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Cancer cell sedimentation in 3D
cultures reveals active migration
regulated by self-generated
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Abstract

Cell sedimentation in 3D hydrogel cultures refers to the vertical migration of cells towards the
bottom of the space. To explain this poorly understood phenomenon, we conducted a multiscale
experimental and mathematical examination of 3D cancer growth in triple negative breast cancer
cells. Migration was examined in the presence and absence of Paclitaxel, in high and low
adhesion environments and in the presence of fibroblasts. The observed behaviour was modeled
by hypothesizing active migration due to self-generated chemotactic gradients. Our results
confirmed this hypothesis, whereby migration was regulated by the MAPK and TGF-3 pathways.
The mathematical model enabled us to describe the experimental data in absence (normalized
error< 40%) and presence of Paclitaxel (normalized error< 10%), suggesting inhibition of random
motion and advection in the latter case. Inhibition of sedimentation in low adhesion and
co-culture experiments further supported the conclusion that cells actively migrated downwards
due to the presence of signals produced by cells already attached to the adhesive glass surface.

Keywords: cell sedimentation | 3D cultures | multiscale models | cell migration | adhesion

1. Introduction

The use of 3D culture techniques in cancer research yields significant potential as these cultures
have provided more realistic conditions of cancer growth in terms of morphology, gene expression,
related biochemical processes, and altered drug toxicity compared to conventional 2D cultures.
Current research on biomaterials [1, 2] on the surrounding environment of tumours, as well as
bioprinting techniques [3] has enabled researchers to study various phenomena accompanying
cancer growth, such as cellular aggregation, migration, and tissue expansion, along with the impact
of the composition and geometry of the extracellular matrix (ECM) [4-7].

Furthermore, the in silico investigation of cancer growth using mathematical models allows
for testing a wide array of scientific hypotheses at a considerably lower cost than biological ex-
periments [8]. In this context, spatiotemporal models of cancer growth can be divided into three
general categories; discrete (e.g., agent-based models), continuum (Partial Differential Equations,
PDEs), and hybrid models [9]. Discrete models can provide information on individual cell pro-
cesses and tissue microarchitecture [10]. Continuum models have been widely used to describe
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the macroscopic aspects of tumour growth, albeit lacking experimental validation in many cases
[11]. More recently, they have been used to achieve a more detailed quantitative description of
the macroscopic characteristics of spatiotemporal cancer growth and its response to therapy un-
der both in vitro [12-15] and in vivo conditions [16-22]. Hybrid models attempt to provide a mul-
tiscale description of cancer growth by incorporating both continuous and discrete variables [23,
24]. Tweedy et al. [25, 26] utilized experiments and hybrid discrete-continuum (HDC) models of
chemotactic migration to investigate the role of self-generated chemotactic gradients in cancer
migration.

Although there is growing literature on spatiotemporal models of cancer, their validation us-
ing experimental data is still relatively limited, yet important for quantitatively describing cancer-
related mechanisms [27-35]. Model validation in cancer has previously been investigated in both
forecasting [27, 36] and exploratory studies [37-41] of cancer growth using ODEs and PDEs. Re-
cently, we also expanded validation to hybrid models using an integrated experimental and com-
putational framework for the calibration and validation of hybrid models with 3D cell culture data
using Bayesian inference and spatial statistical analysis techniques [42]. This framework enabled
us to validate multiscale models using an efficient scale splitting technique that allows the preser-
vation of data points for both calibration and validation.

In the present study, we focused on cell sedimentation in 3D cultures. We aimed to provide
mechanistic explanations for its occurrence using an integrated multi-scale experimental and math-
ematical modelling approach. Sedimentation is defined as the phenomenon of cell migration to-
wards the bottom of the culture space. Itis generally undesirable because it alters the behaviour of
the cells turning from 3D to 2D phenotypes [43], resulting in an early termination of the experiment
or the need for alteration of hydrogel stiffness. This phenomenon has been previously observed
by [44] and interpreted as the result of cells moving towards the path of least resistance. In our re-
cent study [42], we concluded that a self-generated chemotactic gradient mechanism of migration
towards adhesion sites may also be plausible. Here, we provide a comprehensive experimental
and mathematical examination of this hypothesis in 3D cultures of triple-negative breast cancer
(TNBC) cells. Specifically, we examined the role of active and passive migration mechanisms, their
relation to the gene expression profiles of the cells using bulk RNA-seq data at various time-points
and during paclitaxel treatment, the validity of the self-generated chemotactic gradient hypothesis,
and the importance of adhesion sites.

2. Materials & Methods

A. Cell preparation

Triple-negative breast cancer (TNBC) cells from the MDA-MB-231 cell line (ATCC) with nuclear GFP
(histone transfection) were thawed and cultured at 5% CO2 and 37 °C in DMEM (Gibco) at pH 7.2
supplemented with 10% fetal bovine serum (Wisent Bioproducts), 100 U/mL penicillin, 100 pg/mL
streptomycin, and 0.25 pg/mL amphotericin B (Sigma) in T-75 flasks (Corning). The cells were pas-
saged before reaching 85% confluence. Three passages were performed before the 3D cultures;
cells were rinsed twice with DPBS and trypsin-EDTA (0.25%-1X, Gibco) was used to harvest them.
The MDA-MB-231 cell line was validated with short tandem repeat (STR) analysis [2].

B. 3D cell cultures

A cell-Matrigel (Corning) suspension was created using 2 mL of Matrigel (4 °C) and 5 x 10* MDA-
MB-231/GFP cells. Droplets of a 5 pL cell-Matrigel mixture were manually deposited onto a high-
performance #1.5 glass-bottom 6-well plate (0.170+0.005 mm) (Fisher Scientific). The datasets
were separated into non-treatment and treatment groups. The datasets representing treatment
conditions were administered with Paclitaxel on the 5th day of the experiment. The administered
doses were 0.5 pM, 0.05 pyM, 0.005 pM, and 0.0005 pM. In total, 32 datasets were generated, in-
cluding 12 biological control replicates and 5 biological replicates for each dose. Each of these
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samples were monitored using confocal microscopy on days 0, 2, 5,7, 9, 12, and 14. To assess the
reproducibility of our results, we performed the control experiments in two independent sessions,
and in both sessions sedimentation occurred. The data are publicly available in the corresponding
FigShare repository.

C. Imaging and Data preparation

Data acquisition was performed every 2-3 days for a total of 15 days using a confocal microscope
(Nikon ATR HD25), coupled with a cell culture chamber. The dimensions of the 3D cultures were
approximately 2.5x2.5x0.9 mm?3. Cell localization was made possible by the presence of GFP flu-
orophore in the cell nuclei. Fluorescent nuclei were segmented using the image processing and
segmentation pipeline described in [45]. The pipeline was implemented in MATLAB [46] and im-
ageJ [47] and is publicly available in the GitHub repository of the present study. The segmented
nuclei were then mapped to a 3D Cartesian space by detecting their centroid locations using a
26-connected neighbourhood tracing algorithm implemented in MATLAB [46]. The final step was
the calculation of the spatial density profiles of the cells represented by their centroids using Ker-
nel Density estimation via the diffusion method [48]. Density calculations were performed using a
grid of size 167 x 167 x 61, such that each cell occupied approximately one grid point. The density
matrices were linearly interpolated to match the spatial grid size of the simulations (480x480x 176).

D. RNA-seq experiment

We repeated the same experimental procedure described in Materials and Methods sections A, B,
increasing the number of cells and the Matrigel volume to achieve the threshold of 500k cells re-
quired for the sequencer. The following protocol was implemented for each cell/Matrigel sample.
Fresh cell culture media were warmed at 37°C and supplemented with collagenase and dispase
1X (Sigma Aldrich, Cat. # 11097113001). Micropipettes were used to break down the cell-laden
Matrigel constructs using suction force, and these were incubated for 30 min in a cell culture in-
cubator (95% relative humidity, 37°C, and 5% CO2). The cells were centrifuged at 300 g for 5 min
and the supernatant was discarded. The cells were resuspended in TRIzol (Fisher Scientific) with
a 3:1 ratio of sample volume. The samples were frozen at -80°C. The RNeasy Plus Universal Mini
Kit (QIAGEN) was used to extract total RNA from the QIA cube Connect, according to the manufac-
turer's instructions. Library preparation construction and sequencing were carried out at GEnome
Québec using the lllumina NovaSeq 6000 platform, and paired-end reads (PE100) were produced.
The RNA-seq experiment consisted of 24 samples in total. For the non-treatment conditions, the
samples were extracted from days 2 and 4 with 2 biological replicates for each time-point. For each
dose, the samples were isolated in day 4 with 2 biological replicates for each dose (0.5 pM, 0.05
pM, 0.005 pM, and 0.0005 uM), respectively. The data are publicly available in Gene Expression
Omnibus (GEO) at GSE223350.

E. Transcriptomic analysis

The pipeline for the transcriptomic analysis is presented in Supplementary Fig. S3. Adapter se-
quences and low quality bases were removed using Trimmomatic (v.0.39) [49]. Reads were scanned
and truncated when the average quality of the three-nucleotide sliding window fell below a thresh-
old of 3. Short reads were discarded after trimming (<36 bp). Quality control metrics were obtained
using FASTQC (v.0.11.9) [50] and SAMtools (v.1.10) [51]. The reads were aligned to the reference
genome hg19 (GRCh37) [52] using STAR (v.2.7.5) [53], and only uniquely aligned reads were re-
tained. Gene expression levels were calculated by quantifying uniquely mapped reads mapped
to exonic regions (n = 63,568 genes) using Rsubread (v.2.4.2) [54]. Both normalization and dif-
ferential expression analyses were performed using DESeq2 (v.1.30.1) [55]. The results obtained
from the differential gene expression analysis across treatment and non-treatment conditions
were filtered using the independent hypothesis weighting method (v.1.18.0) [56]. Gene Ontology
over-representation tests and gene set enrichment analysis were performed using ClusterProfiler
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135 (v.3.18.1) [57]. Finally, gene expression localization was performed using OncoEnrichR (v.1.4.0) [58]
13¢ and the ComPPI database (v.2.1.1) [59]. The cellular anatogram in Fig. 1c, was generated using
137 gganatogram (v.1.1.1) [60]. The code for the transcriptomic analysis can be found in the corre-
13s sponding GitHub repository.

130 F. Agarose coating and 3D cell culture experiment

140 As described in [42], agarose 4% (w/v) was heated to boiling point, and liquid agarose (2.5mL) was
11 Used to cover the bottom of a high-performance #1.5 6-well plate (Fisher Scientific). This process
142 was repeated for all five wells. While the agarose was still in the liquid phase, we created 5pL of air
13 bubbles on the surface of the agarose using micropipettes. Upon polymerization of agarose, we
1aa discarded the outer layer of the bubble, creating a pocket. Finally, each pocket was filled with 5pL
s Of the cell/Matrigel mixture described in Materials and Methods Section B. Data were acquired on
s days 0, 2, 7 and 14 using a confocal microscope (Nikon ATRHD25).

1z G. TNBC/Cancer-associated fibroblast co-cultures

s TNBC cells of the MDA-MB-231/GFP cell line were suspended in Matrigel, according to the protocol
e described in Materials and Methods sections A and B. Cancer-associated fibroblasts of the cell
150 line IMR-90 (ATCC) labelled with mCherry were introduced to the adjacent space of the cell culture
151 space and settled on the surface surrounding the Matrigel scaffold. Throughout the duration of
152 the experiment (14 days), the fibroblasts invaded the Matrigel scaffold and mixed with cancer cells.
153 Data were acquired on days 0 and 14 using a confocal microscope (Nikon ATRHD25).

1z« H. Mathematical model
Similar to our previous study on the validation of models using 3D cell culture data [42], we used
a system of two Keller-Segel (KS) type equations for cancer cell density and chemotactic agent
density. The spatiotemporal evolution of the cancer cell, v, and chemotactic agent, f, densities
were obtained by the following PDEs:

%=DuV2u+su(1—u)—ku—)(V-[u(l—u)Vf], inQ (1)
of :
E:Dfo, inQ ()
Vu-ii=Vf-i=0,inoQ 3)
u(x, y, z,t = 0) = observed 4)
(, z ) 1, ifu>0
f(x,y,z,t=0)=e\ 00mm/] = )
0, ifu=0

155 where D,, D, are the diffusion constants, s is the growth constant of the cell density, « is the cell
156 death rate in the presence of treatment, and y is the advection constant of the cells. The right-
157 hand side consists of the diffusion terms D,V?u, D,V*f, which represent the random motion of
1ss  the cancer cells and signals, respectively; the growth term su (1 — u), which increases the density of
150 the tumour in a logistic manner; ku is the cell death term in the presence of treatment; and the
160 Nonlinear advection term —yV - [u(1 —u)V f] which represents the biased movement of the cells
161 towards the direction where the gradient of the chemotactic signal density increases. According
162 to the hypothesis of cell aggregation at the bottom (Results E), cells at the bottom secrete signals
163 to stimulate cell migration and aggregation, and these signals diffuse in the 3D space, forming a
1ea gradient from the bottom to the top. Since cell attachment at the bottom was observed during
1es the initial stages of the experiment, we assumed that signal secretion and diffusion occurred at
166 the beginning of the experiment. For simplicity, we incorporated a signal gradient that decreased
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167 exponentially from bottom to top in the Initial Conditions (IC), as shown in (5). In our previous anal-
168 Ysis [42], we found that the signal production term in (2) was insensitive to the produced output;
1o hence, we excluded it from the current model.

We hybridized the KS model using the technique presented in [61, 62]. Specifically, we dis-
cretized (1) using the forward time central differences scheme (FTCS) and the approximations
found in [63]:

uf’ﬂ = ljkP +u’

+

Pl +ul ljkP2+ulj+lkP

P, (6)

i+1,j.k

P +u!  Ps+ul

!j 1.k ij,k+1 ij,k—1

170 Where the grouped terms P, i =0, ..., 6 denote the probabilities of the cells of remaining stationary
in (P,) or moving back (P,), front (P,), left (P,), right (P,), down (Ps), up (F), defined as

P= 6D, dt
o~ dx?

D dt  ydt

P1,2 = W 4dx 2(f1+ljk fi—l,j,k) 7
Dudt xdt @

P3,4 = a2 4dx2 (f1/+lk ff,j—l.k)
D, dt  ydt

P = P + Idx 2(f1/k+l = fijx-1)

172 Since the cells were approximately 15 pm in size and the spatial grid points were 5.2 ym apart,
173 we assumed that each cell occupied three grid points in each direction. To account for this, we
172 modified (6) and (7) by changing the indices that point in a direction to two grid points instead
izs Of one, that is, i+3 instead of i+1. The movement probabilities were then passed to a cellular
176 automaton that updated the position and state of each cell.

177 The cellular automaton (CA) is shown in Supplementary Fig. S.7a. The CA takes into account
17s three cellular states; alive, quiescent, and dead. At every time step, it checks whether a cell can
17e  Undergo spontaneous death, based on the probabilities shown in Supplementary Fig. S.7b, and
1.0 Updates the age of the alive cells. The probability of spontaneous death increased after Day 10.
1.1 This hypothesis is based on increased cell crowding, which results in a potential shortage of nutri-
12 ents or accumulation of metabolic waste products. The CA checks whether any cell has reached
183 the proliferation age determined based on the estimated parameter s (days)~!' of the continuum
1sa  model. We estimated the doubling time from the exponential phase of growth, ¢*, and the result-
185 ing formula, 74ope = In2/s. Considering only the doubling time would cause the cells to divide
186 infinitely, which is not consistent with the logistic growth dynamics. Hence, we introduced the ef-
187 fect of space availability, as well as a spontaneous death probability that reduced cell viability. The
188 probability of spontaneous death was tuned using data obtained from our cell viability assay using
180 flow cytometry (Supplementary Section S.3). For the treatment conditions, the cell death rate k was
100 translated to a cell death probability P, = kdt for each time step of the simulation. The cell-division
102 mechanism algorithm separates into two processes based on the cell position in space. If the cell
102 IS attached to the glass and there is sufficient space, then division will be performed on the glass;
103 Otherwise, the cell divides in any direction of the 3D space if there is sufficient space. However, if
102 there is insufficient space, the cell becomes quiescent. If the cell is not ready to divide, CA turns
15 into @ migration mechanism.

106 The first condition for migration considered an adhesion parameter, and the second is the state
107 Of the cell. The adhesion parameter is the local density, defined as the sum of the densities in the
s Neighbouring positions, i.e., ¥, _ 55 W,k + Ui jns + Ui 44n)- A CEll can migrate if the local density is
100 equal to or greater than the threshold value n, which is related to the number of neighbouring cells.
200 We hypothesized that the number of neighbours required for cell migration would increase over
201 time (Supplementary Fig. S.7b) because the initial cell distribution in 3D space was sparse, hence
202 they could migrate freely to search for other cells to attach. However, as cell clustering occurs
203 due to cell division or cell contact, migration becomes less frequent as the cells become more
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attached to each other. If a cell satisfies these conditions, the algorithm checks its position. If a
cell is settled at the bottom of the space or is connected to a cell located at the bottom, it cannot
migrate; otherwise, the cell can migrate in the 3D space given the moving probabilities P,, ..., P;.
The hybrid model was implemented in CUDA-C/C++ language [64] and the code is uploaded to the
corresponding GitHub repository.

I. Continuum model calibration

The model, M, ((1)-(3)) includes a set of parameters 0§ = {Du,s,;(,Df,r} that are considered un-
known. We used their Probability Density Functions (PDF) and the calculated densities from the
3D cell culture data, 9, to assess the most probable parameter values according to Bayes' rule

PO|D, M) « P(D]0, M)P(6) (8)

where P(6|9, M) is the posterior PDF of the model parameters 0 given the observed data & and
the model M, P(210, M) is the likelihood of the observed data & given the model M and the param-
eters 6, and P(0) is the prior PDF. We assume uninformative, uniform distributions for the model
parameter prior PDFs.

The experimental data consisted of 12 control, and 5 datasets per treatment dose (4 doses).
Each dataset consisted of samples collected at 7 time-points for controls and 5 time-points for the
treatment data. The datasets were assumed to be independent, and the model was evaluated
separately for each dataset. The likelihood was defined as

d d; - 4,(0)
Lo:a =] \1/_exp (—( i 2;1'2( ) > 9)
d

i=1 o,V 2x

where n is the number of spatial grid points, d the density profile of the corresponding sample in
a dataset, d,, ¢, the density values of the experimental sample and the simulation results, respec-
tively, at grid point i, and ¢, is the variance of the distribution of the likelihood.

We used a Transitional Markov Chain Monte Carlo (TMCMC) algorithm implemented in the 14U
package [65]. The TMCMC algorithm iteratively constructs series of intermediate posterior PDFs

P,(012, M) x P(210, MY P(6) (10)

where j = 0,...,m is the index of the Monte Carlo time series (generation index), p; controls the
transition between generations, and 0 < p, < p, < --- < p,, = 1. The intermediate PDFs converge to
the target PDF as generations progress [66] (Supplementary Section S.4). The TMCMC method can
utilize a large number of parallel chains that are evaluated in each Monte Carlo step to obtain a
result close to the true posterior PDF. To evaluate the calibration results, we calculated the Normal-
ized Root Mean Squared Error (NRMSE) (Supplementary Section S.5). As described in our previous
work [42], we used all the time points for the calibration of the continuum model. Validation was
performed using the hybrid (discrete-continuum) model with the spatial statistical measures de-
scribed below. The code for the calibration is available in the corresponding GitHub repository.

J. Spatial analysis

J.1. Complete Spatial Randomness Test of Spatial Cell Distributions

The Complete Spatial Randomness (CSR) test examines whether the observed spatial point pat-
terns, in our case the centroids of the nuclei, can be described by a uniform random distribution
[67]. The CSR test was implemented using Ripley’s K-function and the spatstat [68] package in R
[69]. The K-function [70] is defined as the ratio between the number of the events, i.e. locations
of points, j within a distance 7 from the event i, over the total number of events N, in the studied
volume vV

K@) = i Y 1@, <0, 10=1 o =true (11)

T iR 0, otherwise
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where 1 = N/V denotes the average density of events N in the studied volume v, d;; isthe distance
between events i and j, and ¢ is the search radius. The K-function was calculated for all datasets
and compared against complete spatial randomness following a Poisson process K(r) = 4z#3/3
[70] for three spatial dimensions. Isotropic edge correction was applied in the calculation of the
K-function. The volume used for the calculation was the same as that used in the simulations, i.e.,
2.5 x2.5x0.917 mm3. To assess the uncertainty of the random variable K, we produced a CSR
envelope by generating 100 random distributions and calculating the K-function for each distribu-
tion. The envelope was created by keeping the minimum and maximum values of the resulting K
values. A substantial upward separation of the observed K-function from the theoretical random
K-function denotes clustered patterns, and downward separation denotes dispersed patterns [67].
Both separation types suggest non-randomness of the examined spatial distributions.

J.2. Characterization of the Spatial Cell Distributions

The inter-nucleic (IN) Distance Distribution for a given sample was calculated using pairwise Euclidean
distances between all nuclei. Given two nuclei i and j with centroid positions p;, = (x;,y,,z;) and
p; = (x;,¥;, z;) respectively, their pairwise Euclidean distance is given by

D, = \/(x,. —x )2+ =y )P+ (=P = 1N, i#) (12)

where N denotes the total number of nuclei.

The Nearest-Neighbour (NN) Distance Distribution for a given sample was calculated using the
distances between the nearest neighbours of the nuclei. The nearest neighbour distance for a
given nucleus i is given by the minimum IN Distance between the nucleus i and all the other nuclei
of the sample, i.e. D, =min, ;{D;}, j € [1,N], j #1i.

Comparisons between in vitro and in silico IN and NN distance distributions were performed
using the cosine similarity test [71] in MATLAB [46]. The code for the spatial analysis is available in
the corresponding GitHub repository.

3. Results

In this section, we first present the effect of Paclitaxel on the inhibition of migration as well as
the transcriptomic profile of the cells. We then proceed to formulate the hypothesis of migration,
and we examine its validity using Bayesian inference, spatial analysis, as well as data from further
experiments including agarose coating of the glass bottom and the introduction of fibroblasts in
the 3D culture.

A. Ruling out the possibility of gravity-induced migration

Cancer cell migration can be classified into two general categories; active and passive [72]. Passive
migration is defined as the process in which cells migrate without the presence of active mecha-
nisms, i.e. without mechanisms leading to the extension/contraction of the cell which eventually
move the cell [72]. Initially, we hypothesized that gravity could be a major contributor to passive
migration in our 3D experimental setup. To examine this hypothesis, we deactivated any potential
active migration mechanisms by targeting the cell cytoskeleton with Paclitaxel. Paclitaxel has been
considered as a migrastatic drug as it inhibits microtubule assembly, in turn, arresting cell division
and migration [73]. The resulting cell distributions across different culture heights are shown in
Fig. 1b, and Supplementary Fig. S.1 and S.2. These show that sedimentation was inhibited for the
three highest administered doses compared to the controls. At the lowest dose, the cells contin-
ued to accumulate at the bottom of the space, likely to insufficient damage to the cytoskeleton. In
conclusion, the cells of the treated samples maintained their initial position, suggesting that gravity
was not the main reason for cell sedimentation.
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B. ECM compression is not sufficient for cell sedimentation

Another possible reason that may lead to cell sedimentation is the collapse or gradual compression
of the Matrigel™ ECM, which may occur over the course of the experiment. The ECM scaffolds in
the treated and untreated samples had the same dimensions, and the initial number of cells was
approximately the same. In presence of compression we would observe sedimentation in both
treated and untreated samples. The observed cell height patterns in Fig. 1b, and Supplementary
Fig. S.1 and S.2 suggest that ECM compression may have occurred; however, compression is an

Control

[
=
i
S
=]
=)

0.0005M

time (days)

norm.count

cou norm.count
L 1.00
value 8 || ]
P 2 0.75 075
e 075 5
s 050 ° 0.50 0.50
025 [ 025

Controls|

c1 C2  Pac0.0005 Pac0.005 Pac0.05 Pacos
Day2 Day4 Day 4
-

0.0005uM

Day2 Days Day4

Controls ~ Treatment (—9e2—)

increa;

(c) (d)

Figure 1. Investigation of migration mechanisms (a) Schematic representation of 3D cultures (center). The cells were uniformly distributed
across the semi-ellipsoid on day 0 and actively migrated towards the glass bottom on day 14 (right panel). The examined hypotheses include
passive and active migration mechanisms (left). (b) Cell distribution across different cell culture heights on days 0 and 14 in the presence (four
different doses) and absence of Paclitaxel. Migration was inhibited for the three highest Paclitaxel doses, ruling out the possibility of passive
migration. The glass bottom is located at z=Opm. (c) (left) Cellular anatogram relating the gene expression activity to the corresponding cellular
components. (right) Genes related to actin filaments, protein secretion, focal adhesion sites, and plasma membrane exhibited a monotonic
decrease in their expression with respect to Paclitaxel dose. These cellular components are also involved in cell migration. (d) TGF-(3 (left) and
MAPK (right) signalling pathways were downregulated as a function of the Paclitaxel dose. The two columns per condition belong to the two
corresponding replicates. The inhibition of migration in combination with the downregulation of these pathways suggests that collective cell
migration is more likely to occur than individual cell migration (i.e., epithelial-to-mesenchymal transition (EMT); Supplementary Fig. S.4).

C. Transcriptomic analysis provides evidence of active migration

We investigated the presence of active migration by investigating the gene expression profiles of
the cells in the control samples and samples treated with Paclitaxel. The bulk RNA was extracted
at two time points (Days 2 and 4) for the untreated cells and at one time point (Day 4) for the
treated cells. Analysis of the RNA-seq data (summarized in Supplementary Fig. S.3, and Materials
and Methods Sections D, E) suggests that the untreated samples exhibited upregulated expression
levels of genes related to active migration, including actin filaments, focal adhesion sites, plasma
membrane, and protein secretion. The cellular anatogram in Fig. 1c (left) shows the expression of
these genes at the corresponding sites of the cell. The heatmap of Fig. 1c (right) shows that the
expression levels of these genes remained highly similar between the untreated samples on days
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2 and 4 (C1, C2 respectively) and tended to decrease as the Paclitaxel dose increased (from left to
right).

D. Collective migration is a more plausible mechanism than individual migration
We next investigate the type of active migration occurring in untreated samples. Generally, active
migration can be divided into two categories; individual and collective [74]. Individual cell migration
is known to be regulated by epithelial-to-mesenchymal transition (EMT) [74], whereas collective
migration is a more complex process that involves molecular mechanisms related to adherens
junctions (A)), MAP kinase (MAPK), and TGF-f3 signalling pathways [75]. To elucidate the migration
type, we isolated the expression levels of genes related to individual (EMT) and collective (A, MAPK,
and TGF-B) migration. The results presented in Supplementary Fig S.5 show no distinct pattern for
EMT between treated and untreated samples, suggesting that the EMT pathway was not affected
by Paclitaxel. However, we observed the upregulation of protein-coding genes involved in MAPK
and TGF-B (Fig. 1d) and over-representation of the AJ (Supplementary Fig. S.5) in the untreated
samples, suggesting the presence of collective migration.

E. The role of the glass surface and a mechanistic interpretation of cell migration
Based on results described above, cell sedimentation is more likely to be attributed to active and
collective migration. Recently, Friedl et al. [75] reported that cells migrating collectively can be sep-
arated into leaders and followers. Leader cells orient and move based on stimuli such as soluble
factors (e.g., TGF-B). These stimuli then induce MAPK signaling and downstream Rac1 for pro-
trusion formation and direction sensing. Leader cell polarity is further supported by AJ signaling,
which controls leader cell polarization and anterior protrusion.
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Figure 2. Schematic representation of the hypothesis of signal induced migration towards the bottom of the
space. Cells from the initial stages of the experiment that are close to the bottom attach to it and secrete
signals to stimulate aggregation. Signal diffusion in the 3D space forms a gradient that decreases from the
bottom to the top. Floating cells orient and migrate towards the direction of increased signal concentration.

Acknowledging that leader cells move based on signals such as TGF-f, it is worth questioning
the source of these signals. It should be noted that MDA-MB-231 cells are naturally adherent [76],
and they were initially uniformly distributed in the 3D space, i.e., some of them are close to the
glass bottom space. Based on these observations, we hypothesized that, first, the cells closer to
the bottom attach to the glass, which is a favorable space for colony formation owing to its ad-
hesiveness. Second, the cells attached to the glass secrete signals such as TGF-f3 to stimulate cell
migration and aggregation due to their sparse distribution in the space. Third, these signals diffuse
in 3D space, forming a gradient from the bottom to the top of the space. Fourth, the cells floating
in the 3D ECM may have already formed clusters, due to, for example, cell division or approaching
their closest neighbours. These clusters sense the gradient and organize themselves into leaders
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and followers. Finally, the clusters move towards the direction of the increase in the signal density.
Thus, we attributed this sedimentation phenomenon to a self-generated chemoattractant gradient
produced by the cells to indicate a favorable site of colonization, as summarized in Fig. 2.

F. Mathematical modeling of cellular dynamics

We formulated the active migration hypothesis described above into a hybrid (discrete-continuum)
2-level spatiotemporal model. The model quantifies the spatial cancer cell density profiles, 4, and
chemoattractant factors, f, using a system of PDEs and a cellular automaton (Material and Meth-
ods Section H, Supplementary Section S.2). It takes into account the random motion of cancer cells
and chemotactic signals, growth of cancer cell density, and migration of cells towards the direction
in which the signals increase. For simplicity, we assumed that the gradient was formed during the
initial stages of development; hence, we implemented a gradient, decreasing from bottom to top,
as the initial signal concentration profile.

Day 2 Day 14 - Control

Day 14 - 0.0005 pM Day 14 - 0.005 M

8.50-04]

4.00-03

Day 14 - 0.05 uM Day 14 - 0.5 uM
9 12 14

T 10003
time-point (day)

(2) (b)

Figure 3. Continuum model calibration. (a) Posterior marginal distributions of the estimated model
parameters for the examined experimental conditions. The NRMSE values for these conditions (bottom right)
suggest overall low errors for all conditions, with the model yielding overall higher errors for the
non-treatment condition during cell aggregation. (b) Surface plots of the in vitro and in silico density profiles
for representative datasets on days 2 and 14. Paclitaxel was administered on day 5; hence, day 2 was not
affected by treatment, while on day 14, we observed a difference in the spatial cell density distributions
across the non-treatment and treatment conditions. The distributions remained relatively constant for the
three highest doses because cell migration was inhibited, while for the lowest dose and control conditions.
the distribution changed due to cell sedimentation.

To examine the validity of the proposed model, we initially estimated the parameters of the con-
tinuum model with respect to experimental data using Bayesian inference (Materials and Methods
Section |, Supplementary Section S.4). For a given parameter set, the resulting cell density profiles
were compared with the in vitro estimated cell density profiles of a dataset. This process was ap-
plied to each of the 32 datasets separately (12 untreated and 5 datasets for each administered dose
of Paclitaxel). Each dataset consisted of seven samples on days 0, 2, 5, 7, 9, 12, and 14. Approx-
imately 20000 different sets of model parameters were assessed using the Transitional Markov
Chain Monte Carlo (TMCMC) method for each of the 32 datasets. The parameters affected by Pacli-
taxel were mostly k, D,, y. The first parameter is related to cell death, and the rest are related to
the kinetics of the cell, specifically random motion and biased movement. We assumed that the pa-
rameters s, D, were not affected by the treatment. The former, s, was offset by the cell death rate,
k, and the latter because of the assumption that preexisting signals were not affected by the treat-
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ment. The affected parameters were calibrated within broad boundaries, whereas the unaffected
parameters were calibrated within the average + standard deviation obtained from controls. The
resulting marginal posterior distributions of the model parameters are presented in Fig. 3a. The
affected parameters for cell movement (D,, y) tended to decrease as the dose increased, while the
cell death rate (k) increased with respect to the dose. The density plots of Fig. 3b show an overall
agreement between experimental data and simulations obtained from the calibrated model. The
calculated Normalized Root Mean Squared Error (NRMSE) (Supplementary Section S.5) for the most
probable values of the parameters (Fig. 3, bottom right) suggested an NRMSE value around 5% for
each time point for the treatment datasets. The NRMSE values were higher for the later stages of
the control datasets; however, they remained within reasonable levels.

The estimated model parameters were subsequently used in the hybrid model (Fig. 4) for each
dataset. The resulting in silico cellular coordinates were analysed and compared with the corre-
sponding in vitro coordinates of the centroids from the segmented fluorescent nuclei of the cells.
The insilico cells reproduced the overall behaviour of the in vitro cells for each of the examined con-
ditions in terms of both spatial profiles (Fig. 4a, 4c), and longitudinal population size (Fig. 4b). The
quantitative characterization of their spatial distributions was performed using their inter-nucleic
(IN) and nearest neighbor (NN) Euclidean distances, as well as the Complete Spatial Randomness
(CSR) test using Ripley's K-function. The IN distances were stable across samples and time, with a
characteristic peak at ~ 1mm (Supplementary Fig. S.10). The NN distances were initially widely dis-
tributed in the control samples (Supplementary Fig. S.11), and tended to become narrower at later
stages with a characteristic peak found at ~ 15um, which is approximately equal to the cell size. As
the treatment dose increased, the NN distribution became wider (Fig. 4d), indicating that the spa-
tial distributions became sparser. Similar results were obtained from the simulated data. However,
the width of the distributions produced by the simulated data remained similar across the different
doses and the characteristic peak was shifted towards larger values. This also indicates an increase
in the sparsity of the spatial distributions, but in a more uniform manner compared to the exper-
imental observations. The CSR test shows an upward separation from the theoretical uniform
random distribution, indicating the presence of clustered patterns (Fig. 4e). The control samples
yielded clustered patterns that became more pronounced with respect to time (Supplementary
Section S.6, Fig. S.9a), possibly due to the reduction in the 3rd dimension during aggregation at
the bottom. The clustered patterns in the treatment datasets became more pronounced with in-
creasing dose and time. Additionally, a more pronounced dispersion for larger neighbourhood
radii was observed in these data with respect to both dose and time. Combining these two obser-
vations, we conclude that these patterns were possibly due to the radial and symmetric shrinkage
of the distributions, with clusters appearing in their cores.

G. The effect of the glass on cell migration

To further examine the validity of our cell migration hypothesis, we performed an additional 3D cell
culture experiment in which we coated the glass bottom with a non-adhesive material. Specifically,
we applied agarose coating on the surface of the glass and deposited the cell/Matrigel mixture in
pockets of air on the surface of the agarose (Fig. 5a). In total, ten samples were created and tracked
on days 0 and 14. The results shown in Fig. 5b show that the cells overall maintained their position
as compared to the results obtained from the control experiment shown in Fig. 5c. Additionally,
we observed reduced cell viability compared to the control experiment (Supplementary Fig. S.6),
which could be attributed to the absence of adhesiveness in the surrounding environment.

H. Fibroblasts surrounding the Matrigel scaffold antagonize biased migration sig-
nalling

To further examine the hypothesis of signal-induced migration, we performed an additional exper-

iment that included fibroblasts. Specifically, we suspended fibroblasts in the area surrounding the

Matrigel scaffolds. Over time, the fibroblasts attached to the periphery of the Matrigel scaffolds
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Figure 4. Hybrid modelling results and spatial analysis. (a) 3D plots of cell locations on day 14 for the control and treatment conditions. (b)
Predicted and experimentally observed cell numbers. The total cell population tended to decrease with increasing doses. (c) Histograms of the
proportion of cells as a function of position in the culture across time for the experimental (top row) and simulated (bottom row) data,
respectively. (d) Nearest Neighbour distances across the examined conditions with respect to time, for the experimental and simulated data. (e)
Complete Spatial Randomness test; average values of the K-function across all samples and the corresponding standard error of mean (SEM).
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Figure 5. Coating of the glass bottom with agarose. (a) Schematic representation of the experimental
procedure. The gray area represents the agarose deposited on the glass surface. The white disks denote the
air bubbles injected to create pockets, the second row represents the removal of the inflated agarose surface,
and the blue disks represent the cell/Matrigel mixture deposited on the pockets of the polymerized agarose.
(b) Violin plots of the distribution of cells across the z-dimension of the cell culture for days 0 and 14 of the
agarose coating experiment. Cell positions were overall maintained throughout the course of the experiment.
(c) Boxplots of the cell distributions across the z-dimension of the control and the agarose coating
experiments for day 14. The three asterisks denote p-value < 1073 that was calculated using the
Kruskal-Wallis test between the two distributions.

and exhibited some level of invasion in the Matrigel (Fig. 6a, 6b). The hypothesis behind this exper-
iment is that fibroblasts would induce signals that would bias the migration of cancer cells towards
them; in turn, some of the floating cells would move and eventually mix with the fibroblasts that
surrounded the scaffolds, while others would move towards the bottom. The results shown in
Fig. 6¢ confirm this hypothesis and showed that cancer cells maintained elevated positions in the
presence of fibroblasts, as compared to the controls.

4. Discussion

We used a combination of 3D cultures and mathematical modeling to characterize cell sedimen-
tation. Our results suggest that this somewhat unexpected behavior is due to active migration
regulated by signalling gradients created by the cells that were already attached to the bottom.

600
Ak

400 g

2

N 200 2

T
—— ==

Co-culture Control

(c)

Figure 6. TNBC cells and fibroblasts co-culture. Fibroblasts were suspended in the area surrounding the
Matrigel. Cancer cells (green) and fibroblasts (magenta) were mixed at (a) the bottom of the space and (b) at
195 pm height. (c) Boxplots of cancer cell distribution across different culture heights for the co-culture and
cancer cell monoculture for day 14. The three asterisks denote p-value < 1073 that was calculated using the
Kruskal-Wallis test between the two distributions.

A. 3D cell culture system, migration inhibition, and molecular mechanisms

The 3D cell culture system involved deposition of a cell/Matrigel mixture on glass bottom plates.
The cells were initially uniformly distributed in 3D space and gradually accumulated at the bot-
tom of the plate throughout the course of the experiment. Somewhat surprisingly, there is limited
literature discussing this phenomenon. In a recent study, Liu et al. [44] observed the same phe-
nomenon, interpreting it as the result of cells moving towards the path of least resistance. In ECM,
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206 the path of least resistance can be interpreted as a path with pores large enough to allow a cell
207 to move without the need for compression [77]. Here, we should note that we do not expect ma-
208 jor differences in the pore size across the 3D scaffold that would bias cell migration in a specific
a0 direction. Additionally, the assumption made by Liu et al. [44] is in disagreement with other obser-
a0 vations showing that cells tend to move towards the direction of greater matrix stiffness, termed
a1 durotactic movement [78], which may also be combined with chemotaxis in the examined setup.
212 Nevertheless, we expected a local change in ECM stiffness induced by cell contractility [7]; however,
a1z this change is expected to be restored at approximately 20 pm distance from an MDA-MB-231 cell
a4 in @ Matrigel ECM based on [7]. Additional experiments have shown that cells can polarize and
a1s  Migrate based on the alignment of ECM fibers [5], a movement referred to as contact guidance.
a6 However, we did not expect any strong fiber alignment that can influence cell migration, as Ma-
a1z trigel fibers tend to polymerize in random directions.

a18 To determine the presence of active or passive migration, we repeated the same experimental
a1 procedure and introduced Paclitaxel on day 5, when accumulation started to become apparent.
420 Studies have classified Paclitaxel as a migration inhibitor [73] as it inhibits microtubule assembly,
a1 subsequently preventing cell division and migration. The administered doses did not eliminate
a2 the cells over the experiment time course, while three out of four doses inhibited cell migration
«23  and cell accumulation at the bottom. Therefore, we ruled out the possibility of gravity-induced
424 Migration or accumulation due to ECM compression. Additionally, to further test the presence of
425 active migration, we performed a bulk RNA-seq experiment using the same experimental setup
26 and compared the expression profiles between non-treated and Paclitaxel-treated samples. The
427 results revealed an increased expression of genes related to the mechanisms of active migration
s2s  inthe non-treated samples. Specifically, we found that cells were more likely to migrate collectively
420 than individually.

0 B. Modelling cancer growth and aggregation at the bottom of the space

«a1 The evidence on collective migration led us to hypothesize that cells move based on cues that
432 specifically originate from the bottom of the space. Since the glass surface cannot secrete signals,
233 we hypothesized that the source of these signals was the cells attached to the bottom, and the
a3a result of this secretion was to stimulate aggregation. To examine the biophysical mechanisms of
a5 spatiotemporal cancer development and cell sedimentation, we formulated this hypothesis using
a36  a hybrid discrete-continuum mathematical model. The calibration process was performed on the
a3z continuum part of the model using Bayesian inference and the TMCMC algorithm. The results
a3s  showed an overall good agreement between the experiments and simulations, with the simula-
430 tionresults reproducing cell aggregation at the bottom under non-treatment conditions, cell death,
420 and migration inhibition in the presence of treatment. The calibrated parameters were then trans-
a1 ferred to the full HDC model, which provided details regarding the location of the cells. The results
a2 of the HDC model were validated using spatial point-pattern analysis techniques, which revealed
a3 information on the spatial organization of cells in both experiments and simulations.

s C. Spatial patterns and mechanisms

aas  Spatial point-pattern analysis revealed clustered patterns across the examined conditions that be-
a6 Came more pronounced with respect to time (Fig. 4e). These patterns, even though they appeared
4z similar, were the result of different mechanisms. First, we should note that these clustered pat-
s terns appeared because of the initial culture geometry. For the control datasets, more pronounced
a0 Clustering across time was observed mainly because of the biased migration that resulted in cell
ss0  aggregation at the bottom. The mechanism underlying this process is the advection term. As
ss1 shown in Supplementary Fig. S.12, we demonstrated that a set of parameters corresponding to
«s2  high diffusion and low advection produces less pronounced clustered patterns compared to a set
a3 corresponding to low diffusion and high advection. However, the pronounced clustering observed
ssa  inthetreatment data was not due to migration, but due to the shrinkage of the spatial distributions.
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Specifically, for the experiments, we found that the clustered patterns became more pronounced
with respect to both time and dosage. This result contradicts the simulation results, which showed
the opposite. This led us to conclude that pronounced clustering may have emerged from radial
cell death in the spatial distributions, possibly due to diffusion of the drug in the Matrigel that may
have produced concentration gradients. In contrast, the model assumed a uniform concentration
of the drug across the space; hence, there was no cell-killing bias with respect to the location of
the cells in the space. Additional simulations using a radius-dependent drug concentration con-
firmed that clustering increased in the presence of a drug concentration gradient (Supplementary
Section S.6, Fig. S.9).

D. The importance of attachment sites in cell growth and migration

The examined hypothesis states that cells closer to the glass bottom attach to it and secrete signals
enabling floating cells to migrate. To further examine this hypothesis, we performed additional ex-
periments in which we covered the glass bottom with a non-adhesive material (agarose). Agarose
is a biocompatible biopolymer with a poor ability to promote cell attachment owing to its low ad-
hesiveness [79]. The results shown in Fig. 5 showed that the cells tended to maintain their initial
positions, confirming the hypothesis that the adhesive properties of the glass bottom affected cell
migration. Additionally, we observed reduced cell viability in the coated samples, which can be
attributed to the low degree of attachment between the cells and the surrounding material. Other
studies have also shown that monolayers cultured in agarose-treated plates exhibit reduced pro-
liferation or viability compared to other materials such as Matrigel [80, 81]. This in turn implies
that cell clustering is important to maintain cell viability and that cell-surface attachment is also a
major contributor in cell viability.

In contrast with the previous experiment, the presence of fibroblasts induced migration signals
and increased adhesion leading to cell-fibroblast mixing across the outer surface of the Matrigel
scaffolds. In turn, the cancer cells exhibited less pronounced migration towards the bottom and
maintained elevated positions in the 3D space (Fig. 6). Other studies have also shown that the pres-
ence of fibroblasts in 3D cancer cell cultures results in more compact spheroids as well as altered
intercellular signalling and gene expression, leading to altered cell proliferation and migration [43,
82-84].

E. Semi-ellipsoids as a 3D migration assay

Over the years, wound healing assays have become the standard protocol for examining in vitro
cell kinetics under certain conditions. Wound healing assays typically include monolayers of ad-
herent cells in which a cell-free gap is created, and the gap is closed by the adjacent cells. The
current experimental setup presents many similarities to the wound healing assay, except that
cells are initially cultured in 3D and migrate towards the bottom. In addition, in the present study,
we showed that under certain conditions, for example, the presence of a migrastatic drug or non-
adhesive surface the cells stopped migrating. This would also be the case for conventional wound-
healing assays. However, our 3D experimental setup presents some advantages compared with
the wound healing assay. First, the introduction of the 3rd dimension may present significant alter-
ations in the behaviour of the cells, such as cytotoxicity, growth, and related biochemical processes,
while the histological and molecular features of in vitro 3D spheroids exhibit more similarities with
xenografts than conventional 2D monolayers [43, 85-88]. Second, the initial uniform and sparse
distribution of the cells in 3D space allows not only the observation of sedimentation, but also
additional phenomena that occur during the culture, such as cell division and cluster formation.
In addition to these advantages, the setup is easy to construct, the experimental process is rel-
atively short, and allows for a large number of replicates - in the present study we generated 5
and 12 replicates per time-point, for each experiment. More importantly, quantification of cell
behaviour can be achieved with the use of mathematical models and spatial analysis techniques,
as done herein. In conclusion, the presented methodology presents many advances compared
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to standard monolayer protocols, and can be expanded to the study of many different biological
mechanisms.

5. Conclusions

We examined cell sedimentation in 3D cancer cell cultures. The introduction of the migrastatic drug
Paclitaxel inhibited this sedimentation, suggesting that active migration mechanisms are involved
in sedimentation. Furthermore, RNA-seq analysis showed that cancer cells were more likely to
migrate towards the bottom in a collective manner than individually. Based on this evidence, we
formulated a hypothesis stating that cells floating in 3D migrate due to signals produced by cells
already located at the bottom of the space. Mathematical modelling of this hypothesis validated
the experimental observations and provided insights into the mechanisms and spatial organiza-
tion of the cells. To further validate this hypothesis of aggregation due to the presence of adhesive
areas, we coated the glass bottom with agarose to prevent cell adhesion, resulting in the absence
of sedimentation. Additionally, to further validate the hypothesis of migration due to signaling,
we introduced fibroblasts to the surrounding area of the Matrigel scaffold, which resulted in both
sedimentation and maintenance of clusters in 3D space. Overall, the examined 3D culture setting
provided important insights into the behaviour of cancer cells, and revealed that TNBC cells tend
to move towards areas of increased adhesion. The proposed mathematical modelling approach
enabled us to characterize the mechanisms and spatial organization of cell growth. Future exten-
sions of the present work may include the expansion of this framework to other types of cells, e.g.
cancer cells co-cultured with immune cells, and the examination of different drug/dose schemes
for the optimization of drug efficacy in terms of both cell growth and migration, as well as the effect
of drug resistance and its relationship with cell migration.
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