
 1

Common roles for serotonin in rats and humans for computations 1 

underlying flexible decision-making 2 

Qiang Luo1,2,3,4,*,+, Jonathan W. Kanen3,4,+, Andrea Bari5, Nikolina Skandali6,7,8,  3 

Christelle Langley4,6, Gitte Moos Knudsen9,10, Johan Alsiö3,4, Benjamin U. Phillips3,4, Barbara 4 

J. Sahakian1,4,6, Rudolf N. Cardinal6,11, Trevor W. Robbins1,3,4,* 5 

 6 

1National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key 7 

Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain 8 

Science, Institutes of Brain Science and Institute of Science and Technology for Brain-9 

Inspired Intelligence, Fudan University, Shanghai 200433, PR China 10 

2Center for Computational Psychiatry, Ministry of Education Key Laboratory of 11 

Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, 12 

Fudan University, Shanghai 200433, China 13 

3Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK 14 

4Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 15 

3EB, UK 16 

5Aelis Farma, 33077 Bordeaux, France 17 

6Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK 18 

7Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK 19 

8NIHR Biomedical Research Centre, University of Cambridge, UK 20 

9Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital 21 

Rigshospitalet, Denmark 22 

10Faculty of Health and Medical Sciences, University of Copenhagen, Denmark 23 

11Liaison Psychiatry Service, Cambridgeshire and Peterborough NHS Foundation Trust, 24 

Cambridge CB2 0QQ, UK 25 

 26 

*Correspondence to: qluo@fudan.edu.cn or twr2@cam.ac.uk 27 

+joint first author 28 

  29 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.15.527569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.15.527569
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

Abstract 30 

Serotonin is critical for adapting behavior flexibly to meet changing environmental demands. 31 

Cognitive flexibility is important both for successful attainment of goals, as well as for social 32 

interactions, and is frequently impaired in neuropsychiatric disorders, including obsessive-33 

compulsive disorder (OCD). However, a unifying mechanistic framework accounting for the 34 

role of serotonin in behavioral flexibility has remained elusive. Here, we demonstrate 35 

common effects of manipulating serotonin function across two species (rats and humans) on 36 

latent processes supporting choice behavior during probabilistic reversal learning using 37 

computational modelling. The findings support a role of serotonin in behavioral flexibility and 38 

plasticity, indicated, respectively, by increases or decreases in choice repetition (‘stickiness’) 39 

or reinforcement learning rates depending upon manipulations intended to increase or 40 

decrease serotonin function. More specifically, the rate at which expected value increased 41 

following reward and decreased following punishment (reward and punishment ‘learning 42 

rates’) was greatest after sub-chronic administration of the selective serotonin reuptake (SSRI) 43 

citalopram (5 mg/kg for 7 days followed by 10 mg/kg twice a day for 5 days) in rats. 44 

Conversely, humans given a single dose of an SSRI (20mg escitalopram), which can decrease 45 

post-synaptic serotonin signalling, and rats that received the neurotoxin 5,7-46 

dihydroxytryptamine (5,7-DHT), which destroys forebrain serotonergic neurons, exhibited 47 

decreased reward learning rates. A basic perseverative tendency (‘stickiness’), or choice 48 

repetition irrespective of the outcome produced, was likewise increased in rats after the 12-49 

day SSRI regimen and decreased after single dose SSRI in humans and 5,7-DHT in rats. 50 

These common effects of serotonergic manipulations on rats and humans – identified via 51 

computational modelling – suggest an evolutionarily conserved role for serotonin in plasticity 52 

and behavioral flexibility and have clinical relevance transdiagnostically for neuropsychiatric 53 

disorders.  54 
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 55 

Introduction 56 

Humans and other animals alike must maximise rewards and minimise punishments to 57 

survive and thrive. Across phylogeny this involves learning about cues or locations that 58 

inform whether an action is likely to result in a good or bad outcome. Adaptive behavior, 59 

however, must also be flexible: the ability to disengage from previously learned actions that 60 

are no longer useful or appropriate to the situation is fundamental to well-being. Indeed, 61 

behavior can become abnormally stimulus-bound and perseverative in compulsive disorders 1-
62 

5. Furthermore, learning the best course of action can require withstanding occasional 63 

negative feedback, which should sometimes be ignored if rare. Indeed, inappropriately 64 

switching behavior away from an adaptive action following misleading or even negative 65 

feedback (‘lose-shift’) has been reported across several traditional psychiatric diagnostic 66 

categories 6-10. 67 

 68 

The neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) is widely implicated in 69 

behavioral flexibility11-18. Perturbing 5-HT function can affect both perseveration and lose-70 

shift behavior, which are commonly assessed using probabilistic reversal learning (PRL) 71 

paradigms (Figure 1 A-B): a subject learns through trial and error the most adaptive action in 72 

a choice procedure, the contingencies of which eventually reverse, sometimes repeatedly 12, 19-
73 

21. A unifying framework for 5-HT in these processes has, however, remained elusive. To this 74 

end, we proposed to use a mechanistic modelling framework to align behavioral changes in 75 

PRL following serotonergic manipulations in rats 19 and humans 22. 76 

 77 

Reinforcement learning (RL) is a well-established computational mechanism for the analysis 78 

of latent mechanisms underlying choice behavior as it unfolds dynamically over time 23. 79 
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Standard RL models typically conceptualise choice in relation to an action’s value, derived 80 

from an accumulated reinforcement history, and incorporate parameters that estimate how 81 

quickly action values are learned (‘learning rate’) and the extent to which that value is acted 82 

upon (often termed ‘inverse temperature’ in relation to the mathematical softmax function 83 

typically used; here, termed ‘reinforcement sensitivity’) 24. Stickiness parameters, by contrast, 84 

track the extent to which behavioral tendencies are shaped by engagement with discrete cues 85 

(stimuli) or locations, irrespective of an action’s outcome. Stickiness can therefore be 86 

considered a value-free component of behavior 25, 26. Across six previously published 87 

experiments in rats and humans and a recently published computational modelling study in 88 

humans, we examined whether stickiness or other RL parameters (learning rates or 89 

reinforcement sensitivity) contributed meaningfully to behavior, and examined whether 5-HT 90 

function would consistently modulate any of these parameters across species. 91 

 92 

The  stickiness  parameter has recently emerged as important for understanding compulsivity: 93 

stickiness was significantly high in stimulant use disorder (SUD) but abnormally low in 94 

obsessive–compulsive disorder (OCD) during PRL performance 7. Meanwhile, value-free 95 

influences have been notably absent from prominent computational accounts of goal-directed 96 

(or ‘model-based’) versus habitual (or ‘model-free’) controllers of behavior 26. These have 97 

traditionally revolved around environmental features relevant to outcomes 27, 28. This has 98 

hindered contextualisation within the rich literature on the neural basis of habits (reinforcer-99 

independent perseveration) 29. A traditional view of stimulus–response habits is that they are 100 

created and strengthened by reinforcement, acting to enhance direct links between 101 

environmental stimuli and responses 30; they are thus “model-free” in that they do not involve 102 

representations of the expected consequences of behavior, but are “value-based” in that they 103 

are created by valenced reinforcement. However, there are other aspects of behavior that are 104 
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independent of reinforcement or value. Indeed, value-free (action outcome-irrelevant) factors 105 

similar to stickiness were recently shown to be important for understanding goal-directed 106 

decision-making 28. Accounting for stickiness – value-free perseveration – may therefore aid 107 

in better dissecting the nature of imbalanced goal-directed versus habitual behavior seen in 108 

OCD, SUD, and other conditions 31-33, a balance that is sensitive to serotonergic disruption in 109 

humans and rodents 34-36. 110 

 111 

Two common methods for studying serotonin are through serotonin depletion and treatment 112 

with selective serotonin reuptake inhibitors (SSRIs). In non-human animals, depletion can be 113 

achieved using the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) which produces a 114 

profound loss of serotonergic fibers 37. SSRIs, meanwhile, are first-line pharmacological 115 

treatments for several psychiatric conditions including major depressive disorder (MDD) 38, 116 

anxiety disorders 39, post-traumatic stress disorder (PTSD) 40, and OCD 41, yet both the 117 

computational and neural mechanisms underlying their efficacy remain poorly understood. 118 

SSRIs block the 5-HT transporter and thus reuptake of 5-HT, which increases extracellular 119 

serotonin levels; however, this occurs not only in projection areas but also in the vicinity of 5-120 

HT1A somatodendritic autoreceptors, activation of which leads to decreased firing rates of 5-121 

HT neurons 42. SSRIs can thus paradoxically lower 5-HT concentrations in projection regions 122 

when given acutely, especially at low doses 43, and firing rates return to baseline after 5-HT1A 123 

autoreceptors are desensitised by repeated administration 44. This mechanism might be 124 

reflected in a delayed clinical onset of the treatment effect of SSRI on mood 45. For this 125 

reason, effects of both acute and chronic SSRIs in rats were studied, with the prediction that a 126 

higher acute dose and a chronic use could overcome these feedback effects of a low acute 127 

dose and produce an increase in serotonin transmission 19. The 20mg used in the acute study 128 
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with healthy humans 22, while within the therapeutic range, is a lower acute dose than used in 129 

some experimental animal studies.   130 

 131 

Here, the primary question was whether serotonergic manipulations would cause similar 132 

perturbations of model parameters across both rats and humans, thereby demonstrating the 133 

evolutionary significance of the role of serotonin in cognitive flexibility. As an increased 134 

tendency for lose-shift behavior induced by acute SSRI has been conceptualised as 135 

hypersensitivity to negative feedback 19, 22, we asked whether this would be reflected in 136 

elevated punishment learning rates. Selective 5-HT depletion via 5,7-DHT of the orbitofrontal 137 

cortex (OFC) or amygdala in marmoset monkeys, meanwhile, reduced reinforcement learning 138 

rates (for rewards or punishments), and modulated stickiness 46; we hypothesised that changes 139 

in learning rate or stickiness parameters would occur following global 5-HT manipulations in 140 

rats and humans. We predicted that incorporating stickiness parameters would be central to 141 

capturing effects of 5-HT on behavioral flexibility and would increase or decrease depending 142 

on changes in serotonin transmission. 143 

 144 

Materials and Methods 145 

Probabilistic reversal learning task: humans 146 

The task used in the human SSRI experiment 22  is shown in Figure 1A, and contained 80 147 

trials: 40 during acquisition and 40 following reversal. In other words, there was a fixed 148 

number of trials and a single reversal. For the first 40 trials, one option yielded positive 149 

feedback on 80% of trials, the other option on 20% of trials. These contingencies reversed for 150 

the latter 40 trials. Positive feedback was given in the form of the word “CORRECT” on the 151 

touchscreen computer and a high tone, negative feedback was conveyed by the word 152 

“WRONG” and a low tone. The task was self-paced.  153 
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 154 

Probabilistic reversal learning task: rats 155 

Following training and determination of stable levels of accuracy and a lack of side bias 19 in 156 

operant chambers controlled by the Whisker control system 47, rats were presented with two 157 

apertures illuminated simultaneously to the left and right of a central (inactive) aperture 158 

(Figure 1B). Responding at the ‘correct’ location was associated with an 80% probability food 159 

reward (and 20% probability of a time-out punishment), whereas responding at the ‘incorrect’ 160 

location yielded reward on only 20% of trials (and punishment on 80%). Reward was in the 161 

form of a 45 mg food pellet (Noyes dustless pellets; Sandown Scientific, Middlesex, UK) 162 

delivered to a food magazine positioned on the opposite wall of the operant chamber. 163 

Punishment was given in the form of a 2.5-second time-out. The left and right apertures were 164 

illuminated for 30 seconds signifying the response window. The next trial was triggered by 165 

retrieval of the pellet from the magazine. If no response was made, the trial was categorised as 166 

an omission and resulted in a 5-second time-out. Responding to an unlit aperture had no 167 

programmed consequence. Reversals occurred after the animal made eight consecutive correct 168 

responses, at which point the correct aperture became the incorrect aperture and vice versa. A 169 

session consisted of 200 trials to be completed during a 40-minute period. One session was 170 

conducted per day. 171 

 172 

5,7-DHT forebrain 5-HT depletion: rats 173 

Sixteen rats were included in the final analysis. Rats were pre-treated intraperitoneally (i.p.) 174 

with 20 mg/kg of desipramine hydrochloride (Sigma, Poole, UK) in order to preserve 175 

noradrenergic neurons. Half of the rats were randomly assigned to receive bilateral 176 

intracerebroventricular (i.c.v.) infusions of 80 µg 5,7-DHT creatinine sulfate diluted in 10 µg 177 

of 10% ascorbic acid in saline, guided by a stereotaxic frame, whilst the other half received a 178 
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sham infusion of 10 µg 0.01 M phosphate-buffered saline (PBS) – vehicle 19. Post-mortem 179 

neurochemistry confirmed that 5,7-DHT infusions produced a near-total depletion of brain 180 

serotonin and decreased levels of the serotonin metabolite 5-hydroxyindoleacetic acid (5-181 

HIAA) relative to controls in all regions examined: OFC, prelimbic cortex, anterior cingulate 182 

cortex, nucleus accumbens, dorsomedial striatum, dorsolateral striatum, amygdala, dorsal 183 

hippocampus (all p<.05)19. Levels of dopamine, norepinephrine, and the dopamine metabolite 184 

dihydroxyphenylacetic acid (DOPAC) were not significantly different from controls in any of 185 

these regions (all p > .05)19. Data were analysed from seven consecutive sessions conducted 186 

following surgery in the previous report 19. Computational model convergence was achieved 187 

when modelling behavior from all seven sessions collectively, which is reported in the current 188 

study. Conversely, computational model convergence could not be achieved when modelling 189 

the seven sessions separately. 190 

 191 

SSRI administration: rats 192 

Animals were divided into groups matched for task accuracy and then randomly assigned via 193 

a Latin square design to receive injections i.p. of either citalopram hydrobromide (1 mg/kg or 194 

10 mg/kg; Tocris, Bristol, UK). Citalopram, dissolved in 0.01 M PBS, or vehicle was 195 

administered 30 minutes before the task 19. Eleven rats were included in the final analysis 196 

after receiving vehicle, 1 mg/kg, or 10 mg/kg citalopram 19. Fourteen rats were included in the 197 

repeated and sub-chronic citalopram experiment. The citalopram group was administered 5 198 

mg/kg citalopram 30 min before testing, for seven consecutive days (n=7). The vehicle group 199 

(n=7), instead, received the same number of daily injections of 0.01 M phosphate-buffered 200 

saline 19. After seven days, the citalopram group received 10 mg/kg of citalopram twice a day 201 

(about 4 h before the testing) for five consecutive days, to study the long-lasting effects of 202 

sub-chronic dosing 19. 203 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.15.527569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.15.527569
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9

 204 

All the above animal experiments were conducted in accordance with the United Kingdom 205 

Animals (Scientific Procedures) Act, 1986 (PPL 80/2234) in our previous study 19.   206 

 207 

SSRI administration: humans 208 

The protocol was ethically approved (Cambridge Central NHS Research Ethics Committee, 209 

reference 15/EE/0004). Volunteers gave informed consent and were paid. Participants were 210 

healthy and without a personal or family history of psychiatric or neurological disorders 22. In 211 

a randomised, double-blind, placebo-controlled, between-groups design 22, healthy volunteers 212 

received either escitalopram (n=32) or placebo (n=33). The PRL task was conducted 213 

following a 3-hour waiting period after oral drug administration to attain peak plasma 214 

escitalopram concentration 48. Plasma analysis (n=59) verified increased escitalopram 215 

concentration 22 at 2.5 hours after the dose (t54 = 18.835, p < 0.001, mean = 14 ng/ml, standard 216 

deviation [SD] = 5.72) just before the task administration, and at 5.5 hours (t54 = 20.548, p < 217 

0.001, mean = 17.24 ng/ml, SD = 4.27). Mood ratings were unaffected by single dose 218 

escitalopram administration (p > .05). There were no differences between groups in age, sex, 219 

years of education, depressive symptoms, or trait anxiety (all p > .05). 220 

 221 

Computational modelling of behavior 222 

Overview 223 

These methods are based on Kanen et al. 7. Four RL models were fitted to the behavioral data, 224 

which incorporated parameters that have been studied previously using a hierarchical 225 

Bayesian method7, 49. Models were fitted via Hamiltonian Markov chain Monte Carlo 226 

sampling implemented in Stan 2.17.250. Convergence was checked according to �̂ , the 227 

potential scale reduction factor measure51, 52, which approaches 1 for perfect convergence. 228 
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Values below 1.1 are typically used as a guideline for determining model convergence and 1.1 229 

as a stringent criterion 51. In the current study, most of the models had an �̂ � 1.1, except for 230 

Model 4 in the sub-chronic 10 mg/kg experiment in rats (�̂ �1.7) and Model 1 in the 5,7-231 

DHT experiment in rats (�̂ �1.5). We assumed the four models examined had the same prior 232 

probability (0.25). Models were compared via a bridge sampling estimate of the likelihood 53, 233 

using the “bridgesampling” package in R 54. Bridge sampling directly estimates the marginal 234 

likelihood, and therefore the posterior probability of each model given the data (and prior 235 

model probabilities), under the assumption that the models represent the entire group of those 236 

to be considered. Posterior distributions were interpreted using the highest density interval 237 

(HDI) of posterior distributions, which is the Bayesian “credible interval”, at different 238 

significance levels including 75%, 80%, 85%, 90% and 95%. Together with the HDI, the 239 

group mean difference (MD) was also reported. The priors used for each parameter are shown 240 

in Supplemental Table 1. For the human experiments, trials were sequenced across all 80 241 

trials of the PRL task, and on each trial the computational model was supplied with the 242 

participant’s identification number and condition, whether the trial resulted in positive or 243 

negative feedback, and which visual stimulus was selected. For the rat experiments, trials 244 

were sequenced across all sessions conducted under a given manipulation, and the 245 

computational model was supplied with the same information, but instead with the location of 246 

the aperture selected rather than the identification of the stimulus selected. Omissions were 247 

rare and they were not included in the computational analysis. 248 

 249 

Models 250 

Model 1 incorporated three parameters and was used to test the hypothesis that 5-HT would 251 

affect how positive versus negative feedback guides behavior. Separate learning rates for 252 

positive feedback (reward) αrew and negative feedback (nonreward/punishment) α
pun were 253 
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implemented. Positive reinforcement led to an increase in the value Vi of the stimulus i that 254 

was chosen, at a speed governed by the reward learning rate αrew, via Vi,t+1 ← Vi,t + αrew(Rt – 255 

Vi,t). Rt represents the outcome on trial t (defined as 1 on trials where positive feedback 256 

occurred), and (Rt – Vi,t) the prediction error. On trials where negative feedback occurred Rt = 257 

0, which led to a decrease in value of Vi at a speed governed by the punishment learning rate 258 

α
pun, according to Vi,t+1 ← Vi,t + αpun(Rt – Vi,t). Stimulus value was incorporated into the final 259 

quantity controlling choice according to Qreinf
t = τreinfVt. The additional parameter τ

reinf, termed 260 

reinforcement sensitivity, governs the degree to which behavior is driven by reinforcement 261 

history. The quantities Q associated with the two available choices, for a given trial, were then 262 

input to a standard softmax choice function to compute the probability of each choice: 263 

��action�	 � softmax�
��
�...
�	 �

�βQ�

∑ �βQ��
k=�

, 264 

for n=2 choice options. The probability values for each trial emerging from the softmax 265 

function (i.e., the probability of choosing stimulus 1) were fitted to the subject’s actual 266 

choices (i.e., did the subject choose stimulus 1?). Softmax inverse temperature was set to β = 267 

1, and as a result the reinforcement sensitivity parameter (τreinf) directly represented the weight 268 

given to the exponents in the softmax function.  269 

 270 

Model 2 was as model 1 but for the human experiments incorporated a “stimulus stickiness” 271 

parameter τstim, which measures the tendency to repeat a response to a specific perceptual 272 

stimulus, irrespective of the action’s outcome. For the rat experiments a “side (location) 273 

stickiness” parameter τloc was substituted, which measures the tendency to repeat a response 274 

to a specific aperture in the operant chamber. Incorporating these two different stickiness 275 

parameters, depending on the species, accounts for task differences between the human and 276 

rat PRL experiments. This four-parameter model served to test whether accounting for 277 

stimulus-response learning, in addition to learning about action-outcome associations, would 278 
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best characterise behavior. The stimulus stickiness effect was modelled as Qstim
t = τstimst–1, 279 

where st–1 was 1 for a stimulus that was chosen on the previous trial and was otherwise 0. The 280 

final quantity controlling choice incorporated this additional parameter as Qt = Qreinf
t + Qstim

t. 281 

Quantities Q, corresponding to the two choice options on a given trial, were then fed into the 282 

softmax function as above. 283 

 284 

Model 3 incorporated three parameters and served to test whether a single learning rate α
reinf, 285 

rather than separate learning rates for rewards and punishments, optimally characterised 286 

behavior. Reward led to an increase in the value Vi of the stimulus i that was chosen, at a 287 

speed controlled by the reinforcement rate αreinf, via Vi,t+1 ← Vi,t + αreinf(Rt – Vi,t). Rt represents 288 

the outcome on trial t (defined as 1 on trials where reward occurred), and (Rt – Vi,t) the 289 

prediction error. On trials where punishment occurred Rt = 0, which led to a decrease in value 290 

of Vi. Model 3 also included the stimulus stickiness parameter. The final quantity controlling 291 

choice was determined by Qt = Qreinf
t + Qstim

t. 292 

 293 

Model 4 took a different approach, and had three parameters: φ (phi), ρ (rho), and β (beta).  294 

Derived from the experienced-weighted attraction model (EWA) of Camerer and Ho 55, here 295 

it was implemented as in den Ouden et al. 14 a study in which the EWA model best described 296 

behavior best on a nearly identical human task. A key difference to the other reinforcement 297 

learning models tested in this study is that here the learning rate can decline over time, 298 

governed by a decay factor ρ (rho). The EWA model weighs the value of new information 299 

against current expectations or beliefs, accumulated from previous experience.  300 

 301 

Learning from reinforcement is modulated by an “experience weight”, nc,t, which is a measure 302 

of how often the subject has chosen a stimulus (i.e. experienced the action), and is updated 303 
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every time the stimulus is chosen (where c is choice and t is trial) according to the experience 304 

decay factor ρ (range 0 < ρ < 1) and can increase without bounds 14: 305 

nc,t ← nc,t–1 ρ + 1. 306 

The value of a choice is updated according to the outcome, λ, and the decay factor for 307 

previous payoffs, φ (range 0 < φ < 1) 14 308 

vc,t ← (vc,t–1 φ nc,t–1 + λt–1) / nc,t. 309 

The payoff decay factor φ (phi) is related to a Rescorla–Wagner-style 56  learning rate α (as in 310 

Models 1-3), by α = 1 – φ. A high value of φ means that stimuli keep a high fraction of their 311 

previous value and thus learning from reinforcement is slow. When ρ is high, then “well-312 

known” actions (with high n) are updated relatively little by reinforcement, by virtue of the 313 

terms involving n, whilst reinforcement has a proportionately larger effect on novel actions 314 

(with low n).  For comparison to Models 1-3, when ρ = 0, the experience weight n, is 1, which 315 

reduces to a learning rate α controlling the influence of learning from prediction error. Choice 316 

in the EWA model is also governed by a softmax process, only here the softmax inverse 317 

temperature β was also a parameter able to vary, in contrast to Models 1-3.  318 

 319 

Results 320 

Choice of model 321 

Behavior in all experiments was best described by reinforcement learning models 322 

incorporating parameters for stickiness, reinforcement sensitivity, and learning rates, 323 

consistent with previous work 7, 49. Convergence was good with most models having �̂ < 1.1 324 

(see Methods). Model comparison metrics are shown in Supplemental Table 2. For all 325 

experiments, the winning model had separate learning rates for reward (αrew) and punishment 326 

(αpun). The reward learning rate (α
rew) indexed how quickly action value representation 327 

increased following a reward prediction error (when action outcome was better than 328 
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predicted). Punishment learning rate (α
pun) is an assay of the speed at which action value 329 

decreased following a punishment prediction error (outcome was worse than predicted). 330 

Stickiness measures a basic perseverative tendency: whether or not an action chosen on the 331 

previous trial was repeated, irrespective of its outcome. For rats, stickiness indexed the side 332 

(or location; τloc) of responding whereas for humans, stickiness referred to (visual) stimulus 333 

stickiness (τstim). Reinforcement sensitivity (τreinf) measures the degree to which the values 334 

learned through reinforcement impact on choice behavior. Reinforcement sensitivity can be 335 

viewed as a value-based inverse temperature; stickiness as a value-free inverse temperature. 336 

Low values of stickiness or reinforcement sensitivity can be thought of as two different types 337 

of exploratory behavior; low reinforcement sensitivity represents exploration away from the 338 

more highly valued choice whereas low stickiness represents exploration away from the 339 

previously chosen stimulus or location irrespective of value. The accuracy of the parameter 340 

recovery was confirmed for this modelling approach previously 7 and also confirmed by 341 

simulations for those parameter values estimated here in each experiment (Supplementary 342 

Table 3). 343 

 344 

Serotonin depletion by intraventricular 5,7 dihydroxytryptamine (5,7-DHT): rats  345 

Results are shown in Figure 1C and Table 1. Post-mortem neurochemistry confirmed that 5,7-346 

DHT infusions produced a near-total depletion of brain serotonin (for more details see the 347 

Methods and also Bari et al. 2010). The conventional analysis in the previous publication 19 348 

found a decreased win-stay rate, an increased lose-shift rate and a reduced number of 349 

reversals completed in the group of depletion-operated rats (n = 8) compared with the group 350 

of sham-operated rats (n = 8). After computational modelling, we found that the depletion 351 

decreased the side (location) stickiness parameter (τloc; MD = -0.2938 [95% HDI, -0.4635 to -352 

0.1134]) and the reward learning rate (α
rew; MD = -0.0401 [85% HDI, -0.0757 to -0.0033]). 353 
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There was no effect of 5,7-DHT on the punishment learning rate (αpun) or reinforcement 354 

sensitivity (τreinf) [0 ∈ 75% HDI]. The decreased lose-shift rate was retrodicted in the 355 

simulation of the computational model (Supplementary Result 1). Furthermore, because 356 

reinforcement sensitivity was also unaffected in Model 1, which did not contain the stickiness 357 

parameter, the effect of 5,7-DHT on stickiness was unlikely to be a misattribution of 358 

reinforcement sensitivity.  359 

 360 

Acute SSRI: rats 361 

Results for acute citalopram administered to rats (n = 11 with a cross-over design for vehicle, 362 

1mg/kg, and 10mg/kg) are shown in Figure 2 and Table 1. The conventional analysis showed 363 

the number of reversals completed was significantly lower following a low dose of 1 mg/kg 364 

SSRI compared with a high dose of 10 mg/kg SSRI 19. After computational modelling of the 365 

behavior, we found a single dose of 1 mg/kg citalopram in rats diminished the side (location) 366 

stickiness parameter (MD = -0.1862 [95% HDI, -0.3330 to -0.0441]), as seen following 5,7-367 

DHT. The reward learning rate was enhanced by the 1 mg/kg dose in rats (MD = 0.2098 [95% 368 

HDI, 0.0184 to 0.3959]). There was no effect of 1 mg/kg on the punishment learning rate or 369 

reinforcement sensitivity (0 ∈ 75% HDI). A single high dose of citalopram in rats (10 mg/kg) 370 

decreased the reward learning rate (MD = -0.1489 [85% HDI, -0.2888 to -0.0009]) and 371 

enhanced reinforcement sensitivity (MD = 0.2900 [85% HDI, 0.0346 to 0.5590]). However, 372 

there was no effect of 10 mg/kg on the punishment learning rate or side (location) stickiness 373 

(0 ∈ 75% HDI). Simulation of the wining model retrodicted the significant difference in the 374 

number of reversals completed between the low-dose group and the high-dose group 375 

(Supplementary Result 1).  376 

 377 

Repeated and sub-chronic SSRI: rats 378 
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Results for ‘repeated’ 5 mg/kg citalopram administered for consecutive 7 days to rats (the Cit 379 

group; n = 7) compared with the vehicle group (the Veh group; n = 7) are shown in Figure 3A 380 

and Table 1. After 7 days, the Cit group received 10 mg/kg of citalopram twice a day for 5 381 

consecutive days to study the longer-lasting effects of ‘sub-chronic’ dosing. Results for sub-382 

chronic dosing are shown in Figure 3B and Table 1. The conventional analyses showed the 383 

win-stay rate increased by repeated citalopram treatment and the number of reversals was 384 

increased by sub-chronic dosing 19. Following computational modelling of the behavior, we 385 

found that repeated citalopram enhanced both the punishment learning rate (MD = 0.3299 [95% 386 

HDI, 0.0432 to 0.6404]) and side (location) stickiness (MD = 0.1581 [75% HDI, 0.0135 to 387 

0.3054]). There was no effect of repeated citalopram on the reward learning rate and 388 

reinforcement sensitivity (0 ∈ 75% HDI). The sub-chronic dosing enhanced the reward 389 

learning rate (MD = 0.4769 [95% HDI, 0.2699 to 0.6780]), the punishment learning rate (MD 390 

= 0.4762 [95% HDI, 0.2172 to 0.7323]), and the side (location) stickiness (MD = 0.1676 [75% 391 

HDI, 0.0075 to 0.3414]), but decreased the reinforcement sensitivity (MD = -0.9972 [95% 392 

HDI, -1.7233 to -0.2540]). Simulation of the winning model retrodicted the significant 393 

increase of the win-stay rate for repeated citalopram compared with the vehicle, but did not 394 

show a significant increase in the number of reversals for sub-chronic dosing (Supplementary 395 

Result 1). 396 

 397 

Acute SSRI: humans 398 

Modelling results (n = 32 escitalopram, n = 33 placebo) are shown in Figure 4 and Table 1. 399 

The prior conventional analysis suggested that the impaired reversal learning after acute SSRI 400 

mainly resulted from an elevated lose-shift rate 22. After computational modelling, we found 401 

that the administration of a single 20 mg dose of escitalopram to healthy humans decreased 402 

the reward learning rate (MD = -0.2019 [95% HDI, -0.3612 to -0.0392]), stimulus stickiness 403 
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(MD = -0.1841 [85% HDI, -0.3476 to -0.0045]) and reinforcement sensitivity (MD = -1.6848 404 

[80% HDI, -3.1501 to -0.1553]), but had no effect on the punishment learning rate (0 ∈ 75% 405 

HDI). Simulation of the computational model retrodicted a significantly increased lose-shift 406 

rate (Supplementary Result 1).  407 

 408 

Chronic SSRI treatment in humans 409 

As reported in our recent publication for the effect of chronic use of SSRI on behavioral 410 

flexibility by a double-blind, placebo-control, semi-randomized study 57, the computational 411 

modelling approach was applied to the behavioral data of the same probabilistic reversal 412 

learning task in healthy volunteers. The participants were semi-randomized into the treatment 413 

group (n = 32) receiving 20 mg escitalopram or the control group receiving the placebo for 3 414 

to 5 weeks. The conventional analysis identified no significant group differences57. After 415 

computational modelling, we found that the chronic use of SSRI reduced reinforcement 416 

sensitivity compared to placebo (n = 34) in healthy volunteers (MD = -2.7673 [90% HDI, 417 

−5.2846 to −0.3959]), but had no effect on reward/punishment learning rates or stimulus 418 

stickiness (0 ∈ 75% HDI) 57.  419 

 420 

Relationship between model parameters and conventional behavioral measures 421 

Next, we conducted correlational analyses to demonstrate how our modelling results compared 422 

with traditional metrics of PRL. There were converging effects across species involving 423 

stickiness. Results were corrected for multiple comparisons by false discovery rate (FDR) and 424 

are summarised in Supplemental Tables 5-7. The conventional measures examined for the rat 425 

experiments were win-stay (proportion of trials where the subject stayed with the same choice 426 

following a reward), lose-shift (proportion of trials where the subject shifted choice following 427 
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punishment), and number of reversals completed 19. Win-stay and lose-shift were also 428 

examined in the human studies, as was perseveration 18. In the human SSRI acute experiment, 429 

stimulus stickiness was positively correlated with the win-stay rate (r = .51, p = .0066 on 430 

placebo; r = .62, p = .0005 following escitalopram) and also negatively correlated with the 431 

lose-shift rate (r = -.63, p = .0003 on placebo; r = -.78, p = 7.95 × 10-7 following escitalopram). 432 

In rats, side (location) stickiness was negatively correlated with the lose-shift rate following an 433 

acute 1 mg/kg dose of citalopram (r = -.89, p = .006), and positively correlated with the win-434 

stay rate in the vehicle group with daily injections of 0.01 M phosphate-buffered saline for 7 435 

days (r = .95, p = .0065). Side (location) stickiness was also positively correlated with the 436 

number of reversals achieved during the repeated administration (r = .89, p = .0205 following 437 

5 mg/kg citalopram per day and r = .97, p = .0049 with the same number of daily injections of 438 

vehicle). Further correlations with other model parameters are reported in the Supplementary 439 

Tables 5-7.  440 

 441 

Summary of results 442 

In rats, stickiness was decreased after 5,7-DHT and acute 1 mg/kg citalopram, whereas 443 

stickiness was increased after repeated 5 mg/kg citalopram and sub-chronic 10 mg/kg 444 

citalopram. In humans, stickiness was decreased following 20 mg escitalopram, similar to the 445 

effects of 5,7-DHT and low dose citalopram in rats. Also in cross-species alignment, the 446 

reward learning rate was decreased following 5,7-DHT and acute 10 mg/kg citalopram in rats 447 

as well as in humans following 20 mg escitalopram. The reward learning rate in rats was 448 

additionally increased following acute 1 mg/kg citalopram and sub-chronic 10mg/kg 449 

citalopram. The punishment learning rate was increased for both repeated 5 mg/kg citalopram 450 

and sub-chronic citalopram in rats only. Reinforcement sensitivity was increased following 10 451 

mg/kg of citalopram and decreased during sub-chronic treatment in rats, agreeing with our 452 
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own recent analysis of chronic escitalopram treatment in humans 57, although this parameter 453 

was also shown to be decreased in the present analysis following acute 20mg escitalopram in 454 

humans.  455 

 456 

Discussion  457 

We have demonstrated converging effects of a range of bidirectional 5-HT manipulations 458 

across both rats and humans which bolsters its evolutionarily conserved role in behavioral 459 

flexibility and plasticity. Computational modelling of choice behavior indicated increases or 460 

decreases in choice repetition (‘stickiness’) or reinforcement learning rates depending upon 461 

manipulations intended to increase or decrease serotonin function, respectively. Stickiness, a 462 

basic tendency to persevere versus ‘explore’, was modulated in five serotonergic 463 

manipulations examined across both rats and humans. Stickiness was decreased by neurotoxic 464 

5-HT depletion in rats and by acute 1 mg/kg SSRI in rats (citalopram) and healthy humans 465 

(20 mg escitalopram), treatments presumably reducing 5-HT signalling. By contrast, 466 

stickiness was increased following both repeated (5 mg/kg for 7 days) and sub-chronic (10 467 

mg/kg twice a day for 5 days) dosing of SSRI in rats, treatments probably boosting 5-HT 468 

function. Learning rates were also modulated by five serotonergic manipulations across 469 

species. The reward learning rate increased the most after sub-chronic administration of the 470 

SSRI citalopram (5 mg/kg for 7 days followed by 10 mg/kg twice a day for 5 days) compared 471 

with the vehicle group. Conversely, humans given a single dose of an SSRI (20mg 472 

escitalopram), which can decrease post-synaptic serotonin signalling, and rats that received 473 

5,7-DHT demonstrated decreased reward learning rates. This in turn parallels the reduction of 474 

reinforcement learning rates following 5,7-DHT infused directly in the marmoset amygdala or 475 

OFC to produce local 5-HT depletion 46. Collectively, the present and the previous results 476 
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show that serotonin has common effects on latent computational mechanisms supporting 477 

flexible decision-making and plasticity in rats, marmoset monkeys and humans.  478 

 479 

The neural substrates of PRL are relatively well understood 46, 58, 59 and involve interactions in 480 

particular among the orbitofrontal cortex (OFC), amygdala, and striatum. Administration of 481 

5,7-DHT directly to either the marmoset OFC or amygdala produced changes in both 482 

stickiness and reinforcement learning rates 46. Marmosets that received 5,7-DHT in the OFC 483 

repeated choices to recently chosen stimuli across a longer timescale, whereas 5,7-DHT in the 484 

amygdala produced a more ephemeral tendency to repeat choices 46. Dietary depletion of 485 

tryptophan, serotonin’s biosynthetic precursor, in humans, also modulated stickiness and 486 

corresponding activity in frontopolar cortex during a four-choice probabilistic task 60.  487 

 488 

Stickiness, the only value-free parameter in our reinforcement learning model, contributed to 489 

a core feature of complex behavior, i.e. exploration. Lower stickiness, even negative 490 

stickiness, is generally associated with more exploratory behavior. However, exploratory 491 

behavior is not a unitary construct 61. At one level, exploratory behavior can reflect directed 492 

information gathering, but on another level it can be mechanistic or rigid, resulting from 493 

'decisional noise', producing apparently flexible behavior but, in fact, representing a 494 

fundamental performance heuristic recruited in volatile settings that evokes a primitive form 495 

of exploration. Another potential measure of exploratory behavior is reflected in 496 

reinforcement sensitivity, as a value-based parameter in our model, which can be interpreted 497 

as reflecting the balance between exploiting and exploring tendencies (low reinforcement 498 

sensitivity is sometimes referred to as ‘random exploration’) 62.  499 

 500 
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Whilst the effects of serotonin on reinforcement sensitivity revealed by the present analyses 501 

were ostensibly more difficult to interpret – underscoring that stickiness is a distinct 502 

mechanism – there is an intriguing parallel with a recent study. Langley et al. 57 have recently 503 

shown diminished reinforcement sensitivity in healthy humans following chronic – at least 21 504 

days – of 20 mg escitalopram performing the same PRL task and modelled in an identical 505 

fashion – this reduction is hence the same direction as for the acute dose in humans and sub-506 

chronic dosing in rats. Although this parallel between single and chronic dosing in humans 507 

was unexpected, it is notable that reinforcement sensitivity in rats following sub-chronic 508 

dosing was also decreased. These effects of reduced reinforcement sensitivity (value-based) 509 

may relate to what has been termed “emotional blunting” or “SSRI-induced apathy 510 

syndrome” in patients with MDD 57, 63-65. The reduction in inverse temperature can also be 511 

interpreted as a reduction in “maximisation” of reinforcement and this a shift in the balance 512 

between “exploitation” and “exploration” 61. However, it is evident that this drift to 513 

exploration is not always accompanied by reduced “stickiness”, suggesting different processes 514 

underlying choice variability. 515 

 516 

The present analyses focusing on behavioral flexibility are relevant to current hypotheses of 517 

effects of psychedelic agents such as psilocybin and LSD and their hypothetical actions on 518 

neuronal plasticity and cognitive flexibility 66, 67. There are in fact intriguing parallels between 519 

the present global manipulations of serotonin and the effects of LSD on latent mechanisms 520 

underlying PRL in humans. Whilst LSD is mostly known for its 5-HT2A agonist properties, it 521 

is also a 5-HT1A agonist and suppresses dorsal raphe serotonin neuron activity 68. Indeed, LSD 522 

was recently shown to reduce stickiness during PRL performance of healthy humans 69, 70, 523 

which aligns with 5-HT1A somatodendritic autoreceptor effects associated with the reduced 524 

stickiness shown here following acute SSRI in humans and low dose SSRI in rats. At the 525 
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same time, LSD markedly increased the reinforcement learning rates for both reward and 526 

punishment 70,  which were also increased following sub-chronic SSRI dosing in rats. The 527 

parallel with our sub-chronic SSRI results from rats with the effects of LSD on learning rates 528 

in humans agrees with the literature showing that optogenetic stimulation of 5-HT neurons in 529 

the dorsal raphe increased reinforcement learning rates71. Given the well-established role of 530 

the 5-HT2A receptor in reversal learning, and its involvement in SSRI-related reversal 531 

improvements 72, a 5-HT2A mechanism may well be implicated in the present data. Indeed, the 532 

5-HT2A receptor is involved in plasticity 73, 74 and associative learning 75. Furthermore, during 533 

initial learning (pre-reversal), LSD decreased reinforcement sensitivity 70, in line with the 534 

acute and chronic 57 SSRI effects in humans and sub-chronic effect in rats. 535 

 536 

Other studies have investigated other forms of exploratory behavior, sometimes assessed with 537 

a four-choice, rather than two-choice, task as here. For example, directed exploration – where 538 

the goal is to explore uncertain options to maximise information gained – was modulated by 539 

dopamine 76 and attenuated in gambling disorder 77. Tabula rasa exploration (disregarding 540 

history), meanwhile, ignores all prior knowledge (e.g. choice history, reinforcement history, 541 

and estimates of uncertainty, respectively), has been associated with norepinephrine but not 542 

dopamine function 78 and may be enhanced in individuals with attention-deficit/hyperactivity 543 

disorder (ADHD) symptoms 79. Understanding distinct types of exploratory behavior and their 544 

neurochemical modulation is therefore relevant transdiagnostically. We posit that low 545 

stickiness is a fundamental form of exploration, and have shown here that serotonin 546 

modulates it; this is likely by affecting a neural network that includes the dorsomedial PFC, 547 

OFC, and amygdala 46. 548 

 549 
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Manifestation of high or low stickiness may bear on the neural representation of discrete 550 

states of the world. In the context of PRL, for example, one state would be “option A is 551 

mostly correct” (pre-reversal) whilst another state would be “option B is mostly correct” 552 

(post-reversal). To perform well during PRL, in this view, veridical state representations 553 

inferred by the brain are critical as are veridical probabilities of transitions between states. 554 

Indeed, the OFC is implicated in representing states 80, 81. One possibility, therefore, is that 555 

these results concerning stickiness collectively reflect an influence of serotonin on inferring 556 

states or state transitions. This would align with recent theorising on OCD (where stickiness is 557 

low during PRL) 7, which posits that the disorder can be characterised by excessive statistical 558 

uncertainty (variance, or inverse precision) about the probability of transitions between states 559 

(e.g. from the state of dirty hands to clean hands after washing), particularly those that are 560 

action-dependent 82. The optimal response to uncertainty about the current state would be 561 

exploratory behavior to continue gathering information 82. SUD (where stickiness is high) 7, 562 

meanwhile, may be characterised by over-encoding of state-specific rules and information 83. 563 

The model of state transition uncertainty can explain excessive behavioral switching (i.e. low 564 

stickiness) as well as heightened perseveration (i.e. high stickiness) and can be extended to 565 

account for other conditions including generalised anxiety disorder, autism spectrum disorder 566 

(ASD), and schizophrenia 82. Indeed, reversal learning deficits have been documented in ASD 567 

6 and schizophrenia 84, 85. 568 

 569 

Dose-dependent effects of SSRIs are key to understanding serotonin function in this cross-570 

species analysis. Acute low- and high-dose SSRI administration lowered and increased 571 

stickiness, respectively, which likely reflected sensitive measures of opposite effects on 5-HT 572 

activity. Evidence from positron emission tomography (PET) imaging has shown that acute 573 

SSRI in humans, at the dose used here, lowers 5-HT concentrations in projection regions 86, 574 
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although there can be considerable individual differences in this action87 - which may relate to 575 

the considerable variability in the reinforcement sensitivity parameter evident in Figure 4. The 576 

reduction in 5-HT levels in terminal projection areas is believed to reflect the activation of 5-577 

HT1A autoreceptors by increases in extracellular serotonin following reuptake inhibition, 578 

which in turn leads to decreased firing rates of 5-HT neurons 42, 44. We posit that the high 579 

acute dose of SSRI used in rats, which heightened stickiness, overcame 5-HT1A autoreceptor-580 

mediated regulation. 581 

 582 

The dose-dependent effects on stickiness may have implications for the treatment of OCD, in 583 

particular, one of numerous conditions for which SSRIs are first-line pharmacotherapy 38-41. 584 

One puzzle has been why doses up to three times higher than those used in MDD are optimal 585 

for reducing symptoms of OCD 88. In fact, guidelines for OCD recommend titrating to the 586 

maximum approved dose 89, yet using these high doses in MDD does not improve efficacy 587 

and instead increases side-effects 88. That both the repeated 5 mg/kg SSRI and the sub-chronic 588 

10 mg/kg treatments in rats increased stickiness in the present study may be relevant for 589 

understanding this clinical phenomenon.  590 

 591 

Conclusion 592 

It is imperative to overcome the challenge of relating animal and human experiments in order 593 

to advance models of psychiatric disorder and drug development 90-92. Here, we have provided 594 

evidence across rats and humans that serotonin modulates fundamental components of 595 

learning important for plasticity (reinforcement learning rates) and behavioral flexibility 596 

(stickiness), bidirectionally. Stickiness, a basic perseverative tendency less commonly studied 597 

in conjunction with RL, may be a fundamental mechanism involved in choice. Moreover, we 598 

have shown a consistent role for serotonin in affecting basic tendencies to persevere or 599 
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explore in comparable decision-making tasks in rats and humans. These results demonstrate 600 

that the role of serotonin in cognitive flexibility is preserved across species and are thus of 601 

evolutionary significance. In addition, this role of serotonin is of clinical relevance for 602 

neuropsychiatric disorders where SSRIs are the first line of treatment.  The translational 603 

results of this study are of particular relevance for the pathophysiology and treatment of OCD 604 

and SUD, where parallel learning processes have been perturbed 7, and have implications for 605 

a wide range of other neuropsychiatric disorders, including depression 8, 9 and schizophrenia 606 

27, 93.  607 
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Tables and Figure Captions 877 

 878 

Table 1. Summary of learning parameter effects.  879 

 

Stickiness 
τ

stim (humans) 

 τloc (rats) 

Reward learning 
rate αrew 

Punishment 
learning rate αpun 

Reinf. Sensitivity 
τ

reinf 

Rats: neurotoxic depletion of 
5-HT 

↓*** ↓* − − 

Rats: 1 mg/kg citalopram ↓** ↑** − − 

Humans: 20 mg escitalopram ↓* ↓** − ↓.. 

Rats: 10 mg/kg citalopram − ↓* − ↑* 

Rats: 5mg/kg citalopram 
chronic ↑. − ↑*** − 

Rats: 10mg/kg citalopram 
sub-chronic ↑. ↑*** ↑*** ↓*** 

Humans: 20 mg escitalopram 
chronic 57  − − − ↓** 

rew reward, pun punishment, reinf reinforcement, stim stimulus, loc location 880 

*** stands for 0 ∉ 95% HDI, ** for 0 ∉ 90% HDI,  * for  0 ∉ 85% HDI, .. for 0 ∉ 80% HDI, 881 

. for 0 ∉ 75% HDI 882 

 883 

Figure 1. Task schematics for probabilistic reversal learning and effects of serotonin 884 

depletion on model parameters in rats. 885 

A) Experiment in humans (example trial on touchscreen computer) and B) Experiment in rats 886 

(two apertures illuminated simultaneously to the left and right of a central aperture with 887 

reinforcement contingencies 80% : 20% for left : right or right : left, and a food pellet was 888 

given to a food magazine positioned on the opposite wall of the operant chamber if the 889 

rewarding location was chosen). C) Side (location) stickiness was diminished by neurotoxic 890 

5-HT depletion, i.e., 5,7- dihydroxytryptamine. Reinf. = reinforcement. Red signifies a 891 

difference between the parameter per-condition mean according to the Bayesian “credible 892 

interval”, 0 ∉ 95% HDI. Blue signifies a significance by the 85% HDI. The inner interval 893 

represents the 85% HDI, while the outer interval represents the 95% HDI.  894 
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 895 

Figure 2. Effects of acute SSRI (citalopram) at two doses on model parameters in rats. 896 

A) for 1 mg/kg and B) for 10 mg/kg. Reinf. = reinforcement. mg/kg = milligrams per 897 

kilogram. Red signifies a difference between the parameter per-condition mean according to 898 

the Bayesian “credible interval”, 0 ∉ 95% HDI. Blue signifies a significance by the 85% HDI. 899 

The inner interval stands for the 90% HDI in A), and 85% HDI in B), while the outer interval 900 

represents the 95% HDI.  901 

 902 

Figure 3. Effects of repeated and sub-chronic SSRI on model parameters in rats.  903 

A) for the repeated SSRI (5 mg/kg citalopram) experiment, and B) for the sub-chronic SSRI 904 

(10 mg/kg citalopram) experiment. Reinf. = reinforcement. Red signifies a difference between 905 

the parameter per-condition mean according to the Bayesian “credible interval”, 0 ∉ 95% 906 

HDI, and orange signifies a significance by the 75% HDI. All outer intervals represent the 907 

95% HDI. The inner intervals represent the 75% HDI for side stickiness and the 90% HDI for 908 

the other 3 parameters.  909 

 910 

Figure 4. Effects of acute SSRI (20 mg escitalopram) on model parameters in humans.  911 

Stimulus stickiness was decreased following acute SSRI. Reinf. = reinforcement. Red 912 

signifies a difference between the parameter per-condition mean according to the Bayesian 913 

“credible interval”, 0 ∉ 95% HDI. Similarly, blue and purple signify the significance levels by 914 

85% and 80% HDI’s, respectively. All outer intervals represent the 95% HDI. 915 

 916 
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