

1 **Common roles for serotonin in rats and humans for computations**
2 **underlying flexible decision-making**

3 Qiang Luo^{1,2,3,4,*,+}, Jonathan W. Kanen^{3,4,+}, Andrea Bari⁵, Nikolina Skandalis^{6,7,8},
4 Christelle Langley^{4,6}, Gitte Moos Knudsen^{9,10}, Johan Alsiö^{3,4}, Benjamin U. Phillips^{3,4}, Barbara
5 J. Sahakian^{1,4,6}, Rudolf N. Cardinal^{6,11}, Trevor W. Robbins^{1,3,4,*}

6
7 ¹National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key
8 Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain
9 Science, Institutes of Brain Science and Institute of Science and Technology for Brain-
10 Inspired Intelligence, Fudan University, Shanghai 200433, PR China

11 ²Center for Computational Psychiatry, Ministry of Education Key Laboratory of
12 Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute,
13 Fudan University, Shanghai 200433, China

14 ³Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK

15 ⁴Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2
16 3EB, UK

17 ⁵Aelis Farma, 33077 Bordeaux, France

18 ⁶Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK

19 ⁷Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK

20 ⁸NIHR Biomedical Research Centre, University of Cambridge, UK

21 ⁹Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital
22 Rigshospitalet, Denmark

23 ¹⁰Faculty of Health and Medical Sciences, University of Copenhagen, Denmark

24 ¹¹Liaison Psychiatry Service, Cambridgeshire and Peterborough NHS Foundation Trust,
25 Cambridge CB2 0QQ, UK

26

27 *Correspondence to: qluo@fudan.edu.cn or twr2@cam.ac.uk

28 [†]Joint first author

29

30 **Abstract**

31 Serotonin is critical for adapting behavior flexibly to meet changing environmental demands.

32 Cognitive flexibility is important both for successful attainment of goals, as well as for social

33 interactions, and is frequently impaired in neuropsychiatric disorders, including obsessive-

34 compulsive disorder (OCD). However, a unifying mechanistic framework accounting for the

35 role of serotonin in behavioral flexibility has remained elusive. Here, we demonstrate

36 common effects of manipulating serotonin function across two species (rats and humans) on

37 latent processes supporting choice behavior during probabilistic reversal learning using

38 computational modelling. The findings support a role of serotonin in behavioral flexibility and

39 plasticity, indicated, respectively, by increases or decreases in choice repetition ('stickiness')

40 or reinforcement learning rates depending upon manipulations intended to increase or

41 decrease serotonin function. More specifically, the rate at which expected value increased

42 following reward and decreased following punishment (reward and punishment 'learning

43 rates') was greatest after sub-chronic administration of the selective serotonin reuptake (SSRI)

44 citalopram (5 mg/kg for 7 days followed by 10 mg/kg twice a day for 5 days) in rats.

45 Conversely, humans given a single dose of an SSRI (20mg escitalopram), which can decrease

46 post-synaptic serotonin signalling, and rats that received the neurotoxin 5,7-

47 dihydroxytryptamine (5,7-DHT), which destroys forebrain serotonergic neurons, exhibited

48 decreased reward learning rates. A basic perseverative tendency ('stickiness'), or choice

49 repetition irrespective of the outcome produced, was likewise increased in rats after the 12-

50 day SSRI regimen and decreased after single dose SSRI in humans and 5,7-DHT in rats.

51 These common effects of serotonergic manipulations on rats and humans – identified via

52 computational modelling – suggest an evolutionarily conserved role for serotonin in plasticity

53 and behavioral flexibility and have clinical relevance transdiagnostically for neuropsychiatric

54 disorders.

55

56 **Introduction**

57 Humans and other animals alike must maximise rewards and minimise punishments to
58 survive and thrive. Across phylogeny this involves learning about cues or locations that
59 inform whether an action is likely to result in a good or bad outcome. Adaptive behavior,
60 however, must also be flexible: the ability to disengage from previously learned actions that
61 are no longer useful or appropriate to the situation is fundamental to well-being. Indeed,
62 behavior can become abnormally stimulus-bound and perseverative in compulsive disorders¹⁻
63⁵. Furthermore, learning the best course of action can require withstanding occasional
64 negative feedback, which should sometimes be ignored if rare. Indeed, inappropriately
65 switching behavior away from an adaptive action following misleading or even negative
66 feedback ('lose-shift') has been reported across several traditional psychiatric diagnostic
67 categories⁶⁻¹⁰.

68

69 The neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) is widely implicated in
70 behavioral flexibility¹¹⁻¹⁸. Perturbing 5-HT function can affect both perseveration and lose-
71 shift behavior, which are commonly assessed using probabilistic reversal learning (PRL)
72 paradigms (Figure 1 A-B): a subject learns through trial and error the most adaptive action in
73 a choice procedure, the contingencies of which eventually reverse, sometimes repeatedly^{12, 19-}
74²¹. A unifying framework for 5-HT in these processes has, however, remained elusive. To this
75 end, we proposed to use a mechanistic modelling framework to align behavioral changes in
76 PRL following serotonergic manipulations in rats¹⁹ and humans²².

77

78 Reinforcement learning (RL) is a well-established computational mechanism for the analysis
79 of latent mechanisms underlying choice behavior as it unfolds dynamically over time²³.

80 Standard RL models typically conceptualise choice in relation to an action's value, derived
81 from an accumulated reinforcement history, and incorporate parameters that estimate how
82 quickly action values are learned ('learning rate') and the extent to which that value is acted
83 upon (often termed 'inverse temperature' in relation to the mathematical softmax function
84 typically used; here, termed 'reinforcement sensitivity')²⁴. Stickiness parameters, by contrast,
85 track the extent to which behavioral tendencies are shaped by engagement with discrete cues
86 (stimuli) or locations, irrespective of an action's outcome. Stickiness can therefore be
87 considered a value-free component of behavior^{25, 26}. Across six previously published
88 experiments in rats and humans and a recently published computational modelling study in
89 humans, we examined whether stickiness or other RL parameters (learning rates or
90 reinforcement sensitivity) contributed meaningfully to behavior, and examined whether 5-HT
91 function would consistently modulate any of these parameters across species.

92

93 The stickiness parameter has recently emerged as important for understanding compulsivity:
94 stickiness was significantly high in stimulant use disorder (SUD) but abnormally low in
95 obsessive-compulsive disorder (OCD) during PRL performance⁷. Meanwhile, value-free
96 influences have been notably absent from prominent computational accounts of goal-directed
97 (or 'model-based') versus habitual (or 'model-free') controllers of behavior²⁶. These have
98 traditionally revolved around environmental features relevant to outcomes^{27, 28}. This has
99 hindered contextualisation within the rich literature on the neural basis of habits (reinforcer-
100 independent perseveration)²⁹. A traditional view of stimulus-response habits is that they are
101 created and strengthened by reinforcement, acting to enhance direct links between
102 environmental stimuli and responses³⁰; they are thus "model-free" in that they do not involve
103 representations of the expected consequences of behavior, but are "value-based" in that they
104 are created by valenced reinforcement. However, there are other aspects of behavior that are

105 independent of reinforcement or value. Indeed, value-free (action outcome-irrelevant) factors
106 similar to stickiness were recently shown to be important for understanding goal-directed
107 decision-making ²⁸. Accounting for stickiness – value-free perseveration – may therefore aid
108 in better dissecting the nature of imbalanced goal-directed versus habitual behavior seen in
109 OCD, SUD, and other conditions ³¹⁻³³, a balance that is sensitive to serotonergic disruption in
110 humans and rodents ³⁴⁻³⁶.

111

112 Two common methods for studying serotonin are through serotonin depletion and treatment
113 with selective serotonin reuptake inhibitors (SSRIs). In non-human animals, depletion can be
114 achieved using the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) which produces a
115 profound loss of serotonergic fibers ³⁷. SSRIs, meanwhile, are first-line pharmacological
116 treatments for several psychiatric conditions including major depressive disorder (MDD) ³⁸,
117 anxiety disorders ³⁹, post-traumatic stress disorder (PTSD) ⁴⁰, and OCD ⁴¹, yet both the
118 computational and neural mechanisms underlying their efficacy remain poorly understood.
119 SSRIs block the 5-HT transporter and thus reuptake of 5-HT, which increases extracellular
120 serotonin levels; however, this occurs not only in projection areas but also in the vicinity of 5-
121 HT_{1A} somatodendritic autoreceptors, activation of which leads to decreased firing rates of 5-
122 HT neurons ⁴². SSRIs can thus paradoxically lower 5-HT concentrations in projection regions
123 when given acutely, especially at low doses ⁴³, and firing rates return to baseline after 5-HT_{1A}
124 autoreceptors are desensitised by repeated administration ⁴⁴. This mechanism might be
125 reflected in a delayed clinical onset of the treatment effect of SSRI on mood ⁴⁵. For this
126 reason, effects of both acute and chronic SSRIs in rats were studied, with the prediction that a
127 higher acute dose and a chronic use could overcome these feedback effects of a low acute
128 dose and produce an increase in serotonin transmission ¹⁹. The 20mg used in the acute study

129 with healthy humans ²², while within the therapeutic range, is a lower acute dose than used in
130 some experimental animal studies.

131

132 Here, the primary question was whether serotonergic manipulations would cause similar
133 perturbations of model parameters across both rats and humans, thereby demonstrating the
134 evolutionary significance of the role of serotonin in cognitive flexibility. As an increased
135 tendency for lose-shift behavior induced by acute SSRI has been conceptualised as
136 hypersensitivity to negative feedback ^{19, 22}, we asked whether this would be reflected in
137 elevated punishment learning rates. Selective 5-HT depletion via 5,7-DHT of the orbitofrontal
138 cortex (OFC) or amygdala in marmoset monkeys, meanwhile, reduced reinforcement learning
139 rates (for rewards or punishments), and modulated stickiness ⁴⁶; we hypothesised that changes
140 in learning rate or stickiness parameters would occur following global 5-HT manipulations in
141 rats and humans. We predicted that incorporating stickiness parameters would be central to
142 capturing effects of 5-HT on behavioral flexibility and would increase or decrease depending
143 on changes in serotonin transmission.

144

145 **Materials and Methods**

146 **Probabilistic reversal learning task: humans**

147 The task used in the human SSRI experiment ²² is shown in Figure 1A, and contained 80
148 trials: 40 during acquisition and 40 following reversal. In other words, there was a fixed
149 number of trials and a single reversal. For the first 40 trials, one option yielded positive
150 feedback on 80% of trials, the other option on 20% of trials. These contingencies reversed for
151 the latter 40 trials. Positive feedback was given in the form of the word “CORRECT” on the
152 touchscreen computer and a high tone, negative feedback was conveyed by the word
153 “WRONG” and a low tone. The task was self-paced.

154

155 **Probabilistic reversal learning task: rats**

156 Following training and determination of stable levels of accuracy and a lack of side bias ¹⁹ in
157 operant chambers controlled by the Whisker control system ⁴⁷, rats were presented with two
158 apertures illuminated simultaneously to the left and right of a central (inactive) aperture
159 (Figure 1B). Responding at the ‘correct’ location was associated with an 80% probability food
160 reward (and 20% probability of a time-out punishment), whereas responding at the ‘incorrect’
161 location yielded reward on only 20% of trials (and punishment on 80%). Reward was in the
162 form of a 45 mg food pellet (Noyes dustless pellets; Sandown Scientific, Middlesex, UK)
163 delivered to a food magazine positioned on the opposite wall of the operant chamber.
164 Punishment was given in the form of a 2.5-second time-out. The left and right apertures were
165 illuminated for 30 seconds signifying the response window. The next trial was triggered by
166 retrieval of the pellet from the magazine. If no response was made, the trial was categorised as
167 an omission and resulted in a 5-second time-out. Responding to an unlit aperture had no
168 programmed consequence. Reversals occurred after the animal made eight consecutive correct
169 responses, at which point the correct aperture became the incorrect aperture and vice versa. A
170 session consisted of 200 trials to be completed during a 40-minute period. One session was
171 conducted per day.

172

173 **5,7-DHT forebrain 5-HT depletion: rats**

174 Sixteen rats were included in the final analysis. Rats were pre-treated intraperitoneally (i.p.)
175 with 20 mg/kg of desipramine hydrochloride (Sigma, Poole, UK) in order to preserve
176 noradrenergic neurons. Half of the rats were randomly assigned to receive bilateral
177 intracerebroventricular (i.c.v.) infusions of 80 g 5,7-DHT creatinine sulfate diluted in 10 g
178 of 10% ascorbic acid in saline, guided by a stereotaxic frame, whilst the other half received a

179 sham infusion of 10 g 0.01 M phosphate-buffered saline (PBS) – vehicle ¹⁹. Post-mortem
180 neurochemistry confirmed that 5,7-DHT infusions produced a near-total depletion of brain
181 serotonin and decreased levels of the serotonin metabolite 5-hydroxyindoleacetic acid (5-
182 HIAA) relative to controls in all regions examined: OFC, prelimbic cortex, anterior cingulate
183 cortex, nucleus accumbens, dorsomedial striatum, dorsolateral striatum, amygdala, dorsal
184 hippocampus (all p<.05)¹⁹. Levels of dopamine, norepinephrine, and the dopamine metabolite
185 dihydroxyphenylacetic acid (DOPAC) were not significantly different from controls in any of
186 these regions (all p > .05)¹⁹. Data were analysed from seven consecutive sessions conducted
187 following surgery in the previous report ¹⁹. Computational model convergence was achieved
188 when modelling behavior from all seven sessions collectively, which is reported in the current
189 study. Conversely, computational model convergence could not be achieved when modelling
190 the seven sessions separately.

191

192 **SSRI administration: rats**

193 Animals were divided into groups matched for task accuracy and then randomly assigned via
194 a Latin square design to receive injections i.p. of either citalopram hydrobromide (1 mg/kg or
195 10 mg/kg; Tocris, Bristol, UK). Citalopram, dissolved in 0.01 M PBS, or vehicle was
196 administered 30 minutes before the task ¹⁹. Eleven rats were included in the final analysis
197 after receiving vehicle, 1 mg/kg, or 10 mg/kg citalopram ¹⁹. Fourteen rats were included in the
198 repeated and sub-chronic citalopram experiment. The citalopram group was administered 5
199 mg/kg citalopram 30 min before testing, for seven consecutive days (n=7). The vehicle group
200 (n=7), instead, received the same number of daily injections of 0.01 M phosphate-buffered
201 saline ¹⁹. After seven days, the citalopram group received 10 mg/kg of citalopram twice a day
202 (about 4 h before the testing) for five consecutive days, to study the long-lasting effects of
203 sub-chronic dosing ¹⁹.

204

205 All the above animal experiments were conducted in accordance with the United Kingdom

206 Animals (Scientific Procedures) Act, 1986 (PPL 80/2234) in our previous study¹⁹.

207

208 **SSRI administration: humans**

209 The protocol was ethically approved (Cambridge Central NHS Research Ethics Committee,
210 reference 15/EE/0004). Volunteers gave informed consent and were paid. Participants were
211 healthy and without a personal or family history of psychiatric or neurological disorders²². In
212 a randomised, double-blind, placebo-controlled, between-groups design²², healthy volunteers
213 received either escitalopram ($n=32$) or placebo ($n=33$). The PRL task was conducted
214 following a 3-hour waiting period after oral drug administration to attain peak plasma
215 escitalopram concentration⁴⁸. Plasma analysis ($n=59$) verified increased escitalopram
216 concentration²² at 2.5 hours after the dose ($t_{54} = 18.835$, $p < 0.001$, mean = 14 ng/ml, standard
217 deviation [SD] = 5.72) just before the task administration, and at 5.5 hours ($t_{54} = 20.548$, $p <$
218 0.001, mean = 17.24 ng/ml, SD = 4.27). Mood ratings were unaffected by single dose
219 escitalopram administration ($p > .05$). There were no differences between groups in age, sex,
220 years of education, depressive symptoms, or trait anxiety (all $p > .05$).

221

222 **Computational modelling of behavior**

223 *Overview*

224 These methods are based on Kanen *et al.*⁷. Four RL models were fitted to the behavioral data,
225 which incorporated parameters that have been studied previously using a hierarchical
226 Bayesian method^{7, 49}. Models were fitted via Hamiltonian Markov chain Monte Carlo
227 sampling implemented in Stan 2.17.2⁵⁰. Convergence was checked according to \hat{R} , the
228 potential scale reduction factor measure^{51, 52}, which approaches 1 for perfect convergence.

229 Values below 1.1 are typically used as a guideline for determining model convergence and 1.1
230 as a stringent criterion ⁵¹. In the current study, most of the models had an $\hat{R} < 1.1$, except for
231 Model 4 in the sub-chronic 10 mg/kg experiment in rats ($\hat{R} = 1.7$) and Model 1 in the 5,7-
232 DHT experiment in rats ($\hat{R} = 1.5$). We assumed the four models examined had the same prior
233 probability (0.25). Models were compared via a bridge sampling estimate of the likelihood ⁵³,
234 using the “bridgesampling” package in R ⁵⁴. Bridge sampling directly estimates the marginal
235 likelihood, and therefore the posterior probability of each model given the data (and prior
236 model probabilities), under the assumption that the models represent the entire group of those
237 to be considered. Posterior distributions were interpreted using the highest density interval
238 (HDI) of posterior distributions, which is the Bayesian “credible interval”, at different
239 significance levels including 75%, 80%, 85%, 90% and 95%. Together with the HDI, the
240 group mean difference (MD) was also reported. The priors used for each parameter are shown
241 in Supplemental Table 1. For the human experiments, trials were sequenced across all 80
242 trials of the PRL task, and on each trial the computational model was supplied with the
243 participant’s identification number and condition, whether the trial resulted in positive or
244 negative feedback, and which visual stimulus was selected. For the rat experiments, trials
245 were sequenced across all sessions conducted under a given manipulation, and the
246 computational model was supplied with the same information, but instead with the location of
247 the aperture selected rather than the identification of the stimulus selected. Omissions were
248 rare and they were not included in the computational analysis.

249

250 **Models**

251 Model 1 incorporated three parameters and was used to test the hypothesis that 5-HT would
252 affect how positive versus negative feedback guides behavior. Separate learning rates for
253 positive feedback (reward) α^{rew} and negative feedback (nonreward/punishment) α^{pun} were

254 implemented. Positive reinforcement led to an increase in the value V_i of the stimulus i that
255 was chosen, at a speed governed by the *reward learning rate* α^{rew} , via $V_{i,t+1} \leftarrow V_{i,t} + \alpha^{rew}(R_t -$
256 $V_{i,t})$. R_t represents the outcome on trial t (defined as 1 on trials where positive feedback
257 occurred), and $(R_t - V_{i,t})$ the prediction error. On trials where negative feedback occurred $R_t =$
258 0, which led to a decrease in value of V_i at a speed governed by the *punishment learning rate*
259 α^{pun} , according to $V_{i,t+1} \leftarrow V_{i,t} + \alpha^{pun}(R_t - V_{i,t})$. Stimulus value was incorporated into the final
260 quantity controlling choice according to $Q^{reinf} = \tau^{reinf} V_t$. The additional parameter τ^{reinf} , termed
261 *reinforcement sensitivity*, governs the degree to which behavior is driven by reinforcement
262 history. The quantities Q associated with the two available choices, for a given trial, were then
263 input to a standard softmax choice function to compute the probability of each choice:

$$264 P(\text{action}_a) = \text{softmax}_{\beta}^a(Q_1 \dots Q_n) = \frac{e^{\beta Q_a}}{\sum_{k=1}^n e^{\beta Q_k}},$$

265 for $n=2$ choice options. The probability values for each trial emerging from the softmax
266 function (*i.e.*, the probability of choosing stimulus 1) were fitted to the subject's actual
267 choices (*i.e.*, did the subject choose stimulus 1?). Softmax inverse temperature was set to $\beta =$
268 1, and as a result the reinforcement sensitivity parameter (τ^{reinf}) directly represented the weight
269 given to the exponents in the softmax function.

270

271 Model 2 was as model 1 but for the human experiments incorporated a “stimulus stickiness”
272 parameter τ^{stim} , which measures the tendency to repeat a response to a specific perceptual
273 stimulus, irrespective of the action’s outcome. For the rat experiments a “side (location)
274 stickiness” parameter τ^{loc} was substituted, which measures the tendency to repeat a response
275 to a specific aperture in the operant chamber. Incorporating these two different stickiness
276 parameters, depending on the species, accounts for task differences between the human and
277 rat PRL experiments. This four-parameter model served to test whether accounting for
278 stimulus-response learning, in addition to learning about action-outcome associations, would

279 best characterise behavior. The stimulus stickiness effect was modelled as $Q^{stim}_t = \tau^{stim} s_{t-1}$,
280 where s_{t-1} was 1 for a stimulus that was chosen on the previous trial and was otherwise 0. The
281 final quantity controlling choice incorporated this additional parameter as $Q_t = Q^{reinf}_t + Q^{stim}_t$.
282 Quantities Q , corresponding to the two choice options on a given trial, were then fed into the
283 softmax function as above.

284

285 Model 3 incorporated three parameters and served to test whether a single learning rate α^{reinf} ,
286 rather than separate learning rates for rewards and punishments, optimally characterised
287 behavior. Reward led to an increase in the value V_i of the stimulus i that was chosen, at a
288 speed controlled by the *reinforcement rate* α^{reinf} , via $V_{i,t+1} \leftarrow V_{i,t} + \alpha^{reinf}(R_t - V_{i,t})$. R_t represents
289 the outcome on trial t (defined as 1 on trials where reward occurred), and $(R_t - V_{i,t})$ the
290 prediction error. On trials where punishment occurred $R_t = 0$, which led to a decrease in value
291 of V_i . Model 3 also included the stimulus stickiness parameter. The final quantity controlling
292 choice was determined by $Q_t = Q^{reinf}_t + Q^{stim}_t$.

293

294 Model 4 took a different approach, and had three parameters: ϕ (phi), ρ (rho), and β (beta).
295 Derived from the experienced-weighted attraction model (EWA) of Camerer and Ho ⁵⁵, here
296 it was implemented as in den Ouden *et al.*¹⁴ a study in which the EWA model best described
297 behavior best on a nearly identical human task. A key difference to the other reinforcement
298 learning models tested in this study is that here the learning rate can decline over time,
299 governed by a decay factor ρ (rho). The EWA model weighs the value of new information
300 against current expectations or beliefs, accumulated from previous experience.

301

302 Learning from reinforcement is modulated by an “experience weight”, $n_{c,t}$, which is a measure
303 of how often the subject has chosen a stimulus (*i.e.* experienced the action), and is updated

304 every time the stimulus is chosen (where c is choice and t is trial) according to the experience
305 decay factor ρ (range $0 < \rho < 1$) and can increase without bounds ¹⁴:

306
$$n_{c,t} \leftarrow n_{c,t-1} \rho + 1.$$

307 The value of a choice is updated according to the outcome, λ , and the decay factor for
308 previous payoffs, φ (range $0 < \varphi < 1$) ¹⁴

309
$$v_{c,t} \leftarrow (v_{c,t-1} \varphi n_{c,t-1} + \lambda_{t-1}) / n_{c,t}.$$

310 The payoff decay factor φ (phi) is related to a Rescorla–Wagner-style ⁵⁶ learning rate α (as in
311 Models 1-3), by $\alpha = 1 - \varphi$. A high value of φ means that stimuli keep a high fraction of their
312 previous value and thus learning from reinforcement is slow. When ρ is high, then “well-
313 known” actions (with high n) are updated relatively little by reinforcement, by virtue of the
314 terms involving n , whilst reinforcement has a proportionately larger effect on novel actions
315 (with low n). For comparison to Models 1-3, when $\rho = 0$, the experience weight n , is 1, which
316 reduces to a learning rate α controlling the influence of learning from prediction error. Choice
317 in the EWA model is also governed by a softmax process, only here the softmax inverse
318 temperature β was also a parameter able to vary, in contrast to Models 1-3.

319

320 **Results**

321 **Choice of model**

322 Behavior in all experiments was best described by reinforcement learning models
323 incorporating parameters for stickiness, reinforcement sensitivity, and learning rates,
324 consistent with previous work ^{7,49}. Convergence was good with most models having $\hat{R} < 1.1$
325 (see Methods). Model comparison metrics are shown in Supplemental Table 2. For all
326 experiments, the winning model had separate learning rates for reward (α^{rew}) and punishment
327 (α^{pun}). The reward learning rate (α^{rew}) indexed how quickly action value representation
328 increased following a reward prediction error (when action outcome was better than

329 predicted). Punishment learning rate (α^{pun}) is an assay of the speed at which action value
330 decreased following a punishment prediction error (outcome was worse than predicted).
331 Stickiness measures a basic perseverative tendency: whether or not an action chosen on the
332 previous trial was repeated, irrespective of its outcome. For rats, stickiness indexed the side
333 (or location; τ^{loc}) of responding whereas for humans, stickiness referred to (visual) stimulus
334 stickiness (τ^{stim}). Reinforcement sensitivity (τ^{reinf}) measures the degree to which the values
335 learned through reinforcement impact on choice behavior. Reinforcement sensitivity can be
336 viewed as a value-based inverse temperature; stickiness as a value-free inverse temperature.
337 Low values of stickiness or reinforcement sensitivity can be thought of as two different types
338 of exploratory behavior; low reinforcement sensitivity represents exploration away from the
339 more highly valued choice whereas low stickiness represents exploration away from the
340 previously chosen stimulus or location irrespective of value. The accuracy of the parameter
341 recovery was confirmed for this modelling approach previously ⁷ and also confirmed by
342 simulations for those parameter values estimated here in each experiment (Supplementary
343 Table 3).

344

345 **Serotonin depletion by intraventricular 5,7 dihydroxytryptamine (5,7-DHT): rats**
346 Results are shown in Figure 1C and Table 1. Post-mortem neurochemistry confirmed that 5,7-
347 DHT infusions produced a near-total depletion of brain serotonin (for more details see the
348 Methods and also Bari *et al.* 2010). The conventional analysis in the previous publication ¹⁹
349 found a decreased win-stay rate, an increased lose-shift rate and a reduced number of
350 reversals completed in the group of depletion-operated rats ($n = 8$) compared with the group
351 of sham-operated rats ($n = 8$). After computational modelling, we found that the depletion
352 decreased the side (location) stickiness parameter (τ^{loc} ; MD = -0.2938 [95% HDI, -0.4635 to -
353 0.1134]) and the reward learning rate (α^{rew} ; MD = -0.0401 [85% HDI, -0.0757 to -0.0033]).

354 There was no effect of 5,7-DHT on the punishment learning rate (α^{pun}) or reinforcement
355 sensitivity (τ^{reinf}) [$0 \in 75\%$ HDI]. The decreased lose-shift rate was retrodicted in the
356 simulation of the computational model (Supplementary Result 1). Furthermore, because
357 reinforcement sensitivity was also unaffected in Model 1, which did not contain the stickiness
358 parameter, the effect of 5,7-DHT on stickiness was unlikely to be a misattribution of
359 reinforcement sensitivity.

360

361 **Acute SSRI: rats**

362 Results for acute citalopram administered to rats ($n = 11$ with a cross-over design for vehicle,
363 1mg/kg, and 10mg/kg) are shown in Figure 2 and Table 1. The conventional analysis showed
364 the number of reversals completed was significantly lower following a low dose of 1 mg/kg
365 SSRI compared with a high dose of 10 mg/kg SSRI ¹⁹. After computational modelling of the
366 behavior, we found a single dose of 1 mg/kg citalopram in rats diminished the side (location)
367 stickiness parameter ($MD = -0.1862$ [95% HDI, -0.3330 to -0.0441]), as seen following 5,7-
368 DHT. The reward learning rate was enhanced by the 1 mg/kg dose in rats ($MD = 0.2098$ [95%
369 HDI, 0.0184 to 0.3959]). There was no effect of 1 mg/kg on the punishment learning rate or
370 reinforcement sensitivity ($0 \in 75\%$ HDI). A single high dose of citalopram in rats (10 mg/kg)
371 decreased the reward learning rate ($MD = -0.1489$ [85% HDI, -0.2888 to -0.0009]) and
372 enhanced reinforcement sensitivity ($MD = 0.2900$ [85% HDI, 0.0346 to 0.5590]). However,
373 there was no effect of 10 mg/kg on the punishment learning rate or side (location) stickiness
374 ($0 \in 75\%$ HDI). Simulation of the wining model retrodicted the significant difference in the
375 number of reversals completed between the low-dose group and the high-dose group
376 (Supplementary Result 1).

377

378 **Repeated and sub-chronic SSRI: rats**

379 Results for ‘repeated’ 5 mg/kg citalopram administered for consecutive 7 days to rats (the Cit
380 group; $n = 7$) compared with the vehicle group (the Veh group; $n = 7$) are shown in Figure 3A
381 and Table 1. After 7 days, the Cit group received 10 mg/kg of citalopram twice a day for 5
382 consecutive days to study the longer-lasting effects of ‘sub-chronic’ dosing. Results for sub-
383 chronic dosing are shown in Figure 3B and Table 1. The conventional analyses showed the
384 win-stay rate increased by repeated citalopram treatment and the number of reversals was
385 increased by sub-chronic dosing ¹⁹. Following computational modelling of the behavior, we
386 found that repeated citalopram enhanced both the punishment learning rate (MD = 0.3299 [95%
387 HDI, 0.0432 to 0.6404]) and side (location) stickiness (MD = 0.1581 [75% HDI, 0.0135 to
388 0.3054]). There was no effect of repeated citalopram on the reward learning rate and
389 reinforcement sensitivity (0 ∈ 75% HDI). The sub-chronic dosing enhanced the reward
390 learning rate (MD = 0.4769 [95% HDI, 0.2699 to 0.6780]), the punishment learning rate (MD
391 = 0.4762 [95% HDI, 0.2172 to 0.7323]), and the side (location) stickiness (MD = 0.1676 [75%
392 HDI, 0.0075 to 0.3414]), but decreased the reinforcement sensitivity (MD = -0.9972 [95%
393 HDI, -1.7233 to -0.2540]). Simulation of the winning model retrodicted the significant
394 increase of the win-stay rate for repeated citalopram compared with the vehicle, but did not
395 show a significant increase in the number of reversals for sub-chronic dosing (Supplementary
396 Result 1).

397

398 **Acute SSRI: humans**

399 Modelling results ($n = 32$ escitalopram, $n = 33$ placebo) are shown in Figure 4 and Table 1.
400 The prior conventional analysis suggested that the impaired reversal learning after acute SSRI
401 mainly resulted from an elevated lose-shift rate ²². After computational modelling, we found
402 that the administration of a single 20 mg dose of escitalopram to healthy humans decreased
403 the reward learning rate (MD = -0.2019 [95% HDI, -0.3612 to -0.0392]), stimulus stickiness

404 (MD = -0.1841 [85% HDI, -0.3476 to -0.0045]) and reinforcement sensitivity (MD = -1.6848
405 [80% HDI, -3.1501 to -0.1553]), but had no effect on the punishment learning rate (0 ∈ 75%
406 HDI). Simulation of the computational model retrodicted a significantly increased lose-shift
407 rate (Supplementary Result 1).

408

409 **Chronic SSRI treatment in humans**

410 As reported in our recent publication for the effect of chronic use of SSRI on behavioral
411 flexibility by a double-blind, placebo-control, semi-randomized study⁵⁷, the computational
412 modelling approach was applied to the behavioral data of the same probabilistic reversal
413 learning task in healthy volunteers. The participants were semi-randomized into the treatment
414 group ($n = 32$) receiving 20 mg escitalopram or the control group receiving the placebo for 3
415 to 5 weeks. The conventional analysis identified no significant group differences⁵⁷. After
416 computational modelling, we found that the chronic use of SSRI reduced reinforcement
417 sensitivity compared to placebo ($n = 34$) in healthy volunteers (MD = -2.7673 [90% HDI,
418 -5.2846 to -0.3959]), but had no effect on reward/punishment learning rates or stimulus
419 stickiness (0 ∈ 75% HDI)⁵⁷.

420

421 **Relationship between model parameters and conventional behavioral measures**

422 Next, we conducted correlational analyses to demonstrate how our modelling results compared
423 with traditional metrics of PRL. There were converging effects across species involving
424 stickiness. Results were corrected for multiple comparisons by false discovery rate (FDR) and
425 are summarised in Supplemental Tables 5-7. The conventional measures examined for the rat
426 experiments were win-stay (proportion of trials where the subject stayed with the same choice
427 following a reward), lose-shift (proportion of trials where the subject shifted choice following

428 punishment), and number of reversals completed ¹⁹. Win-stay and lose-shift were also
429 examined in the human studies, as was perseveration ¹⁸. In the human SSRI acute experiment,
430 stimulus stickiness was positively correlated with the win-stay rate ($r = .51$, $p = .0066$ on
431 placebo; $r = .62$, $p = .0005$ following escitalopram) and also negatively correlated with the
432 lose-shift rate ($r = -.63$, $p = .0003$ on placebo; $r = -.78$, $p = 7.95 \times 10^{-7}$ following escitalopram).
433 In rats, side (location) stickiness was negatively correlated with the lose-shift rate following an
434 acute 1 mg/kg dose of citalopram ($r = -.89$, $p = .006$), and positively correlated with the win-
435 stay rate in the vehicle group with daily injections of 0.01 M phosphate-buffered saline for 7
436 days ($r = .95$, $p = .0065$). Side (location) stickiness was also positively correlated with the
437 number of reversals achieved during the repeated administration ($r = .89$, $p = .0205$ following
438 5 mg/kg citalopram per day and $r = .97$, $p = .0049$ with the same number of daily injections of
439 vehicle). Further correlations with other model parameters are reported in the Supplementary
440 Tables 5-7.

441

442 **Summary of results**

443 In rats, stickiness was decreased after 5,7-DHT and acute 1 mg/kg citalopram, whereas
444 stickiness was increased after repeated 5 mg/kg citalopram and sub-chronic 10 mg/kg
445 citalopram. In humans, stickiness was decreased following 20 mg escitalopram, similar to the
446 effects of 5,7-DHT and low dose citalopram in rats. Also in cross-species alignment, the
447 reward learning rate was decreased following 5,7-DHT and acute 10 mg/kg citalopram in rats
448 as well as in humans following 20 mg escitalopram. The reward learning rate in rats was
449 additionally increased following acute 1 mg/kg citalopram and sub-chronic 10mg/kg
450 citalopram. The punishment learning rate was increased for both repeated 5 mg/kg citalopram
451 and sub-chronic citalopram in rats only. Reinforcement sensitivity was increased following 10
452 mg/kg of citalopram and decreased during sub-chronic treatment in rats, agreeing with our

453 own recent analysis of chronic escitalopram treatment in humans⁵⁷, although this parameter
454 was also shown to be decreased in the present analysis following acute 20mg escitalopram in
455 humans.

456

457 **Discussion**

458 We have demonstrated converging effects of a range of bidirectional 5-HT manipulations
459 across both rats and humans which bolsters its evolutionarily conserved role in behavioral
460 flexibility and plasticity. Computational modelling of choice behavior indicated increases or
461 decreases in choice repetition ('stickiness') or reinforcement learning rates depending upon
462 manipulations intended to increase or decrease serotonin function, respectively. Stickiness, a
463 basic tendency to persevere versus 'explore', was modulated in five serotonergic
464 manipulations examined across both rats and humans. Stickiness was decreased by neurotoxic
465 5-HT depletion in rats and by acute 1 mg/kg SSRI in rats (citalopram) and healthy humans
466 (20 mg escitalopram), treatments presumably reducing 5-HT signalling. By contrast,
467 stickiness was increased following both repeated (5 mg/kg for 7 days) and sub-chronic (10
468 mg/kg twice a day for 5 days) dosing of SSRI in rats, treatments probably boosting 5-HT
469 function. Learning rates were also modulated by five serotonergic manipulations across
470 species. The reward learning rate increased the most after sub-chronic administration of the
471 SSRI citalopram (5 mg/kg for 7 days followed by 10 mg/kg twice a day for 5 days) compared
472 with the vehicle group. Conversely, humans given a single dose of an SSRI (20mg
473 escitalopram), which can decrease post-synaptic serotonin signalling, and rats that received
474 5,7-DHT demonstrated decreased reward learning rates. This in turn parallels the reduction of
475 reinforcement learning rates following 5,7-DHT infused directly in the marmoset amygdala or
476 OFC to produce local 5-HT depletion⁴⁶. Collectively, the present and the previous results

477 show that serotonin has common effects on latent computational mechanisms supporting
478 flexible decision-making and plasticity in rats, marmoset monkeys and humans.

479

480 The neural substrates of PRL are relatively well understood^{46, 58, 59} and involve interactions in
481 particular among the orbitofrontal cortex (OFC), amygdala, and striatum. Administration of
482 5,7-DHT directly to either the marmoset OFC or amygdala produced changes in both
483 stickiness and reinforcement learning rates⁴⁶. Marmosets that received 5,7-DHT in the OFC
484 repeated choices to recently chosen stimuli across a longer timescale, whereas 5,7-DHT in the
485 amygdala produced a more ephemeral tendency to repeat choices⁴⁶. Dietary depletion of
486 tryptophan, serotonin's biosynthetic precursor, in humans, also modulated stickiness and
487 corresponding activity in frontopolar cortex during a four-choice probabilistic task⁶⁰.

488

489 Stickiness, the only value-free parameter in our reinforcement learning model, contributed to
490 a core feature of complex behavior, *i.e.* exploration. Lower stickiness, even negative
491 stickiness, is generally associated with more exploratory behavior. However, exploratory
492 behavior is not a unitary construct⁶¹. At one level, exploratory behavior can reflect directed
493 information gathering, but on another level it can be mechanistic or rigid, resulting from
494 'decisional noise', producing apparently flexible behavior but, in fact, representing a
495 fundamental performance heuristic recruited in volatile settings that evokes a primitive form
496 of exploration. Another potential measure of exploratory behavior is reflected in
497 reinforcement sensitivity, as a value-based parameter in our model, which can be interpreted
498 as reflecting the balance between exploiting and exploring tendencies (low reinforcement
499 sensitivity is sometimes referred to as 'random exploration')⁶².

500

501 Whilst the effects of serotonin on reinforcement sensitivity revealed by the present analyses
502 were ostensibly more difficult to interpret – underscoring that stickiness is a distinct
503 mechanism – there is an intriguing parallel with a recent study. Langley *et al.*⁵⁷ have recently
504 shown diminished reinforcement sensitivity in healthy humans following chronic – at least 21
505 days – of 20 mg escitalopram performing the same PRL task and modelled in an identical
506 fashion – this reduction is hence the same direction as for the acute dose in humans and sub-
507 chronic dosing in rats. Although this parallel between single and chronic dosing in humans
508 was unexpected, it is notable that reinforcement sensitivity in rats following sub-chronic
509 dosing was also decreased. These effects of reduced reinforcement sensitivity (value-based)
510 may relate to what has been termed “emotional blunting” or “SSRI-induced apathy
511 syndrome” in patients with MDD^{57, 63-65}. The reduction in inverse temperature can also be
512 interpreted as a reduction in “maximisation” of reinforcement and this a shift in the balance
513 between “exploitation” and “exploration”⁶¹. However, it is evident that this drift to
514 exploration is not always accompanied by reduced “stickiness”, suggesting different processes
515 underlying choice variability.

516

517 The present analyses focusing on behavioral flexibility are relevant to current hypotheses of
518 effects of psychedelic agents such as psilocybin and LSD and their hypothetical actions on
519 neuronal plasticity and cognitive flexibility^{66, 67}. There are in fact intriguing parallels between
520 the present global manipulations of serotonin and the effects of LSD on latent mechanisms
521 underlying PRL in humans. Whilst LSD is mostly known for its 5-HT_{2A} agonist properties, it
522 is also a 5-HT_{1A} agonist and suppresses dorsal raphe serotonin neuron activity⁶⁸. Indeed, LSD
523 was recently shown to reduce stickiness during PRL performance of healthy humans^{69, 70},
524 which aligns with 5-HT_{1A} somatodendritic autoreceptor effects associated with the reduced
525 stickiness shown here following acute SSRI in humans and low dose SSRI in rats. At the

526 same time, LSD markedly increased the reinforcement learning rates for both reward and
527 punishment⁷⁰, which were also increased following sub-chronic SSRI dosing in rats. The
528 parallel with our sub-chronic SSRI results from rats with the effects of LSD on learning rates
529 in humans agrees with the literature showing that optogenetic stimulation of 5-HT neurons in
530 the dorsal raphe increased reinforcement learning rates⁷¹. Given the well-established role of
531 the 5-HT_{2A} receptor in reversal learning, and its involvement in SSRI-related reversal
532 improvements⁷², a 5-HT_{2A} mechanism may well be implicated in the present data. Indeed, the
533 5-HT_{2A} receptor is involved in plasticity^{73, 74} and associative learning⁷⁵. Furthermore, during
534 initial learning (pre-reversal), LSD decreased reinforcement sensitivity⁷⁰, in line with the
535 acute and chronic⁵⁷ SSRI effects in humans and sub-chronic effect in rats.

536

537 Other studies have investigated other forms of exploratory behavior, sometimes assessed with
538 a four-choice, rather than two-choice, task as here. For example, directed exploration – where
539 the goal is to explore uncertain options to maximise information gained – was modulated by
540 dopamine⁷⁶ and attenuated in gambling disorder⁷⁷. *Tabula rasa* exploration (disregarding
541 history), meanwhile, ignores all prior knowledge (e.g. choice history, reinforcement history,
542 and estimates of uncertainty, respectively), has been associated with norepinephrine but not
543 dopamine function⁷⁸ and may be enhanced in individuals with attention-deficit/hyperactivity
544 disorder (ADHD) symptoms⁷⁹. Understanding distinct types of exploratory behavior and their
545 neurochemical modulation is therefore relevant transdiagnostically. We posit that low
546 stickiness is a fundamental form of exploration, and have shown here that serotonin
547 modulates it; this is likely by affecting a neural network that includes the dorsomedial PFC,
548 OFC, and amygdala⁴⁶.

549

550 Manifestation of high or low stickiness may bear on the neural representation of discrete
551 states of the world. In the context of PRL, for example, one state would be “option A is
552 mostly correct” (pre-reversal) whilst another state would be “option B is mostly correct”
553 (post-reversal). To perform well during PRL, in this view, veridical state representations
554 inferred by the brain are critical as are veridical probabilities of transitions between states.
555 Indeed, the OFC is implicated in representing states^{80, 81}. One possibility, therefore, is that
556 these results concerning stickiness collectively reflect an influence of serotonin on inferring
557 states or state transitions. This would align with recent theorising on OCD (where stickiness is
558 low during PRL)⁷, which posits that the disorder can be characterised by excessive statistical
559 uncertainty (variance, or inverse precision) about the probability of transitions between states
560 (*e.g.* from the state of dirty hands to clean hands after washing), particularly those that are
561 action-dependent⁸². The optimal response to uncertainty about the current state would be
562 exploratory behavior to continue gathering information⁸². SUD (where stickiness is high)⁷,
563 meanwhile, may be characterised by over-encoding of state-specific rules and information⁸³.
564 The model of state transition uncertainty can explain excessive behavioral switching (*i.e.* low
565 stickiness) as well as heightened perseveration (*i.e.* high stickiness) and can be extended to
566 account for other conditions including generalised anxiety disorder, autism spectrum disorder
567 (ASD), and schizophrenia⁸². Indeed, reversal learning deficits have been documented in ASD
568⁶ and schizophrenia^{84, 85}.
569
570 Dose-dependent effects of SSRIs are key to understanding serotonin function in this cross-
571 species analysis. Acute low- and high-dose SSRI administration lowered and increased
572 stickiness, respectively, which likely reflected sensitive measures of opposite effects on 5-HT
573 activity. Evidence from positron emission tomography (PET) imaging has shown that acute
574 SSRI in humans, at the dose used here, lowers 5-HT concentrations in projection regions⁸⁶,

575 although there can be considerable individual differences in this action⁸⁷ - which may relate to
576 the considerable variability in the reinforcement sensitivity parameter evident in Figure 4. The
577 reduction in 5-HT levels in terminal projection areas is believed to reflect the activation of 5-
578 HT_{1A} autoreceptors by increases in extracellular serotonin following reuptake inhibition,
579 which in turn leads to decreased firing rates of 5-HT neurons^{42, 44}. We posit that the high
580 acute dose of SSRI used in rats, which heightened stickiness, overcame 5-HT_{1A} autoreceptor-
581 mediated regulation.

582

583 The dose-dependent effects on stickiness may have implications for the treatment of OCD, in
584 particular, one of numerous conditions for which SSRIs are first-line pharmacotherapy³⁸⁻⁴¹.
585 One puzzle has been why doses up to three times higher than those used in MDD are optimal
586 for reducing symptoms of OCD⁸⁸. In fact, guidelines for OCD recommend titrating to the
587 maximum approved dose⁸⁹, yet using these high doses in MDD does not improve efficacy
588 and instead increases side-effects⁸⁸. That both the repeated 5 mg/kg SSRI and the sub-chronic
589 10 mg/kg treatments in rats increased stickiness in the present study may be relevant for
590 understanding this clinical phenomenon.

591

592 **Conclusion**

593 It is imperative to overcome the challenge of relating animal and human experiments in order
594 to advance models of psychiatric disorder and drug development⁹⁰⁻⁹². Here, we have provided
595 evidence across rats and humans that serotonin modulates fundamental components of
596 learning important for plasticity (reinforcement learning rates) and behavioral flexibility
597 (stickiness), bidirectionally. Stickiness, a basic perseverative tendency less commonly studied
598 in conjunction with RL, may be a fundamental mechanism involved in choice. Moreover, we
599 have shown a consistent role for serotonin in affecting basic tendencies to persevere or

600 explore in comparable decision-making tasks in rats and humans. These results demonstrate
601 that the role of serotonin in cognitive flexibility is preserved across species and are thus of
602 evolutionary significance. In addition, this role of serotonin is of clinical relevance for
603 neuropsychiatric disorders where SSRIs are the first line of treatment. The translational
604 results of this study are of particular relevance for the pathophysiology and treatment of OCD
605 and SUD, where parallel learning processes have been perturbed ⁷, and have implications for
606 a wide range of other neuropsychiatric disorders, including depression ^{8,9} and schizophrenia
607 ^{27, 93}.

608 **Competing Interests Statement**

609 T.W.R. discloses consultancy with Cambridge Cognition and Supernus; he receives research
610 grants from Shionogi & Co and Sirgartan and editorial honoraria from Springer Verlag and
611 Elsevier. B.J.S. consults for Cambridge Cognition and receives royalties from PopReach.
612 R.N.C. consults for Campden Instruments and receives royalties from Cambridge Enterprise,
613 Routledge, and Cambridge University Press. All other authors declare no conflicts of interest.

614

615 **Acknowledgements**

616 This research was funded by the Wellcome Trust (Grant 104631/Z/14/Z to T.W.R) and the
617 Lundbeck Foundation (Grant R281-2018-131 to B.J.S and G.M.K). Q.L. was supported by
618 the National Key Research and Development Program of China (Grant 2019YFA0709502),
619 the National Natural Science Foundation of China (Grant 82272079), the Natural Science
620 Foundation of Shanghai (Grant 20ZR1404900), the Shanghai Municipal Science and
621 Technology Major Project (Grant 2018SHZDZX01). Most of the analyses of this study had
622 been conducted when Q.L. was a Visiting Fellow at the Clare Hall, University of Cambridge,
623 Cambridge, UK. J.W.K. was supported by a Gates Cambridge Scholarship and an Angharad
624 Dodds John Bursary in Mental Health and Neuropsychiatry. R.N.C was funded by the UK
625 Medical Research Council (MC_PC_17213). N.S. was supported by an Academic Clinical
626 Fellowship (University of Cambridge/ Cambridgeshire and Peterborough NHS Foundation
627 Trust). B.U.P was supported by an Angharad Dodds John Bursary in Mental Health and
628 Neuropsychiatry and is a current employee of AstraZeneca plc.

629

630 **Author Contributions**

631 TWR, QL and JWK made substantial contributions to the conception or design of the work;
632 AB, NS and CL contributed substantially to the acquisition of the data; QL, JWK, JA, BUP
633 and RNC contributed substantially to the analysis of the data; QL, JWK, GMK, BJS, RNC
634 and TWR contributed substantially to the interpretation of data; JK and QL wrote the first
635 draft; AB, NS, CL, GMK, JA, BUP, BJS, RNC and TWR made critical revisions.

636

637

638

639 **Reference**

640

641 1. Berlin, G.S. & Hollander, E. Compulsivity, impulsivity, and the DSM-5 process. *Cns Spectrums* **19**, 62-68 (2014).

642 2. Jentsch, J.D. & Taylor, J.R. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. *Psychopharmacology* **146**, 373-390 (1999).

643 3. Koob, G.F. & Volkow, N.D. Neurobiology of addiction: a neurocircuitry analysis. *Lancet Psychiatry* **3**, 760-773 (2016).

644 4. Robbins, T.W., Vaghi, M.M. & Banca, P. Obsessive-Compulsive Disorder: Puzzles and Prospects. *Neuron* **102**, 27-47 (2019).

645 5. Tiffany, S.T. A COGNITIVE MODEL OF DRUG URGES AND DRUG-USE BEHAVIOR - ROLE OF AUTOMATIC AND NONAUTOMATIC PROCESSES. *Psychological Review* **97**, 147-168 (1990).

646 6. Brolsma, S.C.A., *et al.* Challenging the negative learning bias hypothesis of depression: reversal learning in a naturalistic psychiatric sample. *Psychological Medicine* **52**, 303-313 (2022).

647 7. Kanen, J.W., Ersche, K.D., Fineberg, N.A., Robbins, T.W. & Cardinal, R.N. Computational modelling reveals contrasting effects on reinforcement learning and cognitive flexibility in stimulant use disorder and obsessive-compulsive disorder: remediating effects of dopaminergic D2/3 receptor agents. *Psychopharmacology* **236**, 2337-2358 (2019).

648 8. Mukherjee, D., Filipowicz, A.L.S., Vo, K., Satterthwaite, T.D. & Kable, J.W. Reward and Punishment Reversal-Learning in Major Depressive Disorder. *Journal of Abnormal Psychology* **129**, 810-823 (2020).

649 9. Murphy, F.C., Michael, A., Robbins, T.W. & Sahakian, B.J. Neuropsychological impairment in patients with major depressive disorder: the effects of feedback on task performance. *Psychological Medicine* **33**, 455-467 (2003).

650 10. Taylor Tavares, J.V., *et al.* Neural basis of abnormal response to negative feedback in unmedicated mood disorders. *Neuroimage* **42**, 1118-1126 (2008).

651 11. Alsio, J., *et al.* Serotonergic Innervations of the Orbitofrontal and Medial-prefrontal Cortices are Differentially Involved in Visual Discrimination and Reversal Learning in Rats. *Cerebral Cortex* **31**, 1090-1105 (2021).

652 12. Brown, H.D., Amodeo, D.A., Sweeney, J.A. & Ragozzino, M.E. The selective serotonin reuptake inhibitor, escitalopram, enhances inhibition of prepotent responding and spatial reversal learning. *Journal of Psychopharmacology* **26**, 1443-1455 (2012).

653 13. Clarke, H.F., Dalley, J.W., Crofts, H.S., Robbins, T.W. & Roberts, A.C. Cognitive inflexibility after prefrontal serotonin depletion. *Science* **304**, 878-880 (2004).

654 14. den Ouden, H.E.M., *et al.* Dissociable Effects of Dopamine and Serotonin on Reversal Learning. *Neuron* **80**, 1090-1100 (2013).

655 15. Lapiz-Bluhm, M.D.S., Soto-Pina, A.E., Hensler, J.G. & Morilak, D.A. Chronic intermittent cold stress and serotonin depletion induce deficits of reversal learning in an attentional set-shifting test in rats. *Psychopharmacology* **202**, 329-341 (2009).

656 16. Matias, S., Lottem, E., Dugue, G.P. & Mainen, Z.F. Activity patterns of serotonin neurons underlying cognitive flexibility. *Elife* **6** (2017).

657 17. Kanen, J.W., *et al.* Effect of lysergic acid diethylamide (LSD) on reinforcement learning in humans. *bioRxiv*, 2020.2012.2004.412189 (2021).

684 18. Kanen, J.W., *et al.* Probabilistic reversal learning under acute tryptophan depletion in
685 healthy humans: a conventional analysis. *Journal of Psychopharmacology* **34**, 580-583
686 (2020).

687 19. Bari, A., *et al.* Serotonin Modulates Sensitivity to Reward and Negative Feedback in a
688 Probabilistic Reversal Learning Task in Rats. *Neuropsychopharmacology* **35**, 1290-1301
689 (2010).

690 20. Chamberlain, S.R., *et al.* Neurochemical modulation of response inhibition and
691 probabilistic learning in humans. *Science* **311**, 861-863 (2006).

692 21. Lawrence, A.D., Sahakian, B.J., Rogers, R.D., Hodges, J.R. & Robbins, T.W.
693 Discrimination, reversal, and shift learning in Huntington's disease: mechanisms of impaired
694 response selection. *Neuropsychologia* **37**, 1359-1374 (1999).

695 22. Skandali, N., *et al.* Dissociable effects of acute SSRI (escitalopram) on executive,
696 learning and emotional functions in healthy humans. *Neuropsychopharmacology* **43**, 2645-
697 2651 (2018).

698 23. Daw, N.D. Trial-by-trial data analysis using computational models. *Decis Making,
699 Affect Learn Atten Perform* **XXIII**, 1-26 (2011).

700 24. Sutton, R.S. & Barto, A.G. Reinforcement Learning: An Introduction, 2nd edn. *The MIT
701 Press* (2012).

702 25. Bennett, D., Niv, Y. & Langdon, A.J. Value-free reinforcement learning: policy
703 optimization as a minimal model of operant behavior. *Current Opinion in Behavioral Sciences*
704 **41**, 114-121 (2021).

705 26. Miller, K.J., Shenhav, A. & Ludvig, E.A. Habits Without Values. *Psychological Review*
706 **126**, 292-311 (2019).

707 27. Deserno, L. & Hauser, T.U. Beyond a Cognitive Dichotomy: Can Multiple Decision
708 Systems Prove Useful to Distinguish Compulsive and Impulsive Symptom Dimensions? *Biol
709 Psychiatry* **88**, e49-e51 (2020).

710 28. Shahar, N., *et al.* Credit assignment to state-independent task representations and its
711 relationship with model-based decision making. *Proceedings of the National Academy of
712 Sciences of the United States of America* **116**, 15871-15876 (2019).

713 29. Balleine, B.W. & O'Doherty, J.P. Human and Rodent Homologies in Action Control:
714 Corticostriatal Determinants of Goal-Directed and Habitual Action.
715 *Neuropsychopharmacology* **35**, 48-69 (2010).

716 30. Cardinal, R.N., Parkinson, J.A., Hall, J. & Everitt, B.J. Emotion and motivation: the role
717 of the amygdala, ventral striatum, and prefrontal cortex. *Neuroscience and Biobehavioral
718 Reviews* **26**, 321-352 (2002).

719 31. Ersche, K.D., *et al.* Carrots and sticks fail to change behavior in cocaine addiction.
720 *Science* **352**, 1468-1471 (2016).

721 32. Gillan, C.M., *et al.* Disruption in the Balance Between Goal-Directed Behavior and
722 Habit Learning in Obsessive-Compulsive Disorder. *American Journal of Psychiatry* **168**, 718-
723 726 (2011).

724 33. Voon, V., *et al.* Disorders of compulsion: a common bias towards learning habits.
725 *Molecular Psychiatry* **20**, 345-352 (2015).

726 34. Ohmura, Y., *et al.* Disruption of model-based decision making by silencing of
727 serotonin neurons in the dorsal raphe nucleus. *Current Biology* **31**, 2446-+ (2021).

728 35. Worbe, Y., *et al.* Valence-dependent influence of serotonin depletion on model-
729 based choice strategy. *Molecular Psychiatry* **21**, 624-629 (2016).

730 36. Worbe, Y., Savulich, G., de Wit, S., Fernandez-Egea, E. & Robbins, T.W. Tryptophan
731 Depletion Promotes Habitual over Goal-Directed Control of Appetitive Responding in
732 Humans. *Int J Neuropsychopharmacol* **18**, pyv013 (2015).

733 37. Bjorklund, A., Baumgarten, H.G. & Rensch, A. 5,7-DIHYDROXYTRYPTAMINE -
734 IMPROVEMENT OF ITS SELECTIVITY FOR SEROTONIN NEURONS IN CNS BY PRETREATMENT
735 WITH DESIPRAMINE. *Journal of Neurochemistry* **24**, 833-835 (1975).

736 38. Gelenberg AJ, F.M., Markowitz JC, et al. Practice guideline for the treatment of
737 patients with major depressive disorder. *American Psychiatric Association* (2010).

738 39. Baldwin, D.S., et al. Evidence-based pharmacological treatment of anxiety disorders,
739 post-traumatic stress disorder and obsessive-compulsive disorder: A revision of the 2005
740 guidelines from the British Association for Psychopharmacology. *Journal of
741 Psychopharmacology* **28**, 403-439 (2014).

742 40. Benedek DM, F.M., Zatzick D, Ursano RJ. Practice guideline for the treatment of
743 patients with acute stress disorder and posttraumatic stress disorder. *Am Psychiatr Assoc*
744 (2009).

745 41. Fineberg NA, D.L., Reid J, et al. Management and treatment of OCD. In: Geddes JR,
746 Andreasen NC, Goodwin GM (eds) *New Oxford Textbook of Psychiatry*, 3rd edn. *Oxford
747 University Press, Oxford, England* (2020).

748 42. Richardson-Jones, J.W., et al. 5-HT1A Autoreceptor Levels Determine Vulnerability to
749 Stress and Response to Antidepressants. *Neuron* **65**, 40-52 (2010).

750 43. Nord, M., Finnema, S.J., Halldin, C. & Farde, L. Effect of a single dose of escitalopram
751 on serotonin concentration in the non-human and human primate brain. *International
752 Journal of Neuropsychopharmacology* **16**, 1577-1586 (2013).

753 44. Fischer, A.G., Jocham, G. & Ullsperger, M. Dual serotonergic signals: a key to
754 understanding paradoxical effects? *Trends Cogn Sci* (2014).

755 45. Taylor, M.J., Freemantle, N., Geddes, J.R. & Bhagwagar, Z. Early onset of selective
756 serotonin reuptake inhibitor antidepressant action - Systematic review and meta-analysis.
757 *Archives of General Psychiatry* **63**, 1217-1223 (2006).

758 46. Rygula, R., et al. Role of Central Serotonin in Anticipation of Rewarding and Punishing
759 Outcomes: Effects of Selective Amygdala or Orbitofrontal 5-HT Depletion. *Cerebral Cortex*
760 **25**, 3064-3076 (2015).

761 47. Cardinal, R.N. & Aitken, M.R.F. Whisker: A client-server high-performance multimedia
762 research control system. *Behavior Research Methods* **42**, 1059-1071 (2010).

763 48. Rao, N. The clinical pharmacokinetics of escitalopram. *Clinical Pharmacokinetics* **46**,
764 281-290 (2007).

765 49. Alsio, J., et al. Dopamine D2-like receptor stimulation blocks negative feedback in
766 visual and spatial reversal learning in the rat: behavioural and computational evidence.
767 *Psychopharmacology* **236**, 2307-2323 (2019).

768 50. Carpenter, B., et al. Stan: A Probabilistic Programming Language. *Journal of Statistical
769 Software* **76**, 1-29 (2017).

770 51. Brooks, S.P. & Gelman, A. General methods for monitoring convergence of iterative
771 simulations. *Journal of Computational and Graphical Statistics* **7**, 434-455 (1998).

772 52. Gelman, A., Hill, J. & Yajima, M. Why We (Usually) Don't Have to Worry About
773 Multiple Comparisons. *Journal of Research on Educational Effectiveness* **5**, 189-211 (2012).

774 53. Gronau, Q.F., et al. A tutorial on bridge sampling. *Journal of Mathematical
775 Psychology* **81**, 80-97 (2017).

776 54. Gronau, Q.F., Singmann, H. & Wagenmakers, E.-J. bridgesampling: An R Package for
777 Estimating Normalizing Constants. *Journal of Statistical Software* **92**, 1-29 (2020).

778 55. Camerer, C. & Ho, T.H. Experience-weighted attraction learning in normal form
779 games. *Econometrica* **67**, 827-874 (1999).

780 56. Rescorla, R.A. & Wagner, A.R. A theory of classical conditioning: Variations in the
781 effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF (eds)
782 Classical Conditioning II Current Research and Theory. *Appleton-Century-Crofts* (1972).

783 57. Langley, C., et al. Chronic escitalopram in healthy volunteers has specific effects on
784 reinforcement sensitivity: a double-blind, placebo-controlled semi-randomised study.
785 *Neuropsychopharmacology* (2023).

786 58. O'Doherty, J., Kringelbach, M.L., Rolls, E.T., Hornak, J. & Andrews, C. Abstract reward
787 and punishment representations in the human orbitofrontal cortex. *Nature Neuroscience* **4**,
788 95-102 (2001).

789 59. Cools, R., Clark, L., Owen, A.M. & Robbins, T.W. Defining the Neural Mechanisms of
790 Probabilistic Reversal Learning Using Event-Related Functional Magnetic Resonance Imaging.
791 *The Journal of Neuroscience* **22**, 4563 (2002).

792 60. Seymour, B., Daw, N.D., Roiser, J.P., Dayan, P. & Dolan, R. Serotonin Selectively
793 Modulates Reward Value in Human Decision-Making. *Journal of Neuroscience* **32**, 5833-5842
794 (2012).

795 61. Wilson, R.C., Geana, A., White, J.M., Ludvig, E.A. & Cohen, J.D. Humans Use Directed
796 and Random Exploration to Solve the Explore-Exploit Dilemma. *Journal of Experimental
797 Psychology-General* **143**, 2074-2081 (2014).

798 62. Gershman, S.J. Deconstructing the human algorithms for exploration. *Cognition* **173**,
799 34-42 (2018).

800 63. Barnhart, W.J., Makela, E.H. & Latocha, M.J. SSRI-induced apathy syndrome: a clinical
801 review. *J Psychiatr Pract* **10**, 196-199 (2004).

802 64. Price, J., Cole, V. & Goodwin, G.M. Emotional side-effects of selective serotonin
803 reuptake inhibitors: qualitative study. *Br J Psychiatry* **195**, 211-217 (2009).

804 65. Marazziti, D., et al. Emotional Blunting, Cognitive Impairment, Bone Fractures, and
805 Bleeding as Possible Side Effects of Long-Term Use of SSRIs. *Clin Neuropsychiatry* **16**, 75-85
806 (2019).

807 66. Carhart-Harris, R.L. & Friston, K.J. REBUS and the Anarchic Brain: Toward a Unified
808 Model of the Brain Action of Psychedelics. *Pharmacol Rev* **71**, 316-344 (2019).

809 67. Vollenweider, F.X. & Preller, K.H. Psychedelic drugs: neurobiology and potential for
810 treatment of psychiatric disorders. *Nature Reviews Neuroscience* **21**, 611-624 (2020).

811 68. Nichols, D.E. Hallucinogens. *Pharmacology & Therapeutics* **101**, 131-181 (2004).

812 69. Kanen, J.W., et al. Probabilistic reversal learning under acute tryptophan depletion in
813 healthy humans: a conventional analysis. *J Psychopharmacol* **34**, 580-583 (2020).

814 70. Kanen, J.W., et al. Effect of lysergic acid diethylamide (LSD) on reinforcement
815 learning in humans. *Psychol Med*, 1-12 (2022).

816 71. Iigaya, K., Fonseca, M.S., Murakami, M., Mainen, Z.F. & Dayan, P. An effect of
817 serotonergic stimulation on learning rates for rewards apparent after long intertrial
818 intervals. *Nature Communications* **9**, 2477 (2018).

819 72. Furr, A., Lapiz-Bluhm, M.D. & Morilak, D.A. 5-HT2A receptors in the orbitofrontal
820 cortex facilitate reversal learning and contribute to the beneficial cognitive effects of chronic
821 citalopram treatment in rats. *The international journal of neuropsychopharmacology* **15**,
822 1295-1305 (2012).

823 73. Barre, A., *et al.* Presynaptic serotonin 2A receptors modulate thalamocortical
824 plasticity and associative learning. *Proc Natl Acad Sci U S A* **113**, E1382-1391 (2016).

825 74. Vaidya, V.A., Marek, G.J., Aghajanian, G.K. & Duman, R.S. 5-HT2A receptor-mediated
826 regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the
827 neocortex. *J Neurosci* **17**, 2785-2795 (1997).

828 75. Harvey, J.A. Role of the serotonin 5-HT(2A) receptor in learning. *Learn Mem* **10**, 355-
829 362 (2003).

830 76. Chakroun, K., Mathar, D., Wiegler, A., Ganzer, F. & Peters, J. Dopaminergic
831 modulation of the exploration/exploitation trade-off in human decision-making. *Elife* **9**
832 (2020).

833 77. Wiegler, A., Chakroun, K. & Peters, J. Attenuated Directed Exploration during
834 Reinforcement Learning in Gambling Disorder. *Journal of Neuroscience* **41**, 2512-2522
835 (2021).

836 78. Dubois, M., *et al.* Human complex exploration strategies are enriched by
837 noradrenaline-modulated heuristics. *Elife* **10** (2021).

838 79. Dubois M, B.A., Moses-Payne M, *et al.* Tabula-rasa exploration decreases during
839 youth and is linked to ADHD symptoms. *bioRxiv* (2020).

840 80. Schuck, N.W., Cai, M.B., Wilson, R.C. & Niv, Y. Human Orbitofrontal Cortex
841 Represents a Cognitive Map of State Space. *Neuron* **91**, 1402-1412 (2016).

842 81. Wilson, R.C., Takahashi, Y.K., Schoenbaum, G. & Niv, Y. Orbitofrontal Cortex as a
843 Cognitive Map of Task Space. *Neuron* **81**, 267-279 (2014).

844 82. Fradkin, I., Adams, R.A., Parr, T., Roiser, J.P. & Huppert, J.D. Searching for an Anchor
845 in an Unpredictable World: A Computational Model of Obsessive Compulsive Disorder.
846 *Psychological Review* **127**, 672-699 (2020).

847 83. Mueller, L.E., Sharpe, M.J., Stalnaker, T.A., Wikenheiser, A.M. & Schoenbaum, G.
848 Prior Cocaine Use Alters the Normal Evolution of Information Coding in Striatal Ensembles
849 during Value-Guided Decision-Making. *Journal of Neuroscience* **41**, 342-353 (2021).

850 84. Deserno L, B.R., Mathys C, *et al.* Volatility Estimates Increase Choice Switching and
851 Relate to Prefrontal Activity in Schizophrenia. *Biol Psychiatry Cogn Neurosci Neuroimaging*
852 (2020).

853 85. Waltz, J.A. & Gold, J.M. Probabilistic reversal learning impairments in schizophrenia:
854 Further evidence of orbitofrontal dysfunction. *Schizophrenia Research* **93**, 296-303 (2007).

855 86. Nord, M., Finnema, S.J., Halldin, C. & Farde, L. Effect of a single dose of escitalopram
856 on serotonin concentration in the non-human and human primate brain. *Int J
857 Neuropsychopharmacol* **16**, 1577-1586 (2013).

858 87. da Cunha-Bang, S., *et al.* Measuring endogenous changes in serotonergic
859 neurotransmission with [11C]Cimbi-36 positron emission tomography in humans.
860 *Translational Psychiatry* **9**, 134 (2019).

861 88. Derkzen, M., Feenstra, M., Willuhn, I. & Denys, D. The serotonergic system in
862 obsessive-compulsive disorder. in *Handbook of the Behavioral Neurobiology of Serotonin*,
863 2nd Edition (ed. C.P. Muller & K.A. Cunningham) 865-891 (2020).

864 89. Koran, L.M., Hanna, G.L., Hollander, E., Nestadt, G. & Simpson, H.B. Practice guideline
865 for the treatment of patients with obsessive-compulsive disorder. *American Journal of
866 Psychiatry* **164**, 5-53 (2007).

867 90. Benzina, N., N'Diaye, K., Pelissolo, A., Mallet, L. & Burguiere, E. A cross-species
868 assessment of behavioral flexibility in compulsive disorders. *Communications Biology* **4**
869 (2021).

870 91. Robbins, T.W. & Cardinal, R.N. Computational psychopharmacology: a translational
871 and pragmatic approach. *Psychopharmacology* **236**, 2295-2305 (2019).

872 92. Robble, M.A., *et al.* Concordant neurophysiological signatures of cognitive control in
873 humans and rats. *Neuropsychopharmacology* **46**, 1252-1262 (2021).

874 93. Frith, C.D. & Done, D.J. STEREOTYPED RESPONDING BY SCHIZOPHRENIC-PATIENTS ON
875 A 2-CHOICE GUESSING TASK. *Psychological Medicine* **13**, 779-786 (1983).

876

877 **Tables and Figure Captions**

878

879 **Table 1.** Summary of learning parameter effects.

	Stickiness τ^{stim} (humans) τ^{loc} (rats)	Reward learning rate α^{rew}	Punishment learning rate α^{pun}	Reinf. Sensitivity τ^{reinf}
Rats: neurotoxic depletion of 5-HT	↓***	↓*	—	—
Rats: 1 mg/kg citalopram	↓**	↑**	—	—
Humans: 20 mg escitalopram	↓*	↓**	—	↓..
Rats: 10 mg/kg citalopram	—	↓*	—	↑*
Rats: 5mg/kg citalopram chronic	↑.	—	↑***	—
Rats: 10mg/kg citalopram sub-chronic	↑.	↑***	↑***	↓***
Humans: 20 mg escitalopram chronic ⁵⁷	—	—	—	↓**

880 *rew* reward, *pun* punishment, *reinf* reinforcement, *stim* stimulus, *loc* location

881 *** stands for $0 \notin 95\% \text{ HDI}$, ** for $0 \notin 90\% \text{ HDI}$, * for $0 \notin 85\% \text{ HDI}$, .. for $0 \notin 80\% \text{ HDI}$,

882 . for $0 \notin 75\% \text{ HDI}$

883

884 **Figure 1.** Task schematics for probabilistic reversal learning and effects of serotonin
885 depletion on model parameters in rats.

886 **A)** Experiment in humans (example trial on touchscreen computer) and **B)** Experiment in rats
887 (two apertures illuminated simultaneously to the left and right of a central aperture with
888 reinforcement contingencies 80% : 20% for left : right or right : left, and a food pellet was
889 given to a food magazine positioned on the opposite wall of the operant chamber if the
890 rewarding location was chosen). **C)** Side (location) stickiness was diminished by neurotoxic
891 5-HT depletion, *i.e.*, 5,7- dihydroxytryptamine. Reinf. = reinforcement. Red signifies a
892 difference between the parameter per-condition mean according to the Bayesian “credible
893 interval”, $0 \notin 95\% \text{ HDI}$. Blue signifies a significance by the 85% HDI. The inner interval
894 represents the 85% HDI, while the outer interval represents the 95% HDI.

895

896 **Figure 2.** Effects of acute SSRI (citalopram) at two doses on model parameters in rats.
897 **A)** for 1 mg/kg and **B)** for 10 mg/kg. Reinf. = reinforcement. mg/kg = milligrams per
898 kilogram. Red signifies a difference between the parameter per-condition mean according to
899 the Bayesian “credible interval”, $0 \notin 95\% \text{ HDI}$. Blue signifies a significance by the 85% HDI.
900 The inner interval stands for the 90% HDI in A), and 85% HDI in B), while the outer interval
901 represents the 95% HDI.

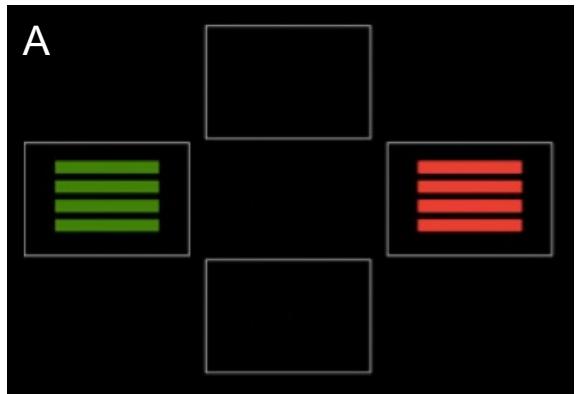
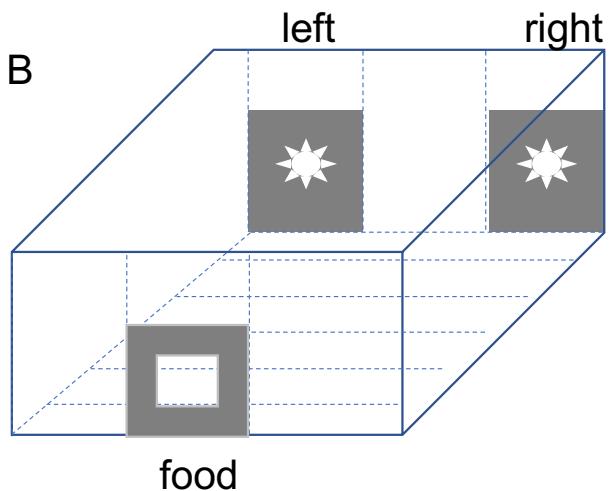
902

903 **Figure 3.** Effects of repeated and sub-chronic SSRI on model parameters in rats.
904 **A)** for the repeated SSRI (5 mg/kg citalopram) experiment, and **B)** for the sub-chronic SSRI
905 (10 mg/kg citalopram) experiment. Reinf. = reinforcement. Red signifies a difference between
906 the parameter per-condition mean according to the Bayesian “credible interval”, $0 \notin 95\%$
907 HDI, and orange signifies a significance by the 75% HDI. All outer intervals represent the
908 95% HDI. The inner intervals represent the 75% HDI for side stickiness and the 90% HDI for
909 the other 3 parameters.

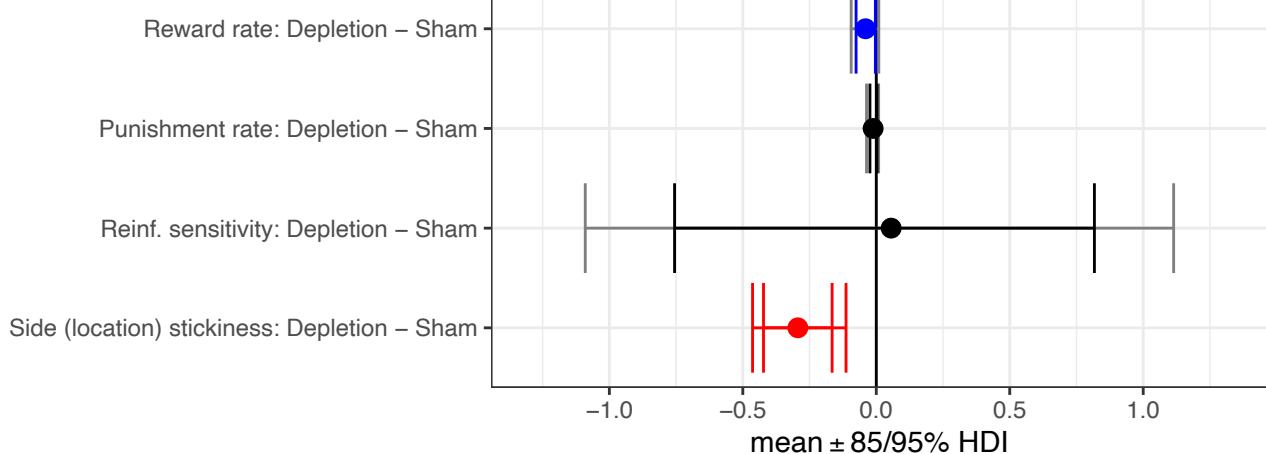
910

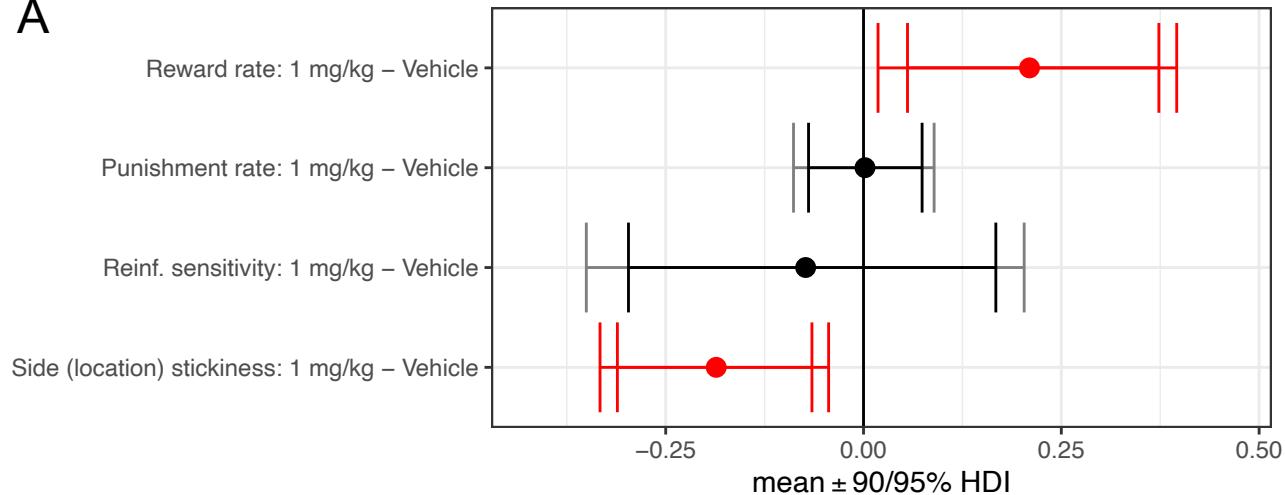
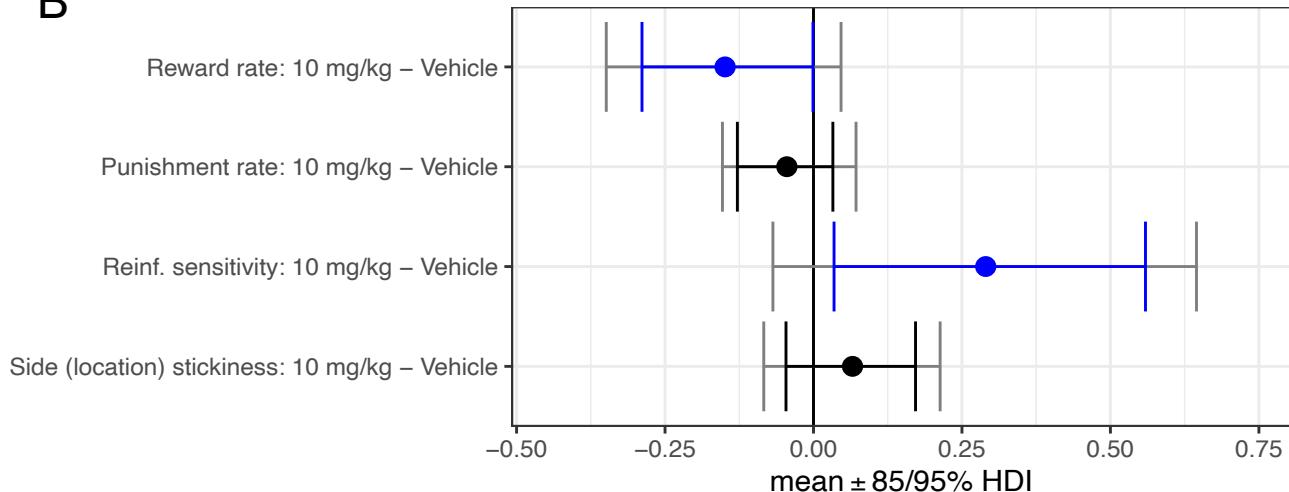
911 **Figure 4. Effects of acute SSRI (20 mg escitalopram) on model parameters in humans.**
912 Stimulus stickiness was decreased following acute SSRI. Reinf. = reinforcement. Red
913 signifies a difference between the parameter per-condition mean according to the Bayesian
914 “credible interval”, $0 \notin 95\% \text{ HDI}$. Similarly, blue and purple signify the significance levels by
915 85% and 80% HDI’s, respectively. All outer intervals represent the 95% HDI.

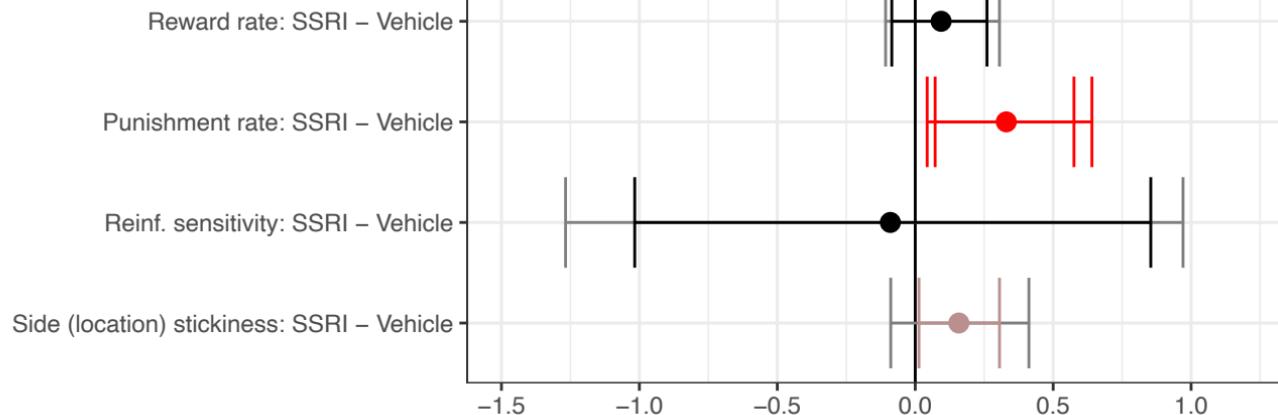
916



C



A**B**

A**B**