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Abstract10

Cell sedimentation in 3D hydrogel cultures refers to the vertical migration of cells towards the11

bottom of the space. To explain this poorly understood phenomenon, we conducted a multiscale12

experimental and mathematical examination of 3D cancer growth in triple negative breast cancer13

cells. Migration was examined in the presence and absence of Paclitaxel, in high and low14

adhesion environments and in the presence of fibroblasts. The observed behaviour was modeled15

by hypothesizing active migration due to self-generated chemotactic gradients. Our results16

confirmed this hypothesis, whereby migration was regulated by the MAPK and TGF-β pathways.17

The mathematical model enabled us to describe the experimental data in absence (normalized18

error< 40%) and presence of Paclitaxel (normalized error< 10%), suggesting inhibition of random19

motion and advection in the latter case. Inhibition of sedimentation in low adhesion and20

co-culture experiments further supported the conclusion that cells actively migrated downwards21

due to the presence of signals produced by cells already attached to the adhesive glass surface.22

Keywords: cell sedimentation | 3D cultures | multiscale models | cell migration | adhesion23

24

1. Introduction25

The use of 3D culture techniques in cancer research yields significant potential as these cultures26

have providedmore realistic conditions of cancer growth in terms ofmorphology, gene expression,27

related biochemical processes, and altered drug toxicity compared to conventional 2D cultures.28

Current research on biomaterials [1, 2] on the surrounding environment of tumours, as well as29

bioprinting techniques [3] has enabled researchers to study various phenomena accompanying30

cancer growth, such as cellular aggregation, migration, and tissue expansion, alongwith the impact31

of the composition and geometry of the extracellular matrix (ECM) [4–7].32

Furthermore, the in silico investigation of cancer growth using mathematical models allows33

for testing a wide array of scientific hypotheses at a considerably lower cost than biological ex-34

periments [8]. In this context, spatiotemporal models of cancer growth can be divided into three35

general categories; discrete (e.g., agent-based models), continuum (Partial Differential Equations,36

PDEs), and hybrid models [9]. Discrete models can provide information on individual cell pro-37

cesses and tissue microarchitecture [10]. Continuum models have been widely used to describe38
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the macroscopic aspects of tumour growth, albeit lacking experimental validation in many cases39

[11]. More recently, they have been used to achieve a more detailed quantitative description of40

the macroscopic characteristics of spatiotemporal cancer growth and its response to therapy un-41

der both in vitro [12–15] and in vivo conditions [16–22]. Hybrid models attempt to provide a mul-42

tiscale description of cancer growth by incorporating both continuous and discrete variables [23,43

24]. Tweedy et al. [25, 26] utilized experiments and hybrid discrete-continuum (HDC) models of44

chemotactic migration to investigate the role of self-generated chemotactic gradients in cancer45

migration.46

Although there is growing literature on spatiotemporal models of cancer, their validation us-47

ing experimental data is still relatively limited, yet important for quantitatively describing cancer-48

related mechanisms [27–35]. Model validation in cancer has previously been investigated in both49

forecasting [27, 36] and exploratory studies [37–41] of cancer growth using ODEs and PDEs. Re-50

cently, we also expanded validation to hybrid models using an integrated experimental and com-51

putational framework for the calibration and validation of hybrid models with 3D cell culture data52

using Bayesian inference and spatial statistical analysis techniques [42]. This framework enabled53

us to validate multiscale models using an efficient scale splitting technique that allows the preser-54

vation of data points for both calibration and validation.55

In the present study, we focused on cell sedimentation in 3D cultures. We aimed to provide56

mechanistic explanations for its occurrence using an integratedmulti-scale experimental andmath-57

ematical modelling approach. Sedimentation is defined as the phenomenon of cell migration to-58

wards the bottom of the culture space. It is generally undesirable because it alters the behaviour of59

the cells turning from3D to 2D phenotypes [43], resulting in an early termination of the experiment60

or the need for alteration of hydrogel stiffness. This phenomenon has been previously observed61

by [44] and interpreted as the result of cells moving towards the path of least resistance. In our re-62

cent study [42], we concluded that a self-generated chemotactic gradient mechanism of migration63

towards adhesion sites may also be plausible. Here, we provide a comprehensive experimental64

and mathematical examination of this hypothesis in 3D cultures of triple-negative breast cancer65

(TNBC) cells. Specifically, we examined the role of active and passive migration mechanisms, their66

relation to the gene expression profiles of the cells using bulk RNA-seq data at various time-points67

and during paclitaxel treatment, the validity of the self-generated chemotactic gradient hypothesis,68

and the importance of adhesion sites.69

2. Materials & Methods70

A. Cell preparation71

Triple-negative breast cancer (TNBC) cells from the MDA-MB-231 cell line (ATCC) with nuclear GFP72

(histone transfection) were thawed and cultured at 5% CO2 and 37 °C in DMEM (Gibco) at pH 7.273

supplemented with 10% fetal bovine serum (Wisent Bioproducts), 100 U/mL penicillin, 100 μg/mL74

streptomycin, and 0.25 μg/mL amphotericin B (Sigma) in T-75 flasks (Corning). The cells were pas-75

saged before reaching 85% confluence. Three passages were performed before the 3D cultures;76

cells were rinsed twice with DPBS and trypsin-EDTA (0.25%-1X, Gibco) was used to harvest them.77

The MDA-MB-231 cell line was validated with short tandem repeat (STR) analysis [2].78

B. 3D cell cultures79

A cell-Matrigel (Corning) suspension was created using 2 mL of Matrigel (4 °C) and 5 × 104 MDA-80

MB-231/GFP cells. Droplets of a 5 μL cell-Matrigel mixture were manually deposited onto a high-81

performance #1.5 glass-bottom 6-well plate (0.170±0.005 mm) (Fisher Scientific). The datasets82

were separated into non-treatment and treatment groups. The datasets representing treatment83

conditions were administered with Paclitaxel on the 5th day of the experiment. The administered84

doses were 0.5 μM, 0.05 μM, 0.005 μM, and 0.0005 μM. In total, 32 datasets were generated, in-85

cluding 12 biological control replicates and 5 biological replicates for each dose. Each of these86
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samples were monitored using confocal microscopy on days 0, 2, 5, 7, 9, 12, and 14. To assess the87

reproducibility of our results, we performed the control experiments in two independent sessions,88

and in both sessions sedimentation occurred. The data are publicly available in the corresponding89

FigShare repository.90

C. Imaging and Data preparation91

Data acquisition was performed every 2-3 days for a total of 15 days using a confocal microscope92

(Nikon A1R HD25), coupled with a cell culture chamber. The dimensions of the 3D cultures were93

approximately 2.5×2.5×0.9 mm3. Cell localization was made possible by the presence of GFP flu-94

orophore in the cell nuclei. Fluorescent nuclei were segmented using the image processing and95

segmentation pipeline described in [45]. The pipeline was implemented in MATLAB [46] and im-96

ageJ [47] and is publicly available in the GitHub repository of the present study. The segmented97

nuclei were then mapped to a 3D Cartesian space by detecting their centroid locations using a98

26-connected neighbourhood tracing algorithm implemented in MATLAB [46]. The final step was99

the calculation of the spatial density profiles of the cells represented by their centroids using Ker-100

nel Density estimation via the diffusion method [48]. Density calculations were performed using a101

grid of size 167 × 167 × 61, such that each cell occupied approximately one grid point. The density102

matrices were linearly interpolated tomatch the spatial grid size of the simulations (480×480×176).103

D. RNA-seq experiment104

We repeated the same experimental procedure described in Materials and Methods sections A, B,105

increasing the number of cells and the Matrigel volume to achieve the threshold of 500k cells re-106

quired for the sequencer. The following protocol was implemented for each cell/Matrigel sample.107

Fresh cell culture media were warmed at 37°C and supplemented with collagenase and dispase108

1X (Sigma Aldrich, Cat. # 11097113001). Micropipettes were used to break down the cell-laden109

Matrigel constructs using suction force, and these were incubated for 30 min in a cell culture in-110

cubator (95% relative humidity, 37°C, and 5% CO2). The cells were centrifuged at 300 g for 5 min111

and the supernatant was discarded. The cells were resuspended in TRIzol (Fisher Scientific) with112

a 3:1 ratio of sample volume. The samples were frozen at -80°C. The RNeasy Plus Universal Mini113

Kit (QIAGEN) was used to extract total RNA from the QIA cube Connect, according to the manufac-114

turer’s instructions. Library preparation construction and sequencing were carried out at Génome115

Québec using the Illumina NovaSeq 6000 platform, and paired-end reads (PE100) were produced.116

The RNA-seq experiment consisted of 24 samples in total. For the non-treatment conditions, the117

samples were extracted from days 2 and 4with 2 biological replicates for each time-point. For each118

dose, the samples were isolated in day 4 with 2 biological replicates for each dose (0.5 μM, 0.05119

μM, 0.005 μM, and 0.0005 μM), respectively. The data are publicly available in Gene Expression120

Omnibus (GEO) at GSE223350.121

E. Transcriptomic analysis122

The pipeline for the transcriptomic analysis is presented in Supplementary Fig. S3. Adapter se-123

quences and lowquality baseswere removedusing Trimmomatic (v.0.39) [49]. Readswere scanned124

and truncated when the average quality of the three-nucleotide sliding window fell below a thresh-125

old of 3. Short readswere discarded after trimming (<36 bp). Quality controlmetrics were obtained126

using FASTQC (v.0.11.9) [50] and SAMtools (v.1.10) [51]. The reads were aligned to the reference127

genome hg19 (GRCh37) [52] using STAR (v.2.7.5) [53], and only uniquely aligned reads were re-128

tained. Gene expression levels were calculated by quantifying uniquely mapped reads mapped129

to exonic regions (n = 63,568 genes) using Rsubread (v.2.4.2) [54]. Both normalization and dif-130

ferential expression analyses were performed using DESeq2 (v.1.30.1) [55]. The results obtained131

from the differential gene expression analysis across treatment and non-treatment conditions132

were filtered using the independent hypothesis weighting method (v.1.18.0) [56]. Gene Ontology133

over-representation tests and gene set enrichment analysis were performed using ClusterProfiler134
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(v.3.18.1) [57]. Finally, gene expression localization was performed using OncoEnrichR (v.1.4.0) [58]135

and the ComPPI database (v.2.1.1) [59]. The cellular anatogram in Fig. 1c, was generated using136

gganatogram (v.1.1.1) [60]. The code for the transcriptomic analysis can be found in the corre-137

sponding GitHub repository.138

F. Agarose coating and 3D cell culture experiment139

As described in [42], agarose 4% (w/v) was heated to boiling point, and liquid agarose (2.5mL) was140

used to cover the bottom of a high-performance #1.5 6-well plate (Fisher Scientific). This process141

was repeated for all five wells. While the agarose was still in the liquid phase, we created 5μL of air142

bubbles on the surface of the agarose using micropipettes. Upon polymerization of agarose, we143

discarded the outer layer of the bubble, creating a pocket. Finally, each pocket was filled with 5μL144

of the cell/Matrigel mixture described in Materials and Methods Section B. Data were acquired on145

days 0, 2, 7 and 14 using a confocal microscope (Nikon A1RHD25).146

G. TNBC/Cancer-associated fibroblast co-cultures147

TNBC cells of the MDA-MB-231/GFP cell line were suspended in Matrigel, according to the protocol148

described in Materials and Methods sections A and B. Cancer-associated fibroblasts of the cell149

line IMR-90 (ATCC) labelled with mCherry were introduced to the adjacent space of the cell culture150

space and settled on the surface surrounding the Matrigel scaffold. Throughout the duration of151

the experiment (14 days), the fibroblasts invaded the Matrigel scaffold andmixed with cancer cells.152

Data were acquired on days 0 and 14 using a confocal microscope (Nikon A1RHD25).153

H. Mathematical model154

Similar to our previous study on the validation of models using 3D cell culture data [42], we used
a system of two Keller-Segel (KS) type equations for cancer cell density and chemotactic agent
density. The spatiotemporal evolution of the cancer cell, 𝑢, and chemotactic agent, 𝑓 , densities
were obtained by the following PDEs:

𝜕𝑢
𝜕𝑡

= 𝐷𝑢∇2𝑢 + 𝑠𝑢 (1 − 𝑢) − 𝑘𝑢 − 𝜒∇ ⋅ [𝑢(1 − 𝑢)∇𝑓 ] , in Ω (1)
𝜕𝑓
𝜕𝑡

= 𝐷𝑓∇2𝑓, in Ω (2)
∇𝑢 ⋅ 𝑛 = ∇𝑓 ⋅ 𝑛 = 0, in 𝜕Ω (3)
𝑢(𝑥, 𝑦, 𝑧, 𝑡 = 0) = observed (4)

𝑓 (𝑥, 𝑦, 𝑧, 𝑡 = 0) = 𝑒
(

− 𝑧
0.26 (mm)

)

I, I =

⎧

⎪

⎨

⎪

⎩

1, if 𝑢 > 0

0, if 𝑢 = 0
(5)

where 𝐷𝑢, 𝐷𝑓 are the diffusion constants, 𝑠 is the growth constant of the cell density, 𝑘 is the cell155

death rate in the presence of treatment, and 𝜒 is the advection constant of the cells. The right-156

hand side consists of the diffusion terms 𝐷𝑢∇2𝑢, 𝐷𝑓∇2𝑓 , which represent the random motion of157

the cancer cells and signals, respectively; the growth term 𝑠𝑢 (1 − 𝑢), which increases the density of158

the tumour in a logistic manner; 𝑘𝑢 is the cell death term in the presence of treatment; and the159

nonlinear advection term −𝜒∇ ⋅ [𝑢(1 − 𝑢)∇𝑓 ] which represents the biased movement of the cells160

towards the direction where the gradient of the chemotactic signal density increases. According161

to the hypothesis of cell aggregation at the bottom (Results E), cells at the bottom secrete signals162

to stimulate cell migration and aggregation, and these signals diffuse in the 3D space, forming a163

gradient from the bottom to the top. Since cell attachment at the bottom was observed during164

the initial stages of the experiment, we assumed that signal secretion and diffusion occurred at165

the beginning of the experiment. For simplicity, we incorporated a signal gradient that decreased166
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exponentially from bottom to top in the Initial Conditions (IC), as shown in (5). In our previous anal-167

ysis [42], we found that the signal production term in (2) was insensitive to the produced output;168

hence, we excluded it from the current model.169

We hybridized the KS model using the technique presented in [61, 62]. Specifically, we dis-
cretized (1) using the forward time central differences scheme (FTCS) and the approximations
found in [63]:

𝑢𝑛+1𝑖,𝑗,𝑘 = 𝑢𝑛𝑖,𝑗,𝑘𝑃0 + 𝑢𝑛𝑖+1,𝑗,𝑘𝑃1 + 𝑢𝑛𝑖−1,𝑗,𝑘𝑃2 + 𝑢𝑛𝑖,𝑗+1,𝑘𝑃3

+ 𝑢𝑛𝑖,𝑗−1,𝑘𝑃4 + 𝑢𝑛𝑖,𝑗,𝑘+1𝑃5 + 𝑢𝑛𝑖,𝑗,𝑘−1𝑃6 (6)
where the grouped terms 𝑃𝑖, 𝑖 = 0, ..., 6 denote the probabilities of the cells of remaining stationary170

(𝑃0) or moving back (𝑃1), front (𝑃2), left (𝑃3), right (𝑃4), down (𝑃5), up (𝑃6), defined as171

𝑃0 = 1 −
6𝐷𝑢d𝑡
d𝑥2

𝑃1,2 =
𝐷𝑢d𝑡
d𝑥2

∓
𝜒d𝑡
4d𝑥2

(𝑓𝑖+1,𝑗,𝑘 − 𝑓𝑖−1,𝑗,𝑘)

𝑃3,4 =
𝐷𝑢d𝑡
d𝑥2

∓
𝜒d𝑡
4d𝑥2

(𝑓𝑖,𝑗+1,𝑘 − 𝑓𝑖,𝑗−1,𝑘)

𝑃5,6 =
𝐷𝑢d𝑡
d𝑥2

∓
𝜒d𝑡
4d𝑥2

(𝑓𝑖,𝑗,𝑘+1 − 𝑓𝑖,𝑗,𝑘−1)

(7)

Since the cells were approximately 15 μm in size and the spatial grid points were 5.2 μm apart,172

we assumed that each cell occupied three grid points in each direction. To account for this, we173

modified (6) and (7) by changing the indices that point in a direction to two grid points instead174

of one, that is, i±3 instead of i±1. The movement probabilities were then passed to a cellular175

automaton that updated the position and state of each cell.176

The cellular automaton (CA) is shown in Supplementary Fig. S.7a. The CA takes into account177

three cellular states; alive, quiescent, and dead. At every time step, it checks whether a cell can178

undergo spontaneous death, based on the probabilities shown in Supplementary Fig. S.7b, and179

updates the age of the alive cells. The probability of spontaneous death increased after Day 10.180

This hypothesis is based on increased cell crowding, which results in a potential shortage of nutri-181

ents or accumulation of metabolic waste products. The CA checks whether any cell has reached182

the proliferation age determined based on the estimated parameter 𝑠 (days)−1 of the continuum183

model. We estimated the doubling time from the exponential phase of growth, 𝑒𝑠𝑡, and the result-184

ing formula, 𝑡double = ln 2∕𝑠. Considering only the doubling time would cause the cells to divide185

infinitely, which is not consistent with the logistic growth dynamics. Hence, we introduced the ef-186

fect of space availability, as well as a spontaneous death probability that reduced cell viability. The187

probability of spontaneous death was tuned using data obtained from our cell viability assay using188

flow cytometry (Supplementary Section S.3). For the treatment conditions, the cell death rate 𝑘was189

translated to a cell death probability 𝑃𝑘 = 𝑘d𝑡 for each time step of the simulation. The cell-division190

mechanism algorithm separates into two processes based on the cell position in space. If the cell191

is attached to the glass and there is sufficient space, then division will be performed on the glass;192

otherwise, the cell divides in any direction of the 3D space if there is sufficient space. However, if193

there is insufficient space, the cell becomes quiescent. If the cell is not ready to divide, CA turns194

into a migration mechanism.195

The first condition formigration considered an adhesion parameter, and the second is the state196

of the cell. The adhesion parameter is the local density, defined as the sum of the densities in the197

neighbouring positions, i.e.,∑𝑛={−3,3}(𝑢𝑖+𝑛,𝑗,𝑘 + 𝑢𝑖,𝑗+𝑛,𝑘 + 𝑢𝑖,𝑗,𝑘+𝑛). A cell can migrate if the local density is198

equal to or greater than the threshold value 𝑛, which is related to the number of neighbouring cells.199

We hypothesized that the number of neighbours required for cell migration would increase over200

time (Supplementary Fig. S.7b) because the initial cell distribution in 3D space was sparse, hence201

they could migrate freely to search for other cells to attach. However, as cell clustering occurs202

due to cell division or cell contact, migration becomes less frequent as the cells become more203
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attached to each other. If a cell satisfies these conditions, the algorithm checks its position. If a204

cell is settled at the bottom of the space or is connected to a cell located at the bottom, it cannot205

migrate; otherwise, the cell can migrate in the 3D space given the moving probabilities 𝑃0, ..., 𝑃6.206

The hybrid model was implemented in CUDA-C/C++ language [64] and the code is uploaded to the207

corresponding GitHub repository.208

I. Continuummodel calibration209

The model, 𝑀 , ((1)-(3)) includes a set of parameters 𝜃 =
{

𝐷𝑢, 𝑠, 𝜒,𝐷𝑓 , 𝑟
} that are considered un-

known. We used their Probability Density Functions (PDF) and the calculated densities from the
3D cell culture data, 𝒟 , to assess the most probable parameter values according to Bayes’ rule

ℙ(𝜃|𝒟 ,𝑀) ∝ ℙ(𝒟 |𝜃,𝑀)ℙ(𝜃) (8)
where ℙ(𝜃|𝒟 ,𝑀) is the posterior PDF of the model parameters 𝜃 given the observed data 𝒟 and210

themodel𝑀 , ℙ(𝒟 |𝜃,𝑀) is the likelihood of the observed data𝒟 given themodel𝑀 and the param-211

eters 𝜃, and ℙ(𝜃) is the prior PDF. We assume uninformative, uniform distributions for the model212

parameter prior PDFs.213

The experimental data consisted of 12 control, and 5 datasets per treatment dose (4 doses).
Each dataset consisted of samples collected at 7 time-points for controls and 5 time-points for the
treatment data. The datasets were assumed to be independent, and the model was evaluated
separately for each dataset. The likelihood was defined as

𝐿(𝜃;𝐝) =
𝑛

∏

𝑖=1

1

𝜎𝑑
√

2𝜋
exp

(

−
(𝑑𝑖 − 𝑞𝑖(𝜃))2

2𝜎2
𝑑

)

(9)
where 𝑛 is the number of spatial grid points, 𝐝 the density profile of the corresponding sample in214

a dataset, 𝑑𝑖, 𝑞𝑖 the density values of the experimental sample and the simulation results, respec-215

tively, at grid point 𝑖, and 𝜎𝑑 is the variance of the distribution of the likelihood.216

We used a Transitional Markov Chain Monte Carlo (TMCMC) algorithm implemented in theΠ4U
package [65]. The TMCMC algorithm iteratively constructs series of intermediate posterior PDFs

ℙ𝑗(𝜃|𝒟 ,𝑀) ∝ ℙ(𝒟 |𝜃,𝑀)𝜌𝑗ℙ(𝜃) (10)
where 𝑗 = 0, ..., 𝑚 is the index of the Monte Carlo time series (generation index), 𝜌𝑗 controls the217

transition between generations, and 0 < 𝜌0 < 𝜌1 < ⋯ < 𝜌𝑚 = 1. The intermediate PDFs converge to218

the target PDF as generations progress [66] (Supplementary Section S.4). The TMCMCmethod can219

utilize a large number of parallel chains that are evaluated in each Monte Carlo step to obtain a220

result close to the true posterior PDF. To evaluate the calibration results, we calculated the Normal-221

ized Root Mean Squared Error (NRMSE) (Supplementary Section S.5). As described in our previous222

work [42], we used all the time points for the calibration of the continuum model. Validation was223

performed using the hybrid (discrete-continuum) model with the spatial statistical measures de-224

scribed below. The code for the calibration is available in the corresponding GitHub repository.225

J. Spatial analysis226

J.1. Complete Spatial Randomness Test of Spatial Cell Distributions227

The Complete Spatial Randomness (CSR) test examines whether the observed spatial point pat-
terns, in our case the centroids of the nuclei, can be described by a uniform random distribution
[67]. The CSR test was implemented using Ripley’s K-function and the spatstat [68] package in R
[69]. The 𝐾-function [70] is defined as the ratio between the number of the events, i.e. locations
of points, 𝑗 within a distance 𝑡 from the event 𝑖, over the total number of events 𝑁 , in the studied
volume 𝑉

𝐾(𝑡) = 1
𝜆̂

∑

𝑖

∑

𝑗≠𝑖
𝐼(𝑑𝑖𝑗 < 𝑡), 𝐼(𝑥) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑥 = true
0, otherwise (11)
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where 𝜆̂ = 𝑁∕𝑉 denotes the average density of events𝑁 in the studied volume 𝑉 , 𝑑𝑖𝑗 is the distance228

between events 𝑖 and 𝑗, and 𝑡 is the search radius. The 𝐾-function was calculated for all datasets229

and compared against complete spatial randomness following a Poisson process 𝐾(𝑡) = 4𝜋𝑡3∕3230

[70] for three spatial dimensions. Isotropic edge correction was applied in the calculation of the231

𝐾-function. The volume used for the calculation was the same as that used in the simulations, i.e.,232

2.5 × 2.5 × 0.917 mm3. To assess the uncertainty of the random variable 𝐾 , we produced a CSR233

envelope by generating 100 random distributions and calculating the 𝐾-function for each distribu-234

tion. The envelope was created by keeping the minimum and maximum values of the resulting 𝐾235

values. A substantial upward separation of the observed 𝐾-function from the theoretical random236

𝐾-function denotes clustered patterns, and downward separation denotes dispersed patterns [67].237

Both separation types suggest non-randomness of the examined spatial distributions.238

J.2. Characterization of the Spatial Cell Distributions239

The inter-nucleic (IN) Distance Distribution for a given samplewas calculated using pairwise Euclidean
distances between all nuclei. Given two nuclei 𝑖 and 𝑗 with centroid positions 𝐩𝐢 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and
𝐩𝐣 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) respectively, their pairwise Euclidean distance is given by

𝐷𝑖𝑗 =
√

(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑖 − 𝑧𝑗)2, 𝑖, 𝑗 = 1...𝑁, 𝑖 ≠ 𝑗 (12)
where 𝑁 denotes the total number of nuclei.240

The Nearest-Neighbour (NN) Distance Distribution for a given sample was calculated using the241

distances between the nearest neighbours of the nuclei. The nearest neighbour distance for a242

given nucleus 𝑖 is given by the minimum IN Distance between the nucleus 𝑖 and all the other nuclei243

of the sample, i.e. 𝐷𝑖
𝑁𝑁 = min𝑖,𝑗{𝐷𝑖𝑗}, 𝑗 ∈ [1, 𝑁], 𝑗 ≠ 𝑖.244

Comparisons between in vitro and in silico IN and NN distance distributions were performed245

using the cosine similarity test [71] in MATLAB [46]. The code for the spatial analysis is available in246

the corresponding GitHub repository.247

3. Results248

In this section, we first present the effect of Paclitaxel on the inhibition of migration as well as249

the transcriptomic profile of the cells. We then proceed to formulate the hypothesis of migration,250

and we examine its validity using Bayesian inference, spatial analysis, as well as data from further251

experiments including agarose coating of the glass bottom and the introduction of fibroblasts in252

the 3D culture.253

A. Ruling out the possibility of gravity-induced migration254

Cancer cell migration can be classified into two general categories; active and passive [72]. Passive255

migration is defined as the process in which cells migrate without the presence of active mecha-256

nisms, i.e. without mechanisms leading to the extension/contraction of the cell which eventually257

move the cell [72]. Initially, we hypothesized that gravity could be a major contributor to passive258

migration in our 3D experimental setup. To examine this hypothesis, we deactivated any potential259

active migration mechanisms by targeting the cell cytoskeleton with Paclitaxel. Paclitaxel has been260

considered as a migrastatic drug as it inhibits microtubule assembly, in turn, arresting cell division261

and migration [73]. The resulting cell distributions across different culture heights are shown in262

Fig. 1b, and Supplementary Fig. S.1 and S.2. These show that sedimentation was inhibited for the263

three highest administered doses compared to the controls. At the lowest dose, the cells contin-264

ued to accumulate at the bottom of the space, likely to insufficient damage to the cytoskeleton. In265

conclusion, the cells of the treated samplesmaintained their initial position, suggesting that gravity266

was not the main reason for cell sedimentation.267
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B. ECM compression is not sufficient for cell sedimentation268

Another possible reason thatmay lead to cell sedimentation is the collapse or gradual compression269

of the Matrigel™ ECM, which may occur over the course of the experiment. The ECM scaffolds in270

the treated and untreated samples had the same dimensions, and the initial number of cells was271

approximately the same. In presence of compression we would observe sedimentation in both272

treated and untreated samples. The observed cell height patterns in Fig. 1b, and Supplementary273

Fig. S.1 and S.2 suggest that ECM compression may have occurred; however, compression is an274

inadequate condition for sedimentation.275

(a) (b)

(c) (d)

Figure 1. Investigation of migration mechanisms (a) Schematic representation of 3D cultures (center). The cells were uniformly distributedacross the semi-ellipsoid on day 0 and actively migrated towards the glass bottom on day 14 (right panel). The examined hypotheses includepassive and active migration mechanisms (left). (b) Cell distribution across different cell culture heights on days 0 and 14 in the presence (fourdifferent doses) and absence of Paclitaxel. Migration was inhibited for the three highest Paclitaxel doses, ruling out the possibility of passivemigration. The glass bottom is located at z=0μm. (c) (left) Cellular anatogram relating the gene expression activity to the corresponding cellularcomponents. (right) Genes related to actin filaments, protein secretion, focal adhesion sites, and plasma membrane exhibited a monotonicdecrease in their expression with respect to Paclitaxel dose. These cellular components are also involved in cell migration. (d) TGF-β (left) andMAPK (right) signalling pathways were downregulated as a function of the Paclitaxel dose. The two columns per condition belong to the twocorresponding replicates. The inhibition of migration in combination with the downregulation of these pathways suggests that collective cellmigration is more likely to occur than individual cell migration (i.e., epithelial-to-mesenchymal transition (EMT); Supplementary Fig. S.4).

C. Transcriptomic analysis provides evidence of active migration276

We investigated the presence of active migration by investigating the gene expression profiles of277

the cells in the control samples and samples treated with Paclitaxel. The bulk RNA was extracted278

at two time points (Days 2 and 4) for the untreated cells and at one time point (Day 4) for the279

treated cells. Analysis of the RNA-seq data (summarized in Supplementary Fig. S.3, and Materials280

andMethods Sections D, E) suggests that the untreated samples exhibited upregulated expression281

levels of genes related to active migration, including actin filaments, focal adhesion sites, plasma282

membrane, and protein secretion. The cellular anatogram in Fig. 1c (left) shows the expression of283

these genes at the corresponding sites of the cell. The heatmap of Fig. 1c (right) shows that the284

expression levels of these genes remained highly similar between the untreated samples on days285
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2 and 4 (C1, C2 respectively) and tended to decrease as the Paclitaxel dose increased (from left to286

right).287

D. Collective migration is a more plausible mechanism than individual migration288

We next investigate the type of active migration occurring in untreated samples. Generally, active289

migration can be divided into two categories; individual and collective [74]. Individual cellmigration290

is known to be regulated by epithelial-to-mesenchymal transition (EMT) [74], whereas collective291

migration is a more complex process that involves molecular mechanisms related to adherens292

junctions (AJ), MAP kinase (MAPK), and TGF-β signalling pathways [75]. To elucidate the migration293

type, we isolated the expression levels of genes related to individual (EMT) and collective (AJ, MAPK,294

and TGF-β) migration. The results presented in Supplementary Fig S.5 show no distinct pattern for295

EMT between treated and untreated samples, suggesting that the EMT pathway was not affected296

by Paclitaxel. However, we observed the upregulation of protein-coding genes involved in MAPK297

and TGF-β (Fig. 1d) and over-representation of the AJ (Supplementary Fig. S.5) in the untreated298

samples, suggesting the presence of collective migration.299

E. The role of the glass surface and a mechanistic interpretation of cell migration300

Based on results described above, cell sedimentation is more likely to be attributed to active and301

collective migration. Recently, Friedl et al. [75] reported that cells migrating collectively can be sep-302

arated into leaders and followers. Leader cells orient and move based on stimuli such as soluble303

factors (e.g., TGF-β). These stimuli then induce MAPK signaling and downstream Rac1 for pro-304

trusion formation and direction sensing. Leader cell polarity is further supported by AJ signaling,305

which controls leader cell polarization and anterior protrusion.306

Figure 2. Schematic representation of the hypothesis of signal induced migration towards the bottom of thespace. Cells from the initial stages of the experiment that are close to the bottom attach to it and secretesignals to stimulate aggregation. Signal diffusion in the 3D space forms a gradient that decreases from thebottom to the top. Floating cells orient and migrate towards the direction of increased signal concentration.
Acknowledging that leader cells move based on signals such as TGF-β, it is worth questioning307

the source of these signals. It should be noted that MDA-MB-231 cells are naturally adherent [76],308

and they were initially uniformly distributed in the 3D space, i.e., some of them are close to the309

glass bottom space. Based on these observations, we hypothesized that, first, the cells closer to310

the bottom attach to the glass, which is a favorable space for colony formation owing to its ad-311

hesiveness. Second, the cells attached to the glass secrete signals such as TGF-β to stimulate cell312

migration and aggregation due to their sparse distribution in the space. Third, these signals diffuse313

in 3D space, forming a gradient from the bottom to the top of the space. Fourth, the cells floating314

in the 3D ECMmay have already formed clusters, due to, for example, cell division or approaching315

their closest neighbours. These clusters sense the gradient and organize themselves into leaders316
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and followers. Finally, the clusters move towards the direction of the increase in the signal density.317

Thus, we attributed this sedimentation phenomenon to a self-generated chemoattractant gradient318

produced by the cells to indicate a favorable site of colonization, as summarized in Fig. 2.319

F. Mathematical modeling of cellular dynamics320

We formulated the activemigration hypothesis described above into a hybrid (discrete-continuum)321

2-level spatiotemporal model. The model quantifies the spatial cancer cell density profiles, 𝑢, and322

chemoattractant factors, 𝑓 , using a system of PDEs and a cellular automaton (Material and Meth-323

ods Section H, Supplementary Section S.2). It takes into account the randommotion of cancer cells324

and chemotactic signals, growth of cancer cell density, andmigration of cells towards the direction325

in which the signals increase. For simplicity, we assumed that the gradient was formed during the326

initial stages of development; hence, we implemented a gradient, decreasing from bottom to top,327

as the initial signal concentration profile.

(a) (b)

Figure 3. Continuum model calibration. (a) Posterior marginal distributions of the estimated modelparameters for the examined experimental conditions. The NRMSE values for these conditions (bottom right)suggest overall low errors for all conditions, with the model yielding overall higher errors for thenon-treatment condition during cell aggregation. (b) Surface plots of the in vitro and in silico density profilesfor representative datasets on days 2 and 14. Paclitaxel was administered on day 5; hence, day 2 was notaffected by treatment, while on day 14, we observed a difference in the spatial cell density distributionsacross the non-treatment and treatment conditions. The distributions remained relatively constant for thethree highest doses because cell migration was inhibited, while for the lowest dose and control conditions.the distribution changed due to cell sedimentation.
328 To examine the validity of the proposedmodel, we initially estimated the parameters of the con-329

tinuummodel with respect to experimental data using Bayesian inference (Materials andMethods330

Section I, Supplementary Section S.4). For a given parameter set, the resulting cell density profiles331

were compared with the in vitro estimated cell density profiles of a dataset. This process was ap-332

plied to each of the 32 datasets separately (12 untreated and 5 datasets for each administered dose333

of Paclitaxel). Each dataset consisted of seven samples on days 0, 2, 5, 7, 9, 12, and 14. Approx-334

imately 20000 different sets of model parameters were assessed using the Transitional Markov335

Chain Monte Carlo (TMCMC) method for each of the 32 datasets. The parameters affected by Pacli-336

taxel were mostly 𝑘, 𝐷𝑢, 𝜒 . The first parameter is related to cell death, and the rest are related to337

the kinetics of the cell, specifically randommotion and biasedmovement. We assumed that the pa-338

rameters 𝑠, 𝐷𝑓 were not affected by the treatment. The former, 𝑠, was offset by the cell death rate,339

𝑘, and the latter because of the assumption that preexisting signals were not affected by the treat-340
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ment. The affected parameters were calibrated within broad boundaries, whereas the unaffected341

parameters were calibrated within the average ± standard deviation obtained from controls. The342

resulting marginal posterior distributions of the model parameters are presented in Fig. 3a. The343

affected parameters for cell movement (𝐷𝑢, 𝜒) tended to decrease as the dose increased, while the344

cell death rate (𝑘) increased with respect to the dose. The density plots of Fig. 3b show an overall345

agreement between experimental data and simulations obtained from the calibrated model. The346

calculatedNormalized RootMean Squared Error (NRMSE) (Supplementary Section S.5) for themost347

probable values of the parameters (Fig. 3, bottom right) suggested an NRMSE value around 5% for348

each time point for the treatment datasets. The NRMSE values were higher for the later stages of349

the control datasets; however, they remained within reasonable levels.350

The estimated model parameters were subsequently used in the hybrid model (Fig. 4) for each351

dataset. The resulting in silico cellular coordinates were analysed and compared with the corre-352

sponding in vitro coordinates of the centroids from the segmented fluorescent nuclei of the cells.353

The in silico cells reproduced the overall behaviour of the in vitro cells for each of the examined con-354

ditions in terms of both spatial profiles (Fig. 4a, 4c), and longitudinal population size (Fig. 4b). The355

quantitative characterization of their spatial distributions was performed using their inter-nucleic356

(IN) and nearest neighbor (NN) Euclidean distances, as well as the Complete Spatial Randomness357

(CSR) test using Ripley’s K-function. The IN distances were stable across samples and time, with a358

characteristic peak at ∼ 1𝑚𝑚 (Supplementary Fig. S.10). The NN distances were initially widely dis-359

tributed in the control samples (Supplementary Fig. S.11), and tended to become narrower at later360

stages with a characteristic peak found at ∼ 15𝜇𝑚, which is approximately equal to the cell size. As361

the treatment dose increased, the NN distribution became wider (Fig. 4d), indicating that the spa-362

tial distributions became sparser. Similar results were obtained from the simulated data. However,363

thewidth of the distributions produced by the simulated data remained similar across the different364

doses and the characteristic peak was shifted towards larger values. This also indicates an increase365

in the sparsity of the spatial distributions, but in a more uniform manner compared to the exper-366

imental observations. The CSR test shows an upward separation from the theoretical uniform367

random distribution, indicating the presence of clustered patterns (Fig. 4e). The control samples368

yielded clustered patterns that became more pronounced with respect to time (Supplementary369

Section S.6, Fig. S.9a), possibly due to the reduction in the 3rd dimension during aggregation at370

the bottom. The clustered patterns in the treatment datasets became more pronounced with in-371

creasing dose and time. Additionally, a more pronounced dispersion for larger neighbourhood372

radii was observed in these data with respect to both dose and time. Combining these two obser-373

vations, we conclude that these patterns were possibly due to the radial and symmetric shrinkage374

of the distributions, with clusters appearing in their cores.375

G. The effect of the glass on cell migration376

To further examine the validity of our cell migration hypothesis, we performed an additional 3D cell377

culture experiment in which we coated the glass bottomwith a non-adhesive material. Specifically,378

we applied agarose coating on the surface of the glass and deposited the cell/Matrigel mixture in379

pockets of air on the surface of the agarose (Fig. 5a). In total, ten samples were created and tracked380

on days 0 and 14. The results shown in Fig. 5b show that the cells overall maintained their position381

as compared to the results obtained from the control experiment shown in Fig. 5c. Additionally,382

we observed reduced cell viability compared to the control experiment (Supplementary Fig. S.6),383

which could be attributed to the absence of adhesiveness in the surrounding environment.384

H. Fibroblasts surrounding the Matrigel scaffold antagonize biased migration sig-385

nalling386

To further examine the hypothesis of signal-inducedmigration, we performed an additional exper-387

iment that included fibroblasts. Specifically, we suspended fibroblasts in the area surrounding the388

Matrigel scaffolds. Over time, the fibroblasts attached to the periphery of the Matrigel scaffolds389
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Control - Day 14 0.0005 μM - Day 14 0.005 μM - Day 14 0.05 μM - Day 14 0.5 μM - Day 14

(a)

Control 0.0005 μM 0.005 μM 0.05 μM 0.5 μM

(b)

(c)

(d) (e)

Figure 4. Hybrid modelling results and spatial analysis. (a) 3D plots of cell locations on day 14 for the control and treatment conditions. (b)Predicted and experimentally observed cell numbers. The total cell population tended to decrease with increasing doses. (c) Histograms of theproportion of cells as a function of position in the culture across time for the experimental (top row) and simulated (bottom row) data,respectively. (d) Nearest Neighbour distances across the examined conditions with respect to time, for the experimental and simulated data. (e)Complete Spatial Randomness test; average values of the K-function across all samples and the corresponding standard error of mean (SEM).
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(a) (b) (c)

Figure 5. Coating of the glass bottom with agarose. (a) Schematic representation of the experimentalprocedure. The gray area represents the agarose deposited on the glass surface. The white disks denote theair bubbles injected to create pockets, the second row represents the removal of the inflated agarose surface,and the blue disks represent the cell/Matrigel mixture deposited on the pockets of the polymerized agarose.(b) Violin plots of the distribution of cells across the z-dimension of the cell culture for days 0 and 14 of theagarose coating experiment. Cell positions were overall maintained throughout the course of the experiment.(c) Boxplots of the cell distributions across the z-dimension of the control and the agarose coatingexperiments for day 14. The three asterisks denote p-value < 10−3 that was calculated using theKruskal-Wallis test between the two distributions.

and exhibited some level of invasion in the Matrigel (Fig. 6a, 6b). The hypothesis behind this exper-390

iment is that fibroblasts would induce signals that would bias themigration of cancer cells towards391

them; in turn, some of the floating cells would move and eventually mix with the fibroblasts that392

surrounded the scaffolds, while others would move towards the bottom. The results shown in393

Fig. 6c confirm this hypothesis and showed that cancer cells maintained elevated positions in the394

presence of fibroblasts, as compared to the controls.395

4. Discussion396

We used a combination of 3D cultures and mathematical modeling to characterize cell sedimen-397

tation. Our results suggest that this somewhat unexpected behavior is due to active migration398

regulated by signalling gradients created by the cells that were already attached to the bottom.

(a) (b) (c)

Figure 6. TNBC cells and fibroblasts co-culture. Fibroblasts were suspended in the area surrounding theMatrigel. Cancer cells (green) and fibroblasts (magenta) were mixed at (a) the bottom of the space and (b) at195 μm height. (c) Boxplots of cancer cell distribution across different culture heights for the co-culture andcancer cell monoculture for day 14. The three asterisks denote p-value < 10−3 that was calculated using theKruskal-Wallis test between the two distributions.
399

A. 3D cell culture system, migration inhibition, and molecular mechanisms400

The 3D cell culture system involved deposition of a cell/Matrigel mixture on glass bottom plates.401

The cells were initially uniformly distributed in 3D space and gradually accumulated at the bot-402

tom of the plate throughout the course of the experiment. Somewhat surprisingly, there is limited403

literature discussing this phenomenon. In a recent study, Liu et al. [44] observed the same phe-404

nomenon, interpreting it as the result of cells moving towards the path of least resistance. In ECM,405
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the path of least resistance can be interpreted as a path with pores large enough to allow a cell406

to move without the need for compression [77]. Here, we should note that we do not expect ma-407

jor differences in the pore size across the 3D scaffold that would bias cell migration in a specific408

direction. Additionally, the assumption made by Liu et al. [44] is in disagreement with other obser-409

vations showing that cells tend to move towards the direction of greater matrix stiffness, termed410

durotactic movement [78], which may also be combined with chemotaxis in the examined setup.411

Nevertheless, we expected a local change in ECM stiffness induced by cell contractility [7]; however,412

this change is expected to be restored at approximately 20 μm distance from an MDA-MB-231 cell413

in a Matrigel ECM based on [7]. Additional experiments have shown that cells can polarize and414

migrate based on the alignment of ECM fibers [5], a movement referred to as contact guidance.415

However, we did not expect any strong fiber alignment that can influence cell migration, as Ma-416

trigel fibers tend to polymerize in random directions.417

To determine the presence of active or passive migration, we repeated the same experimental418

procedure and introduced Paclitaxel on day 5, when accumulation started to become apparent.419

Studies have classified Paclitaxel as a migration inhibitor [73] as it inhibits microtubule assembly,420

subsequently preventing cell division and migration. The administered doses did not eliminate421

the cells over the experiment time course, while three out of four doses inhibited cell migration422

and cell accumulation at the bottom. Therefore, we ruled out the possibility of gravity-induced423

migration or accumulation due to ECM compression. Additionally, to further test the presence of424

active migration, we performed a bulk RNA-seq experiment using the same experimental setup425

and compared the expression profiles between non-treated and Paclitaxel-treated samples. The426

results revealed an increased expression of genes related to the mechanisms of active migration427

in the non-treated samples. Specifically, we found that cells weremore likely tomigrate collectively428

than individually.429

B. Modelling cancer growth and aggregation at the bottom of the space430

The evidence on collective migration led us to hypothesize that cells move based on cues that431

specifically originate from the bottom of the space. Since the glass surface cannot secrete signals,432

we hypothesized that the source of these signals was the cells attached to the bottom, and the433

result of this secretion was to stimulate aggregation. To examine the biophysical mechanisms of434

spatiotemporal cancer development and cell sedimentation, we formulated this hypothesis using435

a hybrid discrete-continuum mathematical model. The calibration process was performed on the436

continuum part of the model using Bayesian inference and the TMCMC algorithm. The results437

showed an overall good agreement between the experiments and simulations, with the simula-438

tion results reproducing cell aggregation at the bottomunder non-treatment conditions, cell death,439

and migration inhibition in the presence of treatment. The calibrated parameters were then trans-440

ferred to the full HDCmodel, which provided details regarding the location of the cells. The results441

of the HDC model were validated using spatial point-pattern analysis techniques, which revealed442

information on the spatial organization of cells in both experiments and simulations.443

C. Spatial patterns and mechanisms444

Spatial point-pattern analysis revealed clustered patterns across the examined conditions that be-445

camemore pronounced with respect to time (Fig. 4e). These patterns, even though they appeared446

similar, were the result of different mechanisms. First, we should note that these clustered pat-447

terns appeared because of the initial culture geometry. For the control datasets, more pronounced448

clustering across time was observed mainly because of the biased migration that resulted in cell449

aggregation at the bottom. The mechanism underlying this process is the advection term. As450

shown in Supplementary Fig. S.12, we demonstrated that a set of parameters corresponding to451

high diffusion and low advection produces less pronounced clustered patterns compared to a set452

corresponding to low diffusion and high advection. However, the pronounced clustering observed453

in the treatment datawas not due tomigration, but due to the shrinkage of the spatial distributions.454
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Specifically, for the experiments, we found that the clustered patterns became more pronounced455

with respect to both time and dosage. This result contradicts the simulation results, which showed456

the opposite. This led us to conclude that pronounced clustering may have emerged from radial457

cell death in the spatial distributions, possibly due to diffusion of the drug in the Matrigel that may458

have produced concentration gradients. In contrast, the model assumed a uniform concentration459

of the drug across the space; hence, there was no cell-killing bias with respect to the location of460

the cells in the space. Additional simulations using a radius-dependent drug concentration con-461

firmed that clustering increased in the presence of a drug concentration gradient (Supplementary462

Section S.6, Fig. S.9).463

D. The importance of attachment sites in cell growth and migration464

The examined hypothesis states that cells closer to the glass bottom attach to it and secrete signals465

enabling floating cells to migrate. To further examine this hypothesis, we performed additional ex-466

periments in which we covered the glass bottom with a non-adhesive material (agarose). Agarose467

is a biocompatible biopolymer with a poor ability to promote cell attachment owing to its low ad-468

hesiveness [79]. The results shown in Fig. 5 showed that the cells tended to maintain their initial469

positions, confirming the hypothesis that the adhesive properties of the glass bottom affected cell470

migration. Additionally, we observed reduced cell viability in the coated samples, which can be471

attributed to the low degree of attachment between the cells and the surrounding material. Other472

studies have also shown that monolayers cultured in agarose-treated plates exhibit reduced pro-473

liferation or viability compared to other materials such as Matrigel [80, 81]. This in turn implies474

that cell clustering is important to maintain cell viability and that cell-surface attachment is also a475

major contributor in cell viability.476

In contrast with the previous experiment, the presence of fibroblasts inducedmigration signals477

and increased adhesion leading to cell-fibroblast mixing across the outer surface of the Matrigel478

scaffolds. In turn, the cancer cells exhibited less pronounced migration towards the bottom and479

maintained elevated positions in the 3D space (Fig. 6). Other studies have also shown that the pres-480

ence of fibroblasts in 3D cancer cell cultures results in more compact spheroids as well as altered481

intercellular signalling and gene expression, leading to altered cell proliferation and migration [43,482

82–84].483

E. Semi-ellipsoids as a 3D migration assay484

Over the years, wound healing assays have become the standard protocol for examining in vitro485

cell kinetics under certain conditions. Wound healing assays typically include monolayers of ad-486

herent cells in which a cell-free gap is created, and the gap is closed by the adjacent cells. The487

current experimental setup presents many similarities to the wound healing assay, except that488

cells are initially cultured in 3D and migrate towards the bottom. In addition, in the present study,489

we showed that under certain conditions, for example, the presence of a migrastatic drug or non-490

adhesive surface the cells stopped migrating. This would also be the case for conventional wound-491

healing assays. However, our 3D experimental setup presents some advantages compared with492

the wound healing assay. First, the introduction of the 3rd dimensionmay present significant alter-493

ations in the behaviour of the cells, such as cytotoxicity, growth, and related biochemical processes,494

while the histological and molecular features of in vitro 3D spheroids exhibit more similarities with495

xenografts than conventional 2D monolayers [43, 85–88]. Second, the initial uniform and sparse496

distribution of the cells in 3D space allows not only the observation of sedimentation, but also497

additional phenomena that occur during the culture, such as cell division and cluster formation.498

In addition to these advantages, the setup is easy to construct, the experimental process is rel-499

atively short, and allows for a large number of replicates - in the present study we generated 5500

and 12 replicates per time-point, for each experiment. More importantly, quantification of cell501

behaviour can be achieved with the use of mathematical models and spatial analysis techniques,502

as done herein. In conclusion, the presented methodology presents many advances compared503
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to standard monolayer protocols, and can be expanded to the study of many different biological504

mechanisms.505

5. Conclusions506

We examined cell sedimentation in 3D cancer cell cultures. The introduction of themigrastatic drug507

Paclitaxel inhibited this sedimentation, suggesting that active migration mechanisms are involved508

in sedimentation. Furthermore, RNA-seq analysis showed that cancer cells were more likely to509

migrate towards the bottom in a collective manner than individually. Based on this evidence, we510

formulated a hypothesis stating that cells floating in 3D migrate due to signals produced by cells511

already located at the bottom of the space. Mathematical modelling of this hypothesis validated512

the experimental observations and provided insights into the mechanisms and spatial organiza-513

tion of the cells. To further validate this hypothesis of aggregation due to the presence of adhesive514

areas, we coated the glass bottom with agarose to prevent cell adhesion, resulting in the absence515

of sedimentation. Additionally, to further validate the hypothesis of migration due to signaling,516

we introduced fibroblasts to the surrounding area of the Matrigel scaffold, which resulted in both517

sedimentation and maintenance of clusters in 3D space. Overall, the examined 3D culture setting518

provided important insights into the behaviour of cancer cells, and revealed that TNBC cells tend519

to move towards areas of increased adhesion. The proposed mathematical modelling approach520

enabled us to characterize the mechanisms and spatial organization of cell growth. Future exten-521

sions of the present work may include the expansion of this framework to other types of cells, e.g.522

cancer cells co-cultured with immune cells, and the examination of different drug/dose schemes523

for the optimization of drug efficacy in terms of both cell growth andmigration, as well as the effect524

of drug resistance and its relationship with cell migration.525
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