A. (2010). The Alzheimer’s Disease Neuroimaging Initiative 

positron emission tomography core. Alzheimer’s and Dementia, 6(3), 221–229. 

https://doi.org/10.1016/j.jalz.2010.03.003 

Jansen, B. H., & Rit, V. G. (1995). Electroencephalogram and visual evoked potential generation in a 

mathematical model of coupled cortical columns. Biological Cybernetics, 73(4), 357–366. 

https://doi.org/10.1007/BF00199471 

Jia, X. Z., Wang, J., Sun, H. Y., Zhang, H., Liao, W., Wang, Z., Yan, C. G., Song, X. W., & Zang, Y. F. 

(2019). RESTplus: an improved toolkit for resting-state functional magnetic resonance imaging data 

processing. In Science Bulletin (Vol. 64, Issue 14, pp. 953–954). Elsevier B.V. 

https://doi.org/10.1016/j.scib.2019.05.008 

Karikari, T. K., Ashton, N. J., Rodriguez, J. L., Schöll, M., Höglund, K., Brinkmalm, G., Zetterberg, H., 

Blennow, K., A Pascoal, C. T., Benedet, A. L., Chamoun, M., Savard, M., Kang, M. S., Therriault, 

J., Gauthier, S., Rosa-Neto, P., Pascoal, T. A., Masserweh, G., Soucy, J., … Blennow, K. (2020). 

Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and 

prediction modelling study using data from four prospective cohorts. In Articles Lancet Neurol (Vol. 

19). www.thelancet.com/neurology 

Kazim, S. F., Chuang, S. C., Zhao, W., Wong, R. K. S., Bianchi, R., & Iqbal, K. (2017). Early-onset 

network hyperexcitability in presymptomatic Alzheimer’s disease transgenic mice is suppressed by 

passive immunization with anti-human APP/Aβ antibody and by mGluR5 blockade. Frontiers in 

Aging Neuroscience, 9(MAR). https://doi.org/10.3389/fnagi.2017.00071 

Khan, A. F., Adewale, Q., Baumeister, T. R., Carbonell, F., Zilles, K., Palomero-Gallagher, N., & Iturria-

Medina, Y. (2022). Personalized brain models identify neurotransmitter receptor changes in 

Alzheimer’s disease. Brain : A Journal of Neurology, 145(5), 1785–1804. 

https://doi.org/10.1093/brain/awab375 

Klein, A., & Tourville, J. (2012). 101 Labeled Brain Images and a Consistent Human Cortical Labeling 

Protocol. Frontiers in Neuroscience, 6(DEC), 1–12. https://doi.org/10.3389/fnins.2012.00171 

Kwon, H. S., & Koh, S. H. (2020). Neuroinflammation in neurodegenerative disorders: the roles of 

microglia and astrocytes. In Translational Neurodegeneration (Vol. 9, Issue 1). BioMed Central 

Ltd. https://doi.org/10.1186/s40035-020-00221-2 

Lauterborn, J. C., Scaduto, P., Cox, C. D., Schulmann, A., Lynch, G., Gall, C. M., Keene, C. D., & 

Limon, A. (2021). Increased excitatory to inhibitory synaptic ratio in parietal cortex samples from 

individuals with Alzheimer’s disease. Nature Communications, 12(1), 2603. 

https://doi.org/10.1038/s41467-021-22742-8 

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological 

investigation of the basis of the fMRI signal. 

Luppi, A. I., Cabral, J., Cofre, R., Destexhe, A., Deco, G., & Kringelbach, M. L. (2022). Dynamical 

models to evaluate structure–function relationships in network neuroscience. In Nature Reviews 

Neuroscience. Springer Nature. https://doi.org/10.1038/s41583-022-00646-w 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2023. ; https://doi.org/10.1101/2023.02.21.529377doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

 

Maestú, F., Cuesta, P., Hasan, O., Fernandéz, A., Funke, M., & Schulz, P. E. (2019). The Importance of 

the Validation of M/EEG With Current Biomarkers in Alzheimer’s Disease. Frontiers in Human 

Neuroscience, 13(February), 1–10. https://doi.org/10.3389/fnhum.2019.00017 

Maestú, F., de Haan, W., Busche, M. A., & DeFelipe, J. (2021). Neuronal Excitation/Inhibition 

imbalance: a core element of a translational perspective on Alzheimer pathophysiology. Ageing 

Research Reviews, 69, 101372. https://doi.org/10.1016/j.arr.2021.101372 

Mederos, S., & Perea, G. (2019). GABAergic-astrocyte signaling: A refinement of inhibitory brain 

networks. In GLIA (Vol. 67, Issue 10, pp. 1842–1851). John Wiley and Sons Inc. 

https://doi.org/10.1002/glia.23644 

Meijer, H. G. E., Eissa, T. L., Kiewiet, B., Neuman, J. F., Schevon, C. A., Emerson, R. G., Goodman, R. 

R., McKhann, G. M., Marcuccilli, C. J., Tryba, A. K., Cowan, J. D., van Gils, S. A., & van 

Drongelen, W. (2015). Modeling focal epileptic activity in the Wilson-cowan model with 

depolarization block. Journal of Mathematical Neuroscience, 5, 7. https://doi.org/10.1186/s13408-

015-0019-4 

Milà-Alomà, M., Ashton, N. J., Shekari, M., Salvadó, G., Ortiz-Romero, P., Montoliu-Gaya, L., Benedet, 

A. L., Karikari, T. K., Lantero-Rodriguez, J., Vanmechelen, E., Day, T. A., González-Escalante, A., 

Sánchez-Benavides, G., Minguillon, C., Fauria, K., Molinuevo, J. L., Dage, J. L., Zetterberg, H., 

Gispert, J. D., … Blennow, K. (2022). Plasma p-tau231 and p-tau217 as state markers of amyloid-β 
pathology in preclinical Alzheimer’s disease. Nature Medicine, 28(9), 1797–1801. 

https://doi.org/10.1038/s41591-022-01925-w 

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. 

L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for 

mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. 

https://doi.org/10.1111/j.1532-5415.2005.53221.x 

Nichols, K. J., Chen, B., Tomas, M. B., & Palestro, C. J. (2018). Interpreting 123I–ioflupane dopamine 

transporter scans using hybrid scores. European Journal of Hybrid Imaging, 2(1). 

https://doi.org/10.1186/s41824-018-0028-0 

Nutma, E., Fancy, N., Weinert, M., Marzin, M. C., Muirhead, R. C., Falk, I., de Bruin, J., Hollaus, D., 

Anink, J., Story, D., Chandran, S., Tang, J., Saito, T., Saido, T. C., Wiltshire, K., Beltran-Lobo, P., 

Philips, A., Antel, J., Healy, L., … Owen, D. (n.d.-a). Translocator protein is a marker of activated 

microglia in rodent models but not human neurodegenerative diseases. 

https://doi.org/10.1101/2022.05.11.491453 

Nutma, E., Fancy, N., Weinert, M., Marzin, M. C., Muirhead, R. C., Falk, I., de Bruin, J., Hollaus, D., 

Anink, J., Story, D., Chandran, S., Tang, J., Saito, T., Saido, T. C., Wiltshire, K., Beltran-Lobo, P., 

Philips, A., Antel, J., Healy, L., … Owen, D. (n.d.-b). Translocator protein is a marker of activated 

microglia in rodent models but not human neurodegenerative diseases. 

https://doi.org/10.1101/2022.05.11.491453 

Obata, T., Liu, T. T., Miller, K. L., Luh, W., Wong, E. C., Frank, L. R., & Buxton, R. B. (2004). 

Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas : 
application of the balloon model to the interpretation of BOLD transients. 21, 144–153. 

https://doi.org/10.1016/j.neuroimage.2003.08.040 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2023. ; https://doi.org/10.1101/2023.02.21.529377doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 

 

Ossenkoppele, R., Pichet Binette, A., Groot, C., Smith, R., Strandberg, O., Palmqvist, S., Stomrud, E., 

Tideman, P., Ohlsson, T., Jögi, J., Johnson, K., Sperling, R., Dore, V., Masters, C. L., Rowe, C., 

Visser, D., van Berckel, B. N. M., van der Flier, W. M., Baker, S., … Hansson, O. (2022). Amyloid 

and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. 

Nature Medicine, 28(11), 2381–2387. https://doi.org/10.1038/s41591-022-02049-x 

Pascoal, T. A., Benedet, A. L., Ashton, N. J., Kang, M. S., Therriault, J., Chamoun, M., Savard, M., 

Lussier, F. Z., Tissot, C., Karikari, T. K., Ottoy, J., Mathotaarachchi, S., Stevenson, J., Massarweh, 

G., Schöll, M., de Leon, M. J., Soucy, J. P., Edison, P., Blennow, K., … Rosa-Neto, P. (2021). 

Microglial activation and tau propagate jointly across Braak stages. Nature Medicine, 27(9), 1592–

1599. https://doi.org/10.1038/s41591-021-01456-w 

Pascoal, T. A., Therriault, J., Benedet, A. L., Savard, M., Lussier, F. Z., Chamoun, M., Tissot, C., 

Qureshi, M. N. I., Kang, M. S., Mathotaarachchi, S., Stevenson, J., Hopewell, R., Massarweh, G., 

Soucy, J.-P., Gauthier, S., & Rosa-Neto, P. (2020). 18F-MK-6240 PET for early and late detection 

of neurofibrillary tangles. Brain, 143(9), 2818–2830. https://doi.org/10.1093/brain/awaa180 

Picconi, B., Piccoli, G., & Calabresi, P. (2012). Synaptic Dysfunction in Parkinson’s Disease (pp. 553–

572). https://doi.org/10.1007/978-3-7091-0932-8_24 

Roshanbin, S., Xiong, M., Hultqvist, G., Söderberg, L., Zachrisson, O., Meier, S., Ekmark-Lewén, S., 

Bergström, J., Ingelsson, M., Sehlin, D., & Syvänen, S. (2022). In vivo imaging of alpha-synuclein 

with antibody-based PET. Neuropharmacology, 208. 

https://doi.org/10.1016/j.neuropharm.2022.108985 

Sanchez-Rodriguez, L. M., Iturria-Medina, Y., Baines, E. A., Mallo, S. C., Dousty, M., & Sotero, R. C. 

(2018). Design of optimal nonlinear network controllers for Alzheimer’s disease. PLOS 

Computational Biology, 14(5), e1006136. https://doi.org/10.1371/journal.pcbi.1006136 

Sanchez-Rodriguez, L. M., Iturria-Medina, Y., Mouches, P., & Sotero, R. C. (2021). Detecting brain 

network communities: Considering the role of information flow and its different temporal scales. 

NeuroImage, 225(Jan), 117431. https://doi.org/10.1016/j.neuroimage.2020.117431 

Shen, Z., Bao, X., & Wang, R. (2018). Clinical PET imaging of microglial activation: Implications for 

microglial therapeutics in Alzheimer’s disease. In Frontiers in Aging Neuroscience (Vol. 10, Issue 

OCT). Frontiers Media S.A. https://doi.org/10.3389/fnagi.2018.00314 

Simon, A. B., & Buxton, R. B. (2015). Understanding the dynamic relationship between cerebral blood 

flow and the BOLD signal: Implications for quantitative functional MRI. NeuroImage, 116, 158–

167. https://doi.org/10.1016/j.neuroimage.2015.03.080 

Sotero, R. C., & Trujillo-Barreto, N. J. (2007). Modelling the role of excitatory and inhibitory neuronal 

activity in the generation of the BOLD signal. NeuroImage, 35(1), 149–165. 

https://doi.org/10.1016/j.neuroimage.2006.10.027 

Sotero, R. C., & Trujillo-Barreto, N. J. (2008). Biophysical model for integrating neuronal activity, EEG, 

fMRI and metabolism. NeuroImage, 39, 290–309. https://doi.org/10.1016/j.neuroimage.2007.08.001 

Sotero, R. C., Trujillo-Barreto, N. J., Jiménez, J. C., Carbonell, F., & Rodríguez-Rojas, R. (2009). 

Identification and comparison of stochastic metabolic/hemodynamic models (sMHM) for the 

generation of the BOLD signal. Journal of Computational Neuroscience, 26(2), 251–269. 

https://doi.org/10.1007/s10827-008-0109-3 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2023. ; https://doi.org/10.1101/2023.02.21.529377doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 

 

Stefanovski, L., Triebkorn, P., Spiegler, A., Diaz-Cortes, M. A., Solodkin, A., Jirsa, V., McIntosh, A. R., 

& Ritter, P. (2019). Linking Molecular Pathways and Large-Scale Computational Modeling to 

Assess Candidate Disease Mechanisms and Pharmacodynamics in Alzheimer’s Disease. Frontiers in 

Computational Neuroscience, 13(August), 1–27. https://doi.org/10.3389/fncom.2019.00054 

Tan Toi, P., Jae Jang, H., Min, K., Kim, S.-P., Lee, S.-K., Lee, J., Kwag, J., & Park, J.-Y. (n.d.). In vivo 

direct imaging of neuronal activity at high temporospatial resolution. https://www.science.org 

Targa Dias Anastacio, H., Matosin, N., & Ooi, L. (2022). Neuronal hyperexcitability in Alzheimer’s 

disease: what are the drivers behind this aberrant phenotype? In Translational Psychiatry (Vol. 12, 

Issue 1). Springer Nature. https://doi.org/10.1038/s41398-022-02024-7 

Therriault, J., Benedet, A. L., Pascoal, T. A., Savard, M., Ashton, N. J., Chamoun, M., Tissot, C., Lussier, 

F., Kang, M. S., Bezgin, G., Wang, T., Fernandes-Arias, J., Massarweh, G., Vitali, P., Zetterberg, 

H., Blennow, K., Saha-Chaudhuri, P., Soucy, J. P., Gauthier, S., & Rosa-Neto, P. (2021). 

Determining amyloid-b positivity using 18F-AZD4694 PET imaging. In Journal of Nuclear 

Medicine (Vol. 62, Issue 2, pp. 247–252). Society of Nuclear Medicine Inc. 

https://doi.org/10.2967/jnumed.120.245209 

Therriault, J., Pascoal, T. A., Lussier, F. Z., Tissot, C., Chamoun, M., Bezgin, G., Servaes, S., Benedet, A. 

L., Ashton, N. J., Karikari, T. K., Lantero-Rodriguez, J., Kunach, P., Wang, Y. T., Fernandez-Arias, 

J., Massarweh, G., Vitali, P., Soucy, J. P., Saha-Chaudhuri, P., Blennow, K., … Rosa-Neto, P. 

(2022). Biomarker modeling of Alzheimer’s disease using PET-based Braak staging. Nature Aging, 

2(6), 526–535. https://doi.org/10.1038/s43587-022-00204-0 

Therriault, J., Vermeiren, M., Servaes, S., Tissot, C., Ashton, N. J., Benedet, A. L., Karikari, T. K., 

Lantero-Rodriguez, J., Brum, W. S., Lussier, F. Z., Bezgin, G., Stevenson, J., Rahmouni, N., 

Kunach, P., Wang, Y.-T., Fernandez-Arias, J., Socualaya, K. Q., Macedo, A. C., Ferrari-Souza, J. 

P., … Rosa-Neto, P. (2022). Association of Phosphorylated Tau Biomarkers With Amyloid Positron 

Emission Tomography vs Tau Positron Emission Tomography. JAMA Neurology. 

https://doi.org/10.1001/jamaneurol.2022.4485 

Tissot, C., L. Benedet, A., Therriault, J., Pascoal, T. A., Lussier, F. Z., Saha-Chaudhuri, P., Chamoun, M., 

Savard, M., Mathotaarachchi, S. S., Bezgin, G., Wang, Y. T., Fernandez Arias, J., Rodriguez, J. L., 

Snellman, A., Ashton, N. J., Karikari, T. K., Blennow, K., Zetterberg, H., de Villers-Sidani, E., … 

Rosa-Neto, P. (2021). Plasma pTau181 predicts cortical brain atrophy in aging and Alzheimer’s 

disease. Alzheimer’s Research and Therapy, 13(1). https://doi.org/10.1186/s13195-021-00802-x 

Tissot, C., Servaes, S., Lussier, F., Pedro Ferrari Souza, J., Therriault, J., Cristina Lukasewicz Ferreira, P., 

Bezgin, G., Bellaver, B., Teixeira Leffa, D., Mathotaarachchi, S. S., Stevenson, J. B., Rahmouni, N., 

Su Kang, M., Pallen, V. B., Margherita-Poltronetti, N., Wang, Y.-T., Fernandez-Arias, J., Benedet, 

A. L., Zimmer, E. R., … Professor of Psychiatry, A. (n.d.). The association of age-related and off-

target retention with longitudinal quantification of [ 18 F]MK6240 tau-PET in target regions. 

https://doi.org/10.1101/2022.05.24.22275386 

Tok, S., Maurin, H., Delay, C., Crauwels, D., Manyakov, N. V., Van Der Elst, W., Moechars, D., & 

Drinkenburg, W. H. I. M. (2022). Pathological and neurophysiological outcomes of seeding human-

derived tau pathology in the APP-KI NL-G-F and NL-NL mouse models of Alzheimer’s Disease. 

Acta Neuropathologica Communications, 10(1). https://doi.org/10.1186/s40478-022-01393-w 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2023. ; https://doi.org/10.1101/2023.02.21.529377doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 

 

Tournier, J. D., Yeh, C. H., Calamante, F., Cho, K. H., Connelly, A., & Lin, C. P. (2008). Resolving 

crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted 

imaging phantom data. NeuroImage, 42(2), 617–625. 

https://doi.org/10.1016/j.neuroimage.2008.05.002 

Triana-Baltzer, G., Moughadam, S., Slemmon, R., van Kolen, K., Theunis, C., Mercken, M., & Kolb, H. 

C. (2021). Development and validation of a high-sensitivity assay for measuring p217+tau in 

plasma. Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring, 13(1). 

https://doi.org/10.1002/dad2.12204 

Valdes-Sosa, P. A., Sanchez-Bornot, J. M., Sotero, R. C., Iturria-Medina, Y., Aleman-Gomez, Y., Bosch-

Bayard, J., Carbonell, F., & Ozaki, T. (2009). Model driven EEG/fMRI fusion of brain oscillations. 

Human Brain Mapping, 30(9), 2701–2721. https://doi.org/10.1002/hbm.20704 

van Nifterick, A. M., Gouw, A. A., van Kesteren, R. E., Scheltens, P., Stam, C. J., & de Haan, W. (2022). 

A multiscale brain network model links Alzheimer’s disease-mediated neuronal hyperactivity to 

large-scale oscillatory slowing. Alzheimer’s Research & Therapy, 14(1), 101. 

https://doi.org/10.1186/s13195-022-01041-4 

Vogel, J. W., Iturria-Medina, Y., Strandberg, O. T., Smith, R., Levitis, E., Evans, A. C., & Hansson, O. 

(2020). Spread of pathological tau proteins through communicating neurons in human Alzheimer’s 

disease. Nature Communications, 11(1), 2612. https://doi.org/10.1038/s41467-020-15701-2 

Vossel, K. A., Tartaglia, M. C., Nygaard, H. B., Zeman, A. Z., & Miller, B. L. (2017). Epileptic activity 

in Alzheimer’s disease: causes and clinical relevance. The Lancet Neurology, 16(4), 311–322. 

https://doi.org/10.1016/S1474-4422(17)30044-3 

Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of 

model neurons. Biophysical Journal, 12(1), 1–24. https://doi.org/10.1016/S0006-3495(72)86068-5 

Yang, L., Yan, Y., Li, Y., Hu, X., Lu, J., Chan, P., Yan, T., & Han, Y. (2020). Frequency-dependent 

changes in fractional amplitude of low-frequency oscillations in Alzheimer’s disease: a resting-state 

fMRI study. Brain Imaging and Behavior, 14(6), 2187–2201. https://doi.org/10.1007/s11682-019-

00169-6 

Yang, L., Yan, Y., Wang, Y., Hu, X., Lu, J., Chan, P., Yan, T., & Han, Y. (2018). Gradual Disturbances 

of the Amplitude of Low-Frequency Fluctuations (ALFF) and Fractional ALFF in Alzheimer 

Spectrum. Frontiers in Neuroscience, 12(December), 1–16. 

https://doi.org/10.3389/fnins.2018.00975 

Young, P. N. E., Estarellas, M., Coomans, E., Srikrishna, M., Beaumont, H., Maass, A., Venkataraman, 

A. v., Lissaman, R., Jiménez, D., Betts, M. J., McGlinchey, E., Berron, D., O’Connor, A., Fox, N. 

C., Pereira, J. B., Jagust, W., Carter, S. F., Paterson, R. W., & Schöll, M. (2020). Imaging 

biomarkers in neurodegeneration: Current and future practices. In Alzheimer’s Research and 

Therapy (Vol. 12, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13195-020-00612-7 

Zimmermann, J., Perry, A., Breakspear, M., Schirner, M., Sachdev, P., Wen, W., Kochan, N. A., 

Mapstone, M., Ritter, P., McIntosh, A. R., & Solodkin, A. (2018). Differentiation of Alzheimer’s 

disease based on local and global parameters in personalized Virtual Brain models. NeuroImage: 

Clinical, 19, 240–251. https://doi.org/10.1016/j.nicl.2018.04.017 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2023. ; https://doi.org/10.1101/2023.02.21.529377doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529377
http://creativecommons.org/licenses/by-nc-nd/4.0/

