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Abstract 26 

The effects of selection on an organism9s genome are hard to detect on small spatial scales, as 27 

gene flow can erase signatures of local adaptation. Most genome scans to detect signatures of 28 

environmental selection are performed on large spatial scales, however divergent selection on 29 

the local scale (e.g. between contrasting soil conditions) has also been demonstrated, in 30 

particular for herbaceous plants. Here we hypothesize that in topographically complex 31 

landscapes, microenvironment variability is strong enough to leave a selective footprint in 32 

genomes of long-lived organisms. To test this, we investigated paired south- versus north-33 

facing Pinus pinaster stands in a Mediterranean mountain area. While north-facing (mesic) 34 

stands experience less radiation, south facing (xeric) stands represent especially harsh 35 

conditions, particularly during the dry summer season. Outlier detection revealed five 36 

putatively adaptive loci out of 4,034, two of which encoded non-synonymous substitutions. 37 

Additionally, one locus showed consistent allele frequency differences in all three stand pairs 38 

indicating divergent selection despite high gene flow on the local scale. Functional annotation 39 

of these candidate genes revealed biological functions related to abiotic stress response in 40 

other species. Our study highlights how divergent selection shapes the functional genetic 41 

variation within populations of long-lived forest trees on local spatial scales. 42 

43 
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 44 

Introduction 45 

Spatially heterogeneous environments exert divergent selection pressures and can contribute 46 

to maintaining high levels of adaptive genetic variation within populations. However, 47 

understanding under which circumstances selection is acting and especially on which spatial 48 

scale divergent it can be detected remains poorly understood. Studying local adaptation in 49 

forest tree species is an important endeavor especially under current climate change [1,2]. 50 

Numerous studies have already revealed loci potentially involved in environmental 51 

adaptation. However, most of these studies have been conducted on regional to continental 52 

scales [e.g., 3–6], as gene flow on small spatial scales can blur the migration–selection 53 

equilibrium maintaining local adaptation. Divergent selection on the local scale, e.g. to toxic 54 

soil conditions, has often been observed in herbaceous plant species [7,8]. There is increasing 55 

evidence that plants exhibit adaptive divergence on very small spatial scales, i.e. on scales of 56 

tens of meters of distance in herbaceous species and of hundreds of meters of distance in 57 

some woody species (reviewed in [9,10]). Recent studies have started to address the factors 58 

shaping local adaptation on the microenvironmental scale in long-lived tree species [11–14]. 59 

Several tropical tree species show adaptation to microenvironmental conditions [13,14]. 60 

Eperua falcata (Fabaceae), for example, showed divergent selection between groups of 61 

individuals growing in seasonally flooded bottomlands and adjacent groups growing on dry 62 

terra firme soils [17,18]. Also, Gauzere et al. [19] found evidence for divergent selection 63 

acting on growth and phenology traits along an altitudinal gradient within natural stands of 64 

European beech (Fagus sylvatica) despite high gene flow. 65 

Identifying the genes and gene variants that confer local adaptation, i.e. higher fitness 66 

to certain environmental conditions, is of great interest in ecology and evolution. The 67 

detection and validation of candidate loci potentially under selection, however, remains 68 

challenging. Experimental functional validation is not attainable in non-model species, 69 

especially in trees with their long generation times. Previous studies showed that many 70 

approaches to detect loci under selection can be prone to false positives (e.g., [20,21]) and 71 

that the identified genomic signatures of selection might not always be observed in other 72 

locations with similar environmental conditions [22–24]. Therefore, combining several 73 

analytical approaches is recommended to reduce false positive detection [25]. Additionally, 74 

an appropriate sampling design can increase the power to detect loci involved in local 75 

adaptation. Especially, a paired design comprising several pairs of sampling sites with 76 

contrasting environmental conditions seems promising for the detection also of loci 77 
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displaying weak signatures of selection [26]. A simulation study by Lotterhos & Whitlock 78 

[21] showed that sampling pairs of nearby populations (i.e. at gene flow distance) with 79 

contrasting environmental conditions increases the probability of detecting true positive 80 

outlier loci compared to gradient or random sampling designs. 81 

In Mediterranean ecosystems, water availability is one of the most important factors 82 

driving selection and plant species are typically well adapted to summer dry conditions 83 

[27,28]. Still, considerable microenvironmental variation can be observed especially in 84 

topographically complex landscapes, such as Mediterranean mountain systems. Equator-85 

facing slopes receive lower solar radiation flux density, leading to lower evapotranspiration 86 

rates and lower daily maximum temperatures during summer drought periods, and therefore 87 

show a significantly different composition, structure and density of plant communities as 88 

compared to slopes facing pole-wards [29–31]. We hypothesize that, in topographically 89 

complex Mediterranean forests, microclimate variability is strong enough to leave a selective 90 

footprint on long-lived trees. In this study, we used a robust paired sampling design within a 91 

natural population of Maritime pine (Pinus pinaster Aiton, Pinaceae) to specifically test for 92 

genetic signatures of divergent selection between xeric (south-facing slope) and mesic (north-93 

facing slope) conditions. 94 

 95 

Material and methods 96 

Study species and sample collection 97 

Maritime pine is a monoecious conifer species growing in the western part of the 98 

Mediterranean basin and along the Atlantic coast in south-western Europe. It is pollinated and 99 

dispersed by wind. Pollen flow is therefore wide-ranging, following highly leptokurtic 100 

dispersal kernels with average dispersal distances of 78-174 m and frequent long-distance 101 

dispersal events [32]. Gene flow via seeds is more restricted (average of 26.53 m [33]), but 102 

post-dispersal processes, such as the Janzen-Connell  effect  and  microenvironmental  103 

variation  affecting  survival  at  early  life stages can substantially increase effective dispersal 104 

distances [34]. 105 

For this study, we sampled three pairs of P. pinaster stands with contrasting 106 

microenvironmental conditions in a natural forest near Eslida in Sierra de Espadán, Eastern 107 

Spain (Fig. 1). All P. pinaster trees belong to a single gene pool [35,36] and the region is 108 

characterized by a warm and dry climate. Stand-replacing crown fire events are common and 109 

may take place every few years. Under these conditions regeneration is mostly driven by fire 110 

events leading to even aged cohorts [37].  We selected one stand pair consisting of one south-111 
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facing slope and trees from a nearby shady valley along a (mostly) north-exposed stream 112 

(S1/N1) and two pairs of stands (S2/N2 and S3/N3) with south- (dry and warm) and north-113 

facing slopes (more humid and less warm). For simplicity, we will refer to this sampling 114 

design as three pairs of south- and north-facing slopes. In each of the six stands, we 115 

haphazardly sampled 25 trees with DBH (diameter at breast height) > 16, making a total of 116 

150 trees (Fig. 1, Table 1). All trees were georeferenced using a Garmin Oregon 550t 117 

(Garmin, Wichita, USA), height was assessed using a Digital hypsometer Forestor Vertex 118 

(Haglöf, Långsele, Sweden) and the DBH was measured. The maximum straight-line distance 119 

between sampled trees was ca. 10 km between stand pairs and 820 m between trees within 120 

pairs.  121 

 122 

DNA extraction and genotyping 123 

Needles were collected from the 150 trees and desiccated using silica gel. Genomic DNA was 124 

isolated using the Invisorb® DNA Plant HTS 96 Kit/C kit (Invitek GmbH, Berlin, Germany) 125 

following the manufacturer9s instructions.  126 

An Illumina Infinium SNP (Single Nucleotide Polymorphism) array (Illumina, Inc., 127 

San Diego, USA ) developed by Plomion et al. [38] was used for genotyping. This array is 128 

enriched in SNPs from genes that showed signatures of natural selection in previous studies 129 

[27, 28, 29] or differential expression under biotic and abiotic stress [38] in maritime pine, but 130 

most of the SNPs represent potentially neutral polymorphisms. After removing SNPs with 131 

uncertain scoring based on visual inspection using GenomeStudio Genotyping Module v1.0 132 

(Illumina, Inc.) and monomorphic SNPs, we kept 5,024 high-quality SNPs, of which 4,034 133 

had a minor allele frequency (MAF) > 0.1. The amount of missing genotype data per stand 134 

was very low (maximum of 1%). This data set has recently been used to characterize the 135 

effective population size in Sierra de Espadán, as part of a meta-study [41]. 136 

 137 

Data analyses 138 

First, we characterized the study stands based on the sampled trees9 height and DBH and 139 

tested if these phenotypic traits differed significantly between south- and north-facing slopes 140 

using a two sample Student9s t test on each stand pair run in R v. 4.1.2 [42]. Then, based on 141 

the SNP data, we estimated genetic diversity parameters such as observed and expected 142 

heterozygosity and the fixation index using the R package hierfstat [43]. After this, we tested 143 

whether we could detect significant neutral genetic differentiation between the sampled stands 144 

by estimating pairwise FST [44] using the complete SNP data set and comparing with neutral 145 
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expectations from 1,000 permutations. To visualize the neutral population genetic structure 146 

inherent to our data, we also performed a Principal Component Analysis (PCA) using the 147 

function dudi.pca implemented in the R package ade4 [45] and a supervised (i.e. defining 148 

each stand as a group) Discriminant Analysis of Principal Components (DAPC) using the 149 

dapc function in the R package adegenet [46] based on all SNP markers. Additionally, we 150 

assessed the fine-scale spatial genetic structure (SGS) within each of the three pairs. First, we 151 

estimated the pairwise Loiselle kinship coefficient [47] in SPAGeDi v. 1.5d [48] between 152 

individuals. The average kinship coefficient per distance class was regressed against the 153 

logarithm of spatial distances and significance was assessed based on 10,000 permutations of 154 

individual locations. The strength of SGS was estimated as Sp =–b/(1 – F1), where b is the 155 

regression slope and F1 is the average kinship coefficient in the first distance class [49]. 156 

To detect loci potentially under selection in slopes with contrasting aspects 157 

(south/north) in a hierarchically structured population [50], we used two hierarchical FST 158 

outlier detection approaches that take into account the paired sampling design, one 159 

implemented in Arlequin v 3.5.2 [51] and the other in BayeScanH, which is especially 160 

suitable for small sample sizes [52]. For this, we first defined the pairs and then the aspect of 161 

the slopes (south/north) within pairs. In Arlequin FST values can be slightly negative 162 

especially on small spatial scale but including loci with negative FST values impedes outlier 163 

analyses. Therefore, only SNPs with positive values of estimated FST (1,810 SNPs) were 164 

considered in Arlequin analysis (200,000 simulations). We report FSC outlier loci for 165 

divergence between sites within pairs. To identify outlier loci with BayeScanH, we used the 166 

full dataset of 4,034 SNPs with MAF > 0.1, and default parameters with an odds prior of 10. 167 

We tested two models, one with the same selection pressure acting between contrasting slopes 168 

in the three stand pairs and another one with three independent selection pressures on 169 

contrasting slopes within the three pairs. Finally, using the R-script 8paired_GEA.R9 from 170 

https://gitlabext.wsl.ch/rellstab/genotype-environment-associations, we tested if any of the 171 

candidate SNPs identified with Arlequin or BayeScanH showed consistent patterns in 172 

population allele frequencies between the paired stands in all replicates. For this, we checked 173 

whether the differences in population allele frequency had the same sign in all pairs, i.e. 174 

whether the population allele frequency in all north-facing slopes was consistently lower or 175 

higher than the allele frequency in all south-facing slopes (i.e. the strict sign test). Then, we 176 

ran a linear mixed model using the function lme implemented in the package nlme [53], with 177 

population allele frequency as response variable, slope aspect (south/north) as fixed effect and 178 

pair as random factor.  179 
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The sequences flanking SNPs identified as loci potentially under selection, and 180 

associated annotation, were retrieved from Plomion et al. [38]. These sequences were newly 181 

blasted against the NCBI nucleotide database to check for new functional annotations. 182 

 183 

Results 184 

Tree height was consistently lower in south- than in north-facing slopes and the difference 185 

was significant in two out of the three stand pairs (Supp. Mat. Fig. S1.1, Table S1.1), while no 186 

significant difference was detected for DBH in any stand pair. 187 

Expected and observed heterozygosity (not shown) were very similar in all six study 188 

stands with values around 0.33, resulting in fixation indices close to zero (Table 1). Pairwise 189 

genetic differentiation between stands based on all 5,024 SNP markers was weak, ranging 190 

from 0.004 to 0.033, but highly significant above zero, with all P-values < 0.001 191 

(Supplementary Material, Table S2.1). The DAPC clearly depicted the hierarchical population 192 

structure due to the paired sampling design, with stronger genetic differentiation among than 193 

within stand pairs (i.e. between south- and north-facing stands; Fig. 2). The hierarchical 194 

population structure was also visible but less evident in the PCA plot (Supplementary 195 

Material, Fig. S2.1). SGS was significant, showing isolation by distance, in all stand pairs and 196 

strongest in pair N3/S3 (Supplementary Material, Fig. S2.2). 197 

In total, 18 SNPs were located above the 99% confidence intervals using the 198 

hierarchical island model in Arlequin and, thus, were considered as significant outliers for 199 

genetic differentiation between south- and north-facing slopes (Fig. 3, Supplementary 200 

Material Table S3.1). Additionally, ten loci were identified as significant FST outliers by 201 

BayeScanH when assuming independent selection pressures for each of the three pairs of 202 

stands (Supplementary Material, Table S3.1). None of these outlier loci was significant in all 203 

three sampling pairs in BayeScanH. Moreover, no significant outlier locus was detected when 204 

assuming the same selection pressure in all three pairs of stands.  205 

When comparing the two methods, five loci were identified as outliers by both 206 

Arlequin and BayeScanH, and only one additional outlier locus, AL751008_691 detected by 207 

Arlequin, showed consistent allele frequency differences between south- and north-facing 208 

slopes (Figure 4) and a significant effect of the site aspect as indicated by the linear mixed 209 

model (Psite type = 0.0021). Two out of these six outliers SNPs showed non-synonymous 210 

changes and coded for a putative RNA-binding protein and a V-type proton ATPase catalytic 211 

subunit, respectively (Table 2). 212 

 213 
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Discussion 214 

The paired sampling design in Sierra de Espadán, contrasting south- and north-facing slopes 215 

within a large and continuous P. pinaster population, was specifically used to test for 216 

microenvironmental adaptation driven by water availability. Paired sampling in stands with 217 

contrasting environments, such as dry vs. humid patches, represents a powerful approach to 218 

reveal loci under selection [21,25], because it maximizes potential for divergent selection 219 

while minimizing the effect of confounding population structure. Several studies successfully 220 

employed the paired sampling design to detect loci under selection (e.g. [14,18,54–58]). In 221 

conifers, four previous studies revealed loci significantly associated to altitudinal or other 222 

microenvironmental gradients in Abies alba [57,58], Pinus halepensis [56], and P. pinaster 223 

and Cedrus atlantica  [14], but only few loci showed consistent patterns of allele frequency 224 

shifts along the replicated stand pairs. Here, we specifically tested for consistent patterns of 225 

divergent selection on the local scale, with trees growing in direct vicinity, between mesic and 226 

xeric stands.  227 

We first showed a hierarchical population genetic structure despite high gene flow in 228 

P. pinaster within one large population in Sierra de Espadán (eastern Spain). From previous 229 

work, it is known that this forest constitutes a single gene pool [35,36]. Moreover, fine-scale 230 

spatial genetic structure within continuous populations typically is weak in this wind-231 

pollinated and wind-dispersed species [59]. Therefore, it is remarkable to find significant 232 

differentiation among all sampling sites, even between the neighbouring south- and north-233 

facing slopes, clearly depicting the hierarchical structure. This pattern could be caused by 234 

phenological differences in flowering time restricting effective gene flow between contrasting 235 

slopes due to temporal separation [60]. However, it could also reflect isolation by distance to 236 

some degree as indicated by significant SGS (Supplementary Material Fig.2.2). Indeed, 237 

differentiation between neighbouring slopes and SGS were strongest for pair N3/S3, which 238 

was also the pair with the biggest geographic distance between stands. However, 239 

differentiation between directly neighbouring south- and north-facing slopes could 240 

additionally be driven by isolation by environment (IBE), which would imply selection 241 

against maladapted immigrants resulting in genome-wide patterns of genetic differentiation 242 

[61,62]. Furthermore, clonal common gardens of range-wide P. pinaster populations show 243 

strong local adaptation to different environmental conditions [35,63–65]. In particular, tree 244 

height was shown to correlate negatively with maximum summer temperatures (i.e. trees from 245 

populations originating in hotter environments tend to be smaller when grown in the same 246 

environment), indicating an adaptive response to hot summer temperatures [64]. In forest 247 
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trees, steep equator-facing slopes usually limit growth, while taller trees are typically found 248 

on less steep and pole-facing slopes [66]. In agreement with this, P. pinaster trees on south-249 

facing slopes in the Sierra de Espadán tended to be smaller, which could indicate that the 250 

populations responded to the harsher environmental conditions either through plasticity or 251 

local adaptation.  252 

Second, the complementary approaches to detect outlier loci in hierarchical sampling 253 

designs identified five out of 4,034 SNPs (with MAF>0.1) as putatively under divergent 254 

selection on local spatial scales. One additional locus (AL751008-691) showed a consistent 255 

allele frequency pattern in accordance with microenvironmental adaptation in all three stand 256 

pairs. Environmental conditions on south- and north-facing slopes are known to differ 257 

strongly, e.g. in light and water availability [67]. Slopes with different aspect are often 258 

characterized by differences in composition, structure and density of plant communities [29–259 

31]. Tree species have developed diverse adaptations in response to strong selection pressures 260 

in dry environmental conditions [68]. Pinus pinaster stands as a suitable study species to test 261 

for divergent selection on the local scale. Multisite clonal common gardens comprising range-262 

wide populations already revealed that the species is susceptible to drought. Survival was 263 

lowest in the common garden sites with the harshest (dry and hot) conditions [63], and certain 264 

alleles at candidate loci associated with climate were connected to a higher probability of 265 

survival [35]. Here, we showed that contrasting environmental conditions on different slopes, 266 

in direct vicinity and in the presence of gene flow, can also shape the distribution of genetic 267 

variation in long-lived forest trees such as P. pinaster.  268 

Outlier loci related to differences in drought intensity and temperature have been 269 

found in different pine species on range-wide spatial scales. For example, Eckert et al. [69], 270 

found five outlier loci associated with aridity in Pinus taeda. In natural Pinus albicaulis 271 

populations, Lind et al. [70] also identified water availability as a strong driver of genomic 272 

adaptation signatures. They detected allele frequency changes at candidate genes along a 273 

precipitation gradient on the regional scale in the Lake Tahoe Basin, an ecosystem similar to 274 

that studied here (i.e. Mediterranean-type mountains). Candidate gene approaches in maritime 275 

pine also found various outlier loci related to drought response and precipitation on large 276 

spatial scales [35,39,71] and between shady and sunny stands at the microenvironmental scale 277 

[14]. Our study detected a small number of outlier loci potentially related to water availability 278 

in maritime pine on the local scale, i.e. within gene flow distance. One of these outlier loci 279 

(CT384-490, coding for a non-synonymous change) has been previously associated to winter 280 

precipitation on the range-wide scale [35]. Four of the six candidate SNP loci showing strong 281 
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evidence of local adaptation on small spatial scales were functionally annotated and two of 282 

them coded for non-synonymous changes. Locus BX250086 coded for an oligouridylate 283 

binding protein-like protein and BX251523 for a V-type proton ATPase catalytic subunit. 284 

Locus i09683s215pg, which is coding for a non-synonymous change, is located in a gene 285 

encoding for a raffinose_syn domain containing protein. Genes annotated with similar 286 

functions have been described to be involved in abiotic stress response, such as drought stress, 287 

in other plant species [72–74]. 288 

In the last years, reference genomes, even for conifer species with extremely large 289 

genomes (> 18 Gbp), have been published  [75–77], however, the functional annotation of 290 

conifer genomes is still limited and a reference genome for P. pinaster is lacking. In this 291 

study, we were able to retrieve putative annotations for only four out of six candidate genes, 292 

highlighting the need to complete and improve our knowledge of conifer genomes and their 293 

functional annotation. In addition, although we were able to identify some candidate loci 294 

under divergent selection on the local scale, only one locus showed consistent differences in 295 

allele frequencies in all three stand pairs. This is in agreement with a recent study by Scotti et 296 

al. [14] where only a small proportion of outlier loci (0.1-1% of all loci depending on the 297 

species) showed consistent allele frequency differences between pairs of sites with contrasting 298 

conditions indicating that common signatures of selection are scarce. In BayeScanH, 299 

significant results were only obtained when assuming three independent selection pressures, 300 

which suggests the probable existence of differences in strength and direction of selection 301 

pressures even on very small spatial scales. This is consistent with other studies employing 302 

replicated paired sample designs [14,56–58], highlighting the complexity of selection drivers 303 

and the difficulties to identify them in natural experimental settings.  304 

   305 

Conclusion 306 

Our findings are in line with recent studies that identified loci under divergent selection 307 

between stands growing in contrasting environmental conditions on the local scale in long-308 

lived forest trees [17–19,78]. The increasing number of available genetic markers, also in 309 

non-model species, will improve the statistical power to detect such patterns on local scales. 310 

Understanding how microenvironmental heterogeneity shapes and maintains the functional 311 

genetic variation  is especially relevant as this local scale variation is at the base of the 312 

population response to future climate. The importance of genetic variation within populations 313 

and the strength of selection on small spatial scales have probably been underestimated so far. 314 

Especially with respect to climate change, the knowledge about genetic variation and 315 
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processes that shape the genetic structure on different geographic scales are of utmost 316 

importance to develop suitable forest tree conservation and management strategies.  Forest 317 

management, for instance, could be used to foster natural standing genetic variation and hence 318 

in situ evolution [79] potentially making unnecessary the use of assisted gene flow or 319 

migration. 320 
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Figure captions 582 

 583 

Fig. 1 Sample collection of Pinus pinaster in three pairs of south- (S) and north-facing (N) 584 

slopes in Sierra de Espadán (eastern Spain) and a detailed view of stands N2/S2 (bottom 585 

right). 586 

Fig. 2 Discriminant Analysis of Principal Components (DAPC) of Pinus pinaster samples 587 

from Sierra de Espadán (eastern Spain) including three pairs of south- (S) and north-facing 588 

(N) slopes based on 5,024 single-nucleotide polymorphisms (SNPs). Each stand is depicted 589 

with a different colour and the stand centroid is labelled with the site identifier (see Fig. 1). 590 

Fig. 3 Detection of outlier single-nucleotide polymorphisms (SNPs) using the hierarchical 591 

island model (south- vs. north-facing slopes) implemented in Arlequin. (a) FSC: estimates of 592 

locus-specific genetic divergence between stands within pairs; HE: heterozygosity per locus. 593 

Dashed lines indicate upper 99% confidence intervals for variation in neutral FSC as a 594 

function of HE, indicative of divergent selection. Only AL751008-691 (in blue) showed a 595 

consistent shift in allele frequencies in all pairs of stands as indicated by the sign test. Another 596 

five loci (in yellow) were also detected as outliers by BayeScanH. (b) Venn diagram showing 597 

the overlap of significant outlier loci detected by Arlequin and BayeScanH, respectively. 598 

Fig. 4 Differences in allele frequencies and genetic differentiation between stand pairs with 599 

contrasting aspects. (a) Plot of locus AL751008_691 showing consistent differences in allele 600 

frequency between south- and north-facing slopes for all three stand pairs. (b) Pairwise FST 601 

between stands, with values between south- and north facing slopes in each sampling location 602 

plotted in grey. 603 
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 612 

Tables 613 

 614 

Table 1 Paired stand sampling of south- (S) and north-facing (N) slopes for Pinus pinaster in 615 

the Sierra de Espadán (eastern Spain), and genetic diversity estimates based on 5,024 single-616 

nucleotide polymorphisms (SNPs). ID, identifier for each stand (see Fig. 1); Latitude, latitude 617 

in decimal degrees; Longitude, longitude in decimal degrees; Aspect, average aspect in 618 

degrees; Altitude, altitude in meters above sea level; Height, tree height in meters with 619 

standard deviation, NS, number of samples; HE, expected heterozygosity; SE, standard error; 620 

FIS, fixation index.  621 

ID Lat. Long. 
Aspect 
[°] 

Altitude 
[m a.s.l.] 

NS 
Height 
[m] (SD) 

HE (SE) FIS 

Pair 1         

S1 39.865 -0.298 185 632-666 25 
7.300 
(1.524) 

0.336 
(0.003) 

-0.018 

N1 39.866 -0.298 297 645-737 25 
8.732 
(1.334) 

0.330 
(0.003) 

0.008 

Pair 2         

S2 39.895 -0.353 159 719-763 25 
8.716 
(1.763) 

0.328 
(0.003) 

0.013 

N2 39.895 -0.351 35 655-730 25 
12.496 
(1.900) 

0.337 
(0.003) 

-0.004 

Pair 3         

S3 39.917 -0.397 181 655-728 25 
8.716 
(1.763) 

0.332 
(0.003) 

-0.005 

N3 39.913 -0.389 340 696-731 25 
11.104 
(1.981) 

0.326 
(0.003) 

0.005 

 622 

 623 
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Table 2 Functional annotation of five single-nucleotide polymorphisms (SNPs) detected as 625 

significant FST outliers by both Arlequin and BayeScanH and one SNP (AL751008_691) 626 

detected only by Arlequin that showed consistent allele frequency patterns in the three stand 627 

pairs. The information was retrieved from Plomion et al. [38] and confirmed with a new Blast 628 

search; non-syn., non-synonymous; leu, leucine; pro, proline; glx, glutamine. NA, not 629 

available. 630 

 631 

SNP ID Polym. Site type 
Protein 
change Putative function 

Linkage 
group 

AL751008-691 [T/C] NA    unknown LG2 

BX250086-1490 [T/C] non-syn. leu → pro oligouridylate binding 
protein-like  

NA 

BX251523-1352 [A/C] non-syn. glx → pro V-type proton ATPase 
catalytic subunit A 

LG10 

BX252256_232 [C/G] NA  Yos1 domain containing 
protein 

NA 

CT574789-692 [A/C] NA  unknown LG12 
i09683s215pg [A/G] non-coding  raffinose_syn domain-

containing protein 
LG12 

 632 

633 
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Supplementary Material 634 

 635 

S1 Phenotypes 636 

Fig. S1.1 Boxplots of height (a) and diameter at breast height (DBH, b) for 150 Pinus 637 

pinaster trees in three stand pairs contrasting north- (N1, N2, N3) and south-facing slopes 638 

(S1,S2, S3).  639 

Table S1.1 Two sample t-tests assessing differences in height and diameter at breast height 640 

(DBH) of Pinus pinaster trees in each pair of north- and south-facing slopes. 641 

S2 Genetic structure 642 

Table S2.1 Pairwise differentiation between all six Pinus pinaster study stands (comprising 643 

north- [N1, N2, N3] and south-facing slopes [S1,S2, S3]) based on 5,024 SNPs. All FST 644 

values are significant with P< 0.001. 645 

Fig. S2.1 Principal component analysis (PCA) based on 5,024 single nucleotide 646 

polymorphism markers of all Pinus pinaster samples from eastern Spain representing three 647 

south-facing (S) and three north-facing (N) slopes in a paired sampling design. Each stand is 648 

depicted with a different colour and the stand centroid is labelled with the site identifier. 649 

Fig. S2.2 Fine-scale spatial genetic structure (SGS), plotted as average pairwise Loiselle 650 

kinship coefficient against the geographic distance between Pinus pinaster trees within pairs 651 

of north and south-facing slopes. SGS was strongest for pair N3/S3. Sp, intensity of the SGS; 652 

***, significance level of regression slope P < 0.001. 653 

S3 FST outlier detection in south- vs. north-facing slopes 654 

Table S3.1 (provided as additional spreadsheet file) Results summary and annotation 655 

details of significant single nucleotide polymorphisms detected by the hierarchical models in 656 

Arlequin and BayeScanH between Pinus pinaster stand pairs of north- and south-facing 657 

slopes.  658 

Fig. S3.1 Plots showing differences in allele frequency between south- and north-facing 659 

slopes in all three Pinus pinaster stand pairs (left side: a, c, e, f, g, i) for the five candidate loci 660 

jointly identified by Arlequin and BayeScanH. Pairwise FST between stands is also shown 661 

(right side: b, d, f, h, j) for each of the five loci. 662 
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Fig. 1 663 

 664 

 665 
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 667 

Fig. 2  668 
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Fig.  3 670 

 671 

 672 

Fig. 4 673 

 674 
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