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Abstract

The effects of selection on an organism’s genome are hard to detect on small spatial scales, as
gene flow can erase signatures of local adaptation. Most genome scans to detect signatures of
environmental selection are performed on large spatial scales, however divergent selection on
the local scale (e.g. between contrasting soil conditions) has also been demonstrated, in
particular for herbaceous plants. Here we hypothesize that in topographically complex
landscapes, microenvironment variability is strong enough to leave a selective footprint in
genomes of long-lived organisms. To test this, we investigated paired south- versus north-
facing Pinus pinaster stands in a Mediterranean mountain area. While north-facing (mesic)
stands experience less radiation, south facing (xeric) stands represent especially harsh
conditions, particularly during the dry summer season. Outlier detection revealed five
putatively adaptive loci out of 4,034, two of which encoded non-synonymous substitutions.
Additionally, one locus showed consistent allele frequency differences in all three stand pairs
indicating divergent selection despite high gene flow on the local scale. Functional annotation
of these candidate genes revealed biological functions related to abiotic stress response in
other species. Our study highlights how divergent selection shapes the functional genetic

variation within populations of long-lived forest trees on local spatial scales.
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Introduction

Spatially heterogeneous environments exert divergent selection pressures and can contribute
to maintaining high levels of adaptive genetic variation within populations. However,
understanding under which circumstances selection is acting and especially on which spatial
scale divergent it can be detected remains poorly understood. Studying local adaptation in
forest tree species is an important endeavor especially under current climate change [1,2].
Numerous studies have already revealed loci potentially involved in environmental
adaptation. However, most of these studies have been conducted on regional to continental
scales [e.g., 3—6], as gene flow on small spatial scales can blur the migration—selection
equilibrium maintaining local adaptation. Divergent selection on the local scale, e.g. to toxic
soil conditions, has often been observed in herbaceous plant species [7,8]. There is increasing
evidence that plants exhibit adaptive divergence on very small spatial scales, 1.e. on scales of
tens of meters of distance in herbaceous species and of hundreds of meters of distance in
some woody species (reviewed in [9,10]). Recent studies have started to address the factors
shaping local adaptation on the microenvironmental scale in long-lived tree species [11-14].
Several tropical tree species show adaptation to microenvironmental conditions [13,14].
Eperua falcata (Fabaceae), for example, showed divergent selection between groups of
individuals growing in seasonally flooded bottomlands and adjacent groups growing on dry
terra firme soils [17,18]. Also, Gauzere et al. [19] found evidence for divergent selection
acting on growth and phenology traits along an altitudinal gradient within natural stands of
European beech (Fagus sylvatica) despite high gene flow.

Identifying the genes and gene variants that confer local adaptation, i.e. higher fitness
to certain environmental conditions, is of great interest in ecology and evolution. The
detection and validation of candidate loci potentially under selection, however, remains
challenging. Experimental functional validation is not attainable in non-model species,
especially in trees with their long generation times. Previous studies showed that many
approaches to detect loci under selection can be prone to false positives (e.g., [20,21]) and
that the identified genomic signatures of selection might not always be observed in other
locations with similar environmental conditions [22—24]. Therefore, combining several
analytical approaches is recommended to reduce false positive detection [25]. Additionally,
an appropriate sampling design can increase the power to detect loci involved in local
adaptation. Especially, a paired design comprising several pairs of sampling sites with

contrasting environmental conditions seems promising for the detection also of loci
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78  displaying weak signatures of selection [26]. A simulation study by Lotterhos & Whitlock
79  [21] showed that sampling pairs of nearby populations (i.e. at gene flow distance) with

80 contrasting environmental conditions increases the probability of detecting true positive

81  outlier loci compared to gradient or random sampling designs.

82 In Mediterranean ecosystems, water availability is one of the most important factors
83  driving selection and plant species are typically well adapted to summer dry conditions

84  [27,28]. Still, considerable microenvironmental variation can be observed especially in

85  topographically complex landscapes, such as Mediterranean mountain systems. Equator-

86  facing slopes receive lower solar radiation flux density, leading to lower evapotranspiration
87  rates and lower daily maximum temperatures during summer drought periods, and therefore
88  show a significantly different composition, structure and density of plant communities as

89  compared to slopes facing pole-wards [29-31]. We hypothesize that, in topographically

90 complex Mediterranean forests, microclimate variability is strong enough to leave a selective
91  footprint on long-lived trees. In this study, we used a robust paired sampling design within a
92  natural population of Maritime pine (Pinus pinaster Aiton, Pinaceae) to specifically test for
93  genetic signatures of divergent selection between xeric (south-facing slope) and mesic (north-

94  facing slope) conditions.

95

96 Material and methods

97  Study species and sample collection

98  Maritime pine is a monoecious conifer species growing in the western part of the

99  Mediterranean basin and along the Atlantic coast in south-western Europe. It is pollinated and
100  dispersed by wind. Pollen flow is therefore wide-ranging, following highly leptokurtic
101  dispersal kernels with average dispersal distances of 78-174 m and frequent long-distance
102 dispersal events [32]. Gene flow via seeds is more restricted (average of 26.53 m [33]), but
103  post-dispersal processes, such as the Janzen-Connell effect and microenvironmental
104  variation affecting survival at early life stages can substantially increase effective dispersal
105  distances [34].
106 For this study, we sampled three pairs of P. pinaster stands with contrasting
107  microenvironmental conditions in a natural forest near Eslida in Sierra de Espadéan, Eastern
108  Spain (Fig. 1). All P. pinaster trees belong to a single gene pool [35,36] and the region is
109  characterized by a warm and dry climate. Stand-replacing crown fire events are common and
110  may take place every few years. Under these conditions regeneration is mostly driven by fire

111  events leading to even aged cohorts [37]. We selected one stand pair consisting of one south-
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facing slope and trees from a nearby shady valley along a (mostly) north-exposed stream
(SI/NT) and two pairs of stands (S2/N2 and S3/N3) with south- (dry and warm) and north-
facing slopes (more humid and less warm). For simplicity, we will refer to this sampling
design as three pairs of south- and north-facing slopes. In each of the six stands, we
haphazardly sampled 25 trees with DBH (diameter at breast height) > 16, making a total of
150 trees (Fig. 1, Table 1). All trees were georeferenced using a Garmin Oregon 550t
(Garmin, Wichita, USA), height was assessed using a Digital hypsometer Forestor Vertex
(Haglof, Langsele, Sweden) and the DBH was measured. The maximum straight-line distance
between sampled trees was ca. 10 km between stand pairs and 820 m between trees within

pairs.

DNA extraction and genotyping
Needles were collected from the 150 trees and desiccated using silica gel. Genomic DNA was
isolated using the Invisorb® DNA Plant HTS 96 Kit/C kit (Invitek GmbH, Berlin, Germany)
following the manufacturer’s instructions.

An Illumina Infintum SNP (Single Nucleotide Polymorphism) array (Illumina, Inc.,
San Diego, USA ) developed by Plomion et al. [38] was used for genotyping. This array is
enriched in SNPs from genes that showed signatures of natural selection in previous studies
[27, 28, 29] or differential expression under biotic and abiotic stress [38] in maritime pine, but
most of the SNPs represent potentially neutral polymorphisms. After removing SNPs with
uncertain scoring based on visual inspection using GenomeStudio Genotyping Module v1.0
(Illumina, Inc.) and monomorphic SNPs, we kept 5,024 high-quality SNPs, of which 4,034
had a minor allele frequency (MAF) > 0.1. The amount of missing genotype data per stand
was very low (maximum of 1%). This data set has recently been used to characterize the

effective population size in Sierra de Espadan, as part of a meta-study [41].

Data analyses

First, we characterized the study stands based on the sampled trees’ height and DBH and
tested if these phenotypic traits differed significantly between south- and north-facing slopes
using a two sample Student’s ¢ test on each stand pair run in R v. 4.1.2 [42]. Then, based on
the SNP data, we estimated genetic diversity parameters such as observed and expected
heterozygosity and the fixation index using the R package hierfstat [43]. After this, we tested
whether we could detect significant neutral genetic differentiation between the sampled stands

by estimating pairwise Fst [44] using the complete SNP data set and comparing with neutral
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expectations from 1,000 permutations. To visualize the neutral population genetic structure
inherent to our data, we also performed a Principal Component Analysis (PCA) using the
function dudi.pca implemented in the R package ade4 [45] and a supervised (i.e. defining
each stand as a group) Discriminant Analysis of Principal Components (DAPC) using the
dapc function in the R package adegenet [46] based on all SNP markers. Additionally, we
assessed the fine-scale spatial genetic structure (SGS) within each of the three pairs. First, we
estimated the pairwise Loiselle kinship coefficient [47] in SPAGeDi v. 1.5d [48] between
individuals. The average kinship coefficient per distance class was regressed against the
logarithm of spatial distances and significance was assessed based on 10,000 permutations of
individual locations. The strength of SGS was estimated as Sp =—b/(1 — F), where b is the
regression slope and F; is the average kinship coefficient in the first distance class [49].

To detect loci potentially under selection in slopes with contrasting aspects
(south/north) in a hierarchically structured population [50], we used two hierarchical Fst
outlier detection approaches that take into account the paired sampling design, one
implemented in Arlequin v 3.5.2 [51] and the other in BayeScanH, which is especially
suitable for small sample sizes [52]. For this, we first defined the pairs and then the aspect of
the slopes (south/north) within pairs. In Arlequin Fst values can be slightly negative
especially on small spatial scale but including loci with negative Fst values impedes outlier
analyses. Therefore, only SNPs with positive values of estimated Fst (1,810 SNPs) were
considered in Arlequin analysis (200,000 simulations). We report F'sc outlier loci for
divergence between sites within pairs. To identify outlier loci with BayeScanH, we used the
full dataset of 4,034 SNPs with MAF > 0.1, and default parameters with an odds prior of 10.
We tested two models, one with the same selection pressure acting between contrasting slopes
in the three stand pairs and another one with three independent selection pressures on
contrasting slopes within the three pairs. Finally, using the R-script ‘paired_GEA.R’ from
https://gitlabext.wsl.ch/rellstab/genotype-environment-associations, we tested if any of the
candidate SNPs identified with Arlequin or BayeScanH showed consistent patterns in
population allele frequencies between the paired stands in all replicates. For this, we checked
whether the differences in population allele frequency had the same sign in all pairs, i.e.
whether the population allele frequency in all north-facing slopes was consistently lower or
higher than the allele frequency in all south-facing slopes (i.e. the strict sign test). Then, we
ran a linear mixed model using the function /me implemented in the package nime [53], with
population allele frequency as response variable, slope aspect (south/north) as fixed effect and

pair as random factor.
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180 The sequences flanking SNPs identified as loci potentially under selection, and

181  associated annotation, were retrieved from Plomion et al. [38]. These sequences were newly
182  blasted against the NCBI nucleotide database to check for new functional annotations.

183

184  Results

185  Tree height was consistently lower in south- than in north-facing slopes and the difference
186  was significant in two out of the three stand pairs (Supp. Mat. Fig. S1.1, Table S1.1), while no
187  significant difference was detected for DBH in any stand pair.

188 Expected and observed heterozygosity (not shown) were very similar in all six study
189  stands with values around 0.33, resulting in fixation indices close to zero (Table 1). Pairwise
190  genetic differentiation between stands based on all 5,024 SNP markers was weak, ranging

191  from 0.004 to 0.033, but highly significant above zero, with all P-values < 0.001

192  (Supplementary Material, Table S2.1). The DAPC clearly depicted the hierarchical population
193  structure due to the paired sampling design, with stronger genetic differentiation among than
194  within stand pairs (i.e. between south- and north-facing stands; Fig. 2). The hierarchical

195  population structure was also visible but less evident in the PCA plot (Supplementary

196  Material, Fig. S2.1). SGS was significant, showing isolation by distance, in all stand pairs and
197  strongest in pair N3/S3 (Supplementary Material, Fig. S2.2).

198 In total, 18 SNPs were located above the 99% confidence intervals using the

199  hierarchical island model in Arlequin and, thus, were considered as significant outliers for
200  genetic differentiation between south- and north-facing slopes (Fig. 3, Supplementary

201  Material Table S3.1). Additionally, ten loci were identified as significant Fst outliers by

202  BayeScanH when assuming independent selection pressures for each of the three pairs of

203  stands (Supplementary Material, Table S3.1). None of these outlier loci was significant in all
204  three sampling pairs in BayeScanH. Moreover, no significant outlier locus was detected when
205 assuming the same selection pressure in all three pairs of stands.

206 When comparing the two methods, five loci were identified as outliers by both

207  Arlequin and BayeScanH, and only one additional outlier locus, AL751008_691 detected by
208  Arlequin, showed consistent allele frequency differences between south- and north-facing

209  slopes (Figure 4) and a significant effect of the site aspect as indicated by the linear mixed
210  model (Psite type = 0.0021). Two out of these six outliers SNPs showed non-synonymous

211 changes and coded for a putative RNA-binding protein and a V-type proton ATPase catalytic
212 subunit, respectively (Table 2).

213
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Discussion
The paired sampling design in Sierra de Espadén, contrasting south- and north-facing slopes
within a large and continuous P. pinaster population, was specifically used to test for
microenvironmental adaptation driven by water availability. Paired sampling in stands with
contrasting environments, such as dry vs. humid patches, represents a powerful approach to
reveal loci under selection [21,25], because it maximizes potential for divergent selection
while minimizing the effect of confounding population structure. Several studies successfully
employed the paired sampling design to detect loci under selection (e.g. [14,18,54-58]). In
conifers, four previous studies revealed loci significantly associated to altitudinal or other
microenvironmental gradients in Abies alba [57,58], Pinus halepensis [56], and P. pinaster
and Cedrus atlantica [14], but only few loci showed consistent patterns of allele frequency
shifts along the replicated stand pairs. Here, we specifically tested for consistent patterns of
divergent selection on the local scale, with trees growing in direct vicinity, between mesic and
xeric stands.

We first showed a hierarchical population genetic structure despite high gene flow in
P. pinaster within one large population in Sierra de Espadan (eastern Spain). From previous
work, it is known that this forest constitutes a single gene pool [35,36]. Moreover, fine-scale
spatial genetic structure within continuous populations typically is weak in this wind-
pollinated and wind-dispersed species [59]. Therefore, it is remarkable to find significant
differentiation among all sampling sites, even between the neighbouring south- and north-
facing slopes, clearly depicting the hierarchical structure. This pattern could be caused by
phenological differences in flowering time restricting effective gene flow between contrasting
slopes due to temporal separation [60]. However, it could also reflect isolation by distance to
some degree as indicated by significant SGS (Supplementary Material Fig.2.2). Indeed,
differentiation between neighbouring slopes and SGS were strongest for pair N3/S3, which
was also the pair with the biggest geographic distance between stands. However,
differentiation between directly neighbouring south- and north-facing slopes could
additionally be driven by isolation by environment (IBE), which would imply selection
against maladapted immigrants resulting in genome-wide patterns of genetic differentiation
[61,62]. Furthermore, clonal common gardens of range-wide P. pinaster populations show
strong local adaptation to different environmental conditions [35,63—65]. In particular, tree
height was shown to correlate negatively with maximum summer temperatures (i.e. trees from
populations originating in hotter environments tend to be smaller when grown in the same

environment), indicating an adaptive response to hot summer temperatures [64]. In forest
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trees, steep equator-facing slopes usually limit growth, while taller trees are typically found
on less steep and pole-facing slopes [66]. In agreement with this, P. pinaster trees on south-
facing slopes in the Sierra de Espadédn tended to be smaller, which could indicate that the
populations responded to the harsher environmental conditions either through plasticity or
local adaptation.

Second, the complementary approaches to detect outlier loci in hierarchical sampling
designs identified five out of 4,034 SNPs (with MAF>0.1) as putatively under divergent
selection on local spatial scales. One additional locus (AL751008-691) showed a consistent
allele frequency pattern in accordance with microenvironmental adaptation in all three stand
pairs. Environmental conditions on south- and north-facing slopes are known to differ
strongly, e.g. in light and water availability [67]. Slopes with different aspect are often
characterized by differences in composition, structure and density of plant communities [29—
31]. Tree species have developed diverse adaptations in response to strong selection pressures
in dry environmental conditions [68]. Pinus pinaster stands as a suitable study species to test
for divergent selection on the local scale. Multisite clonal common gardens comprising range-
wide populations already revealed that the species is susceptible to drought. Survival was
lowest in the common garden sites with the harshest (dry and hot) conditions [63], and certain
alleles at candidate loci associated with climate were connected to a higher probability of
survival [35]. Here, we showed that contrasting environmental conditions on different slopes,
in direct vicinity and in the presence of gene flow, can also shape the distribution of genetic
variation in long-lived forest trees such as P. pinaster.

Outlier loci related to differences in drought intensity and temperature have been
found in different pine species on range-wide spatial scales. For example, Eckert et al. [69],
found five outlier loci associated with aridity in Pinus taeda. In natural Pinus albicaulis
populations, Lind et al. [70] also identified water availability as a strong driver of genomic
adaptation signatures. They detected allele frequency changes at candidate genes along a
precipitation gradient on the regional scale in the Lake Tahoe Basin, an ecosystem similar to
that studied here (i.e. Mediterranean-type mountains). Candidate gene approaches in maritime
pine also found various outlier loci related to drought response and precipitation on large
spatial scales [35,39,71] and between shady and sunny stands at the microenvironmental scale
[14]. Our study detected a small number of outlier loci potentially related to water availability
in maritime pine on the local scale, i.e. within gene flow distance. One of these outlier loci
(CT384-490, coding for a non-synonymous change) has been previously associated to winter

precipitation on the range-wide scale [35]. Four of the six candidate SNP loci showing strong
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evidence of local adaptation on small spatial scales were functionally annotated and two of
them coded for non-synonymous changes. Locus BX250086 coded for an oligouridylate
binding protein-like protein and BX251523 for a V-type proton ATPase catalytic subunit.
Locus 109683s215pg, which is coding for a non-synonymous change, is located in a gene
encoding for a raffinose_syn domain containing protein. Genes annotated with similar
functions have been described to be involved in abiotic stress response, such as drought stress,
in other plant species [72—74].

In the last years, reference genomes, even for conifer species with extremely large
genomes (> 18 Gbp), have been published [75-77], however, the functional annotation of
conifer genomes is still limited and a reference genome for P. pinaster is lacking. In this
study, we were able to retrieve putative annotations for only four out of six candidate genes,
highlighting the need to complete and improve our knowledge of conifer genomes and their
functional annotation. In addition, although we were able to identify some candidate loci
under divergent selection on the local scale, only one locus showed consistent differences in
allele frequencies in all three stand pairs. This is in agreement with a recent study by Scotti et
al. [14] where only a small proportion of outlier loci (0.1-1% of all loci depending on the
species) showed consistent allele frequency differences between pairs of sites with contrasting
conditions indicating that common signatures of selection are scarce. In BayeScanH,
significant results were only obtained when assuming three independent selection pressures,
which suggests the probable existence of differences in strength and direction of selection
pressures even on very small spatial scales. This is consistent with other studies employing
replicated paired sample designs [14,56-58], highlighting the complexity of selection drivers

and the difficulties to identify them in natural experimental settings.

Conclusion

Our findings are in line with recent studies that identified loci under divergent selection
between stands growing in contrasting environmental conditions on the local scale in long-
lived forest trees [17—19,78]. The increasing number of available genetic markers, also in
non-model species, will improve the statistical power to detect such patterns on local scales.
Understanding how microenvironmental heterogeneity shapes and maintains the functional
genetic variation is especially relevant as this local scale variation is at the base of the
population response to future climate. The importance of genetic variation within populations
and the strength of selection on small spatial scales have probably been underestimated so far.

Especially with respect to climate change, the knowledge about genetic variation and
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processes that shape the genetic structure on different geographic scales are of utmost
importance to develop suitable forest tree conservation and management strategies. Forest
management, for instance, could be used to foster natural standing genetic variation and hence
in situ evolution [79] potentially making unnecessary the use of assisted gene flow or

migration.

Data accessibility

GPS coordinates and SNP genotypes of all individuals included in this study are available on
Zenodo public database: https://doi.org/10.5281/zenodo.6345964. The R-script
‘paired_GEA.R’ for analyzing population allele frequencies in paired stands with a known
environmental contrast can be found at https://gitlabext.wsl.ch/rellstab/genotype-

environment-associations.
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582  Figure captions

583

584  Fig. 1 Sample collection of Pinus pinaster in three pairs of south- (S) and north-facing (N)
585  slopes in Sierra de Espadan (eastern Spain) and a detailed view of stands N2/S2 (bottom
586  right).

587  Fig. 2 Discriminant Analysis of Principal Components (DAPC) of Pinus pinaster samples
588 from Sierra de Espadén (eastern Spain) including three pairs of south- (S) and north-facing
589  (N) slopes based on 5,024 single-nucleotide polymorphisms (SNPs). Each stand is depicted

590  with a different colour and the stand centroid is labelled with the site identifier (see Fig. 1).

591  Fig. 3 Detection of outlier single-nucleotide polymorphisms (SNPs) using the hierarchical
592  island model (south- vs. north-facing slopes) implemented in Arlequin. (a) Fsc: estimates of
593 locus-specific genetic divergence between stands within pairs; Hg: heterozygosity per locus.
594  Dashed lines indicate upper 99% confidence intervals for variation in neutral Fsc as a

595  function of HE, indicative of divergent selection. Only AL751008-691 (in blue) showed a

596  consistent shift in allele frequencies in all pairs of stands as indicated by the sign test. Another
597 five loci (in yellow) were also detected as outliers by BayeScanH. (b) Venn diagram showing

598 the overlap of significant outlier loci detected by Arlequin and BayeScanH, respectively.

599  Fig. 4 Differences in allele frequencies and genetic differentiation between stand pairs with
600  contrasting aspects. (a) Plot of locus AL751008_691 showing consistent differences in allele
601  frequency between south- and north-facing slopes for all three stand pairs. (b) Pairwise Fst
602  between stands, with values between south- and north facing slopes in each sampling location

603  plotted in grey.
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612
613  Tables

614

615  Table 1 Paired stand sampling of south- (S) and north-facing (N) slopes for Pinus pinaster in
616  the Sierra de Espadédn (eastern Spain), and genetic diversity estimates based on 5,024 single-
617  nucleotide polymorphisms (SNPs). ID, identifier for each stand (see Fig. 1); Latitude, latitude
618  in decimal degrees; Longitude, longitude in decimal degrees; Aspect, average aspect in

619  degrees; Altitude, altitude in meters above sea level; Height, tree height in meters with

620  standard deviation, Ns, number of samples; Hg, expected heterozygosity; SE, standard error;

621  Fis, fixation index.

Aspect  Altitude Height

ID  Lat Long. o, masl] ™ [m](SD)

He (SE) Fis

Pair 1
7.300 0.336
S1 39.865 -0.298 185 632-666 25 (1.524) (0.003) -0.018

8.732 0.330
N1 39.866 -0.298 297 645-737 25 (1.334) (0.003) 0.008

Pair 2
8.716 0.328
S2 39.895 -0.353 159 719-763 25 (1.763) (0.003) 0.013
12.496 0.337
N2 39.805 -0.351 35 655-730 25 (1.900) (0.003) -0.004
Pair 3
8.716 0.332
S3 39917 -0.397 181 655-728 25 (1.763) (0.003) -0.005
11.104 0.326
N3 39913 -0.389 340 696-731 25 (1.981) (0.003) 0.005
622
623

624
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Table 2 Functional annotation of five single-nucleotide polymorphisms (SNPs) detected as

significant Fst outliers by both Arlequin and BayeScanH and one SNP (AL751008_691)

detected only by Arlequin that showed consistent allele frequency patterns in the three stand

pairs. The information was retrieved from Plomion et al. [38] and confirmed with a new Blast

search; non-syn., non-synonymous; leu, leucine; pro, proline; glx, glutamine. NA, not

available.
Protein Linkage
SNP ID Polym. Site type change Putative function group
AL751008-691 [T/C] NA unknown LG2
BX250086-1490  [T/C]  non-syn. leu — pro oligouridylate binding NA
protein-like
BX251523-1352  [A/C]  non-syn. glx — pro  V-type proton ATPase LGI10
catalytic subunit A
BX252256_232 [C/G] NA Yos1 domain containing NA
protein
CT574789-692 [A/C] NA unknown LG12
109683s215pg [A/G] non-coding raffinose_syn domain- LGI12

containing protein
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Supplementary Material

S1 Phenotypes

Fig. S1.1 Boxplots of height (a) and diameter at breast height (DBH, b) for 150 Pinus
pinaster trees in three stand pairs contrasting north- (N1, N2, N3) and south-facing slopes
(S1,S2, S3).

Table S1.1 Two sample #-tests assessing differences in height and diameter at breast height
(DBH) of Pinus pinaster trees in each pair of north- and south-facing slopes.

S2 Genetic structure

Table S2.1 Pairwise differentiation between all six Pinus pinaster study stands (comprising
north- [N1, N2, N3] and south-facing slopes [S1,S2, S3]) based on 5,024 SNPs. All Fst
values are significant with P< 0.001.

Fig. S2.1 Principal component analysis (PCA) based on 5,024 single nucleotide
polymorphism markers of all Pinus pinaster samples from eastern Spain representing three
south-facing (S) and three north-facing (N) slopes in a paired sampling design. Each stand is
depicted with a different colour and the stand centroid is labelled with the site identifier.

Fig. S2.2 Fine-scale spatial genetic structure (SGS), plotted as average pairwise Loiselle
kinship coefficient against the geographic distance between Pinus pinaster trees within pairs
of north and south-facing slopes. SGS was strongest for pair N3/S3. Sp, intensity of the SGS;
**% significance level of regression slope P < 0.001.

S3 Fsr outlier detection in south- vs. north-facing slopes

Table S3.1 (provided as additional spreadsheet file) Results summary and annotation
details of significant single nucleotide polymorphisms detected by the hierarchical models in
Arlequin and BayeScanH between Pinus pinaster stand pairs of north- and south-facing
slopes.

Fig. S3.1 Plots showing differences in allele frequency between south- and north-facing
slopes in all three Pinus pinaster stand pairs (left side: a, c, e, f, g, 1) for the five candidate loci
jointly identified by Arlequin and BayeScanH. Pairwise Fst between stands is also shown
(right side: b, d, f, h, j) for each of the five loci.
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