10

15

20

25

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.18.529096; this version posted February 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Title: Extruding transcription elongation loops observed in high-resolution
single-cell 3D genomes

Authors: Honggui Wu'-%;, Jiankun Zhang!-*;, Longzhi Tanti, X. Sunney Xie!-?*

Affiliations:

'Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking
University, Beijing, 100871, China.

2Changping Laboratory, Beijing, P.R. China.

tCurrent address: Department of Neurobiology, Stanford University, Stanford, CA 94305,
USA.

1 These authors contributed equally to this work.

*Corresponding author. Email: sunneyxie@biopic.pku.edu.cn

Abstract: Inside human nuclei, genes are transcribed within a highly packed genome, whose
organization is facilitated by cohesin-mediated loop extrusion. However, whether cohesin-
mediated loop extrusion participates in transcription is unknown. Here we report that the cohesin-
mediated loop extrusion participates in transcription by forming a topoisomerases-regulated
transcription elongation loop (TEL), in which cohesin is stalled at the transcription start site (TSS)
and gradually extrudes loops asymmetrically until reaching the transcription termination site (TTS).
By improving the spatial resolution of single-cell 3D genome mapping to 5 kb with micrococcal
nuclease (MNase) in our new single-cell Micro-C (scMicro-C) method, we directly observed the
loop expansion of TELs. Furthermore, TEL’s biological function is to ensure high transcriptional

burst frequencies by fast re-initiation of RNA Pol II.

One-Sentence Summary: Single-cell high-resolution 3D genome structures reveal that cohesin-
mediated loop extrusion participates in transcription.
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Main Text:
Human genome is hierarchically folded into a myriad of 3D structures (/-4), composed of

DNA loops at different genomic scales. Indispensable for genome organization, DNA loop
extrusion is mediated by the structural maintenance of chromosomes (SMC) complexes—
condensin and cohesin, which bind to chromatin and reel flanking DNA into growing loops until
the complexes run into roadblocks such as convergently oriented CTCFs (5-17). Although the
cohesin complex is important for the establishment and maintenance of genome architecture, its
depletion only causes modest gene expression changes (/2, [13). Therefore, we set out to
investigate whether cohesin-mediated loop extrusion facilitates transcription involving RNA
polymerase II (RNAPII). However, existing technology does not provide enough resolution to

address this question.

Chromosome conformation capture (3C or Hi-C) assays have advanced our understanding of
3D genome structures by determining genome-wide contact maps, using restriction enzyme to cut
specific sequences to allow the nearby DNA fragments to ligate before conducting whole-genome
sequencing (14, 15). A “contact” means two DNA sequences that are otherwise separated in the
linear (1D) genome but are brought together in the 3D genome. Bulk Hi-C has relatively low
resolution due to restriction enzyme having limited cutting sites in the genome. Recently, Micro-
C have been developed using micrococcal nuclease (MNase), which enzymatically cuts the
genome between two nucleosomes, giving nucleosome-sized fragments for proximity ligation (/6-
18), achieving much higher resolution. However, bulk Hi-C and Micro-C measurements can only
measure population-averaged contacts and are unable to distinguish the chromosome positioning
and folding among individual cells. To solve this problem, we previously developed Dip-C to
determine the 3D genome structure of a single human cell at 20 kb resolution by distinguishing
the paternal and maternal alleles based on their single-nucleotide polymorphisms (SNPs) (/9). In
this work, we further improved the spatial resolution of single-cell 3D genome determination by

developing single-cell Micro-C (scMicro-C).

Development of scMicro-C

The previously reported Micro-C chemistry, though offering high spatial resolution, cannot
achieve single-cell precision because of substantial loss (over-digestion) of DNA and low ligation

efficiency (16, 17). To achieve scMicro-C, we made three improvements (Fig. 1A, see Methods).
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First, we titrated MNase digestion to reduce DNA loss and to produce proper DNA fragments (fig.
S2, A and B). Second, we solubilized chromatin with an ionic detergent, sodium dodecyl sulfate
(SDS), which dramatically improved ligation efficiency (Fig. 1B). Third, we adopted transposon-
based whole-genome amplification method, META (/9), using Tn5 (20), to improve detection of
chromatin “contacts.” To confirm such improvements do not compromise data quality, we
performed bulk Micro-C (see methods) to generate a high-resolution 3D genome map of human
lymphoblastoid cells (GM12878) with 4.4 billion valid contacts from two biological replicates (fig.
S1 and table S1). Compared to previously Hi-C data with highest-depth (4.9 billion contacts) (21),
our Micro-C data detected more chromatin loops (HICCUPS: 20882 vs. 9738) and “stripe”
structures (22) (Stripenn: 3414 vs. 2722) (fig. S1, E and F).

We performed scMicro-C on 340 GM 12878 cells, obtaining an average of 1.0 million contacts
per cell (SD = 0.5 million, minimum = 0.2 million, maximum = 3.1 million) (fig. S2E and table
S2). Compared to our previously developed Dip-C, scMicro-C is more cost-effective and has a
higher signal-to-noise ratio (fig. S2, F and G), which is indicated by a much higher contact-to-read
ratio (average (+ s.d.) of (16.5 = 5.7)% versus (8.1 = 2.9)%) and a lower fraction of inter-
chromosomal contacts (16, 17) (average (£ s.d.) = (15.2 = 6.0)% versus (22.0 £ 1.8)%).
Importantly, we proved that scMicro-C preserved the high-resolution and nucleosome occupancy

characteristics of Micro-C (fig. S3).

Using our previously developed Dip-C algorithm (/9), we confirmed that scMicro-C enables
the reproducible reconstruction of 3D genome structures in single-cell at 5 kb resolution (Fig. 1C
and fig. S4 and S5, see Methods). The pairwise distance matrices show strong concordance with
bulk contact maps across different resolutions (Pearson’s r = -0.92 (20 kb), -0.91 (10 kb), -0.89 (5
kb)), demonstrating that the single-cell kilobase-resolution 3D structures are reliable and

informative.

Observation of transcription elongation loops (TELSs)

When examining high-resolution bulk contact maps at the scale of single genes, we noted that
many active long genes have a line structure on chromatin contact maps, starting from the TSS
and ending at the TTS (Fig. 1D and fig. S6), indictive of a dynamic looping structure in individual
cells (Fig. 1E). We termed this structure transcription elongation loops (TELs). We stress that these

-
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“lines” associated with TELs are different from “architectural stripes,” which are mostly found at
TADs boundaries and are formed between two strong CTCF binding sites (22). Architectural
stripes are usually longer and stronger than TELs (fig. S1F), while TELs can form at genes without
CTCEF (Fig. 1C and fig. S6A). TELSs are as long as genes, whereas architectural stripes are longer
than most genes and sometimes appear at genomic regions without genes. We also noted that
Zhang et al. reported gene-body-associated domains (23), which were observed in highly
expressed genes, though the boundary line was not observed perhaps due to the lack of spatial

resolution, nor was the mechanism discussed.

We next examined the dependence of TELs on gene length and transcriptional activity. We
sorted transcribed genes according to both gene length and RNAPII abundance, and then
performed pile-up analysis centered at TSS region (see methods). We found the TELs are most
apparent in the longest group (= 50 kb) and strengthened with transcriptional activity (fig. S7A).
Such phenomenon is further validated by re-analyzing three published Micro-C datasets (16, 17)
(fig. STA and table S3). These results indicated that TELs are closely associated with

transcriptional activity and gene length.

We further examined whether active transcription is necessary for the maintenance of TELs
by re-analyzing published Micro-C datasets of transcription inhibition by triptolide (TRP) and
flavopiridol (FLV) treatments (/6), which inhibit RNAPII transcription initiation and elongation,
respectively. Our re-analysis showed that transcription inhibition by either TRP or FLV treatments
both significantly weakens TELs signal (fig. S7B), indicating that transcription is necessary for
TELSs maintenance of highly expressed genes. It is noteworthy that RNAPII occupancy at TSS is
not altered after FLV treatment (/6), thus, it’s not RNAPII occupancy but transcriptional activity
that is needed for TELs maintenance. In contrast, architectural stripes are largely unaffected upon

transcription inhibition (fig. S7C). These results further distinguish TELs from architectural stripes.

Observing TELs with scMicro-C

To confirm the assignment of the line between TSS and TTS in the contact map to the TEL, we
used our scMicro-C to visualize the individual 3D structures of a particular gene. We chose
Musashi RNA binding protein 2 (MSI2) gene (chrl7, 428.8 kb, 33.78 FPKM). The MSI2 gene
encodes an RNA-binding protein that are ubiquitously expressed across all tissues, and acts as

4


https://doi.org/10.1101/2023.02.18.529096
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

15

20

25

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.18.529096; this version posted February 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

translational regulator to play a role in the maintenance of stem cells, and is dysregulated in a

variety of human cancers (24).

For MSI2, bulk Micro-C contact map has a TEL line (Fig. 2A, left), consistent with the sum
of individual cells’ contact maps (Fig. 2A, right), each giving a corresponding gene structure in a
cell (Fig. 2C, upper panel and fig. S8). We selected 6 equally spaced loci between TSS and TTS
along the genome (p1-p6) (Fig. 2B) and counted the structures whose 3D distance between the
TSS (p0) and another locus is shorter than 3.5 particle radii (~240 nm). We found that the six loci
are evenly populated (Fig. 2C and fig. S9I). Other TEL genes exhibit the same phenomenon (fig.
S9, A to F), demonstrating our single-cell 3D structures captured the gradual loop expansion
process of TELs (Fig. 2C, upper panel and fig. S8). In contrast, when analyzing a similarly sized
genomic region without TELS or stripe structures (chr2: 114.25-115.15 Mb), as expected, we found
that the population decreases with larger separation of genomic distance (fig. S9, G to J). These

results confirm the existence of enlarging TELs at single-cell and single-gene level.

TELSs are caused by cohesin-mediated asymmetric DNA loop extrusion

Although cohesin depletion doesn’t cause significant changes in gene expression (/2), literature
showed that cohesin may be involved in transcription. First, according to ChIP-seq, though most
cohesin colocalizes with CTCF, which serves as a cohesin barrier at TADs boundary, roughly 1/4
of cohesin binds to active TSS, indicating active promoters could act as cohesin barriers in mouse
and human (25, 26). Second, NIPBL, a cohesin loading factor, is enriched at promoters of active
genes (27), indicating that cohesin prefers to load at TSSs. Third, in the absence of CTCF and
cohesin unloading factor WAPL, cohesin accumulates at the 3’ end of some active genes (25),
implying that cohesin tends to unload at TTSs. As shown in the Fig. 2D, we propose a model to
explain the formation of TELs involving cohesin-mediated asymmetric loop extrusion: cohesin is
preferentially loaded near active gene promoters, but is stalled at the TSS by a barrier, and thus

can only extrude the gene body side until reaching and detaching at the TTS, thus forming the TEL.

We verified that cohesin is indeed involved in TEL formation by re-analyzing a published
high-resolution bulk Micro-C dataset after acute cohesin depletion (/3). In untreated cells, we
observed strong TEL signals in highly transcribed genes (top panel) compared to other genes

(middle and bottom panel). In contrast, these signals are completely eliminated after acute cohesin
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depletion (enrichment scores drop from 1.50 to 1.13) (Fig. 2C and fig. S10A). Therefore, TELs

are dependent on cohesin-mediated loop extrusion.

Transcription of TEL-associated genes is more sensitive to topoisomerase inhibition

During transcription, RNAPII generates positive supercoiling in the forward direction and negative
supercoiling in the backward direction (28), which are both released by DNA topoisomerases (29).
In humans, there are mainly two types of topoisomerases, type IB (TOP1) and type IIA (TOP2A
and TOP2B), which remove both positive and negative supercoiling. TOP1 cuts only one strand
of double-stranded DNA and re-ligate it after supercoil release, and is associated with transcribing
RNAPII, exhibiting catalytic activity at gene body and 3’ end of active genes (30). On the other
hand, TOP2 introduces double-strand DNA breaks at where two DNA duplexes cross, and rejoins
the two ends after supercoil release. TOP2 activity is concentrated at promoter-proximal regions,
depending on the expression level and gene length (37). During their catalytic cycles, transient
topoisomerase-DNA covalent complexes (TOPccs) can be inhibited by many small molecules (32,

33), which we used below to study this process.

We first evaluated the association between topoisomerase and TELs. A previous study found
that TOP1 inhibition downregulates the expression of long genes in neurons (34). To identify genes
affected by topoisomerase inhibition, we performed RNA-seq on GM12878 cells treated with
TOPI inhibitor topotecan (TPT) or TOP2 inhibitor etoposide (ETO) by following the previously
documented experimental condition (34) (fig. S11, B to D) (see Methods). To examine the effect
of topoisomerase inhibition on cell cycle, we performed cell cycle analysis and found only a slight
increase of cells in the S phase and a slight decrease of cells in the M phase (fig. S11A), confirming

that the inhibition experiment is valid.

As shown in fig. S12 E, among differentially expressed genes, 989 genes are downregulated
(68% in ETO and 29% in TPT) and 1791 genes are upregulated (60% in ETO and 46% in TPT)
by either TPT or ETO treatment (false-discovery rate (FDR) < 0.01, fold change > 2).
Downregulated genes are biased towards long genes (Fig. 3A), especially for TOP1 inhibition,
exhibiting strong negative correlation between gene length and gene expression fold change
(Pearson’s r = -0.476) (fig. S11F). We found that downregulated genes are significantly enriched

in two categories: housekeeping genes and immune-related (B cell-specific) genes (Fig. 3B and
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fig. S11, G and H). These results reveal that TOP1 and TOP2 are important for maintaining

expression of long and highly expressed genes.

We next examined whether topoisomerase-sensitive genes have TELs and found that genes
downregulated by topoisomerase inhibition, corresponding to about 1/5 of all expressed long genes,
exhibited strong TEL signals (Fig. 3C and fig. S12). We noted that genes specifically
downregulated by TOP1 inhibition showed weaker TEL signals than genes downregulated by
TOP2 (fig. S12), indicating that TOP1 is required for the proper expression of many long genes
without TEL due to the length-dependent effect of supercoiling build-up (34). We speculated that
TEL-associated genes are more likely to accumulate torsional stress due to that cohesin-mediated
asymmetric extrusion restricts the dissipation of transcription-induced supercoiling (Fig. 3F, left
panel), which necessitates topoisomerase. Thus, genes with TELs, corresponding to about 1/5 of

all expressed long genes, are observed to be facilitated by topoisomerases.

Distinct roles of Topoisomerases 1 and 2 in TELs

To investigate the effect of TOP1 and TOP2 on TELs, we generated high-resolution Micro-C
contact maps for GM 12878 cells treated with TOP1 inhibitor (TPT), TOP2 inhibitor (ETO) and
control (DMSO), and obtained 2.5, 2.6 and 2.4 billion valid contacts from two independent
biological replicates (table S1). We found that TEL signals are greatly weakened upon TOP2
inhibition, while TEL signals are slightly strengthened upon TOP1 inhibition (Fig. 3, D and E and
fig. S13). In contrast, we found that architectural stripes are largely unaffected by either TOP1 or
TOP2 inhibition (fig. S14). These results indicated that topoisomerases are involved in TELSs.

We now explained the mechanism underlying the different involvement of TOP1 and TOP2
in the establishment or maintenance of TELs. Upon TOP1 inhibition, elongating RNAPII are
stalled due to supercoiling build-up at gene body (34), which further interferes cohesin extrusion.
However, TOP1 does not exhibit activity at TSS region (fig. SI3E), preserving the barrier of
cohesin at TSS and thus explaining why TELSs are not disrupted by TOP1 inhibition (Fig. 3F, top
right). It was previously known that TOP2 maintains the negative supercoiling at TSS (35). Upon
TOP2 inhibition, negative supercoiling at TSS is disrupted, causing two possible scenarios: loss
of barrier at TSS, and/or failure of cohesin loading at TSS. Both scenarios would lead to

abolishment of TELs (Fig. 3F, bottom right).
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TELSs assure high transcriptional burst frequency

We now answer the question of what the physiological significance of TELSs is. Transcription of
gene is bursting even for highly expressed genes in both prokaryotes and eukaryotes because of
single-molecule nature of DNA (36-38), which have been extensively studied by real-time imaging
on single-cell basis and single-cell transcriptomics genome-wide. In bacteria, transcriptional
bursting was shown to be due to positive supercoiling buildup (38). In both eukaryotic and
prokaryotic cell, transcription can be described by the two state model (39), where transcription
stochastically switches between “on” and “off” states (Fig. 4a). To measure transcriptome-wide
transcriptional burst kinetics, we fitted our full-length single-cell RNA-seq data (40) to determine
the burst frequencies (kon) and burst sizes (u/korr) (fig. S15, A to C). We noted that inferred kon
values were much smaller than ko values (fig. S15D), confirming that off states dominate the
transcription burst cycle (4/), which we assume is primarily caused by transcription re-initiation

at least for long genes.

We found that genes with TELs that are downregulated by TOP2 inhibition have higher burst
frequencies than other genes (Fig. 4B, left and fig. S15, G to I). In contrast, the difference of the
burst size between TEL-associated genes and other genes are not obvious (Fig. 4B, right and fig.
S15, G to I). These results demonstrated that cohesin-mediated TELs guarantee high
transcriptional burst frequency of highly expressed long genes. In fact, this could explain why
short-term cohesin depletion by degron has a little effect on nascent transcription level (12),

because it only spans about 1-2 burst cycle (2-3 hrs).

We therefore propose a model to explain how TELs enable high transcriptional burst
frequency (Fig. 4D). For long genes without TELs, dissociated RNAPII takes a long time to search
for and rebind to promoters for the next round of transcription (Fig. 4D, left). In contrast, genes
with TELs have their TSS close to their TTS in 3D, which allows dissociated RNAPII to take less
time to rebind to promoters (Fig. 4D, right), thus enabling faster transcription reinitiation.
Consistent with this model, we observed that TOP2 inhibition-downregulated genes have stronger
enrichment for proteins belonging to transcription initiation complexes (PLOR2A, MED1, TBP
and TAF1) at their TTS regions, demonstrating TTSs form strong interactions with their TSSs (fig.
S16A).
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Discussion

Our understanding of cohesin-mediated loop extrusion and its role in genome organization has
been greatly advanced by recent in vitro single-molecule (9, 10) and in vivo inducible protein
degradation (/2) studies. In addition to its role in genome organization, cohesin-mediated loop
extrusion has also been proposed to explain the immunoglobulin gene V(D)J recombination (42),
antibody class switching (43) and the repair of DNA double-strand breaks (DSB) (44). However,
the role of cohesin-mediated loop extrusion in transcription, in any, has not been revealed. Our
study proved that cohesin participates in the transcription of highly expressed long genes by
forming TELs. Specifically, our high-resolution scMicro-C directly captured the progressive loop
expansion of TELs, which has not been observed by previous bulk measurements and low-

resolution scHi-C.

Many long genes are involved in neuronal functions and specifically expressed in the brain,
their dysregulation is associated with neurological disorders (such as autism spectrum disorder and
Rett syndrome) and aging (34, 45). We note that there is circumstantial evidence in the literature
pointing to TEL. For example, a recent report showed that STAG2 (an alternative subunit of
cohesin) knockout downregulated genes form promoter anchored stripes (“P-stripe””) in mouse
oligodendrocytes (46). Our study provided definitive proof of TELs for highly expressed long
genes. We note that we cannot rule out the possibility of the existence of TEL in short genes, which
cannot be resolved by current Micro-C experiments. However, the biological significance of TEL

seems to be more obvious for long genes than for short genes.

Although we experimentally observed the TELs are stalled at TSS (Fig. 2C), the nature of
barrier for cohesin at TSS is different from the conventional choice of CTCF. In fact, only a small
fraction of genes has promoter-bound CTCF (19.6% within + 5 kb of TSS in GM 12878, fig. S16,
B and C), thus CTCF is not the universal TSS barrier. Besides CTCF, other chromatin-bound
proteins (e.g., dCas9 (42), minichromosome maintenance (MCM) complex (47), transcription
factors (48)) and specific non-canonical DNA structures (e.g., R-loops (49), replication folks (50))
have been implied as potential cohesin barriers, demonstrating that the barrier doesn’t have to be
a DNA-binding protein. In this study, we showed that inactivation of RNAPII (fig. S7B) or TOP2
(Fig. 3E) both disrupt TELs, which indicates that the cohesin barrier at TSS is transcription- and
DNA supercoiling-associated, implying it is transcription-induced negative supercoiling.

9
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Transcription, being such a fundamental process in biology, involve complicated coordination
with companying dynamical processes, such as positive and negative supercoiling, in the crowded
3D genome space. The discovery of TEL involvement in transcription is thus fundamental

importance to the understanding of transcription at molecular and cellular level.
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the bottom. (E) Schematic representing TELs: dynamic loop structure with TSS frequently
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