

1 **Divergent selection in Mediterranean pine stands on local spatial scales**

2

3 Katharina B. Budde^{1,2}, Christian Rellstab³, Myriam Heuertz², Felix Gugerli³, Miguel Verdú⁴,
4 Juli G. Pausas⁴, Santiago C. González-Martínez²

5

6 ¹University of Goettingen, Department of Forest Genetics, Buesgenweg 2, 37077 Goettingen,
7 Germany.

8 ²INRAE, Univ. Bordeaux, BIOGECO, 33610 Cestas, France.

9 ³Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland.

10 ⁴Centro de Investigaciones sobre Desertificación (CIDE-CSIC/UV/GV), 46113 Moncada (Valencia),
11 Spain.

12

13 *Running title:*

14 Divergent selection in a Mediterranean pine

15

16 *Corresponding author:*

17 Katharina B. Budde

18 Faculty of Forest Sciences and Forest Ecology, Forest Genetics and Forest Tree Breeding,
19 University of Goettingen, Buesgenweg 2, 37077, Goettingen, Germany

20 Ph: +49 5513928179, E-mail: k.budde@uni-goettingen.de

21

22 *Keywords:* *Pinus pinaster*, paired sampling design, *F_{ST}* outlier, local adaptation, candidate
23 genes

24

25

26 **Abstract**

27 The effects of selection on an organism's genome are hard to detect on small spatial scales, as
28 gene flow can erase signatures of local adaptation. Most genome scans to detect signatures of
29 environmental selection are performed on large spatial scales, however divergent selection on
30 the local scale (e.g. between contrasting soil conditions) has also been demonstrated, in
31 particular for herbaceous plants. Here we hypothesize that in topographically complex
32 landscapes, microenvironment variability is strong enough to leave a selective footprint in
33 genomes of long-lived organisms. To test this, we investigated paired south- versus north-
34 facing *Pinus pinaster* stands in a Mediterranean mountain area. While north-facing (mesic)
35 stands experience less radiation, south facing (xeric) stands represent especially harsh
36 conditions, particularly during the dry summer season. Outlier detection revealed five
37 putatively adaptive loci out of 4,034, two of which encoded non-synonymous substitutions.
38 Additionally, one locus showed consistent allele frequency differences in all three stand pairs
39 indicating divergent selection despite high gene flow on the local scale. Functional annotation
40 of these candidate genes revealed biological functions related to abiotic stress response in
41 other species. Our study highlights how divergent selection shapes the functional genetic
42 variation within populations of long-lived forest trees on local spatial scales.

43

44

45 **Introduction**

46 Spatially heterogeneous environments exert divergent selection pressures and can contribute
47 to maintaining high levels of adaptive genetic variation within populations. However,
48 understanding under which circumstances selection is acting and especially on which spatial
49 scale divergent it can be detected remains poorly understood. Studying local adaptation in
50 forest tree species is an important endeavor especially under current climate change [1,2].
51 Numerous studies have already revealed loci potentially involved in environmental
52 adaptation. However, most of these studies have been conducted on regional to continental
53 scales [e.g., 3–6], as gene flow on small spatial scales can blur the migration–selection
54 equilibrium maintaining local adaptation. Divergent selection on the local scale, e.g. to toxic
55 soil conditions, has often been observed in herbaceous plant species [7,8]. There is increasing
56 evidence that plants exhibit adaptive divergence on very small spatial scales, i.e. on scales of
57 tens of meters of distance in herbaceous species and of hundreds of meters of distance in
58 some woody species (reviewed in [9,10]). Recent studies have started to address the factors
59 shaping local adaptation on the microenvironmental scale in long-lived tree species [11–14].
60 Several tropical tree species show adaptation to microenvironmental conditions [13,14].
61 *Eperua falcata* (Fabaceae), for example, showed divergent selection between groups of
62 individuals growing in seasonally flooded bottomlands and adjacent groups growing on dry
63 *terra firme* soils [17,18]. Also, Gauzere *et al.* [19] found evidence for divergent selection
64 acting on growth and phenology traits along an altitudinal gradient within natural stands of
65 European beech (*Fagus sylvatica*) despite high gene flow.

66 Identifying the genes and gene variants that confer local adaptation, i.e. higher fitness
67 to certain environmental conditions, is of great interest in ecology and evolution. The
68 detection and validation of candidate loci potentially under selection, however, remains
69 challenging. Experimental functional validation is not attainable in non-model species,
70 especially in trees with their long generation times. Previous studies showed that many
71 approaches to detect loci under selection can be prone to false positives (e.g., [20,21]) and
72 that the identified genomic signatures of selection might not always be observed in other
73 locations with similar environmental conditions [22–24]. Therefore, combining several
74 analytical approaches is recommended to reduce false positive detection [25]. Additionally,
75 an appropriate sampling design can increase the power to detect loci involved in local
76 adaptation. Especially, a paired design comprising several pairs of sampling sites with
77 contrasting environmental conditions seems promising for the detection also of loci

78 displaying weak signatures of selection [26]. A simulation study by Lotterhos & Whitlock
79 [21] showed that sampling pairs of nearby populations (i.e. at gene flow distance) with
80 contrasting environmental conditions increases the probability of detecting true positive
81 outlier loci compared to gradient or random sampling designs.

82 In Mediterranean ecosystems, water availability is one of the most important factors
83 driving selection and plant species are typically well adapted to summer dry conditions
84 [27,28]. Still, considerable microenvironmental variation can be observed especially in
85 topographically complex landscapes, such as Mediterranean mountain systems. Equator-
86 facing slopes receive lower solar radiation flux density, leading to lower evapotranspiration
87 rates and lower daily maximum temperatures during summer drought periods, and therefore
88 show a significantly different composition, structure and density of plant communities as
89 compared to slopes facing pole-wards [29–31]. We hypothesize that, in topographically
90 complex Mediterranean forests, microclimate variability is strong enough to leave a selective
91 footprint on long-lived trees. In this study, we used a robust paired sampling design within a
92 natural population of Maritime pine (*Pinus pinaster* Aiton, Pinaceae) to specifically test for
93 genetic signatures of divergent selection between xeric (south-facing slope) and mesic (north-
94 facing slope) conditions.

95

96 **Material and methods**

97 *Study species and sample collection*

98 Maritime pine is a monoecious conifer species growing in the western part of the
99 Mediterranean basin and along the Atlantic coast in south-western Europe. It is pollinated and
100 dispersed by wind. Pollen flow is therefore wide-ranging, following highly leptokurtic
101 dispersal kernels with average dispersal distances of 78–174 m and frequent long-distance
102 dispersal events [32]. Gene flow via seeds is more restricted (average of 26.53 m [33]), but
103 post-dispersal processes, such as the Janzen-Connell effect and microenvironmental
104 variation affecting survival at early life stages can substantially increase effective dispersal
105 distances [34].

106 For this study, we sampled three pairs of *P. pinaster* stands with contrasting
107 microenvironmental conditions in a natural forest near Eslida in Sierra de Espadán, Eastern
108 Spain (Fig. 1). All *P. pinaster* trees belong to a single gene pool [35,36] and the region is
109 characterized by a warm and dry climate. Stand-replacing crown fire events are common and
110 may take place every few years. Under these conditions regeneration is mostly driven by fire
111 events leading to even aged cohorts [37]. We selected one stand pair consisting of one south-

112 facing slope and trees from a nearby shady valley along a (mostly) north-exposed stream
113 (S1/N1) and two pairs of stands (S2/N2 and S3/N3) with south- (dry and warm) and north-
114 facing slopes (more humid and less warm). For simplicity, we will refer to this sampling
115 design as three pairs of south- and north-facing slopes. In each of the six stands, we
116 haphazardly sampled 25 trees with DBH (diameter at breast height) > 16 , making a total of
117 150 trees (Fig. 1, Table 1). All trees were georeferenced using a Garmin Oregon 550t
118 (Garmin, Wichita, USA), height was assessed using a Digital hypsometer Forestor Vertex
119 (Haglöf, Långsele, Sweden) and the DBH was measured. The maximum straight-line distance
120 between sampled trees was ca. 10 km between stand pairs and 820 m between trees within
121 pairs.

122

123 *DNA extraction and genotyping*

124 Needles were collected from the 150 trees and desiccated using silica gel. Genomic DNA was
125 isolated using the Invisorb® DNA Plant HTS 96 Kit/C kit (Invitek GmbH, Berlin, Germany)
126 following the manufacturer's instructions.

127 An Illumina Infinium SNP (Single Nucleotide Polymorphism) array (Illumina, Inc.,
128 San Diego, USA) developed by Plomion *et al.* [38] was used for genotyping. This array is
129 enriched in SNPs from genes that showed signatures of natural selection in previous studies
130 [27, 28, 29] or differential expression under biotic and abiotic stress [38] in maritime pine, but
131 most of the SNPs represent potentially neutral polymorphisms. After removing SNPs with
132 uncertain scoring based on visual inspection using *GenomeStudio* Genotyping Module v1.0
133 (Illumina, Inc.) and monomorphic SNPs, we kept 5,024 high-quality SNPs, of which 4,034
134 had a minor allele frequency (MAF) > 0.1 . The amount of missing genotype data per stand
135 was very low (maximum of 1%). This data set has recently been used to characterize the
136 effective population size in Sierra de Espadán, as part of a meta-study [41].

137

138 *Data analyses*

139 First, we characterized the study stands based on the sampled trees' height and DBH and
140 tested if these phenotypic traits differed significantly between south- and north-facing slopes
141 using a two sample Student's *t* test on each stand pair run in R v. 4.1.2 [42]. Then, based on
142 the SNP data, we estimated genetic diversity parameters such as observed and expected
143 heterozygosity and the fixation index using the R package *hierfstat* [43]. After this, we tested
144 whether we could detect significant neutral genetic differentiation between the sampled stands
145 by estimating pairwise *F_{ST}* [44] using the complete SNP data set and comparing with neutral

146 expectations from 1,000 permutations. To visualize the neutral population genetic structure
147 inherent to our data, we also performed a Principal Component Analysis (PCA) using the
148 function *dudi.pca* implemented in the R package *ade4* [45] and a supervised (i.e. defining
149 each stand as a group) Discriminant Analysis of Principal Components (DAPC) using the
150 *dapc* function in the R package *adegenet* [46] based on all SNP markers. Additionally, we
151 assessed the fine-scale spatial genetic structure (SGS) within each of the three pairs. First, we
152 estimated the pairwise Loiselle kinship coefficient [47] in SPAGeDi v. 1.5d [48] between
153 individuals. The average kinship coefficient per distance class was regressed against the
154 logarithm of spatial distances and significance was assessed based on 10,000 permutations of
155 individual locations. The strength of SGS was estimated as $Sp = -b/(1 - F_1)$, where b is the
156 regression slope and F_1 is the average kinship coefficient in the first distance class [49].

157 To detect loci potentially under selection in slopes with contrasting aspects
158 (south/north) in a hierarchically structured population [50], we used two hierarchical F_{ST}
159 outlier detection approaches that take into account the paired sampling design, one
160 implemented in Arlequin v 3.5.2 [51] and the other in BayeScanH, which is especially
161 suitable for small sample sizes [52]. For this, we first defined the pairs and then the aspect of
162 the slopes (south/north) within pairs. In Arlequin F_{ST} values can be slightly negative
163 especially on small spatial scale but including loci with negative F_{ST} values impedes outlier
164 analyses. Therefore, only SNPs with positive values of estimated F_{ST} (1,810 SNPs) were
165 considered in Arlequin analysis (200,000 simulations). We report F_{SC} outlier loci for
166 divergence between sites within pairs. To identify outlier loci with BayeScanH, we used the
167 full dataset of 4,034 SNPs with $MAF > 0.1$, and default parameters with an odds prior of 10.
168 We tested two models, one with the same selection pressure acting between contrasting slopes
169 in the three stand pairs and another one with three independent selection pressures on
170 contrasting slopes within the three pairs. Finally, using the R-script ‘paired_GEA.R’ from
171 <https://gitlabext.wsl.ch/rellstab/genotype-environment-associations>, we tested if any of the
172 candidate SNPs identified with Arlequin or BayeScanH showed consistent patterns in
173 population allele frequencies between the paired stands in all replicates. For this, we checked
174 whether the differences in population allele frequency had the same sign in all pairs, i.e.
175 whether the population allele frequency in all north-facing slopes was consistently lower or
176 higher than the allele frequency in all south-facing slopes (i.e. the strict sign test). Then, we
177 ran a linear mixed model using the function *lme* implemented in the package *nlme* [53], with
178 population allele frequency as response variable, slope aspect (south/north) as fixed effect and
179 pair as random factor.

180 The sequences flanking SNPs identified as loci potentially under selection, and
181 associated annotation, were retrieved from Plomion *et al.* [38]. These sequences were newly
182 blasted against the NCBI nucleotide database to check for new functional annotations.

183

184 Results

185 Tree height was consistently lower in south- than in north-facing slopes and the difference
186 was significant in two out of the three stand pairs (Supp. Mat. Fig. S1.1, Table S1.1), while no
187 significant difference was detected for DBH in any stand pair.

188 Expected and observed heterozygosity (not shown) were very similar in all six study
189 stands with values around 0.33, resulting in fixation indices close to zero (Table 1). Pairwise
190 genetic differentiation between stands based on all 5,024 SNP markers was weak, ranging
191 from 0.004 to 0.033, but highly significant above zero, with all P -values < 0.001
192 (Supplementary Material, Table S2.1). The DAPC clearly depicted the hierarchical population
193 structure due to the paired sampling design, with stronger genetic differentiation among than
194 within stand pairs (i.e. between south- and north-facing stands; Fig. 2). The hierarchical
195 population structure was also visible but less evident in the PCA plot (Supplementary
196 Material, Fig. S2.1). SGS was significant, showing isolation by distance, in all stand pairs and
197 strongest in pair N3/S3 (Supplementary Material, Fig. S2.2).

198 In total, 18 SNPs were located above the 99% confidence intervals using the
199 hierarchical island model in Arlequin and, thus, were considered as significant outliers for
200 genetic differentiation between south- and north-facing slopes (Fig. 3, Supplementary
201 Material Table S3.1). Additionally, ten loci were identified as significant F_{ST} outliers by
202 BayeScanH when assuming independent selection pressures for each of the three pairs of
203 stands (Supplementary Material, Table S3.1). None of these outlier loci was significant in all
204 three sampling pairs in BayeScanH. Moreover, no significant outlier locus was detected when
205 assuming the same selection pressure in all three pairs of stands.

206 When comparing the two methods, five loci were identified as outliers by both
207 Arlequin and BayeScanH, and only one additional outlier locus, AL751008_691 detected by
208 Arlequin, showed consistent allele frequency differences between south- and north-facing
209 slopes (Figure 4) and a significant effect of the site aspect as indicated by the linear mixed
210 model ($P_{\text{site type}} = 0.0021$). Two out of these six outliers SNPs showed non-synonymous
211 changes and coded for a putative RNA-binding protein and a V-type proton ATPase catalytic
212 subunit, respectively (Table 2).

213

214 **Discussion**

215 The paired sampling design in Sierra de Espadán, contrasting south- and north-facing slopes
216 within a large and continuous *P. pinaster* population, was specifically used to test for
217 microenvironmental adaptation driven by water availability. Paired sampling in stands with
218 contrasting environments, such as dry vs. humid patches, represents a powerful approach to
219 reveal loci under selection [21,25], because it maximizes potential for divergent selection
220 while minimizing the effect of confounding population structure. Several studies successfully
221 employed the paired sampling design to detect loci under selection (e.g. [14,18,54–58]). In
222 conifers, four previous studies revealed loci significantly associated to altitudinal or other
223 microenvironmental gradients in *Abies alba* [57,58], *Pinus halepensis* [56], and *P. pinaster*
224 and *Cedrus atlantica* [14], but only few loci showed consistent patterns of allele frequency
225 shifts along the replicated stand pairs. Here, we specifically tested for consistent patterns of
226 divergent selection on the local scale, with trees growing in direct vicinity, between mesic and
227 xeric stands.

228 We first showed a hierarchical population genetic structure despite high gene flow in
229 *P. pinaster* within one large population in Sierra de Espadán (eastern Spain). From previous
230 work, it is known that this forest constitutes a single gene pool [35,36]. Moreover, fine-scale
231 spatial genetic structure within continuous populations typically is weak in this wind-
232 pollinated and wind-dispersed species [59]. Therefore, it is remarkable to find significant
233 differentiation among all sampling sites, even between the neighbouring south- and north-
234 facing slopes, clearly depicting the hierarchical structure. This pattern could be caused by
235 phenological differences in flowering time restricting effective gene flow between contrasting
236 slopes due to temporal separation [60]. However, it could also reflect isolation by distance to
237 some degree as indicated by significant SGS (Supplementary Material Fig.2.2). Indeed,
238 differentiation between neighbouring slopes and SGS were strongest for pair N3/S3, which
239 was also the pair with the biggest geographic distance between stands. However,
240 differentiation between directly neighbouring south- and north-facing slopes could
241 additionally be driven by isolation by environment (IBE), which would imply selection
242 against maladapted immigrants resulting in genome-wide patterns of genetic differentiation
243 [61,62]. Furthermore, clonal common gardens of range-wide *P. pinaster* populations show
244 strong local adaptation to different environmental conditions [35,63–65]. In particular, tree
245 height was shown to correlate negatively with maximum summer temperatures (i.e. trees from
246 populations originating in hotter environments tend to be smaller when grown in the same
247 environment), indicating an adaptive response to hot summer temperatures [64]. In forest

248 trees, steep equator-facing slopes usually limit growth, while taller trees are typically found
249 on less steep and pole-facing slopes [66]. In agreement with this, *P. pinaster* trees on south-
250 facing slopes in the Sierra de Espadán tended to be smaller, which could indicate that the
251 populations responded to the harsher environmental conditions either through plasticity or
252 local adaptation.

253 Second, the complementary approaches to detect outlier loci in hierarchical sampling
254 designs identified five out of 4,034 SNPs (with $MAF > 0.1$) as putatively under divergent
255 selection on local spatial scales. One additional locus (AL751008-691) showed a consistent
256 allele frequency pattern in accordance with microenvironmental adaptation in all three stand
257 pairs. Environmental conditions on south- and north-facing slopes are known to differ
258 strongly, e.g. in light and water availability [67]. Slopes with different aspect are often
259 characterized by differences in composition, structure and density of plant communities [29–
260 31]. Tree species have developed diverse adaptations in response to strong selection pressures
261 in dry environmental conditions [68]. *Pinus pinaster* stands as a suitable study species to test
262 for divergent selection on the local scale. Multisite clonal common gardens comprising range-
263 wide populations already revealed that the species is susceptible to drought. Survival was
264 lowest in the common garden sites with the harshest (dry and hot) conditions [63], and certain
265 alleles at candidate loci associated with climate were connected to a higher probability of
266 survival [35]. Here, we showed that contrasting environmental conditions on different slopes,
267 in direct vicinity and in the presence of gene flow, can also shape the distribution of genetic
268 variation in long-lived forest trees such as *P. pinaster*.

269 Outlier loci related to differences in drought intensity and temperature have been
270 found in different pine species on range-wide spatial scales. For example, Eckert *et al.* [69],
271 found five outlier loci associated with aridity in *Pinus taeda*. In natural *Pinus albicaulis*
272 populations, Lind *et al.* [70] also identified water availability as a strong driver of genomic
273 adaptation signatures. They detected allele frequency changes at candidate genes along a
274 precipitation gradient on the regional scale in the Lake Tahoe Basin, an ecosystem similar to
275 that studied here (i.e. Mediterranean-type mountains). Candidate gene approaches in maritime
276 pine also found various outlier loci related to drought response and precipitation on large
277 spatial scales [35,39,71] and between shady and sunny stands at the microenvironmental scale
278 [14]. Our study detected a small number of outlier loci potentially related to water availability
279 in maritime pine on the local scale, i.e. within gene flow distance. One of these outlier loci
280 (CT384-490, coding for a non-synonymous change) has been previously associated to winter
281 precipitation on the range-wide scale [35]. Four of the six candidate SNP loci showing strong

282 evidence of local adaptation on small spatial scales were functionally annotated and two of
283 them coded for non-synonymous changes. Locus BX250086 coded for an oligouridylate
284 binding protein-like protein and BX251523 for a V-type proton ATPase catalytic subunit.
285 Locus i09683s215pg, which is coding for a non-synonymous change, is located in a gene
286 encoding for a raffinose₁-syn domain containing protein. Genes annotated with similar
287 functions have been described to be involved in abiotic stress response, such as drought stress,
288 in other plant species [72–74].

289 In the last years, reference genomes, even for conifer species with extremely large
290 genomes (> 18 Gbp), have been published [75–77], however, the functional annotation of
291 conifer genomes is still limited and a reference genome for *P. pinaster* is lacking. In this
292 study, we were able to retrieve putative annotations for only four out of six candidate genes,
293 highlighting the need to complete and improve our knowledge of conifer genomes and their
294 functional annotation. In addition, although we were able to identify some candidate loci
295 under divergent selection on the local scale, only one locus showed consistent differences in
296 allele frequencies in all three stand pairs. This is in agreement with a recent study by Scotti et
297 al. [14] where only a small proportion of outlier loci (0.1–1% of all loci depending on the
298 species) showed consistent allele frequency differences between pairs of sites with contrasting
299 conditions indicating that common signatures of selection are scarce. In BayeScanH,
300 significant results were only obtained when assuming three independent selection pressures,
301 which suggests the probable existence of differences in strength and direction of selection
302 pressures even on very small spatial scales. This is consistent with other studies employing
303 replicated paired sample designs [14,56–58], highlighting the complexity of selection drivers
304 and the difficulties to identify them in natural experimental settings.

305

306 Conclusion

307 Our findings are in line with recent studies that identified loci under divergent selection
308 between stands growing in contrasting environmental conditions on the local scale in long-
309 lived forest trees [17–19,78]. The increasing number of available genetic markers, also in
310 non-model species, will improve the statistical power to detect such patterns on local scales.
311 Understanding how microenvironmental heterogeneity shapes and maintains the functional
312 genetic variation is especially relevant as this local scale variation is at the base of the
313 population response to future climate. The importance of genetic variation within populations
314 and the strength of selection on small spatial scales have probably been underestimated so far.
315 Especially with respect to climate change, the knowledge about genetic variation and

316 processes that shape the genetic structure on different geographic scales are of utmost
317 importance to develop suitable forest tree conservation and management strategies. Forest
318 management, for instance, could be used to foster natural standing genetic variation and hence
319 *in situ* evolution [79] potentially making unnecessary the use of assisted gene flow or
320 migration.

321

322 **Data accessibility**

323 GPS coordinates and SNP genotypes of all individuals included in this study are available on
324 Zenodo public database: <https://doi.org/10.5281/zenodo.6345964>. The R-script
325 ‘paired_GEA.R’ for analyzing population allele frequencies in paired stands with a known
326 environmental contrast can be found at <https://gitlabext.wsl.ch/rellstab/genotype-environment-associations>.

327

328 **Acknowledgements**

329 We thank Ana Hernández-Serrano, Fernando del Caño, Delphine Grivet, Mario Zabal-
330 Aguirre, Natalia Vizcaíno-Palomar, Enrique Sáez-Laguna, Diana Turrión and Miguel Navarro
331 for help in the field and Carmen García-Barriga (INIA-CIFOR) for assistance in the
332 laboratory. The present study was funded by projects from the Spanish Ministry of Science
333 and Innovation (MICINN): VaMPiro (CGL2008-05289-C02-01/02), LinkTree (EUI2008-
334 03713, under the ERAnet-BiodivERsA call), and TrEvol (CGL2012-39938-C02-00/01), and
335 the IdEx Bordeaux (EcoGenPin, Chaires d’installation 2015). KBB acknowledges an
336 exchange grant of the European Science Foundation (ESF) within the framework of
337 ‘Conservation Genomics: Amalgamation of Conservation Genetics and Ecological and
338 Evolutionary Genomics’ (ConGenOmics).

339

340 **References**

- 342 1. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S. 2008 Adaptation,
343 migration or extirpation: climate change outcomes for tree populations. *Evol. Appl.* **1**,
344 95–111. (doi:10.1111/j.1752-4571.2007.00013.x)
- 345 2. Kremer A *et al.* 2012 Long-distance gene flow and adaptation of forest trees to rapid
346 climate change. *Ecol. Lett.* **15**, 378–392. (doi:10.1111/j.1461-0248.2012.01746.x)
- 347 3. Holliday JA, Suren H, Aitken SN. 2012 Divergent selection and heterogeneous
348 migration rates across the range of Sitka spruce (*Picea sitchensis*). *Proc. R. Soc. B Biol.*
349 *Sci.* **279**, 1675–1683. (doi:10.1098/rspb.2011.1805)
- 350 4. Martins K, Gugger PF, Llanderal-Mendoza J, González-Rodríguez A, Fitz-Gibbon ST,
351 Zhao JL, Rodríguez-Correa H, Oyama K, Sork VL. 2018 Landscape genomics
352 provides evidence of climate-associated genetic variation in Mexican populations of
353 *Quercus rugosa*. *Evol. Appl.* **11**, 1842–1858. (doi:10.1111/eva.12684)

354 5. Postolache D *et al.* 2021 Genetic signatures of divergent selection in European beech
355 (*Fagus sylvatica* L.) are associated with the variation in temperature and precipitation
356 across its distribution range. *Mol. Ecol.* **30**, 5029–5047. (doi:10.1111/mec.16115)

357 6. Stölting KN, Paris M, Meier C, Heinze B, Castiglione S, Bartha D, Lexer C. 2015
358 Genome-wide patterns of differentiation and spatially varying selection between
359 postglacial recolonization lineages of *Populus alba* (Salicaceae), a widespread forest
360 tree. *New Phytol.* **207**, 723–734. (doi:10.1111/nph.13392)

361 7. Jain SK, Bradshaw AD. 1966 Evolutionary divergence among adjacent plant
362 populations I. The evidence and its theoretical analysis. *Heredity*. **21**.
(doi:10.1038/hdy.1966.42)

364 8. Antonovics J. 1970 Evolution in closely adjacent plant populations VIII. Clinal
365 patterns at a mine boundary. *Heredity*. **25**. (doi:10.1038/hdy.1970.36)

366 9. Linhart YB, Grant MC. 1996 Evolutionary significance of local genetic differentiation
367 in plants. *Annu. Rev. Ecol. Syst.* **27**, 237–277. (doi:10.1146/annurev.ecolsys.27.1.237)

368 10. Scotti I, González-Martínez SC, Budde KB, Lalagüe H. 2016 Fifty years of genetic
369 studies: what to make of the large amounts of variation found within populations? *Ann.*
370 *For. Sci.* **73**, 69–75. (doi:10.1007/s13595-015-0471-z)

371 11. Budde KB *et al.* 2017 Increased fire frequency promotes stronger spatial genetic
372 structure and natural selection at regional and local scales in *Pinus halepensis* Mill.
373 *Ann. Bot.* **119**, 1061–1072. (doi:10.1093/aob/mcw286)

374 12. von Takach B, Ahrens CW, Lindenmayer DB, Banks SC. 2021 Scale-dependent
375 signatures of local adaptation in a foundation tree species. *Mol. Ecol.* **30**, 2248–2261.
376 (doi:10.1111/mec.15894)

377 13. Mosca E, Gugerli F, Eckert AJ, Neale DB. 2016 Signatures of natural selection on
378 *Pinus cembra* and *P. mugo* along elevational gradients in the Alps. *Tree Genet.*
379 *Genomes* **12**, 1–15. (doi:10.1007/s11295-015-0964-9)

380 14. Scotti I *et al.* 2022 Common microgeographical selection patterns revealed in four
381 European conifers. *Mol. Ecol.* (doi:10.1111/mec.16750)

382 15. Schmitt S, Tysklind N, Heuertz M, Hérault B. 2022 Selection in space and time:
383 Individual tree growth is adapted to tropical forest gap dynamics. *Mol. Ecol.*
384 (doi:10.1111/mec.16392)

385 16. Schmitt S, Tysklind N, Hérault B, Heuertz M. 2021 Topography drives
386 microgeographic adaptations of closely related species in two tropical tree species
387 complexes. *Mol. Ecol.* **30**, 5080–5093. (doi:10.1111/mec.16116)

388 17. Audigeos D, Brousseau L, Traissac S, Scotti-Saintagne C, Scotti I. 2013 Molecular
389 divergence in tropical tree populations occupying environmental mosaics. *J. Evol. Biol.*
390 **26**, 529–544. (doi:10.1111/jeb.12069)

391 18. Brousseau L, Fine PVA, Dreyer E, Vendramin GG, Scotti I. 2021 Genomic and
392 phenotypic divergence unveil microgeographic adaptation in the Amazonian
393 hyperdominant tree *Eperua falcata* Aubl. (Fabaceae). *Mol. Ecol.* **30**, 1136–1154.
394 (doi:10.1111/mec.15595)

395 19. Gauzere J, Klein EK, Brendel O, Davi H, Oddou-Muratorio S. 2020 Microgeographic
396 adaptation and the effect of pollen flow on the adaptive potential of a temperate tree
397 species. *New Phytol.* **227**, 641–653. (doi:10.1111/nph.16537)

398 20. De Villemereuil P, Frichot É, Bazin É, François O, Gaggiotti OE. 2014 Genome scan
399 methods against more complex models: When and how much should we trust them?
400 *Mol. Ecol.* **23**, 2006–2019. (doi:10.1111/mec.12705)

401 21. Lotterhos KE, Whitlock MC. 2015 The relative power of genome scans to detect local
402 adaptation depends on sampling design and statistical method. *Mol. Ecol.* **24**, 1031–
403 1046. (doi:10.1111/mec.13100)

404 22. Rellstab C, Fischer MC, Zoller S, Graf R, Tedder A, Shimizu KK, Widmer A,

405 Holderegger R, Gugerli F. 2017 Local adaptation (mostly) remains local: Reassessing
406 environmental associations of climate-related candidate SNPs in *Arabidopsis halleri*.
407 *Heredity*. **118**, 193–201. (doi:10.1038/hdy.2016.82)

408 23. Buehler D, Holderegger R, Brodbeck S, Schnyder E, Gugerli F. 2014 Validation of
409 outlier loci through replication in independent data sets: A test on *Arabis alpina*. *Ecol.*
410 *Evol.* **4**, 4296–4306. (doi:10.1002/ece3.1300)

411 24. Korves TM, Schmid KJ, Caicedo AL, Mays C, Stinchcombe JR, Purugganan MD,
412 Schmitt J. 2007 Fitness effects associated with the major flowering time gene
413 *FRIGIDA* in *Arabidopsis thaliana* in the field. *Am. Nat.* **169**, E141–E157.
414 (doi:10.1086/513111)

415 25. Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. 2015 A practical guide
416 to environmental association analysis in landscape genomics. *Mol. Ecol.* **24**, 4348–
417 4370. (doi:10.1111/mec.13322)

418 26. Lotterhos KE, Whitlock MC. 2014 Evaluation of demographic history and neutral
419 parameterization on the performance of *FST* outlier tests. *Mol. Ecol.* **23**, 2178–2192.
420 (doi:10.1111/mec.12725)

421 27. Nardini A, Lo Gullo MA, Trifilò P, Salleo S. 2014 The challenge of the Mediterranean
422 climate to plant hydraulics: Responses and adaptations. *Environ. Exp. Bot.* **103**, 68–79.
423 (doi:10.1016/j.envexpbot.2013.09.018)

424 28. Ramírez-Valiente JA, Santos del Blanco L, Alía R, Robledo-Arnuncio JJ, Climent J.
425 2022 Adaptation of Mediterranean forest species to climate: Lessons from common
426 garden experiments. *J. Ecol.* **110**, 1022–1042. (doi:10.1111/1365-2745.13730)

427 29. Sternberg M, Shoshany M. 2001 Influence of slope aspect on Mediterranean woody
428 formations: Comparison of a semiarid and an arid site in Israel. *Ecol. Res.* **16**, 335–345.
429 (doi:10.1046/j.1440-1703.2001.00393.x)

430 30. Cantlon JE. 1953 Vegetation and microclimates on north and south slopes of
431 Cushetunk Mountain, New Jersey. *Ecol. Monogr.* **23**, 241–270. (doi:10.2307/1943593)

432 31. Pigott CD, Pigott S. 1993 Water as a determinant of the distribution of trees at the
433 boundary of the Mediterranean zone. *J. Ecol.* **81**, 557. (doi:10.2307/2261534)

434 32. de-Lucas AI, Robledo-Arnuncio JJ, Hidalgo E, González-Martínez SC. 2008 Mating
435 system and pollen gene flow in Mediterranean maritime pine. *Heredity*. **100**, 390–399.
436 (doi:10.1038/sj.hdy.6801090)

437 33. González-Martínez SC, Gerber S, Cervera MT, Martínez-Zapater JM, Gil L, Alía R.
438 2002 Seed gene flow and fine-scale structure in a Mediterranean pine (*Pinus pinaster*
439 Ait.) using nuclear microsatellite markers. *Theor. Appl. Genet.* **104**, 1290–1297.
440 (doi:10.1007/s00122-002-0894-4)

441 34. González-Martínez SC, Burczyk J, Nathan R, Nanos N, Gil L, Alía R. 2006 Effective
442 gene dispersal and female reproductive success in Mediterranean maritime pine (*Pinus*
443 *pinaster* Aiton). *Mol. Ecol.* **15**, 4577–4588. (doi:10.1111/j.1365-294X.2006.03118.x)

444 35. Jaramillo-Correa JP *et al.* 2015 Molecular proxies for climate maladaptation in a long-
445 lived tree (*Pinus pinaster* Aiton, Pinaceae). *Genetics* **199**, 793–807.

446 36. Budde KB, Heuertz M, Hernández-Serrano A, Pausas JG, Vendramin GG, Verdú M,
447 González-Martínez SC. 2014 *In situ* genetic association for serotiny, a fire-related trait,
448 in Mediterranean maritime pine (*Pinus pinaster*). *New Phytol.* **201**, 230–241.
449 (doi:10.1111/nph.12483)

450 37. Hernandez-Serrano A, Verdu M, Gonzalez-Martinez SC, Pausas JG. 2013 Fire
451 structures pine serotiny at different scales. *Am. J. Bot.* **100**, 2349–2356.
452 (doi:10.3732/ajb.1300182)

453 38. Plomion C *et al.* 2016 High-density SNP assay development for genetic analysis in
454 maritime pine (*Pinus pinaster*). *Mol. Ecol. Resour.* **16**, 574–587. (doi:10.1111/1755-
455 0998.12464)

456 39. Eveno E *et al.* 2008 Contrasting patterns of selection at *Pinus pinaster* Ait. drought
457 stress candidate genes as revealed by genetic differentiation analyses. *Mol. Biol. Evol.*
458 **25**, 417–437. (doi:10.1093/molbev/msm272)

459 40. Grivet D, Sebastiani F, Alia R, Bataillon T, Torre S, Zabal-Aguirre M, Vendramin GG,
460 Gonzalez-Martinez SC. 2011 Molecular footprints of local adaptation in two
461 Mediterranean conifers. *Mol. Biol. Evol.* **28**, 101–116. (doi:10.1093/molbev/msq190)

462 41. Santos del Blanco L, Olsson S, Budde KB, Grivet D, González-Martínez SC, Alía R,
463 Robledo-Arnuncio JJ. 2022 On the feasibility of estimating contemporary effective
464 population size (N_e) for genetic conservation and monitoring of forest trees. *Biol.*
465 *Conserv.* **273**, 109704.

466 42. R Core Team. 2021 R: A language and environment for statistical computing. R
467 Foundation for Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

468 43. Goudet J. 2005 HIERFSTAT, a package for R to compute and test hierarchical F-
469 statistics. *Mol. Ecol. Notes* **5**, 184–186. (doi:10.1111/j.1471-8286.2004.00828.x)

470 44. Weir BS, Cockerham CC. 1984 Estimating F-Statistics for the Analysis of Population
471 Structure. *Evolution*. **38**, 1358–1370. (doi:10.2307/2408641)

472 45. Dray S, Dufour AB. 2007 The ade4 package: Implementing the duality diagram for
473 ecologists. *J. Stat. Softw.* **22**, 1–20. (doi:10.18637/jss.v022.i04)

474 46. Jombart T. 2008 adegenet: a R package for the multivariate analysis of genetic
475 markers. *Bioinformatics* **24**, 1403–1405. (doi:10.1093/bioinformatics/btn129)

476 47. Loiselle BA, Sork VL, Nason J, Graham C. 1995 Spatial genetic structure of a tropical
477 understory shrub, *Psychotria officinalis* (Rubiaceae). *Am. J. Bot.* **82**, 1420–1425.

478 48. Hardy OJ, Vekemans X. 2002 SPAGeDi: a versatile computer program to analyse
479 spatial genetic structure at the individual or population levels. *Mol. Ecol. Notes* **2**, 618–
480 620.

481 49. Vekemans X, Hardy OJ. 2004 New insights from fine-scale spatial genetic structure
482 analyses in plant populations. *Mol. Ecol.* **13**, 921–935. (doi:10.1111/j.1365-
483 294X.2004.02250.x)

484 50. Excoffier L, Hofer T, Foll M. 2009 Detecting loci under selection in a hierarchically
485 structured population. *Heredity*. **103**, 285–298. (doi:10.1038/hdy.2009.74)

486 51. Excoffier L, Lischer HEL. 2010 Arlequin suite ver 3.5: A new series of programs to
487 perform population genetics analyses under Linux and Windows. *Mol. Ecol. Resour.*
488 **10**, 564–567. (doi:10.1111/j.1755-0998.2010.02847.x)

489 52. Foll M, Gaggiotti OE, Daub JT, Vatsiou A, Excoffier L. 2014 Widespread signals of
490 convergent adaptation to high altitude in Asia and America. *Am. J. Hum. Genet.* **95**,
491 394–407. (doi:10.1016/j.ajhg.2014.09.002)

492 53. Pinheiro J, Bates D, DebRoy S, Sarkar D. 2014 R Core Team (2014). nlme: linear and
493 nonlinear mixed effects models. R package version 3.1–117. URL <http://cran.r-project.org/web/packages/nlme/index.html>

494 54. Bekkevold D, Höjesjö J, Nielsen EE, Aldvén D, Als TD, Sodeland M, Kent MP, Lien
495 S, Hansen MM. 2020 Northern European *Salmo trutta* (L.) populations are genetically
496 divergent across geographical regions and environmental gradients. *Evol. Appl.* **13**,
497 400–416. (doi:10.1111/eva.12877)

498 55. Rellstab C, Zoller S, Sailer C, Tedder A, Gugerli F, Shimizu KK, Holderegger R,
499 Widmer A, Fischer MC. 2020 Genomic signatures of convergent adaptation to Alpine
500 environments in three Brassicaceae species. *Mol. Ecol.* **29**, 4350–4365.
501 (doi:10.1111/mec.15648)

502 56. Daniels RR *et al.* 2019 Looking for local adaptation: Convergent microevolution in
503 Aleppo pine (*Pinus halepensis*). *Genes (Basel)*. **10**, 673. (doi:10.3390/genes10090673)

504 57. Roschanski AM *et al.* 2016 Evidence of divergent selection for drought and cold

507 tolerance at landscape and local scales in *Abies alba* Mill. in the French Mediterranean
508 Alps. *Mol. Ecol.* **25**, 776–794. (doi:10.1111/mec.13516)

509 58. Brousseau L *et al.* 2016 Local adaptation in European firs assessed through extensive
510 sampling across altitudinal gradients in southern Europe. *PLoS One* **11**.
511 (doi:10.1371/journal.pone.0158216)

512 59. De-Lucas AI, González-Martínez SC, Vendramin GG, Hidalgo E, Heuertz M. 2009
513 Spatial genetic structure in continuous and fragmented populations of *Pinus pinaster*
514 Aiton. *Mol. Ecol.* **18**, 4564–4576. (doi:10.1111/j.1365-294X.2009.04372.x)

515 60. Fournier N, Rigling A, Dobbertin M, Gugerli F. 2006 Faible différenciation génétique,
516 à partir d'amplification aléatoire d'ADN polymorphe (RAPD), entre les types de pin
517 sylvestre (*Pinus sylvestris* L.) d'altitude et de plaine dans les Alpes à climat
518 continental. *Ann. For. Sci.* **63**, 431–439. (doi:10.1051/forest)

519 61. Nosil P, Egan SP, Funk DJ. 2008 Heterogeneous genomic differentiation between
520 walking-stick ecotypes: 'isolation by adaptation' and multiple roles for divergent
521 selection. *Evolution*. **62**, 316–336. (doi:10.1111/j.1558-5646.2007.00299.x)

522 62. Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L. 2013 Drivers of
523 population genetic differentiation in the wild: isolation by dispersal limitation, isolation
524 by adaptation and isolation by colonization. *Mol. Ecol.* **22**, 5983–5999.
525 (doi:10.1111/mec.12561)

526 63. Rodríguez-Quilón I, Santos-Del-Blanco L, Serra-Varela M, Koskela J, González-
527 Martínez SC, Alía R. 2016 Capturing neutral and adaptive genetic diversity for
528 conservation in a highly structured tree species. *Ecol. Appl.* **26**, 2254–2266.
529 (doi:10.1002/eap.1361)

530 64. Hurel A *et al.* 2021 Genetic basis of growth, spring phenology, and susceptibility to
531 biotic stressors in maritime pine. *Evol. Appl.* **14**, 2750–2772. (doi:10.1111/eva.13309)

532 65. Archambeau J, Benito Garzón M, Barraquand F, de Miguel M, Plomion C, González-
533 Martínez SC. 2022 Combining climatic and genomic data improves range-wide tree
534 height growth prediction in a forest tree. *Am. Nat.* **200**, E141–E159.
535 (doi:doi.org/10.1086/720619)

536 66. Saremi H, Kumar L, Turner R, Stone C. 2014 Airborne LiDAR derived canopy height
537 model reveals a significant difference in radiata pine (*Pinus radiata* D. Don) heights
538 based on slope and aspect of sites. *Trees - Struct. Funct.* **28**, 733–744.
539 (doi:10.1007/s00468-014-0985-2)

540 67. Bennie J, Huntley B, Wiltshire A, Hill MO, Baxter R. 2008 Slope, aspect and climate:
541 Spatially explicit and implicit models of topographic microclimate in chalk grassland.
542 *Ecol. Modell.* **216**, 47–59. (doi:10.1016/j.ecolmodel.2008.04.010)

543 68. Aranda I *et al.* 2013 Drought response in forest trees: From the species to the gene. In
544 *Plant Responses to Drought Stress: From Morphological to Molecular Features*, pp.
545 293–333. (doi:10.1007/978-3-642-32653-0_12)

546 69. Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, Gonzalez-
547 Martínez SC, Neale DB. 2010 Patterns of population structure and environmental
548 associations to aridity across the range of loblolly pine (*Pinus taeda* L., Pinaceae).
549 *Genetics* **185**, 969–982. (doi:10.1534/genetics.110.115543)

550 70. Lind BM, Friedline CJ, Wegrzyn JL, Maloney PE, Vogler DR, Neale DB, Eckert AJ.
551 2017 Water availability drives signatures of local adaptation in whitebark pine (*Pinus*
552 *albicaulis* Engelm.) across fine spatial scales of the Lake Tahoe Basin, USA. *Mol.*
553 *Ecol.* **26**, 3168–3185. (doi:10.1111/mec.14106)

554 71. Grivet D, Sebastiani F, Alía R, Bataillon T, Torre S, Zabal-Aguirre M, Vendramin GG,
555 González-Martínez SC. 2011 Molecular footprints of local adaptation in two
556 mediterranean conifers. *Mol. Biol. Evol.* **28**, 101–116. (doi:10.1093/molbev/msq190)

557 72. Vinson CC *et al.* 2020 Characterization of raffinose metabolism genes uncovers a wild

558 Arachis galactinol synthase conferring tolerance to abiotic stresses. *Sci. Rep.* **10**,
559 15258. (doi:10.1038/s41598-020-72191-4)

560 73. Ambrosone A, Costa A, Leone A, Grillo S. 2012 Beyond transcription: RNA-binding
561 proteins as emerging regulators of plant response to environmental constraints. *Plant*
562 *Sci.* **182**, 12–18. (doi:10.1016/j.plantsci.2011.02.004)

563 74. Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN,
564 Golldack D. 2001 Significance of the V-type ATPase for the adaptation to stressful
565 growth conditions and its regulation on the molecular and biochemical level. In
566 *Journal of Experimental Botany*, pp. 1969–1980. (doi:10.1093/jexbot/52.363.1969)

567 75. Nystedt B *et al.* 2013 The Norway spruce genome sequence and conifer genome
568 evolution. *Nature* **497**, 579–584. (doi:10.1038/nature12211)

569 76. Wegrzyn JL *et al.* 2014 Unique features of the loblolly pine (*Pinus taeda* L.)
570 megagenome revealed through sequence annotation. *Genetics* **196**, 891–909.
571 (doi:10.1534/genetics.113.159996)

572 77. Mosca E *et al.* 2019 A reference genome sequence for the european silver fir (*Abies*
573 *alba* Mill.): A community-generated genomic resource. *G3 Genes, Genomes, Genet.* **9**,
574 2039–2049. (doi:10.1534/g3.119.400083)

575 78. Csilléry K, Lalagüe H, Vendramin GG, González-Martínez SC, Oddou-Muratorio S,
576 Fady B. 2014 Detecting short spatial scale local adaptation and epistatic selection in
577 climate-related candidate genes in European beech (*Fagus sylvatica*) populations. *Mol.*
578 *Ecol.* **23**, 4696–4708.

579 79. Lefèvre F *et al.* 2014 Considering evolutionary processes in adaptive forestry. *Ann.*
580 *For. Sci.* **71**. (doi:10.1007/s13595-013-0272-1)

581

582 **Figure captions**

583

584 **Fig. 1** Sample collection of *Pinus pinaster* in three pairs of south- (S) and north-facing (N)
585 slopes in Sierra de Espadán (eastern Spain) and a detailed view of stands N2/S2 (bottom
586 right).

587 **Fig. 2** Discriminant Analysis of Principal Components (DAPC) of *Pinus pinaster* samples
588 from Sierra de Espadán (eastern Spain) including three pairs of south- (S) and north-facing
589 (N) slopes based on 5,024 single-nucleotide polymorphisms (SNPs). Each stand is depicted
590 with a different colour and the stand centroid is labelled with the site identifier (see Fig. 1).

591 **Fig. 3** Detection of outlier single-nucleotide polymorphisms (SNPs) using the hierarchical
592 island model (south- vs. north-facing slopes) implemented in Arlequin. (a) F_{SC} : estimates of
593 locus-specific genetic divergence between stands within pairs; H_E : heterozygosity per locus.
594 Dashed lines indicate upper 99% confidence intervals for variation in neutral F_{SC} as a
595 function of H_E , indicative of divergent selection. Only AL751008-691 (in blue) showed a
596 consistent shift in allele frequencies in all pairs of stands as indicated by the sign test. Another
597 five loci (in yellow) were also detected as outliers by BayeScanH. (b) Venn diagram showing
598 the overlap of significant outlier loci detected by Arlequin and BayeScanH, respectively.

599 **Fig. 4** Differences in allele frequencies and genetic differentiation between stand pairs with
600 contrasting aspects. (a) Plot of locus AL751008_691 showing consistent differences in allele
601 frequency between south- and north-facing slopes for all three stand pairs. (b) Pairwise F_{ST}
602 between stands, with values between south- and north facing slopes in each sampling location
603 plotted in grey.

604

605 **Author contributions**

606 MH, JGP, MV and SGCM designed the study; KBB performed the study, did most data
607 analyses and wrote the first draft of the manuscript; FG and CR provided support for data
608 analyses; SGCM contributed to manuscript writing. All authors critically read and revised
609 prior versions of the manuscript.

610

611

612

613 Tables

614

615 **Table 1** Paired stand sampling of south- (S) and north-facing (N) slopes for *Pinus pinaster* in
616 the Sierra de Espadán (eastern Spain), and genetic diversity estimates based on 5,024 single-
617 nucleotide polymorphisms (SNPs). ID, identifier for each stand (see Fig. 1); Latitude, latitude
618 in decimal degrees; Longitude, longitude in decimal degrees; Aspect, average aspect in
619 degrees; Altitude, altitude in meters above sea level; Height, tree height in meters with
620 standard deviation, N_s , number of samples; H_E , expected heterozygosity; SE, standard error;
621 F_{IS} , fixation index.

ID	Lat.	Long.	Aspect [°]	Altitude [m a.s.l.]	N_s	Height [m] (SD)	H_E (SE)	F_{IS}
Pair 1								
S1	39.865	-0.298	185	632-666	25	7.300 (1.524)	0.336 (0.003)	-0.018
N1	39.866	-0.298	297	645-737	25	8.732 (1.334)	0.330 (0.003)	0.008
Pair 2								
S2	39.895	-0.353	159	719-763	25	8.716 (1.763)	0.328 (0.003)	0.013
N2	39.895	-0.351	35	655-730	25	12.496 (1.900)	0.337 (0.003)	-0.004
Pair 3								
S3	39.917	-0.397	181	655-728	25	8.716 (1.763)	0.332 (0.003)	-0.005
N3	39.913	-0.389	340	696-731	25	11.104 (1.981)	0.326 (0.003)	0.005

622

623

624

625 **Table 2** Functional annotation of five single-nucleotide polymorphisms (SNPs) detected as
626 significant F_{ST} outliers by both Arlequin and BayeScanH and one SNP (AL751008_691)
627 detected only by Arlequin that showed consistent allele frequency patterns in the three stand
628 pairs. The information was retrieved from Plomion *et al.* [38] and confirmed with a new Blast
629 search; non-syn., non-synonymous; leu, leucine; pro, proline; glx, glutamine. NA, not
630 available.

631

SNP ID	Polym.	Site type	Protein change	Putative function	Linkage group
AL751008-691	[T/C]	NA		unknown	LG2
BX250086-1490	[T/C]	non-syn.	leu → pro	oligouridylate binding protein-like	NA
BX251523-1352	[A/C]	non-syn.	glx → pro	V-type proton ATPase catalytic subunit A	LG10
BX252256_232	[C/G]	NA		Yos1 domain containing protein	NA
CT574789-692	[A/C]	NA		unknown	LG12
i09683s215pg	[A/G]	non-coding		raffinose_syn domain-containing protein	LG12

632

633

634 **Supplementary Material**

635

636 **S1 Phenotypes**

637 **Fig. S1.1** Boxplots of height (a) and diameter at breast height (DBH, b) for 150 *Pinus*
638 *pinaster* trees in three stand pairs contrasting north- (N1, N2, N3) and south-facing slopes
639 (S1, S2, S3).

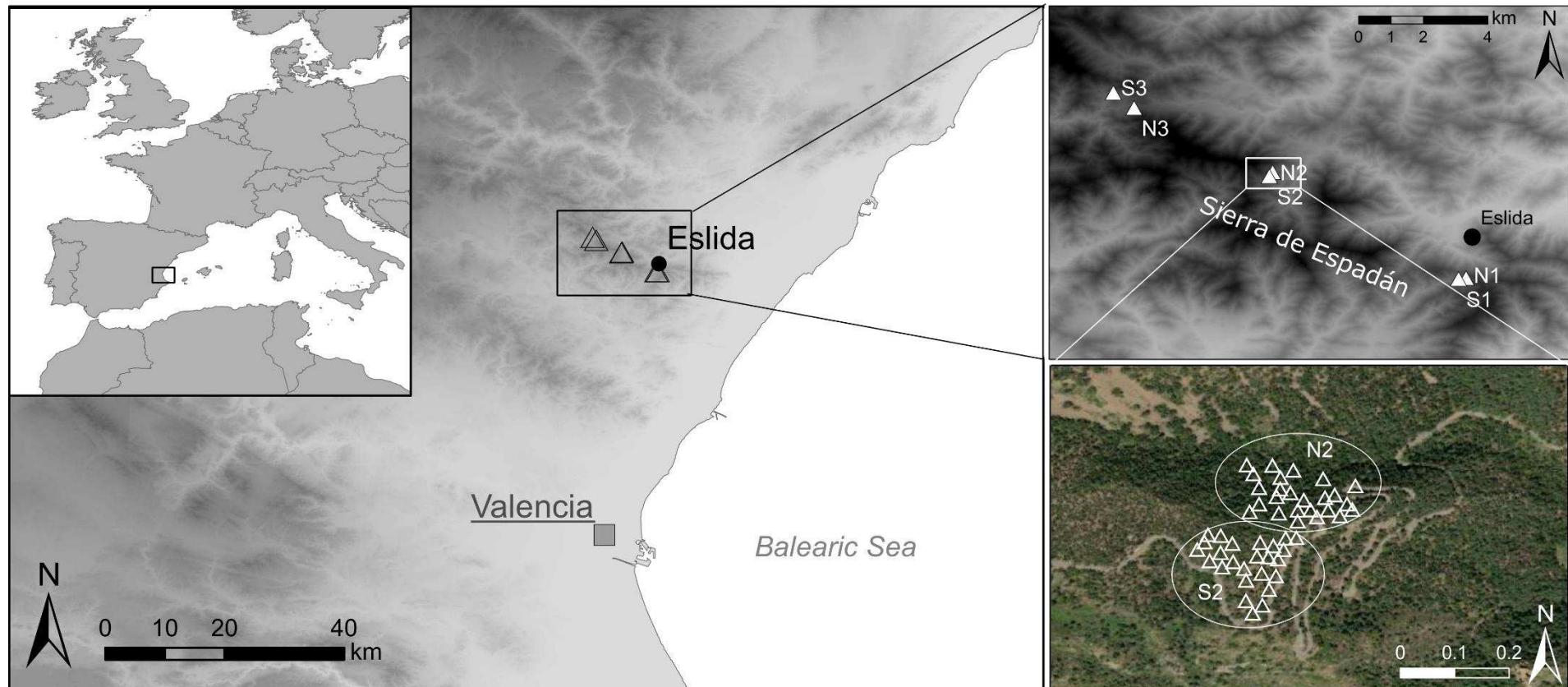
640 **Table S1.1** Two sample *t*-tests assessing differences in height and diameter at breast height
641 (DBH) of *Pinus pinaster* trees in each pair of north- and south-facing slopes.

642 **S2 Genetic structure**

643 **Table S2.1** Pairwise differentiation between all six *Pinus pinaster* study stands (comprising
644 north- [N1, N2, N3] and south-facing slopes [S1, S2, S3]) based on 5,024 SNPs. All *F_{ST}*
645 values are significant with *P* < 0.001.

646 **Fig. S2.1** Principal component analysis (PCA) based on 5,024 single nucleotide
647 polymorphism markers of all *Pinus pinaster* samples from eastern Spain representing three
648 south-facing (S) and three north-facing (N) slopes in a paired sampling design. Each stand is
649 depicted with a different colour and the stand centroid is labelled with the site identifier.

650 **Fig. S2.2** Fine-scale spatial genetic structure (SGS), plotted as average pairwise Loiselle
651 kinship coefficient against the geographic distance between *Pinus pinaster* trees within pairs
652 of north and south-facing slopes. SGS was strongest for pair N3/S3. *Sp*, intensity of the SGS;
653 ***, significance level of regression slope *P* < 0.001.

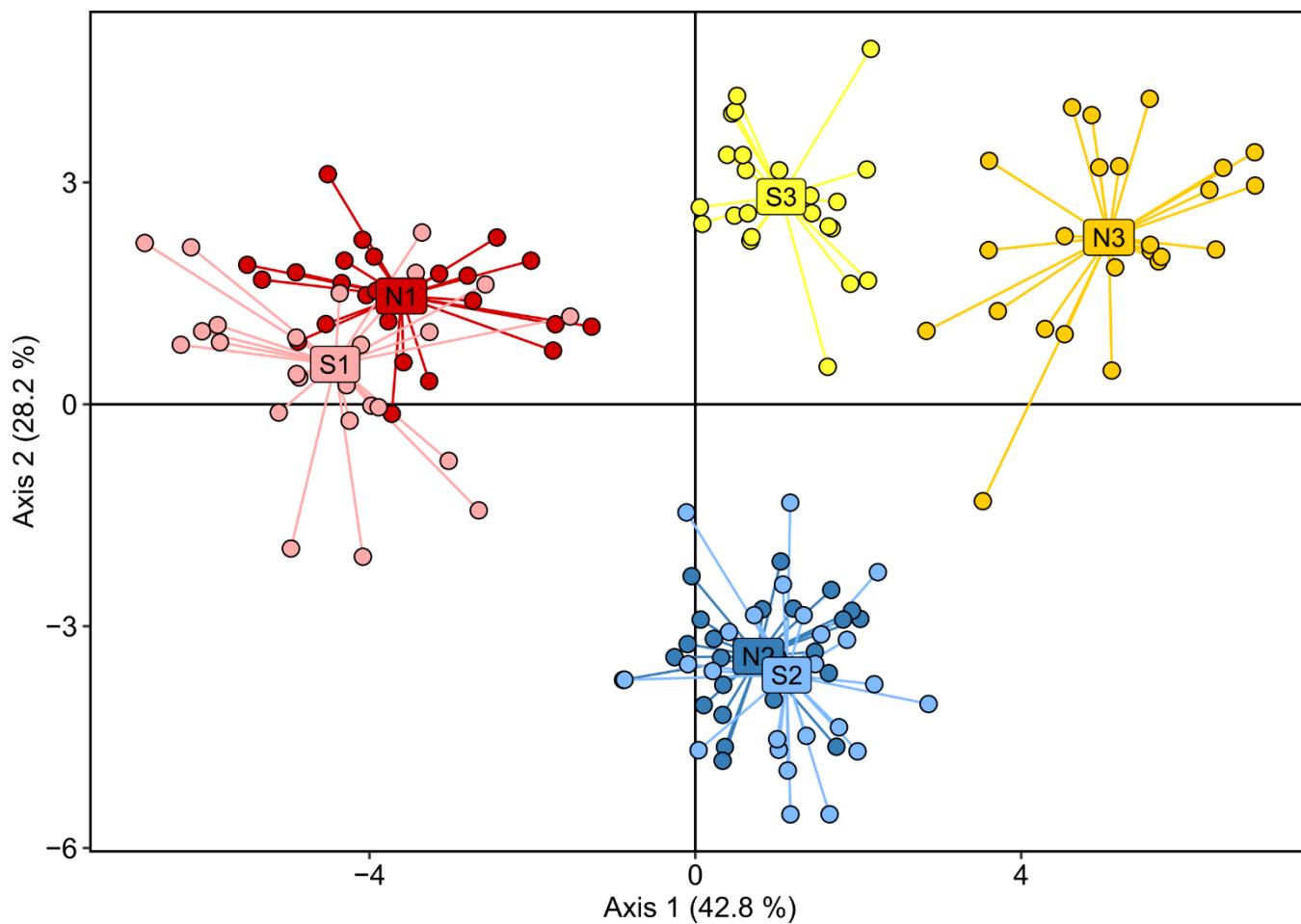

654 **S3 *F_{ST}* outlier detection in south- vs. north-facing slopes**

655 **Table S3.1 (provided as additional spreadsheet file)** Results summary and annotation
656 details of significant single nucleotide polymorphisms detected by the hierarchical models in
657 Arlequin and BayeScanH between *Pinus pinaster* stand pairs of north- and south-facing
658 slopes.

659 **Fig. S3.1** Plots showing differences in allele frequency between south- and north-facing
660 slopes in all three *Pinus pinaster* stand pairs (*left side*: a, c, e, f, g, i) for the five candidate loci
661 jointly identified by Arlequin and BayeScanH. Pairwise *F_{ST}* between stands is also shown
662 (*right side*: b, d, f, h, j) for each of the five loci.

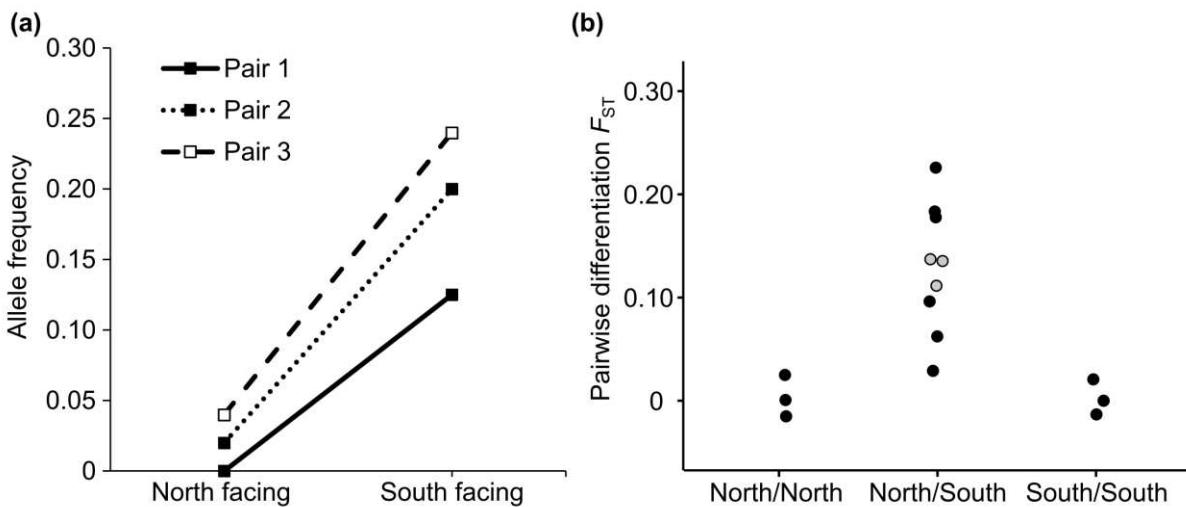
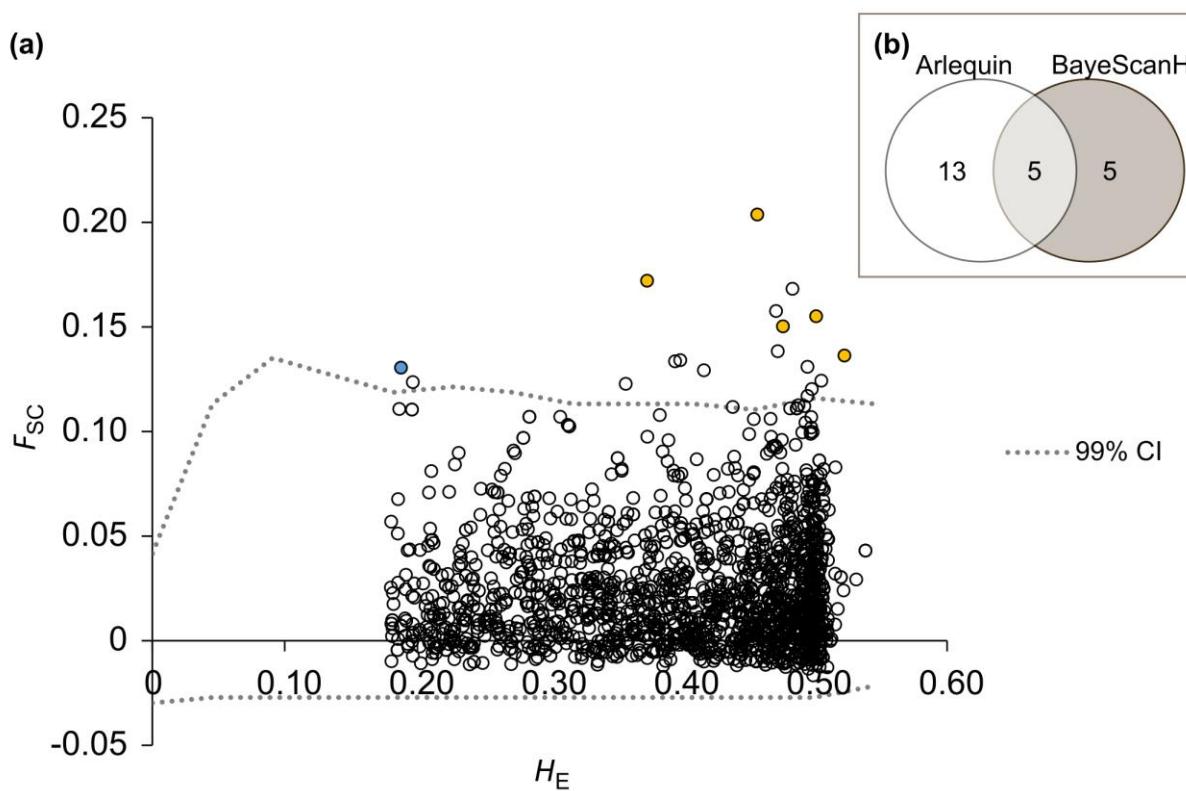
663 **Fig. 1**

664



665

666



667

668 **Fig. 2**

669

670 **Fig. 3**

674

675