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Abstract— Abnormal B-amyloid (Ap) accumulation in the
brain is an early indicator of Alzheimer’s disease and practical
tests could help identify patients who could respond to
treatment, now that promising anti-amyloid drugs are
available. Even so, AP positivity (Ap+) is assessed using PET or
CSF assays, both highly invasive procedures. Here, we
investigate how well A+ can be predicted from T1 weighted
brain MRI and gray matter, white matter and cerebrospinal
fluid segmentations from T1-weighted brain MRI (T1w), a less
invasive alternative. We used 3D convolutional neural networks
to predict A+ based on 3D brain MRI data, from 762 elderly
subjects (mean age: 75.1 yrs. + 7.6SD; 394F/368M; 459 healthy
controls, 67 with MCI and 236 with dementia) scanned as part
of the Alzheimer’s Disease Neuroimaging Initiative. We also
tested whether the accuracy increases when using transfer
learning from the larger UK Biobank dataset. Overall, the 3D
CNN predicted Ap+ with 76% balanced accuracy from T1lw
scans. The closest performance to this was using white matter
maps alone when the model was pre-trained on an age
prediction in the UK Biobank. The performance of individual
tissue maps was less than the T1w, but transfer learning helped
increase the accuracy. Although tests on more diverse data are
warranted, deep learned models from standard MRI show
initial promise for AP+ estimation, before considering more
invasive procedures.

Clinical Relevance— Early detection of AP positivity from
less invasive MRI images, could offer a screening test prior to
more invasive testing procedures.

I. INTRODUCTION

Alzheimer’s disease (AD) affects over 20 million people
worldwide [22]. In the US, one in three elderly people suffer
from Alzheimer’s or other forms of dementia. The main
cause of the disease is the abnormal accumulation of
beta-amyloid protein deposits in the brain, and accumulation
of abnormal tau protein in neurons. Positron emission
tomography (PET) is generally used with amyloid- and tau-
sensitive radioactive tracers to track the pattern of A
build-up in the brain.
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These PET scans have three major issues - they are
expensive, are not widely available and involve the injection
of radioactive tracers, which have some risk of adverse
effects. The other method to obtain reliable estimates of
brain amyloid load is via measurement of amyloid levels in
the cerebrospinal fluid (CSF) via spinal tap or lumbar
puncture, a highly invasive and painful procedure.

With the approval by the US Food and Drug Administration
(FDA) of the drug, lecanemab - an anti-amyloid beta
protofibril antibody - for the treatment of mild cognitive
impairment or early dementia due to Alzheimer’s disease,
there is a growing interest in non invasive testing for AB
positivity (AP+) as a more convenient means to screen
patients prior to more invasive testing [26].

Although standard anatomical MRI is not used for
detecting amyloid deposition, A build-up leads to brain cell
loss which is evident as atrophy on T1-weighted MRI, along
with the expansion of the ventricles and widening of the
cortical sulci. Islam and Zhang (2020) proposed a
Generative Adversarial Network approach to generate
synthetic PET images for controls, MCI and AD subjects.
We used 3D convolutional neural networks (CNNs) to
predict amyloid positivity using 3D CNNs and transfer
learning, with 3D T1w brain MRI scans as input. We also
tested the model performance by pre-training the model on
prior tasks of age and sex prediction from MRI, in 20,000
subjects from the UK Biobank dataset. CNNs are attractive,
as they can learn predictive features from raw images
without the need for pre-processing. Transfer learning is a
type of artificial intelligence/deep learning method that can

boost MRI-based AD classification performance. In this
technique, some of the network weights are optimized on
prior tasks and then ‘frozen’, while others are allowed to be
trained on the new task. We also tested how well amyloid
positivity (Ap+) could be predicted from 3D brain MRI with
a different approach, still using CNNs, but based on first
segmenting the gray matter, white matter and cerebrospinal
fluid from T1w brain MRI.. The idea is that amyloid may
affect one of the pre-segmented partitions preferentially,
making prior tissue classification helpful for the task, and
perhaps making training more efficient, as there may be
fewer features to learn. We also used similar pre-training
techniques from 10,000 subjects from the UK Biobank to
evaluate whether it boosted performance on the downstream
AP+ prediction task. There is some debate about when such
pre-training techniques will improve performance on
downstream tasks due to differences in the domains of the
tasks. Here we tested whether these pre-training techniques
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improve accuracy. We also examined how strongly the
amount of data used in pre-training affects the accuracy in
the downstream task.

II. DATA

The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) is a multisite study, launched in 2004 at 58 sites
across North America, collecting neuroimaging, clinical and
genetic data to better understand biomarkers associated with
healthy aging and Alzheimer’s disease. From the ADNI
dataset — which is publicly available at adni.loni.usc.edu —
we analyzed 3D Tl-weighted brain MRI scans from 762
subjects (age: 75.1 years = 7.6 SD; 394 F/368 M) with a
distribution of 459 controls (CN), 67 with mild cognitive
impairment (MCI), and 236 with AD. These subjects were
selected as they also had available amyloid-sensitive PET
scans collected close to the time of the MRI, where the
maximum interval between scans was set to 180 days.
Subjects who were missing basic clinical information or
poor-quality imaging data — such as scans with severe
motion, distortion, or ringing — were not included in the final
dataset.

The cut-off for amyloid levels, to define Ap+, was
defined by the ADNI Neuroimaging Core based on PET
cortical SUVR uptake (denoted as AP 1 by ADNI)
determined by either mean 18F-florbetapir (AP+ defined as
>1.11 for cutoff) or florbetaben (AP+ defined as >1.20 for
cutoff), normalized by using a whole cerebellum region. For
the pre-training task, we used 3D T1-weighted (T1w) brain
MRI scans from 10,000 subjects (age: 64.59 years £ 7.64
SD; 4,860 F/5,139 M) from the UK Biobank. The
T1-weighted brain MRI volumes were pre-processed using a
sequence of steps, including nonparametric intensity
normalization (N4 bias field correction), ‘skull-stripping’ for
brain extraction, registration to a template with 6 degrees of
freedom (rigid-body) registration and isometric voxel
resampling to 2 mm. Pre-processed images were of size
91x109x91. The Tlw images were scaled to take values
between 0 and 1 via min-max scaling. The gray matter,
white matter and CSF segmentations from the Tlw MRI
scan were obtained using FreeSurfer [25].

I1I. MODEL AND METHODS

After registering the images to a common template, the
data was split into independent training, validation and
testing sets in the ratio of approximately 70:20:10 (Table 1).
To augment the training data, we used elastic deformation, a
technique often used in medical image processing. We used
displacement vectors and a spline interpolation for input
image deformation. The 3D CNN architecture (Figure 1)
consisted of four 3D Convolution layers with a 3x3 filter
size, followed by one 3D Convolution layer with a 1x1 filter,
and a final Dense layer with a sigmoid activation function.
All layers used the ReLu activation function and Instance
Normalization. Dropout layers, with a dropout rate of 0.5,
and a 3D Average Pooling layer with a 2x2 filter size were
added to the 2™, 3™, and 4™ layers. Models were trained with
a learning rate of le-4, and test performance was assessed
using balanced accuracy. To deal with overfitting, both L1
and L2 regularizers were used, along with dropouts between

layers and early stopping. Hyperparameter tuning was
performed by running k-fold cross validation.

TABLE 1. DISTRIBUTION OF DATA INTO INDEPENDENT TRAIN, VALIDATION AND
TEST SETS

Data N Age (mean | Sex (F/M) CN/MCY/

+ SD) Dementia

Training 530 753+7.6 274/256 318/48/164
Validation 161 74.7+7.4 83/78 97/10/54
Testing 71 74.6+7.5 38/33 44/9/18

Total 762 75.1+7.6 394/368 459/67/236

For the pre-training task, we used a traditional supervised
learning approach based on labeled training data. The initial
state of the network was defined by using the below
3D-CNN architecture to predict the sex of the subjects from
the T1ws and the Gray Matter, White Matter and CSF maps
from the UK Biobank cohort. The 3D-CNN was trained for
40 epochs for each scan with the Adam (with weight decay)
optimizer, a learning rate of le-4 and a learning rate
scheduler. This trained model was fine-tuned to predict AR+
using three methods — the model was used with the trained
weights; the model’s last two layers were unfrozen, and the
model was fine-tuned end to end. In all three methods, the
batch size was kept as 6 and the model was trained until the
validation loss did not improve for 10 consecutive epochs.
We also wanted to understand the effect of the amount of
data in the upstream task on the downstream task in
pre-training. To this end, the UK Biobank dataset was
divided into 8 batches, four of which were of 250 images,
and the rest were of 1,000 each while training the model. For
T1ws, the UK Biobank dataset was divided into 8 batches of
2000 images each while training the model. Weights for
each of these models were stored as the starting weights for
downstream tasks. Thus, while fine tuning, the accuracies
were calculated for all 8 sets of initial starting weights.
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Figure 1. 3D CNN Architecture used for training on the ADNI
dataset, and for pre-training on the UK Biobank dataset.

The same method was used for pre-training on an age
prediction task (a common benchmark task for CNNs trained
on MRIs), i.e., the initial state of the network was defined by
using the above 3D CNN architecture to predict the age of
the subjects from the Tlw and the Gray Matter, White
Matter and CSF maps from the UK Biobank cohort. The
loss function in this case was the mean square error.
Fine-tuning for downstream tasks was the same as in the
prior experiments, with the same hyperparameter values.


https://doi.org/10.1101/2023.02.15.528705
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.15.528705; this version posted February 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The model was evaluated using metrics that included
balanced accuracy and F1 Score using a threshold obtained
with the Youden’s Index. Each model was run three times,
and the average value was reported.

Iv. RESULTS

The value of Youden’s J Index, used to decide the
threshold to classify AP positivity, was found to be 0.494
when all subjects were considered. A balanced accuracy
score of 0.760 with an F1 score of 0.746 was obtained for
classification when using the T1w as test data from Table II.

Both the pre-training algorithms didn’t have any boosting
effect on the classification accuracy. AP positivity prediction
was performed with around 0.69 balanced accuracy for
models pre-trained on sex classification from the UK
Biobank dataset. The accuracy was a little less - around 0.66
- when the model was pre-trained on age prediction from the
UK Biobank dataset. For the pretraining task of UK Biobank
Sex classification, the highest accuracy was 0.531 when all
the data was used, and the model had all layers frozen,
which was an expected random performance. When the
bottom two layers were unfrozen, the highest average
balanced accuracy was 0.66 at 12000 images used in
pretraining. When the model was trained end-to-end, the
average balanced accuracy reached 0.69 at 10000 data points
from UK Biobank in the preliminary training task.

When we used the UK Biobank Brain Age Prediction
Network without any adaptation (all layers frozen), the

performance was at chance level (around 0.457 average
balanced accuracy).

When the bottom two layers were unfrozen, the highest
accuracy was 0.65 at 12000 images used in pretraining.
When the model was trained end-to-end, the accuracy
reached 0.678 at 16000 images from UK Biobank in the
preliminary training task. Using the values of balanced
accuracy and number of data points, we trained a linear
regression model to find the slope of the line. Based on our
experiment values, we found that in the case of pretraining
on age prediction, the slope of the line was 61.843 and in the
case of pretraining on sex classification, the slope of the line
was 0.821. Positive values on both slopes indicate an
increasing curve.

From these pre-training results, four broad conclusions can
be made. The first observation was that pre-training on a
huge dataset did not boost the accuracy of the downstream
task in this scenario. The second observation was that the
amount of data used in pre-training did not affect the
downstream amyloid positivity prediction task accuracy. The
third observation was that models gave almost similar results
with minute variations in balance accuracy after 2000 data
points being used in the pretraining task. The fourth
observation was that pretraining to predict the sex from the
T1w MRIs of UK Biobank gave marginally better accuracy
on the downstream task of amyloid prediction than
pretraining to predict the age from the T1w MRIs.
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Figure 2. Plot of ADNI Test Set Balanced Accuracy vs % of training scans in pre-training from UK Biobank Data. The topmost line represents the
balanced accuracy when the 3D CNN Model is trained from scratch on ADNI Data without any pre-training.
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Figure 3. Plot of Gray Matter ADNI Test Set Balanced Accuracy vs % of training scans in pre-training from UK Biobank Data. Statistical
testing revealed no evidence for performance gain with more pre-training data, at least in the range tested.
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Figure 4. Plot of White Matter ADNI Test Set Balanced Accuracy vs % of training scans in pre-training from UK Biobank Data. Statistical
testing revealed no evidence for performance gain with more pre-training data, at least in the range tested.
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Figure 5. Plot of Cerebrospinal Fluid ADNI Test Set Balanced Accuracy vs % of training scans in pre-training from UK Biobank Data. Statistical
testing revealed no evidence for performance gain with more pre-training data, at least in the range tested.

For gray matter images, the balanced accuracy when the
3D CNN was trained on the ADNI dataset was 0.69. The
performance of pretrained models for both age and sex
prediction on the UK Biobank data in the upstream task, was
similar to performance without any pre-training. The best
balanced accuracy was around 0.707 when the sex
classification pre-trained model was fine tuned end-to-end.
Increasing the amount of data in the upstream task had
minimal effect on the balanced accuracy in the downstream
task, except for the case of the model which was pre-trained
on age prediction on UK Biobank, and then only the bottom
two layers were unfrozen for fine tuning. In that case, the
balanced accuracy rose numerically to 0.730 when 5,000
subjects were used in the upstream task. To test if there was
any statistical gain in accuracy, we fitted a linear regression
model to find the slope of the line; the value of the slope was
6.83E-06 with a p-value of 0.263, suggesting no evidence
for an increase in accuracy.

For white matter images, the balanced accuracy when the
3D CNN was trained on the ADNI dataset was 0.673. In this
case, pretraining the model on upstream tasks such as age
prediction and sex classification on UK Biobank dataset
actually improved the performance on the downstream task.
The best performance was for the model pre-trained on age
prediction, with the bottom two layers unfrozen and
fine-tuned. The best accuracy was around 0.74 - close to the
baseline accuracy for the raw T1ws. We also tested whether
increasing data in the upstream task improved performance

in the downstream task. The value of the slope in the case of
white matter images was 3.84E-02 with a p-value of 0.132.
Thus, statistical testing revealed no evidence for
performance gain with more pre-training data, at least in the
range tested.

For cerebrospinal fluid images, the balanced accuracy
when the 3D CNN was trained on the ADNI dataset was
0.671. Perhaps surprisingly, the performance of pretraining
the model on the upstream tasks of age prediction and sex
classification on the UK Biobank dataset was similar to
performance without any pre-training. The best balanced
accuracy was around 0.702 when the sex classification
pre-trained model was fine-tuned end-to-end. Increase in the
amount of data in the upstream task did not have a
detectable effect on the balanced accuracy in the
downstream task, except for the case of the model which
was pre-trained on sex classification on UK Biobank, and
then the entire model was fine-tuned.

From these pre-training results, four broad conclusions
can be made. First, pre-training on a very large dataset did
not boost the accuracy of the downstream task in most
scenarios, except in the case of white matter. Second, the
amount of data used in pre-training did not affect the
downstream amyloid positivity prediction task accuracy, at
least in the range tested (very small pre-training datasets
would presumably give poor performance). Thirs, models
gave comparable results with minute variations in balanced
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accuracy after 4,000 data points were used in the pretraining
task. Finally, pretraining to predict sex from white matter
maps in the UK Biobank gave marginally better accuracy on
the downstream task of amyloid prediction than pretraining
to predict the age from the white matter MRIs. On the
contrary, in the case of gray matter and CSF, the
performance was better with age prediction as the upstream
task. Overall,pre-training on UK Biobank data for age
prediction or sex classification did not show substantial
improvements in performance, by contrast with training the
model directly on the ADNI dataset.

TABLE I1. Comparison of Final Results

Image Type Balanced
Accuracy

Tlw 0.760

Gray Matter Map with UK Biobank Age 0.734

Prediction model used as pre-training

White Matter Map with UK Biobank Age 0.739

Prediction model used as pre-training

CSF Map with UK Biobank Sex 0.702

Classification model used as pre-training

Combined SVM model ran on results of 0.700

CNNs

Based on the results from CNNs, we ran a SVM on the
outputs, to find the accuracy when we combine the T1w
results with various segmented maps. The best accuracy in
this case was 0.7 when the SVM had the results from T1w
and end to end fine tuned Grey Matter, White Matter and
CSF maps as input.

V. CONCLUSION AND DISCUSSION

Through our experiments, we present results comparing
pre-training strategies for amyloid positivity detection from
Tlws as well as gray matter, white matter and cerebrospinal
fluid segmented images from T1w MRIs. We compared the
performance of a 3D Convolutional Neural Network trained
from scratch on the data to the performance of models
pre-trained on the UK Biobank dataset for two tasks — sex
classification and age prediction. We explored three
finetuning methodologies — first, where all layers were kept
frozen; second, where the bottom two layers were unfrozen;
and third, where the entire model is trained end-to-end. We
also examined the impact of the amount of data used in
pre-training.

Based on our first observation, we can see that the
accuracy is greater without the pre-training methodology.
This may be because the UK Biobank primarily consists of
healthy subjects, whose MRIs may not provide ideal
predictive features for amyloid detection in ADNI. Also,

though amyloid is not detectable directly with standard
anatomical MRI, the 3D CNN architecture could predict
amyloid positivity with 76% accuracy. A key question often
asked is whether pre-training boosts task performance
especially when the amount of training data for the new task
is limited. From our experiments, it can be shown that
pre-training is not always helpful in improving performance
on low data regimes, particularly in tasks where downstream
accuracy in predicting is already difficult to achieve and the
upstream task has data, which is different, despite being in
the same domain.

Increasing the amount of data in upstream task also did not
affect the classification performance of the downstream task
as seen from Fig 2. There was a plateau effect, where the
model did not learn anything new after it reached maximum
accuracy from a task. Another observation was the increase
in accuracy depending on the pre-training task: sex
classification gave better results than age prediction in
accuracy for downstream tasks. One explanation for this can
be the similarity in the design of the model and the loss
function for sex classification and amyloid positivity
classification, where both models perform binary
classification (female/male and amyloid negative/positive
respectively), with a binary cross-entropy loss function in
the final layer. On the other hand, a regression model is used
when pre-training for age prediction, where the activation
function is linear, and the loss being minimized is MSE. This
model is then converted to the classification model for the
downstream task with the loss function changed to become
binary cross-entropy. Another explanation may be the
difference in subjects’ ages between ADNI and the UK
Biobank with chronological age where the UK Biobank
subjects are younger on average and may have less brain
atrophy overall on the structural TIw MRI. As a result, the
features learned during pre-training on age prediction, might
not be as helpful in the downstream task.

Pre-training helped in boosting the balanced accuracy
in the downstream task in the case of white matter and to a
small extent for CSF. The choice of pre-training task may
also be important: as a pre-training task, age prediction gave
better results than sex classification in terms of accuracy for
the downstream tasks, except for the case when using CSF
maps. Amyloid classification is typically based on other data
sources such as amyloid- or tau- sensitive PET, or CSF
biomarkers, which are all more invasive than structural brain
MRI. A Tlw MRI based model using derived GM, WM and
CSF data is unlikely to be used in isolation, without the
other data sources, but it can be fruitful for benchmarking, as
Tlws are typically more widely available and cheaper to
obtain compared to an amyloid PET scan. Thus, classifying
amyloid positivity from T1ws and segmented GM, WM and
CSF from T1w MRIs can form an important baseline based
on which subjects might be selected for further, more
intensive testing.
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VI FUTURE WORK

Future work will use more paired training data, along
with other data modalities such as FLAIR or diffusion MRI,
for this challenging task. We will examine other deep
learning architectures such as contrastive learning, or other
CNN variants such as DenseNet-121, which has more depth
than a standard 3D CNN. We would also like to extend
pre-training techniques to additional patient datasets such as
OASIS or from the AD Sequencing Project (ADSP).

ACKNOWLEDGMENTS

We thank the ADNI investigators and their public and
private funders for creating and publicly disseminating the
ADNI dataset. This research was supported by NIH
grants ROTAGO058854, UO01AG068057 and
RF1AG057892.

REFERENCES

[1] B.Lu, H.X. Liand Z K Chang, et al. “A Practical Alzheimer Disease
Classifier via Brain Imaging-Based Deep Learning on 85,721
Samples,” J Big Data 9, 101 (2022)..

[2] P. M. Petrone, A. Casamitiana, et al. “Prediction of amyloid pathology
in cognitively unimpaired individuals using voxel-wise analysis of
longitudinal structural brain MRL” Alzheimers Res Ther. 11(1):72,
2019.

[31 S. M. Landau, M. A. Mintun, et al. “Amyloid deposition,
hypometabolism, and longitudinal cognitive decline,” Ann. Neurol.
72(4), 578-586, 2012.

[4] G. Folego, M. Weiler, R. F. Casseb, et.al., “Alzheimer’s Disease
Detection through Whole-Brain 3D-CNN MRL” Frontiers in
Bioengineering and Biotechnology, 8, 2020.

[51 N. J. Dhinagar, S. I. Thomopoulos, P. Rajagopalan, D. Stripelis, J. L.
Ambite, G. ver Steeg, P. M. Thompson, “Evaluation of Transfer
Learning Methods for Detecting Alzheimer’s Disease with Brain
MRI,” SIPAIM, 2022.

[6] A. Ezzati, D. J. Harvey, C. Habeck, et al., “Predicting Amyloid-$3
Levels in Amnestic Mild Cognitive Impairment Using Machine
Learning Techniques.” J Alz. Dis. 1211-1219, 2020.

[71 G. Gelosa, D.J. Brooks, “The prognostic value of amyloid imaging.”
Eur J Nucl Med Mol Imaging 1207-19, 2012.

[81 V. L. Villemagne, S. Burnham, et al.,. “Amyloid B deposition,
neurodegeneration, and cognitive decline in sporadic Alzheimer’s
disease: a prospective cohort study.” Lancet Neurol. (4):357-67. 2013.

[9] C. C. Rowe, K. A. Ellis, et al., “Amyloid imaging results from the

Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging.”

Neurobiol Aging 31: 1275-1283, 2010.

V. L. Villemagne, K. E. Pike, G. Chetalat, et al., “Longitudinal

assessment of AP and cognition in aging and Alzheimer disease.” Ann

Neurol. 69(1):181-192, 2011.

J Koivunen, M Karrasch, et al., “Cognitive Decline and Amyloid

Accumulation in Patients with Mild Cognitive Impairment.” Dement

Geriatr Cogn Disord. 34(1):31-7. 2012.

A. Okello, J Koivunen, P. Edison, et al., “Conversion of amyloid

positive and negative MCI to AD over 3 years: an 11C-PIB PET

study.” Neurology 73(10):754-60. 2009.

T. Jo, K. Nho and A. J. Saykin. “Deep Learning in Alzheimer’s

Disease: Diagnostic Classification and Prognostic Prediction using

Neuroimaging Data.” Front Aging Neurosci. 11:220. 2019.

X. Feng, F. A. Provenzano and S. A. Small. “A Deep Learning MRI

approach outperforms other biomarkers of prodromal Alzheimer’s

disease.” Alzheimers Res Ther. 14(1):45. 2022.

S.M. Landau, B.A. Thomas, et al. “Amyloid PET imaging in

Alzheimer’s Disease: a comparison of three radiotracers.” Eur J.

Nucl. Med. Mol. Imaging 41(7), 1398-1407, 2014.

S.M. Landau, C. Breault, et al. “Amyloid-p imaging with Pittsburgh

compound B and florbetapir: comparing radiotracers and

quantification methods.” J. Nucl. Med. 54(1), 70-77, 2013.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

Y. Gupta, J. Kim, B. Kim, K. Goo-Rak. “Classification and Graphical
Analysis of Alzheimer’s Disease and its Prodromal Stage Using
Multimodal Features From Structural, Diffusion, and Functional
Neuroimaging Data and the APOE Genotype.” Front Aging
Neuroscience 12:238, 2020.

H.E. Kim, A. Cosa-Linan, N. Santhanam, et al. “Transfer learning for
medical image classification: a literature review.” BMC Med Imaging.
22(1):69, 2022.

F. Zhuang, Z. Qi, K. Duan, D. Xi, et al., “A comprehensive survey on
transfer learning.” Proc IEEE. 11:1-46, 2020.

L. Alzubaidi, M. Al-Amidie, et al., “Novel Transfer Learning
Approach  for Medical Imaging with Limited Labeled
Data.” Cancers vol. 13,7 1590, 2021.

M.A. Morid, A. Borjali and G.D. Fiol. “A scoping review of transfer
learning  research  on  medical image  analysis  using
ImageNet.” Computers in Biology and Medicine, vol. 128 (2021):
104115.

Alzheimer's Disease International, “ADI - Dementia statistics,”
Alzheimers Disease International, 2020.
https://www.alzint.org/about/dementia-facts-figures/dementia-statistic
s/

Islam, J., Zhang, Y. GAN-based synthetic brain PET image
generation. Brain Inf. 7, 3 (2020).

“FreeSurfer,” Harvard.edu, 2013. >

Fischl, Bruce. “FreeSurfer.” Neuro]mage vol. 62,2 (2012): 774-81.

Van Dyck, Christopher H et al. “Lecanemab in Early Alzheimer's
Disease.” The New England journal of medicine vol. 388,1 (2023):
9-21.



https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/
https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/
https://surfer.nmr.mgh.harvard.edu/
https://doi.org/10.1101/2023.02.15.528705
http://creativecommons.org/licenses/by-nc-nd/4.0/

