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ABSTRACT 19 

Learning to make adaptive decisions depends on exploring options, experiencing their 20 

consequence, and reassessing one9s strategy for the future. Although several studies have 21 

analyzed various aspects of value-based decision-making, most of them have focused on 22 

decisions in which gratification is cued and immediate. By contrast, how the brain gauges 23 

delayed consequence for decision-making remains poorly understood. 24 

 25 

To investigate this, we designed a novel decision-making task in which each decision altered 26 

future options to decide upon. The task was organized in groups of inter-dependent trials, and 27 

the participants were instructed to maximize cumulative reward value within each group. In 28 

the absence of any explicit performance feedback, the participants had to test and internally 29 

assess specific criteria to make decisions. The absence of explicit feedback was key to 30 

specifically study how the assessment of consequence forms and influences decisions as 31 

learning progresses. 32 

 33 

We formalized this operation mathematically by means of a multi-layered decision-making 34 

model. It uses a mean-field approximation to describe the dynamics of two populations of 35 

neurons which characterize the binary decision-making process. The resulting decision-making 36 

policy is dynamically modulated by an internal oversight mechanism based on the prediction 37 

of consequence. This policy is reinforced by rewarding outcomes. The model was validated by 38 

fitting each individual participants9 behavior. It faithfully predicted non-trivial patterns of 39 

decision-making, regardless of performance level. 40 

 41 

These findings provide an explanation to how delayed consequence may be computed and 42 

incorporated into the neural dynamics of decision-making, and to how adaptation occurs in the 43 

absence of explicit feedback. 44 

 45 

AUTHOR SUMMARY 46 

Decision-making often entails anticipating the consequences of one9s choices over time. 47 

However, real-world choice outcomes are not always immediate, adding significant challenges 48 

to determining their long-term implications for behavior. Most previous studies on reward-49 

driven decision-making focus on task paradigms in which the decision outcomes are immediate 50 

and explicitly cued. However, the cognitive and neurobiological mechanisms by which the 51 

brain learns about and incorporates delayed and uncertain consequences remain unclear. 52 

Consequently, the primary aim of our study was twofold. First, we designed an experimental 53 

task in which participants were instructed to maximize the reward value across sequences of 54 

trials in which some of the stimuli offers were dependent on previous choices. Crucially, 55 

participants had to learn the decision-making strategy by making exploratory decisions in the 56 

absence of any explicit feedback. We analyzed the resulting behavior to characterize individual 57 

differences in decision strategy and learning rates. Secondly, we built a model of the underlying 58 

cognitive processes involved in strategy learning and consequence-based decision-making. We 59 

formalized this by using a three-layer model which accurately reproduced the behavior of 60 

individual participants. The resulting model provides a discrete computational account of 61 

consequence-based decision-making. 62 

 63 
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1 INTRODUCTION 64 

Adaptive behavior requires making choices that maximize long-term reward while also 65 

minimizing effort, costs and risk (134). This is commonly studied under the value-based wide 66 

framework of decision-making (537), which conceptualizes choice behavior as a trade-off 67 

between the various benefits and costs associated with different decision options. In most 68 

contexts, choice outcomes are immediate, unambiguous, and explicitly cued. These features 69 

make calculating the costs/benefits straightforward, as all the necessary information is directly 70 

and immediately available to the decision maker for calculation (8311). However, it is 71 

significantly less clear how decision-makers can compute the time-extended costs and benefits, 72 

and thus how they learn to make adaptive choices in contexts where decision outcomes are not 73 

made explicit or depend on a prediction of future consequence. In other words, a complete 74 

account of value-based choice behavior requires understanding how the brain detects and 75 

computes the non-immediate consequences of choices, and how to use this information to guide 76 

subsequent decision strategies.  77 

 78 

Why are consequence-based decisions more complicated than simple sensory accumulation 79 

perceptual decision-making (12,13)? Firstly, they require an increased temporal span of 80 

consideration, they are often more uncertain, since there is a greater number of factors to 81 

consider, and the environmental variability/unpredictability should be taken into account. All 82 

these aspects make option evaluation more computationally demanding, yielding longer 83 

deliberation times and a poorer decision accuracy (14,15). This is well-founded by an extensive 84 

body of previous empirical work (16319). Secondly, because of the aforementioned factors, 85 

consequence-based decisions also depend on a much broader range of cognitive functions and 86 

brain regions than those involved in purely concurrent sensory/perceptual decisions (20), e.g., 87 

structures related to working memory (21,22) and higher cognitive processing (23,24). There 88 

is no consensus about what a minimal set of functions required for consequence-based 89 

decisions would be, and little evidence about the neural mechanisms potentially involved 90 

(7,25). 91 

 92 

To add clarity to how these cognitive processes unfold in the human brain to achieve 93 

consequence-based decision-making, we carried out a two-part study. This consisted of a 94 

behavioral experiment with human participants and a neurally-inspired model that reproduce 95 

their decision behavior and formalize some of the potential underlying brain mechanisms. First, 96 

we designed a novel behavioral paradigm, i.e., the consequential task, in which participants 97 

had to learn an optimal strategy to maximize their cumulative reward values across groups of 98 

trials. Specifically, participants made perceptual choices between two stimuli. In some blocks, 99 

after overcoming the perceptual discrimination, decisions were one-shot, and the reward could 100 

be maximized right away by choosing the option associated with the greatest immediate 101 

amount. However, other decisions involved groups of trials in which the reward values 102 

available in later trials were dependent on choices made in earlier ones. Namely, it was 103 

designed in such a way that choosing the larger value in the first trial led to a much lesser 104 

overall amount in the next trials within the same group. Therefore, participants could not 105 

maximize the cumulative reward value by optimizing the single-trial reward value. By contrast, 106 

the optimal strategy necessarily entails learning that short-term reward value must often be 107 

sacrificed for larger subsequent reward values. This mechanism is known from studies in delay 108 

discounting (26330), such as the marshmallow experiment (31,32), which we here apply to 109 

decision-making in a broader sense. In our task, the optimal decision policy could only be 110 

discovered via exploratory decision-making in the absence of explicit cues, i.e., the participants 111 

had to rely on subjective feedback to pick up on the delayed consequences of their decisions 112 

across successive trials. In other words, unlike previous experimental paradigms, our task is 113 
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structured such that maximum cumulative reward value can only be attained when exploiting 114 

covert dependencies across trials. This makes the consequential task uniquely well-suited to 115 

tap into the neural mechanisms specifically involved in consequence-based decisions. 116 

 117 

In the second part of our study, we described a novel computational model designed to 118 

formalize the dynamics and strategy of decision-making, including the patterns of inhibition 119 

and of assessment of far-sighted consequence required to gain maximum cumulative reward. 120 

The model is organized in three layers, here identified as low, middle and top. The lower layer, 121 

in line with the Amari, Wilson-Cowan and Wong-Wang models (33338), describes the average 122 

dynamics of two populations of neurons in the context of perceptual binary decision-making. 123 

The middle and top layers are needed to assess the consequence across the group of trials, 124 

incorporating complexity and consequence into the competitive dynamics of decision-making. 125 

Despite its simplicity, this model can accurately reproduce the full variety of performance 126 

observed across the different participants; in other words, the model captures the full range of 127 

processes required for real-world consequence-based decision-making. This model therefore 128 

implements the minimal core processes required for consequence-based learning and decision-129 

making, and it is an achievement in its own right. The model describes the assessment of 130 

consequence as a complex process which may be described as an extension of value-based 131 

decision-making. The decision-making process is supervised by an oversight mechanism that 132 

monitors overall performance by means of an internal subjective mechanism of value 133 

assessment that integrates information from different sources, and after a few iterations, yields 134 

a correct prediction of consequence for each option. 135 

 136 

2 RESULTS 137 

 138 

2.1 Task design 139 

In this section, we describe the consequential task, specifically designed to tap into the 140 

cognitive mechanisms involved in learning delayed consequences in the absence of feedback. 141 

In this task, 28 healthy participants were instructed to choose one of the two stimuli, depicting 142 

reward values through differently filled water containers, presented left and right on the screen. 143 

The participants reported their choices by sliding the computer mouse’s cursor from the central 144 

cue to the chosen stimulus (see Figure 1 and Materials and Methods for a thorough description).  145 

 146 

Since consequence depends on a predictive assessment of future contexts, the task was 147 

organized into two main types of trial blocks, in which the participants had to maximize the 148 

reward value. There were the blocks in which trials required one-shot decisions, purely 149 

independent from each other. As in most typical decision-making paradigms, the reward value 150 

in these trials could be maximized by picking the best available option in that instance. 151 

However, in other blocks, trials were grouped into pairs or triads of interdependent trials. We 152 

called each group of linked consecutive trials an episode to signify the boundary of 153 

interdependence between them, and defined the notion of horizon (nH) as a metric for its 154 

quantification. The horizon of a specific episode equaled the number of dependent trials 155 

following the first trial of each episode. The nature of the dependence between trials of an 156 

episode was such that the mean reward values of the stimuli in the second/third trial were 157 

systematically increased or decreased based on the participant9s choice in the preceding trial. 158 

Specifically, choosing the greater stimulus value led to a reduction of stimuli values in the 159 

subsequent trial, whereas achieving greater future value options required deliberately choosing 160 

the lesser option in the previous trial (Figure 1b). 161 
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 162 

Participants were instructed that their goal was to maximize the cumulative reward value per 163 

episode. Optimal performance across the task as a whole was achieved by choosing <big= in 164 

single trial episodes (horizon nH=0), and deliberately choosing <small= in all trials of nH=1 and 165 

nH=2 episodes except the last, in which <big= should be chosen. However, learning this policy 166 

was made challenging by a number of different factors. First, perceptual discrimination, 167 

quantifying the size difference between stimuli varies within 1-20% of the container. Second, 168 

although the participants were instructed that their choices affect future trials within the 169 

episode, the nature of this dependency was not signaled in any obvious way. This means that 170 

from the perspective of the participants, the value of the reward offers might at first appear 171 

random. Third, explicit feedback after each episode was crucially omitted from the task. The 172 

reason for this is that the presence of feedback might have had the undesirable effect of 173 

participants focusing on finding the specific sequence of choices within episode yielding 174 

optimal feedback, without having to learn the relationship between their decisions and the 175 

subsequent trials. In other words, an explicit measure of performance might have reduced the 176 

task to an explicit trial-and-error test of deciding for example, <big-small=, <small-big=, etc., 177 

until finding the sequence of choices leading to maximum performance, rather than learning to 178 

evaluate each option9s consequence in terms of their prediction of future reward value to attain 179 

the goal. In contrast, the absence of feedback made the participants not informed about their 180 

performance throughout the block, and ought to oblige them to create an internal sense of 181 

assessment, which can only rely on two mechanisms: the sensory perception of the systematic 182 

stimuli changes in the subsequent trial after each choice, and the exploration of option choices 183 

at each trial during the earlier part of each block. The resulting task essentially becomes a 184 

measure of learning about delayed consequences associated with each option in the absence of 185 

explicit feedback. 186 

 187 

In summary, for the participants to be able to perform the task, they were informed of the 188 

episode-based organization of trials at each block, i.e., the horizon. The instruction to the 189 

participant was to find the strategy leading to the most cumulative reward value for each 190 

episode and, for the reasons mentioned previously, to actively explore their choices. Further 191 

details are shown in the Methods section, and in Figure 1. 192 

 193 
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 194 

Figure 1. Time-course of a typical horizon 1 episode of the consequential decision-making task. (a) The episode consists of 195 

two dependent trials. The first starts with the message <New Episode Starting= in the center-top of the screen, a circle 196 

surrounding a cross in the center (central target), and half full progress bar at the bottom of the screen. The progress bar 197 

indicates the current trial within the episode (for horizon 1, 50% during the first trial, 100% during the second trial). After 198 

holding for 500ms, the left or right (chosen at random) stimulus is shown, followed by its complementary stimulus 500ms later. 199 

Both stimuli are shown together 500ms later which serves as the GO signal. At GO, the participant has to slide the mouse 200 

from the central target to the bar of their choosing. Once the selected target is reached, a yellow dot appears over that target. 201 

The second trial follows the same pattern as the first. See Methods for more details. (b): Construction scheme for the size of 202 

the stimuli in each episode. The first trial within the episode consists of 2 stimuli of size M+d/2 and M-d/2. The second trial 203 

within the episode depends on the selection made in the previous trial. If the first selected stimulus is M-d/2 (following symbol 204 

<-= in the figure), then the second trial consists of stimuli with size M+G+d/2 and M+G-d/2, otherwise M-G+d/2 and M-G-205 

d/2 (following symbol <+= in the figure). The cumulative reward value of the episode can therefore assume 4 distinct values 206 

(ordered from best to worst): 2M+G, 2M+G-d, 2M-G+d, and 2M-G. See Methods for more details on the values of M, G, d. 207 

 208 

2.2 Behavioral Results 209 

The metrics extracted from the participants9 behavioral data were their performance (PF), 210 

reported choices (CH), reaction time (RT), and visual discrimination (VD) sensitivity. The PF 211 

is a single-episode metric assuming values from 0 (worst) to 1 (best), and is calculated as the 212 

percentage of reward value obtained throughout the episode normalized by the maximum and 213 

minimum that could have been obtained. CH was the choice made by the participant in each 214 

trial, in terms of small or large reward stimulus. The RT was calculated as the time difference 215 

between the simultaneous presentation of both stimuli (the GO signal), and the onset of the 216 

movement. The VD is the ability to visually discriminate between stimuli, i.e., identifying 217 

which one is the bigger/smaller (see Methods for further details). As shown below, when the 218 

difference between stimuli (DbS) is small, participants were not able to accurately distinguish 219 

between stimuli. The DbS varies within 1-20% of the size of the container. 220 

 221 

The absence of explicit performance-related feedback at the end of each episode made the task 222 

more difficult, and, consequently, not all participants were able to find the optimal strategy. 223 

For horizon nH=0, all twenty-eight participants but one learned and applied the optimal 224 

strategy, i.e., repeatedly selecting the larger stimulus. By contrast, only twenty-two participants 225 

learned the optimal strategy during horizon nH=1,2 blocks, i.e., selecting the larger stimulus in 226 
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the last trial only. Most participants who did not learn the optimal strategy for nH=1,2 227 

repeatedly chose the larger stimulus for all trials. 228 

 229 

 230 

Figure 2. Summary results across participants. (a) Histogram of learning times, in terms of episodes (E). The learning time is 231 

defined as the first episode throughout the whole session in which the optimal strategy was applied repeatedly (see Methods). 232 

We identified four groups of participants: fast, medium and slow learners, and participants who did not discover the optimal 233 

strategy (NL 3 No Learning). (b) Histogram of the visual discrimination (VD) calculated by computing the percentage of 234 

correct selections of the last 80 episodes, in the horizon 0 block, for only the most difficult trials (DbS = 0.01). (c) Performance 235 

as a function of DbS, for the trials after the optimal strategy was applied. (d) Reaction Time (RT) versus DbS. The more similar 236 

the stimuli, the longer participants needed to make a decision. (e-f) Regression coefficients for the linear mixed-effects models 237 

�!" > �($%) + �' ç �̂( + )�($%)*����. ) and  �� > �($%) + �' ç �̂( + )�($%)*����. ), where �!" is the percentage of optimal 238 

choices, RT is the reaction time, �($%) is the moment in time (counting episodes in groups of 10), nH is the horizon number, 239 

�̂( is the trial within episode counting backwards from last to first, and part. is the participant. We used maximum likelihood 240 

to estimate the model parameters. Participants were divided into two groups: those who learned the optimal strategy (blue) 241 

and those who did not (red), see Panel (a). 242 

 243 

Figure 2 shows the summary results for all twenty-eight participants. In Panel (a) we show the 244 

histogram of their learning time in terms of episodes (E), defined as the first episode of the 245 

session in which the optimal strategy was assimilated. Namely, we defined the time at which 246 

the strategy was assimilated as the moment after which the optimal strategy was used in at least 247 

9 out of the following 10 episodes. To ensure that a low success rate was not caused by 248 

perceptual discrimination errors (during low VD), we excluded the most difficult episodes in 249 

terms of DbS to calculate the learning time. The last histogram bar in Figure 2a (shown as NL 250 

3 No Learning), shows the aggregate of the 6 participants who never learned the optimal 251 

strategy. We can identify four types of participants as a function of their learning speed: slow, 252 

medium, fast learners, and those participants who did not ever learn the strategy. Figure 2b 253 

shows the VD, for all difficult trials (smallest DbS) and participants, where VD was calculated 254 
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as the percentage of correct choices over the last 80 episodes in the horizon nH=0 block. On 255 

average, stimuli were discriminated correctly in 71% of the most difficult trials. Thus, despite 256 

having learned the optimal strategy, because of the low VD, most participants continued 257 

making some errors. This is reported in Figure 2c, showing the grand average and standard 258 

error of the PF across subjects as a function of the difficulty level of the episode, for all episodes 259 

following each participant9s learning time (Mixed effects model fit; AIC = -168.88, BIC = -260 

158.442, Log-likelihood = 88.442, p = 7.11E-11). Note that the RT gradually increased with 261 

growing difficulty to discriminate the stimuli (Figure 2d), thus exhibiting a gradual and 262 

significant sensitivity to VD (Mixed effects model fit; AIC=-101.61, BIC=-89.85, Log-263 

likelihood = 54.81, p =7.67E-25). 264 

 265 

While both PF and RT vary with VD, their dependency on other variables must be established 266 

statistically. To assess the learning process, we quantified the relationship of PF and RT with 267 

horizon nH, trial within episode TE, and episode E. To obtain consistent results, we adjusted 268 

these variables as follows: the trial within episode is reversed, from last to first, because the 269 

optimal choice for the last TE (large) is the same regardless of the horizon number. The variable 270 

representing the trial within episode counted backwards is denoted as �"!. Furthermore, we 271 

grouped the episodes in blocks of 10 and used their average. This new variable is called �(#$). 272 

Finally, to consider trials within episode independently, we adapted the notion of PF (defined 273 

as a summary measure per episode) to an equivalent of PF per trial, i.e., the percentage optimal 274 

choices �&'. We then used a linear mixed effects model (39,40) to predict PF and RT. The 275 

independent variables for the fixed effects are horizon nH, trial within episode �"! (counted 276 

backwards), and the passage of time expressed as groups of 10 episodes �(#$) each. We set the 277 

random effects for the intercept and the episodes grouped by participant. The resulting models 278 

are:  �&'~�(#$) + �( ç �"! + )�(#$)*����. ) and ��~�(#$) + �( ç �"! + )�(#$)*����. ). The 279 

independent variables for the fixed effects are horizon nH, trial within episode �"! (counted 280 

backwards), and the passage of time expressed as groups of 10 episodes �(#$) each. We set the 281 

random effects for the intercept and the episodes grouped by participant. The resulting models 282 

are:  �&'~�(#$) + �( ç �"! + )�(#$)*����. ) and ��~�(#$) + �( ç �"! + )�(#$)*����. ). The 283 

regression coefficients, with their respective group significance, are shown in Figure 2e-f. The 284 

results of the statistical analysis are reported in the Supplementary Materials Table 2-3. Here, 285 

we made the distinction between the group of participants that learned the optimal strategy and 286 

the ones who did not, according to Figure 2a. In panel (e), �&' decreases with �"!, suggesting 287 

that the first trial(s) within the episode are less likely to be guessed right, i.e., favoring the 288 

smaller of both stimuli. This makes sense, since only the early trials within the episode required 289 

inhibition. Moreover, looking at the amplitude of the regression coefficients, we can state that 290 

this has a larger impact in the no-learning case. The same argument can be made for the 291 

dependency with nH. The difference between learning and no-learning can be realized when 292 

considering the time dependence: for the learners9 group �&' increases as time goes by, i.e., 293 �(#$) increases, while it is not significant for the group that did not learn the optimal strategy. 294 

In panel (f), RT shows converse effect directions between learning and no-learning groups for 295 

both dependencies on �"! and nH. The participants who learned the optimal strategy exhibited 296 

longer RT for the earlier trials within the episode, consistently with the need of inhibiting the 297 

selection of the larger stimulus. 298 

 299 

Although we analyzed the data from all twenty-eight participants, in Figure 3 we show the data 300 

from four participants whose behavior was representative of the four groups we defined as a 301 

function of their learning speed (no learning, slow, medium, & fast learning). Figure 3 shows 302 

their associated PFs, CHs, and RTs metrics. Each column corresponds to a participant and each 303 
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row to a different horizon level. Note that all four participants performed the nH=0 task 304 

correctly (Figure 3a,b). The first three participants also performed nH=1 correctly, while 305 

participant 4 did not learn the correct strategy until he executed nH=2. Note that participant 2 306 

performed nH=2 before nH=1, they learned during nH=2, and then applied the same strategy 307 

for nH=1. Because of this, no learning process can be detected during the nH=1 block. In Figure 308 

3c, note that some RTs are negative. In these cases, the participant did not wait for the 309 

presentation of the GO signal to start the movement. 310 

 311 

 312 

 313 

Figure 3. Behavioral results for four representative participants. Rows and columns refer to horizons (nH) and participants, 314 

respectively. (a) Performance per episode. (b) Choice behavior per trial, in terms of selecting the bigger or smaller stimulus. 315 

Results are gathered by horizon (nH) and respective trial within episode (TE). (c) Cumulative density function (CDF) of reaction 316 

times. The color code indicates the trial within episode (green for TE=1, blue for TE=2, and red for TE=3). 317 

  318 
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2.3 A Neurally-inspired Model of Consequential Decision-Making 319 

In this section, we describe our mathematical formalization of consequential decision-making, 320 

incorporating a variable foresight mechanism, adaptive to the specifics of how reward is 321 

distributed across trials of each episode. We formalized these processes using a three-layer 322 

neural model, described next. 323 

 324 

2.3.1 Layer 1: Neural dynamics 325 

To describe the neural dynamics at each trial, we used a mean-field approximation of a 326 

biophysically based binary decision-making model (38,41343). This approximation has been 327 

often used to analytically study neuronal dynamics, through analysis of population averages. 328 

This included a simplified version that reproduced most features of the original spiking neuron 329 

model while using only two internal variables (33).  330 

 331 

The core of the model consists of two populations of excitatory neurons: one sensitive to the 332 

stimulus on the left-hand side of the screen (L), and the other to the stimulus on the right (R). 333 

The intensity of the evidence is the size of each stimulus, which is directly proportional to the 334 

amount of reward displayed. In the model this is captured by the parameters »L, »R, respectively. 335 

Although in the interest of our task we distinguish between the bigger and smaller stimulus 336 

values, in the formulation of the model it is convenient to characterize stimuli based on their 337 

position, i.e., left/right. The reason here is that the information on which target is bigger is 338 

already conveyed by the respective stimuli values, i.e., the parameters »L, »R. Moreover, this 339 

allows to introduce an extra degree of freedom in the model, without increasing the number of 340 

variables. The equations 341 

 342 

2� ��)(�)�� = 2�)(�) + �)�) + �*�)(�) 2 �+�,(�); + ��)(�)
� ��,(�)�� = 2�,(�) + �)�, + �*�,(�) 2 �+�)(�); + ��,(�) Eq.  1 

 343 

describe the temporal dynamics of the firing rates (rL, rR) for each of the two populations, and 344 

may be interpreted as originating from a neural network as shown in Figure 4a. Each pool has 345 

recurrent excitation (Ë+), and mutual inhibition (Ë-). Although the schematic indicates that both 346 

excitation and inhibition emanate from a single population of excitatory neurons, this 347 

connectivity could be achieved with an equivalent network of excitatory and inhibitory 348 

subpopulations (33,35,42,44,45). In particular, we refer to the work by Wong and Wang (33), 349 

where they reduced a spiking neural network of both excitatory and inhibitory neurons to a 350 

two-variable system describing the firing rate of the mean-field dynamics of two populations 351 

of excitatory neurons. We opted for this simplified architecture because they are equivalent 352 

under some conditions and provide a more compact formulation. Furthermore, the network 353 

shares a basic feature with many other models of bi-stability: to ensure that only one population 354 

is active at any time (mutual exclusivity; (46,47)), mutual inhibition is exerted between the two 355 

populations ((48350)). The overall neuronal dynamics are regulated by the time constant t, and 356 

Gaussian noise x with zero mean and standard deviation s. The sigmoidal function f is defined 357 

as �(�) = �-./ @1 + ���)2(� 2 �) �Ed ;GH , with �-./ denoting the firing rate saturation value. 358 

 359 
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 360 

Figure 4. (a) Network structure of binary decision model of mean-field dynamics. The L pool is selective for the stimulus L 361 

(»L), while the other population is sensitive to the appearance of the stimulus R (»R). The two pools mutually inhibit each other 362 

(Ë-) and have self-excitatory recurrent connections (Ë+). (b) Firing rate of the two populations (L, R) of excitatory neurons 363 

according to the dynamics in Eq.  1. A decision is taken at time 506 ms (vertical dashed line) when the difference in activity 364 

between L and R pools passes the threshold of � =25Hz. The strengths of the stimuli are set to »L = 0.0203 and »R = 0.0227. 365 

The time constant and the noise are set to Ç = 80 and Ã = 0.003, respectively. 366 

The neural dynamics described in this section refer to the time-course of a single trial, and is 367 

related to the discrimination of the two stimuli. The model commits to a perceptual decision 368 

when the difference between the L and R pool activity crosses a threshold D (51), see Figure 369 

4b. This event defines the trial9s decision time. Note that the decision time and the likelihood 370 

of picking the larger stimulus are conditioned by the evidence associated with the two stimuli 371 

(lL, lR), i.e., how easy it is to distinguish between them. Namely, the larger the difference 372 

between the stimuli is, the more likely and quickly it is that the larger stimulus is selected. 373 

 374 

This type of decision-making model is made such that the larger stimulus is always favored. 375 

Although the target with the stronger evidence in Eq.  1 is the most likely to be selected, this 376 

behavior becomes a particular case when this first layer interacts with the middle layer of our 377 

model, as described in the next section. 378 

 379 

2.3.2 Layer 2: Intended decision 380 

While most decision-making models consider only information involving one-shot decisions 381 

(33,51354), the increased temporal span consideration and the uncertainty due to the 382 

consequence of the decision-making processes involved in the consequential task require 383 

additional elements for our model. The second layer of our model is devoted to build a 384 

mechanism capable of dynamically shifting from the natural (perceptual based) impulse of 385 

choosing the larger stimulus, to inhibiting that preference and choosing the smaller one. We 386 

implemented such a mechanism by means of an inhibitory control pool, which regulates, when 387 

desired, the reversal of the selection criterion towards the smaller or larger stimulus. We called 388 

this mechanism intended decision, as it defines the intended target to select at each trial. This 389 

constitutes the layer enabling the model to switch preference as a function of the context (see 390 

layer 3 description). 391 

 392 

Specifically, the intended decision mechanism at each trial is represented as a two-attractor 393 

dynamical system. If the state of the model may be interpreted as the continuous expression of 394 

its tendency for one over another choice, an attractor is the state towards which the dynamics 395 

of the system naturally evolve. Since we have two choices, to implement this we considered 396 

the energy function �(�) = �0(� 2 1)0 that has two basins of attraction at 0 and 1, associated 397 

to the small and big stimulus, respectively (see Figure 5a). Hence, the dynamics of Ë are 398 

regulated by 399 

 400 
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�1 ��(�)�� = 24�(�)(�(�) 2 1)(�(�) 2 1/2) + 1�0 �1�1(�) Eq.  2 

 401 

where ÇË is a time constant. The Gaussian noise ¿Ë(t) is scaled by a constant (ÃË) and decays 402 

quadratically with time. Thus, the noise exerts a strong influence at the beginning of the process 403 

and becomes negligible as one of both basins of attraction is reached. 404 

 405 

 406 

Figure 5. Dynamics of the second layer of the model. a) Energy function �(�) = �)(� 2 1)) with two basins of attraction in 407 

0 and 1, associated with the small/big targets, respectively. The small circle represents a possible initial condition for the 408 

dynamics of �. (b) Ten simulated trajectories for �(�) according to Eq.  2 with initial condition �(0) = 0.45 and noise 409 

amplitude ÃË = 0.4. 410 

 411 

If we set the initial condition to �$ = 0.5 and let the system evolve, the final state would be 412 

either 0 or 1 with equal probability. Shifting the initial condition towards one of the attractors 413 

results in an increased likelihood of leaning towards that same attractor, and ultimately its fixed 414 

point, i.e., the basin of attraction that was reached. For example, Figure 5b shows 10 simulated 415 

trajectories of �(�) where the initial condition was set to �$ = 0.45. Since the initial condition 416 

is smaller than 0.5, most of the trajectories have a fixed point of 0. Nevertheless, due to the 417 

initial noise level, the fewer of them reach 1 as their final state. 418 

 419 

The initial condition (�$) and the noise intensity (ÃË) are interdependent. The closer an initial 420 

condition is to one of the attractors, the larger the noise is required to escape that basin of 421 

attraction. Behaviorally, the role of the initial condition is to capture the a-priori bias of 422 

choosing the smaller/bigger target. Though this is true, please note that a strong initial bias 423 

towards one of the targets does not guarantee the final decision, especially when the level of 424 

uncertainty is large. Because of this behavioral effect, we refer to the noise intensity ÃË as 425 

decisional uncertainty. 426 

 427 

The evolution of the dynamical system in Eq.  2 describes the intention of the decision-making 428 

process, at each trial T, of choosing the smaller/bigger target. Once a fixed point is reached, the 429 

intention is established. We call �E(�) the fixed point reached at trial T, i.e., 430 �E(�) = ���
2³4

�(�) = R01 431 

is the intended decision of choosing the smaller (0) or bigger (1) stimulus. 432 

 433 

Although the small/big stimulus may be favored at each trial, the final decision still depends 434 

on the stimuli intensity ratio. More specifically, if the evidence associated with the small/large 435 

stimulus is higher/lower than that of its counterpart, the dynamics of the system will evolve as 436 

described in the previous section, see Eq.  1. For this reason, we incorporated the intention term 437 
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�E(�) into Eq.  1, connecting the intended decision layer with the neural dynamics layer. This 438 

yields a novel set of equations 439 

 440 

««
§� ��)(�)�� = 2�)(�) + � VËX(T)�) + @1 2 ËX(�)G �, + �*�)(�) 2 �+�,(�)Z + ��)(�)
� ��,(�)�� = 2�,(�) + � VËX(T)�, + @1 2 ËX(�)G �) + �*�,(�) 2 �+�)(�)Z + ��,(�) Eq.  3 

 441 

which exhibit the competence of switching preference between the large and small stimulus. If 442 �E(�) = 1, the larger stimulus is favored (and the equations reduce to Eq.  1); however, if 443 �E(�) = 0 the smaller is preferred. 444 

 445 

To summarize, this intended decision layer endows the dynamics of decision-making hereby 446 

described with the ability of directing their preference towards either the smaller or bigger 447 

stimulus in a dynamical fashion. This inhibitory control plays the role of the regulatory criterion 448 

(size-wise) with which a decision is made in the consequential task, as described by Eq.  2. 449 

 450 

 451 

2.3.3 Layer 3: Learning the Strategy  452 

 453 

Figure 6. Multi-layer network structure of mean-field model of consequence-based decision making, in the case of a horizon 1 454 

experiment. From the bottom: Neural dynamics layer: pool L is selective for the stimulus L (»L), while the other population is 455 

sensitive to the appearance of the stimulus R (»R). The two pools mutually inhibit each other (Ë-) and have self-excitatory 456 

recurrent connections (Ë+). The dynamics of the firing rate of the two populations is regulated by Eq.  3. Intended decision 457 

layer: the function Ë represents the intention, in terms of decision process, made at each trial T, of aiming for the smaller or 458 

bigger target. The dynamics of the intended decision is regulated by Eq.  2. Strategy learning layer: after each trial the strategy 459 

is revised, in a reinforcement learning fashion, depending on the magnitude of the gained reward value. The strategy is updated 460 

according to Eq.  4. 461 

 462 

Although the previously described intended decision layer endowed our model with the ability 463 

of targeting a specific type of stimulus at each trial, a second mechanism to internally oversee 464 

performance and to promote only beneficial strategies is a requirement. The overall goal for 465 

each participant of the consequential task is to maximize the cumulative reward value 466 

throughout an episode. As shown by previous analyses, most participants attained the optimal 467 

strategy after an exploratory phase, gradually improving their performance until the optimum 468 

is reached. Inspired by the same principle of exploration and reinforcement, we incorporated 469 

the strategy learning layer to our model. 470 
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 471 

The internal dynamics of an episode are such that selecting the small/large stimulus in a trial 472 

implies an increase/decrease of the mean value of the presented stimuli in the next trial (Figure 473 

1). Consequently, the strategy to maximize the reward value must vary as a function of the 474 

position of the trial within episode (TE). For clarity, we labelled each trial T via the episode E 475 

and the number of trial within episode TE, i.e., T=(E,TE). We use both notations 476 

interchangeably. 477 

 478 

The strategy learning implemented for the model abides by the general principle of reinforcing 479 

beneficial strategies and weakening unprofitable ones, much like a reinforcement learning 480 

algorithm (55). At each episode E, the strategy function � = �(�, �!) is updated by 481 

considering the intended choice �E(�) and the reward value R(T) obtained. In our case, this 482 

reward value originates from subjective evaluation for each individual participant in the 483 

absence of explicit feedback. This internal assessment yields a positive or negative perception 484 

of reward, i.e., a subjective reward. Learning implies that the preference for the selected 485 

strategy is reinforced if the subjective reward is considered beneficial. Namely, with a positive 486 

reward (R(T)>0), � is increased if the larger stimulus was chosen (�E(�) = 1) and decreased 487 

otherwise (�E(�) = 0). Notice that a negative reward discourages the current strategy but 488 

promotes the exploration of alternative strategies and makes possible, eventually, to learn the 489 

optimal one over time. Mathematically, we describe the dynamics of learning as 490 

 491 �(� + 1, �!) = �(�, �!) + ��(�, �!))2�E(�, �!) 2 1;(�(�, �!) 2 1)0)�(�, �!);0 Eq.  4 

 492 

where k is the learning rate. Note that if k=0, �(�, �!) remains constant, i.e., there is no 493 

learning. The term (�(�, �!) 2 1)0)�(�, �!);0 is required to gradually reduce the increment 494 

to zero the closer � gets to either zero or one, thus bounding � in the interval [0,1]. The reward 495 

function R(�, �!) represents the subjective reward. The only requirement for this function is 496 

that R(�, �!) must be positive/negative if the subjective reward is considered beneficial or not. 497 

In the absence of explicit feedback, as is the case in the current task, participants must look for 498 

clues that convey some indirect information about their performance that could feed their 499 

internal criterion of assessment. In our case, the correct clue to look for was the change in the 500 

mean M(T) stimuli between consecutive trials within an episode. For this reason, in our 501 

simulations we use �(�, �!) = �(�, �! + 1) 2�(�, �!) in Eq.  4. 502 

 503 

Complementary to the lower layers, the strategy layer operates at a slower-pace, adaptive at a 504 

time scale of episodes. At the end of each episode, the strategy is updated by 505 

reinforcing/weakening the policy that has yielded a positive/negative reward. Mathematically, 506 

as mentioned before, this means that with a positive reward (R(T)>0), � is increased if the 507 

larger stimulus was chosen (�E(�) = 1) and decreased otherwise (�E(�) = 0). In the long term, 508 

in the case that both the larger stimulus is repeatedly chosen and positive rewards obtained, 509 

then � converges to 1. Otherwise, if both the smaller stimulus is repeatedly chosen and positive 510 

rewards obtained, then � converges to 0. This update manifests in the next episode as a change 511 

in the initial condition for the intended decision � (Eq.  2), i.e., suggesting the direction for the 512 

intended decision to go. As shown in Figure 5, shifting the initial condition towards one of the 513 

two basins (0 or 1) increases the likelihood of reaching it. In other words, the closer the initial 514 

condition to zero/one, the more likely the intended decision will be small/big. Mathematically, 515 

this can be implemented by setting �(0) = �(�) for each trial. In other words, the connection 516 

between the intended decision and the strategy layers lays in the influence the strategy learning 517 

exerts at each decision. 518 
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 519 

To conclude, our model consists of a three concurrent layer structure. The dynamics of each 520 

layer are defined by Eq.  3 (neural dynamics), Eq.  2 (intended decision), and Eq.  4 (strategy 521 

learning). Figure 6 shows a schematic of the model here described. The bottom part depicts the 522 

neural dynamics originated from two pools of neurons encoding the responses to two external 523 

stimuli (L, R). The middle (in yellow) shows the intended decision layer at every trial. Finally, 524 

the top (in green) presents the strategy learning layer, which evolves at a much slower 525 

timescale; the combined information of the intended decision and the subjective reward drives 526 

the learning of the strategy. 527 

 528 

2.4 Model Simulations 529 

We performed a parameter space analysis to assess the influence of the model parameters on 530 

the main behavioral metrics of interest: reaction time (RT) and performance (PF). To obtain 531 

meaningful biophysical results for the neuronal dynamics, we simulated our model varying the 532 

time constant t, the noise amplitude s, and the decision threshold D (in Eq.  3) in the following 533 

ranges: � * [25,95], � * [10+5, 10+0], and � * [0.01,0.035] (see (35)). Also, we set Fmax= 534 

0.04 ms-1, q = 0.015 ms-1, �E  = 0.022 ms-1, w+ = 1.4, w- = 1.5. We decided to keep most of the 535 

parameters fixed (as in (35)), i.e., the ones defined within the function f (see  Eq.  3) and the 536 

strengths of connection between pools of neurons (w+ and w-). As we will see below, by only 537 

varying t, s, and D we can simulate a wide range of different behaviors. In Eq.  2, we set ty=10 538 

such that the dynamics of Eq.  2 is faster than the dynamics of Eq.  3 while remaining the same 539 

order of magnitude. Figure 7 a-d shows how RT is affected by t and D. By increasing the time 540 

constant t, the RT increases both in mean and standard deviation (panel a). The same trend 541 

occurs when increasing the threshold D (panel b), as expected. When varying the noise s, we 542 

did not find a substantial difference in the RT (panel c). Panel (d) shows the joint influence of 543 

t and D on the RT for a fixed value of s. By fixing t, s, and D, we studied the influence of the 544 

learning rate k and the decisional uncertainty sy on the PF, and, consequently, on the learning 545 

time tL. Figure 7e shows that learning time decreases as learning rate k increases, and as 546 

decisional uncertainty sy decreases. Note that for these simulations we used nH=1 with 50 547 

episodes, therefore any tL bigger than 50 means that the optimal strategy was not learned. 548 

 549 
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 550 

Figure 7. Parameter space analysis. Both the mean and standard deviation of the reaction time increase consistently with both 551 

(a) the time constant t and (b) the threshold D . (c) The noise intensity s does not have a substantial influence on the reaction 552 

time. (d) Mean RT varying t and D for a fixed value of s. The horizontal and vertical black lines indicate the values for D andt 553 

used for (a-c). (e) The learning time tL decreases when increasing the learning rate k and decreasing the decisional uncertainty 554 

sy  . 3 For all panels we used t=67, s=0.001, and D=22 Hz, when not varied for the plot. 555 

 556 

To demonstrate the behavior of the model, Figure 8 shows the results of a typical simulation of 557 

a horizon nH =1 experiment. Figure 8a shows the example dynamics of the neural dynamics 558 

layer of our model together with the stimuli used in the simulation during the first three 559 

episodes. More specifically, the bottom row shows the time course of the two population firing 560 

rates (Eq. 3) encoding the stimuli L, R depicted in the top row. To better understand the 561 

progression of this process over time, Figure 8b gives an outlook of 36 episodes. The top row 562 

shows the performance and difficulty (in terms of difference between stimuli DbS) metrics. 563 

Note that the optimal strategy in this simulation was learned and applied from the 17th episode 564 

onward. After this point, only the most difficult episodes (smallest DbS) managed to diminish 565 

the performance. The same conclusions can be drawn by looking at the middle inset, indeed 566 

after the 17th episode, the intended decision metric exhibits the same pattern (small for TE=1, 567 

and big for TE=2) repeatedly. The bottom row shows the strategy learning. For the first trial 568 

within episode (TE=1), f tends to 0, i.e., it pushes the intended decision to choose the smaller 569 

stimulus. For the second trial within episode (TE=2), the trend is reversed, capturing indeed the 570 

optimal policy. 571 

 572 
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 573 

Figure 8. Model example simulations for a horizon 1 block. (a) Simulation of the first 3 episodes. Top row: Stimuli presentation 574 

with respective selection made in each trial displayed with a yellow dot. Bottom row: firing rate of the two populations of 575 

neurons encoding the left (in blue) and right (in red) stimuli (Eq.  3). Vertical dashed bars indicate the time the decision 576 

threshold was crossed. (b) Simulation of 36 consecutive episodes. First row: Performance (blue - solid) and difference between 577 

stimuli DbS (green - dashed). Second row: intended decision dynamics of choosing the bigger (1) or smaller (0) stimulus. 578 

Third row: evolution of strategy learning for each trial within episode (TE). Parameters used for the simulations: G=0.3, 579 

D=0.025, t=80, s=0.006, �%(1, �() = 0.5 for TE=1,2, k=0.4, sy=0.4. 580 

 581 

2.5 Individual Participants9 Behavioral Fit 582 

This section describes the fit of the model parameters to the participants9 individual behavioral 583 

metrics. The fitting process is described as a pipeline process. In the first step, the goal is to 584 

find the best fit for the neural dynamics by fitting the reaction time (RT) and the visual 585 

discrimination (VD), i.e., fit the parameters t, s, D, a and b involved in Eq.  3. We then focus 586 

on the behavioral part. The second step consists of calculating the initial preferential bias f0. 587 

Finally, in the third step, we ran the model using the previously established parameters, and 588 

found the best fit for ÃË and k, i.e., the decisional uncertainty and the learning rate. The reason 589 

why we fit the parameters in a sequential fashion is the following. The estimates of both RT 590 

and VD depend uniquely on Eq.  3. In order to evaluate the dynamics of the perceptual 591 

processes, RT and VD are fit using horizon nH=0 only. Once these have been established, we 592 

focus on the behavioral part, by fitting the initial preferential bias, the learning rate and the 593 

decisional uncertainty. 594 

 595 

2.5.1 Reaction Times and Visual Discrimination 596 

The fitting of the model parameters to each of the participant9s behavioral metrics was 597 

performed in stages. First, we started by considering the neural dynamics layer, and fitting each 598 
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parameter of Eq.  3. The first metric to fit is each participant9s RT. Note that due to response 599 

anticipation of the GO signal, the experimental RTs could be negative in a few cases (see Figure 600 

3c). A free parameter was incorporated into the model to control for this temporal shift. 601 

 602 

The second metric to fit is the VD, i.e., the ability to distinguish between stimuli. We assumed 603 

VD to be specific to each participant, and constant across blocks of each session. As a means 604 

of assessment, we checked how often the larger stimulus had been selected over the last 50 605 

correct trials of the nH=0 block for each level of difficulty. The only case where accuracy was 606 

low was the highest difficulty level (DbS = 0.01). For our model to capture this aspect, we used 607 

a linear transformation �� = � + �� to re-scale the stimuli s, ranging from 0 (empty) and 1 (full), 608 

to a range of meaningful stimuli for the model (�),,~10+0, [22]). Furthermore, additional 609 

constraints were set for a and b, such that this transformation did not swap the intensities 610 

between stimuli (i.e. if �) g �, then ��) g ��,), and that the input stimuli were always positive 611 

(��),, > 0). Abiding by these conditions, we varied a and b  and ran a grid-search set of 612 

simulations of Eq.  3 (with DbS |�) 2 �,| = 0.01). We calculated the frequency with which 613 

the firing rate of the population encoding the larger stimulus was bigger than the alternative. 614 

The result depends not only on a and b, but also on t, s, and D (see Supplementary Figure 2). 615 

Thus, to capture the large variety of results encompassed by the ranges of t, s, and D (see Sec. 616 

Model simulations for the respective ranges of values), while abiding by the aforementioned 617 

constraints, we let a vary between -0.03 and 0, and b vary between 0 and 0.055-2.5a. These 618 

ranges allowed for proper exploration of the parameter space. 619 

 620 

 621 
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 622 

Figure 9. Model fit to four sample participants9 behavioral metrics. Data used: one block of horizon 1 for participants 1, 3 and 623 

4; one block of horizon 2 for participant 2. The specific parameter values of the fit are displayed in Table 1. (a) Cumulative 624 

distribution function (CDF) of the reaction times (RT) for the participant data (solid red) and model simulation (dashed blue). 625 

(b) Kolmogorov-Smirnov distance (KSD) between the participant and the model9s RT varying t and D for the best fitting values 626 

of s, a and b. The black circle refers to the best fit. (c) Visual discrimination (VD) extracted from model simulations varying 627 

t and D for the best fitting values of s, a and b. The black circle refers to the best fit. (d) Initial bias f0 of the participant at 628 

the beginning of the block for each trial within episode (TE). The more the preferred choice tends towards choosing the larger 629 

(smaller) stimulus, the bigger (smaller) f0 is. (e) Bottom: Performance of the participant (red crosses) and of the model9s 630 

simulations (blue line: mean, shaded area: confidence interval). Top: Learning time for the participant (black cross) and 631 

model simulations (green error bar). (f) Goodness of fit (GF) for three metrics: reaction time (RT), initial performance (PFi), 632 

and learning time (tL). Goodness of fit is calculated as follows: RT = 1- Kolmogorov-Smirnov distance between CDF, PFi = 633 

1- mean square error, tL: 1- difference between learning times of participant and model9s mean divided by the total number 634 

of episodes. 635 

 636 

We ran 100-trial simulations of a horizon nH=0 block for each combination of the parameters 637 

t, s, D, a and b. We then calculated the empirical cumulative distribution functions (CDF) of 638 

the RTs for all trials, and the VDs only for the difficult trials, i.e., when the DbS is 0.01. The 639 

distribution of simulated RTs were then compared with the distributions of experimental RTs 640 

by means of the Kolmogorov-Smirnov distance (KSD) between CDFs (56359). Since both RTs 641 
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and VDs strongly depend on all parameters, both were fit simultaneously. Namely, we consider 642 

the error metric �k = ��� + �	|��78- 2 ��9:.;|, with c being a constant and VDsim, VDreal 643 

being the VD from the simulated and real data, respectively. The value of c is discussed at the 644 

end of the Results Section. The parameters t, s, D, a and b that minimize �k  are selected for 645 

the fit. 646 

 647 

Panels (a-c) in Figure 9 show the optimal parameters for the RT and VD of the four sample 648 

participants introduced in the Behavioral Results Section. Figure 9a depicts the CDF of the RT 649 

for the participants and for the best-fit model simulation. Figure 9b presents the KSD between 650 

the model and shifted-participant CDFs varying t and D, for a fixed (best-fit) s. Likewise, 651 

Figure 9c shows the mean VD for the model simulations. In both panels (b-c) the circle mark 652 

indicates the combination of parameters that gives the best fit. 653 

 654 

To summarize, in the first step of the fit, we focused on the neural dynamics layer fit all the 655 

free parameters of Eq.  3, i.e., t, s, D, a and b, concerned with the visual discrimination. The 656 

following steps will consider the behavioral component of the data. 657 

 658 

 659 

2.5.2 Initial Preferential Bias 660 

Each participant performing our current task might have an initial choice preference, i.e., a 661 

natural bias towards the larger (or smaller) stimulus. In our model this is captured by the 662 

parameter f0 in Eq. 4. In the absence of bias f0 equals 0.5. The greater the preference towards 663 

the bigger choice, the closer to 1 f0 will be. 664 

 665 

We set a vector of initial conditions �(� = 1, �!) = �$(�!) for each trial within episode (TE). 666 

To quantify f0, we selected the first 3 episodes for each participant, and calculated the 667 

frequency f with which the larger stimulus was selected. The parameter f0 works as an initial 668 

condition for the intended decision process (see Eq. 2). In agreement with the attractor 669 

dynamics, if the initial condition coincides with one of the basins of attraction, the system will 670 

be locked in that state. To prevent this (since f0 should only be an initial bias), we rescaled the 671 

frequency of the selected choices f to make the value closer to 0.5, i.e., �$ = (1 + �) 3d  (other 672 

rescaling factors could be used and would not change the results). Figure 9d shows the values 673 

obtained for f0 for each trial within episode TE. Note that we have selected one block from 674 

nH=2 for participant 2 and nH=1 for the others. 675 

  676 

2.5.3 Learning Rate and Decisional Uncertainty  677 

Finally, to fit the remaining parameters sy and k to each participant9s data, we ran the model 678 

using the previously established parameters (t, s, D, a, b, and f0) and fitted its resulting 679 

performance to that of each participant. For each set of sy and k, we ran 50 simulations and 680 

extracted the performance mean and standard deviation. To compare model and participant 681 

performances, we considered different metrics such as goodness-of-fit and likelihood, e.g., 682 

Bayesian (BIC) and Akaike information criterions (AIC) (57,59362). While these are accurate 683 

methods to compare model performance, these metrics disregard the specific time dependency 684 

throughout each block, which is a key factor to characterize the learning process of the 685 

participant. To fill in this gap, we designed an ad-hoc novel metric consisting of two factors 686 

that determine the best fit of the learning process. The first is the initial condition, obtained by 687 

calculating the mean-square error of the performance between the model and the data during 688 

the first five episodes. By minimizing the mean-square error, we ensured that the learning 689 
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process began under similar conditions for the model and for the participant. The second factor 690 

is the time required to learn the strategy. As already introduced in the Behavioral Results 691 

Section, we defined the time at which the strategy was learned as the moment after which the 692 

optimal strategy was employed in at least 9 out of the following 10 episodes. To ensure that a 693 

low success rate was not due to errors caused by visual discrimination, we excluded the 694 

episodes with DbS 0.01 from this part of the fit. In summary, by combining the results for the 695 

initial conditions (I) and the learning time (L), we could extrapolate the best fit for ÃË and k by 696 

minimizing the linear combination � + 0.1 ; �. 697 

 698 

Figure 9e shows the participants9 performance (red marks) as well as the associated best-fit 699 

model performance (the blue line is the mean, and the colored area is the 95% confidence 700 

interval). The top part of the plots depicts the learning time (tL) calculated for the participant 701 

(black mark) as well as for the best fit model simulations (green error-bar). Table 1 shows the 702 

best-fit parameter values per participant. 703 

 704 

All participants except one learned the strategy yielding maximum reward value. Specifically, 705 

participant 1 learned very fast (in 8 episodes). This was fitted by the model with the highest 706 

learning rate (k=2.6). Interestingly, even if participant 4 did not learn the correct strategy, the 707 

parameters obtained from the fitting process still reported a slow learning process (k=0.2). In 708 

addition to this, we noticed that a slightly higher learning rate was reported for participant 3, 709 

even if the strategy in this case was learned after 15 episodes only. The reason the learning 710 

rates for these two participants are similar, even though they reflect two distinct strategies, lays 711 

in the initial condition. Namely, participant 4 began the task with a stronger bias towards 712 

choosing the larger stimulus (�$(�!) = {0.67,0.67} against {0.56,0.67} for participant 3). 713 

Moreover, the noise amplitude for participant 4 is higher for both the neural dynamics � and 714 

the decisional uncertainty �1. When combining high noise and disadvantageous initial 715 

conditions, a weak learning rate is not enough for the strategy to be learned in a block of 50 716 

episodes. 717 

 718 

Figure 9f shows the goodness of fit for the two main behavioral metrics we aimed to reproduce: 719 

the reaction time (RT), and the performance, in terms of initial performance (PFi) and learning 720 

time (tL). To measure the goodness of fit, while remaining consistent with our fitting procedure, 721 

we used the following measures. For RT we calculated the KSD, for PFi we evaluated the 722 

mean-square error, and for tL we took the difference between the participant9s data and the 723 

model9s mean divided by the total number of episodes. 724 

 725 

To summarize, we have first found the best fit for the RT and the VD by minimizing the metric 726 �k = ��� + �	|��78- 2 ��9:.;| obtained by varying all the free parameters of Eq.  3, i.e., t, 727 

s, D, a and b. Then, we calculated the subjective initial bias f0. Finally, employing these 728 

parameters, we found the best fit for the decisional uncertainty ÃË, and the learning rate k. The 729 

very last value that needs to be set, is the constant c in �k = ��� + �	|��78- 2 ��9:.;|. To 730 

this end, we repeated all the simulations described so far, varying c from 0.1 to 1 in step of 0.1 731 

and selecting the value of c that minimize the global goodness of fit. Namely, we minimize the 732 

norm of the three-dimensional vector that has as elements the goodness of fit for the reaction 733 

time (RT), and the performance, in terms of initial performance (PFi) and learning time (tL). 734 

Figure 9 (and Figure 10) shows the results for the best value of c. 735 

 736 

Finally, we show summary results for all 28 participants. To illustrate that the model is able to 737 

capture all participants9 behavioral results, Figure 10 shows the goodness of fit for the RT, 738 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 15, 2023. ; https://doi.org/10.1101/2023.02.14.528595doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.14.528595
http://creativecommons.org/licenses/by/4.0/


 

22 

 

initial performance PFi, and learning time tL for the entire set of 28 participants. For all three 739 

metrics, we show the scatter plot including each participant, the respective distribution, and the 740 

boxplot depicting the median and the 25th/75th percentile. For reference, we superposed 741 

colored markers on the results of the four sample participants shown in the previous figure. 742 

 743 

 744 

 745 

 746 

Figure 10. Goodness of fit. For RT we calculated KSD, for PFi we evaluated the mean-square error, and for tL we took the 747 

difference between the participant9s data and the model9s mean divided by the total number of episodes. For all three metrics, 748 

we show the scatter plot of each single participant, the respective distribution, and the boxplot depicting the median and the 749 

25/75 percentile. For reference, we superposed (colored markers) the results for the four participants shown in the previous 750 

figure.  751 

 752 

 753 

P. c GF (RT, PFi, tL) tL k sy t s D a b f0 (TE) 

1 0.1 {0.93,0.95,1} 8 2.8 0.4 53 0.001 0.028 0 0.036 {0.67,0.56} 

2 0.2 {0.94,1,1} 10 2.7 0.4 95 0.005 0.032 -0.006 0.045 {0.67,0.67,0.67} 

3 0.2 {0.90,0.90,1} 15 0.5 0.2 74 0.001 0.022 0 0.030 {0.56,0.67} 

4 0.2 {0.94,0.95,1} - 0.4 0.4 95 0.006 0.028 0 0.024 {0.67,0.67} 
Table 1 3 Parameter values obtained when fitting data from 1 block for each of the 4 participants. The parameters t, s, D, a, 754 

and b refer to Eq.  3; f0 and k belong to Eq.  4; sy is deployed in Eq.  2. The learning time (tL) and the goodness of fit (GF) 755 

are shown in the last 2 columns. 756 

 757 

To summarize, we performed an individual fit to each of the participant9s behavioral metrics. 758 

We first used the RT distribution and VD of each participant to fit the parameters in Eq.  3. 759 

Once these parameters were fixed, we moved on to calculate the initial bias, and ran simulations 760 

of the model. Finally, we compared the results of the simulations with the performance of the 761 

participants and found the best fit for the behavioral parameters, i.e., the learning rate and 762 

decisional uncertainty. 763 

 764 

3 DISCUSSION 765 

Here we studied decision-making as a process in which options may be assessed in terms of 766 

their future consequence, and provided a computational account of their associated cognitive 767 

processes and of their dynamics for adaptive decision-making. To this end, we designed a novel 768 

experimental task in which trials were grouped into episodes of one to three trials, and the 769 

decisions at a trial influence the subsequent stimuli to select upon in the same episode. In brief, 770 

the stimuli during the trials of an episode were deliberately varied to promote inhibitory choices 771 

in the initial trial(s) and incentive ones in the last one. To specifically study how a consequence-772 
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based assessment forms and influences decisions as learning progresses, we provided the 773 

participant with the instruction to explore his/her decisions to find the strategy yielding the 774 

most cumulative reward value per episode, while depriving them of any performance feedback. 775 

In this manner, our purpose was to promote the participant to develop his/her own subjective 776 

assessment of performance, based on the observation of stimuli changes in trials after 777 

performing each decision. Although the participants acted in a variety of ways, for the most 778 

part they explored the space of choices and learned the optimal strategy after a few episodes. 779 

This demonstrates that they had grasped the relationship between actual decisions and 780 

consequences, incorporated that information to their internal assessment of performance, and 781 

modified their decisions-making policies to maximize the reward value. 782 

 783 

In addition to the experimental analyses, this manuscript also introduces a novel mathematical 784 

model encompassing the cognitive processes required for consequence-based decision-making 785 

in a joint framework. The model is organized in three-layers. The bottom layer describes the 786 

average dynamics of two neural populations, representing each the preference for one option, 787 

competing against each other until their difference in activity reaches a threshold. The middle 788 

layer encompasses the definition of the so-called intended decision, which implements the 789 

participant9s preference of choosing the bigger or smaller stimulus at each specific trial. The 790 

top layer describes the strategy learning process, which oversees the model9s performance, 791 

adapts by reinforcement to maximize the cumulative reward value, and drives the intended 792 

decision layer. We argue that this oversight mechanism, combined with the modulation of 793 

preference, is consistent with an internal process of consequence assessment and subsequent 794 

policy update. As part of a global validation process, the model parameters were fit to each 795 

participant9s behavioral data (reaction time distribution, visual discrimination, initial bias, and 796 

performance). The model predictions faithfully reproduced these metrics along with the 797 

learning time for each participant, regardless of their level of accuracy throughout the session. 798 

 799 

3.1 Rule-Based vs Far-Sighted Assessment of Consequence 800 

The optimal strategy to attain maximum cumulative reward value may be reduced to a set of 801 

decision rules: choose small, then big in horizon 1 episodes; choose small, then small, then big, 802 

in horizon 2 episodes. Although these sequential choices were expected once the learning was 803 

complete and the decision strategy leading to maximum reward value established, the main 804 

focus of this study was on how consequence-based assessment forms and influences the 805 

learning of decision strategies. Thus, it was crucial to run a task design devoid of any explicit 806 

external feedback, which could potentially inform the participant of his/her performance 807 

throughout each episode and ultimately promote a rule-based strategy from the very beginning. 808 

 809 

For the same purpose, and to promote exploration, the participants were left in the uncertainty 810 

of neither having a clear criterion to decide upon nor the knowledge about which aspect of the 811 

stimuli to prioritize to obtain bigger reward values in the trial next and across the episode. Note 812 

that, in addition to the height of the bars (proportional to reward value), the stimuli at each trial 813 

were presented on the right and left of the screen, and were shown sequentially, randomly 814 

alternating their order of presentation across trials. Although meaningless from the perspective 815 

of gaining the most of reward value, both the position and order of presentation contributed to 816 

increase the uncertainty as to which dimension of the stimuli were relevant to attain the goal 817 

during the learning phase. In fact, under these conditions, the participants were left with a single 818 

element that could aid them build their internal criterion to assess performance: perceiving the 819 

relationship between their choice at a trial, and the stimuli being subsequently presented in the 820 

next. If noticed, over a few episodes, this piece of evidence could then be used to predict the 821 

consequence associated with choosing each option at each trial within episode. To this end, 822 
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participants had to rely on their own subjective perception of performance, fed alone by their 823 

observations of the stimuli presented after each decision, and by their own internal assessment 824 

criterion, based on their skill at estimating the sum of water (reward value) throughout the trials 825 

of each episode. Importantly, learning the optimal strategy could only be achieved via 826 

exploration, either purposely or randomly, testing the pairing between the stimuli presented at 827 

each trial, the choice made, and, most importantly, the stimuli of the trial next. 828 

 829 

To summarize, the problem of having explicit feedback is that the learning of the optimal 830 

strategy could be reduced to testing rule-based sequences until the one that gives the optimal 831 

feedback is found. Although the optimal strategy consists of the same rule-based sequence, the 832 

crucial element of the task is that, to reach that stage, the participant must first forego a phase 833 

of exploration in which learning is driven by exploration and assessment of the reward-based 834 

consequence associated with each option. Until then, the learning depends on a computation of 835 

reward value encompassing the consideration of far-sighted effect of each decision within 836 

episode, on the grounds of an internal subjective assessment criterion that makes this learning 837 

possible, and the results hereby presented non-trivial. 838 

 839 

3.2 Building a Subjective Assessment Criterion 840 

The crucial element of the aforementioned process is that, in the absence of explicit 841 

performance feedback, learning depends on first building up a subjective criterion of reward. 842 

This criterion necessarily depends on cognitive processes implementing an oversight 843 

mechanism of whether the correct decision criterion is being used, and whether the proper 844 

association between the choice and subsequent stimuli is being correctly perceived (63366). 845 

Moreover, despite the participants being able to find the optimal strategy and diminishing the 846 

uncertainty of their behavior to reach the optimal strategy, the fact they never get an explicit 847 

external confirmation forces them to bear the doubt of whether their strategy is indeed the 848 

optimal one. The discussion of the theoretical formalization presented next suggests a minimal 849 

implementation for these mechanisms. This suggests a plausible strategy for this subjective 850 

mechanism to capture the relationship between stimuli and subsequent stimuli are established 851 

on a single trial basis, within the wider decision-making strategy of maximizing cumulative 852 

reward value. 853 

 854 

3.3 Computational models of consequence  855 

The analyses described in the results section demonstrate that the consequential task is an 856 

appropriate framework to study how consequence-based option assessment forms and 857 

influences decision-making. In parallel, the model we developed has the goal of reaching a 858 

formal characterization of the cognitive processes underlying the operations necessary to 859 

perform this task. As for most value-based decision-making models (41,51,67370), learning in 860 

our model is operationalized by a reinforcement comparison algorithm, scaled by the difference 861 

between predicted vs. obtained reward value (71,72), measured accordingly to the participant9s 862 

subjectively perceived scale. For simplicity, we assumed a fixed function across participants 863 

to quantify reward value (R(T) function in Eq. 4). Furthermore, to provide the necessary 864 

flexibility for the model to capture the full range of participants9 learning dynamics, the model 865 

included a free parameter of learning rate, to be fit to the participant9s behavior. The result is a 866 

model that could faithfully reproduce the full range of behaviors of each participant: RT 867 

distribution, pattern of decision-making, and learning time. 868 

 869 

The structure of the model, organized in three layers, responds to the requirements of a minimal 870 

implementation of consequence-based decision-making within the context of our experimental 871 
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task. The lower layer (neural dynamics) represents the average activity of two neural 872 

populations competing for the selection, each representing one of the two stimuli to decide 873 

upon. The commitment for one of the two options is taken when the difference in firing rate 874 

between the two populations crosses a given threshold (35,41,67). These processes, with small 875 

variations, have been used to model decision-making in a broad set of tasks (33,35,73,74) and 876 

can describe most types of single-trial, binary decision-making, including value-based and 877 

perceptual paradigms. Although is outside of the scope of this investigation, we would like to 878 

mention that this type of model can subserve working memory (33,75); a transient input can 879 

bring the system from the resting state to one of the two stimulus-selective persistent activity 880 

states, which can be internally maintained across a delay period. However, modelling 881 

consequence-based decision-making requires at least two additional mechanisms beyond 882 

binary population competition. The first one is to define hypothetical criteria to prioritize a 883 

specific policy for decision-making. The second one is to create an internal mechanism of 884 

performance to evaluate these criteria, based on the difference between predicted and obtained 885 

reward value. Accordingly, the role of the middle layer (intended decision) is precisely the 886 

implementation of specific criteria, which in our case depends on the relative value of the 887 

stimuli and on the number of trial within episode. Finally, the top layer (strategy learning) 888 

implements the learning via reinforcement comparison (55) and temporal difference (71,76). 889 

The results and predictions depicted in the model descriptive section show that the dynamics 890 

of the three layers combined can accurately reproduce the behavior of each single participant, 891 

including those who did not attain the optimal strategy. The low number of equations in the 892 

model, together with the low number of free parameters, makes this model a simple, yet 893 

powerful tool able to reproduce a large variety of behavioral results. Moreover, unlike the basic 894 

reinforcement learning agents or models for evidence accumulation, our model is biologically 895 

plausible and therefore able to fit individual behavioral metrics. Furthermore, it allows to 896 

extract model-based features of participants, e.g., their initial bias, visual discrimination and 897 

learning rate. 898 

 899 

 900 

4 Conclusion and Future Work 901 

In this manuscript we have introduced a novel minimalistic formalism of the brain dynamics 902 

of consequence-based decision-making and its associated learning process. We validated this 903 

formalism with the behavioral data gathered from twenty-eight human participants, which the 904 

model could accurately reproduce. By extension of the classic single-trial binary decision-905 

making, we designed a mechanism of oversight based on the assessment of the effect of prior 906 

decisions on subsequent stimuli, and a reinforcement rule to modify behavioral preferences. 907 

As part of the same project, we also designed the consequential task, a novel experimental 908 

framework in which gaining the most of reward value required learning to assess the 909 

consequence associated with each option during the decision-making process. Both the 910 

experimental results and the model predictions review consequence-based decision-making as 911 

an extended version of value-based decision-making in which the computation of predicted 912 

reward value may extend over several trials. The formalism introduces the necessary notions 913 

of oversight of the current strategy and of adaptive reinforcement, as the minimal requirements 914 

to learn consequence-based decision-making. 915 

 916 

Although our model has been designed and tested in the consequential task described here, we 917 

argue that its generalization to similar paradigms in which optimal decisions require assessing 918 

the consequence associated to the options presented, or sequences of multiple decisions, may 919 

be relatively straightforward. Specifically, we envision three possible extensions to facilitate 920 
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its generalization. First, the model could incorporate several preference criteria simultaneously 921 

or combinations thereof to the intended decision layer: left vs. right or first vs. second, instead 922 

of small vs. big, to be determined in a dynamical fashion. This could be achieved with a multi-923 

dimensional attractor model, with as many basins of attraction as the number of preference 924 

criteria to be considered. 925 

 926 

The second extension we propose is a re-definition of the reward function R(T) according to 927 

the subjective criterion of preference. Namely, if not clearly specified, a reward value can be 928 

perceived differently by different subjects, i.e., people operate optimally according to their own 929 

subjective perception of the reward value. Because of this, a possible extension is to incorporate 930 

an individual reward value function per participant (R(T) in Eq. 4). For simplicity, in this 931 

manuscript we set R(T) to be fixed and to be the objective reward value function. In case a 932 

participant did not perceive what was the optimal reward value, he/she performed sub-933 

optimally according to objective reward function, and the model responded by allowing the 934 

learning constant k to be zero. This holds since the optimal strategy was never reached, and the 935 

fitting of the participant9s performance was correct. Nevertheless, it remains a standing work 936 

of significant interest to investigate different subjective reward mechanisms and their 937 

implementation in the model. 938 

 939 

Finally, the third enhancement we propose for our model is making the learning rate time 940 

dependent, i.e., k(E). This would facilitate reproducing learning processes starting at different 941 

times throughout the session. For example, it is possible that participants initiate the session 942 

having in mind a possible (incorrect) strategy and they stick to it without looking for clues, and 943 

therefore without learning the optimal policy. Nevertheless, after many trials they may change 944 

their mind and begin to explore different strategies. In this case the learning rate k(E) would be 945 

set to zero for all the initial trials when indeed there is no learning.  946 

 947 

Again, we want to emphasize that even if this model is built ad-hoc for the task we designed, 948 

it can be easily adapted to reproduce other tasks of sequential consequence-based decision-949 

making. Note that the strategy learning mechanism is already general enough to adapt to tasks 950 

where the optimal policy is not fixed throughout the experiment. Indeed, if the optimal policy 951 

would change suddenly at some point during the block, the learning mechanism would be able 952 

to detect a change and adapt accordingly. Finally, we want to stress that our model could be 953 

applied to other decision-making paradigms, such as a version of the consequential random-954 

dot task (77) or other multiple-option paradigms. Moreover, our model can be employed not 955 

only in human experiments, but also with non-human primates or rodents. 956 

 957 

 958 

5 MATERIALS AND METHODS 959 

 960 

5.1 Participants 961 

A total of 28 participants (15 males, 13 females; age range 18-30 years; all right hand dominant) 962 

participated in the experimental task. All participants were neurologically healthy, had normal 963 

or corrected to normal vision, were naive as to the purpose of the study, and gave informed 964 

consent before participating. The study was approved by the local Clinical Research Ethics 965 

Committee (CEIm Ref. #2021/9743/I) and was conducted in accordance with relevant 966 

guidelines and regulations. Participants were paid a ¬10 show-up fee. 967 
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 968 

5.2 Experimental Setup 969 

Participants were situated in the laboratory room at the Facultat de Matemàtica i Informàtica, 970 

Universitat de Barcelona, where the task was performed. The participants were seated in a 971 

chair, facing the experimental table, with their chest approximately 10cm from the table edge 972 

and their right arm resting on its surface. The table defined the plane where reaching 973 

movements were to be performed by sliding a light computer mouse (Logitech Inc). On the 974 

table, approximately 60cm away from the participant9s sitting position, we placed a vertically-975 

oriented, 24= Acer G245HQ computer screen (1920x1080). This monitor was connected to an 976 

Intel i5 (3.20GHz, 64-bit OS, 8 GB RAM) portable computer that ran custom-made scripts, 977 

programmed in MATLAB with the help of the MonkeyLogic toolbox, to control task flow 978 

(NIMH MonkeyLogic, NIH, USA; https://monkeylogic.nimh.nih.gov). The screen was used to 979 

show the stimuli at each trial and the position of the mouse in real time. 980 

 981 

As part of the experiment, the participants had to respond by performing overt movements with 982 

their arm along the table plane while holding the computer mouse. Their movements were 983 

recorded with a Mouse (Logitech, Inc), sampled at 1 kHz, which we used to track hand position. 984 

Given that the monitor was placed upright on the table and movements were performed on the 985 

table plane (horizontally, approximately from the center of the table to the left or right target 986 

side), the plane of movement was perpendicular to that of the screen, where the stimuli and 987 

finger trajectories were presented. Data analyses were performed with custom-built MATLAB 988 

scripts (The Mathworks, Natick, MA), licensed to the Universitat de Barcelona. 989 

 990 

Each participant was required to maintain posture at a fixed distance from the table and to place 991 

his/her chin on the chinrest. Pupil diameter from both eyes were tracked and recorded with an 992 

EyeTribe oculometer (Oculus, Menlo Park, CA, USA), sampling at 60Hz. We used a chinrest 993 

to stabilize posture and to fix the head position at approximately 60cm from the screen and 994 

from the oculometer. The signals delivered by the oculometer were recorded by the 995 

OpenFrameworks custom-made code, along with the movement trajectories and other 996 

behavioral data. Behavioral data from each session were transferred to a MySQL community 997 

server database (Oracle, Redwood Shores, CA, USA) for further analysis using custom-998 

designed MATLAB scripts (Mathworks, Natick, MA, USA). External pulses, generated by the 999 

custom made Openframeworks v1.1 code, were used to synchronize the recordings from both 1000 

computers at each trial. 1001 

 1002 

5.3 Consequential Decision-Making Task 1003 

This section describes the consequential decision-making task, designed to assess the role of 1004 

consequence on decision-making while promoting prefrontal inhibitory control (78). Since 1005 

consequence depends on a predictive evaluation of future contexts, we designed a task in which 1006 

trials were grouped together into episodes (groups of one, two or three consecutive trials), 1007 

establishing the horizon of consequence for the decision-making problem within that block of 1008 

trials. 1009 

 1010 

The number of trials per episode equals the horizon nH plus 1. In brief, within an episode, a 1011 

decision in the initial trial influences the stimuli to be shown in the next trial(s) in a specific 1012 

fashion, unbeknown to our participants. Although a reward value is gained by selecting one of 1013 

the stimuli presented in each trial, the goal is not to gain the largest amount as possible per trial, 1014 

but rather per episode. 1015 

 1016 
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Each participant performed 100 episodes for each horizon nH = 0, 1, and 2. In the interest of 1017 

comparing results, we have generated a list of stimuli for each nH and used it for all participants. 1018 

To avoid fatigue and keep the participants focused, we divided the experiment into 6 blocks, 1019 

to be performed on the same day, each consisting of approximately 100 trials. More 1020 

specifically, there was 1 block of nH=0 with 100 trials, 2 blocks of nH=1 each with 100 trials, 1021 

and 3 blocks of nH=2 with two of them of 105 trials and one of 90. Finally, we have randomized 1022 

the order in which participants performed the horizons.   1023 

 1024 

Figure 1 shows the timeline of one horizon 1 episode (2 consecutive trials). At the beginning 1025 

of the trial, the participant was required to move the cursor onto a central target. After a fixation 1026 

time (500 ms), the two target boxes were shown one after the other (for 500 ms each) to the 1027 

left and right of the screen, in a random order. Targets were rectangles filled in blue by a 1028 

percentage corresponding to the reward value associated with each stimulus (analogous to 1029 

water containers). Next, both targets were presented together. This served as the GO signal for 1030 

the participant to choose one of them (within an interval of 4s). Participants had to report their 1031 

choice by making a reaching movement with the computer mouse from the central target  to 1032 

the target of their choice (right or left container). If the participant did not make a choice within 1033 

4 s, the trial was marked as an error trial. Once one of the targets had been reached for and the 1034 

participant had held that position (500ms), the selection was recorded, and a yellow dot 1035 

appeared above the selected target, indicating successful selection and reward value 1036 

acquisition. In case of horizons larger than 0, the second trial started following the same pattern, 1037 

although with a set of stimuli that depended on the previous decision (see next section). 1038 

 1039 

5.4 Episode Structure 1040 

The participants were instructed to maximize the cumulative reward value throughout each 1041 

episode, namely the sum of water contained by the selected targets across the trials of the 1042 

episode. If trials within an episode were independent, the optimal choice would be to always 1043 

choose the largest stimulus. Since one of the major goals of our study was to investigate delayed 1044 

consequence assessment involving adaptive choices, we deliberately created dependent trial 1045 

contexts in which making incentive decisions (selecting the larger stimulus) would not 1046 

necessarily lead to the most cumulative reward value within episode. 1047 

 1048 

To promote inhibitory choices, the inter-trial relationship was designed such that selecting the 1049 

small (large) stimulus in a trial, yielded an increase (decrease) in the mean value of the options 1050 

presented in the next trial. For this reason, always choosing the larger stimulus did not 1051 

maximize cumulative reward value for nH=1, 2. 1052 

 1053 

Trials were generated according to 3 parameters: horizon9s depth nH, perceptual discrimination 1054 

(in terms of difference d between the stimuli), and the gain/loss G in mean size of stimuli for 1055 

successive trials. The stimuli �#,0 presented on the screen could take values ranging from 0 to 1056 

1. Trials were divided into five difficulty levels by setting the difference between stimuli (DbS) 1057 � * {0.01,0.05,0.1,0.15,0.2}. 1058 

 1059 

For horizon nH=0, for each trial the stimuli �#,0 are generated as to have mean M and difference 1060 

d between them, i.e., �#,0 = � ± �/2.  To have stimuli ranging from 0 to 1, the mean M is 1061 

randomly generated using a uniform distribution with bounds [�-.//2,1 2 �-.//2], where 1062 �-./ = 0.2 is the maximum DbS. In horizon nH=1, each episode consists of 2 dependent trials. 1063 

Specifically, the stimuli presented in the second trial depend on the selection reported in the 1064 

previous trial of that same episode. More specifically, the rule is such that if the choice of the 1065 
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first trial is the smaller/larger stimulus, the mean of the pair of stimuli in the second trial will 1066 

be increased/decreased by a specific gain G. In practice, the first trial of an nH=1 episode is 1067 

generated in the same way as for horizon nH=0, i.e., the two stimuli equal �#,0 = � ± �/2. The 1068 

stimuli in the second trial within the same episode could be either �#,0 = � + � ± �/2 or 1069 �#,0 = � 2 � ± �/2, depending on the previous decision. Note that the difficulty of the trial 1070 

remains constant within episode. A schematic for the trial structure is shown in Figure 1. Again, 1071 

to have stimuli ranging from 0 to 1, the mean M is randomly generated using a uniform 1072 

distribution with bounds [� + �-.//2,1 2 � 2 �-.//2]. In horizon nH=2, episodes consist of 1073 

three trials. The trial generation is structured as for horizon nH=1. Namely, the first trial has 1074 

stimuli �#,0 = � ± �/2, the second �#,0 = � ± � ± �/2, and the third �#,0 = � ± � ± � ±1075 �/2. To have stimuli ranging from 0 to 1, the mean M is randomly generated from a uniform 1076 

distribution with bounds [2� + �-.//2,1 2 2� 2 �-.//2]. We set the gain/loss parameter to 1077 

G=0.3 and G=0.19 for horizon nH=1 and nH = 2, respectively. Our choice was motivated by 1078 

the fact that G should be big enough to let the participants perceive the gain/loss between trials, 1079 

while simultaneously allowing some variability for the randomly generated means M. 1080 

 1081 

 1082 

5.5 Statistical analysis 1083 

We are interested in testing the relationship of the performance (PF) and the reaction time (RT) 1084 

with the horizon nH, trial within episode TE, and episode E. To have coherent and meaningful 1085 

results we have adjusted these variables as follows. The trial within episode is counted 1086 

backwards from last to first, for the reason that the optimal choice for the last TE is the same 1087 

for any horizon. The variable representing the trial within episode counted backwards is 1088 

denoted �"!. The other adjustment we made is clustering the episodes in groups of 10. This new 1089 

variable is called �(#$). Finally, in order to consider trials within episode independently, we 1090 

had to adapt the concept of PF since, by definition, it is a measure defined per episode. The 1091 

equivalent of PF for a single trial is the percentage of selected optimal choices �&'. We used a 1092 

linear mixed effects model (39,40) to predict PF and RT. The independent variables for the 1093 

fixed effects are horizon nH, trial within episode �"! (counted backwards), and the evolution in 1094 

time expressed as blocks of 10 episodes �(#$), and we set the random effects for the intercept 1095 

and the episodes grouped by participant. The resulting formulae are  �&'~�(#$) + �( ç �"! +1096 )�(#$)*����. ) and  ��~�(#$) + �( ç �"! + )�(#$)*����. ).  1097 

 1098 

The statistics were run separately for the group of participants that learned the optimal strategy 1099 

and the ones who did not, according to Error! Reference source not found.a. In addition, the R1100 

T were z-scored to run the analysis. The results of the statistical analysis are reported in Table 1101 

2. The regression coefficients, with respective significance, are shown in Error! Reference 1102 

source not found.e-f. 1103 

 1104 

  1105 
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 1106 �&'~�(#$) + �( ç �"! + )�(#$)*����. ) 
 Group Learn Group No-Learn 
AIC -299.61 75.41 

BIC -253.81 110.38 

Log-likel. 158.8 -28.7 

  

Fixed 

effects 

Estimate SE tStat pVal Lower Upper Estimate SE tStat pVal Lower Upper 

Intercept 1.14 0.05 23.7 10-102 1.05 1.24 1.19 0.10 20.4 10-62 1.77 2.14 �̂!  -0.26 0.03 -7.8 10-14 -0.32 -0.19 -1.05 0.07 -14.0 10-36 -1.19 -0.90 �(  -0.16 0.02 -6.7 10-11 -0.20 -0.11 -0.42 0.05 -8.1 10-14 -0.52 -0.32 �(#$) 0.02 0.00 7.1 10-12 0.02 0.03 -0.00 0.01 -0.6 0.58 -0.02 0.01 �̂!: �(  0.10 0.02 5.8 10-9 0.07 0.14 0.34 0.04 8.6 10-16 0.26 0.42 

Table 2 3 Linear mixed effects model with formula �!"~�
($%) + �' ç �=( + )�($%)*����. ) for the percentage of optimal 1107 

choices selected (�!"), horizon nH, trial within episode �=( (counted backwards), and the evolution in time expressed as 1108 

blocks of 10 episodes �($%). 1109 

 1110 

 1111 

 1112 ��~�(#$) + �( ç �"! + )�(#$)*����. ) 
 Group Learn Group No-Learn 
AIC 3105 780 

BIC 3151 815 

Log-likel. -1544 -381 

  

Fixed 

effects 

Estimate SE tStat pVal Lower Upper Estimate SE tStat pVal Lower Upper 

Intercept -0.70 0.20 -3.6 10-4 -1.08 -0.31 1.58 0.41 3.85 10-4 0.77 2.38 �̂!  0.66 0.14 4.9 10-6 0.40 0.93 -1.00 0.20 -5.09 10-7 -1.39 -0.61 �(  0.12 0.09 1.3 0.20 -0.06 0.31 -0.87 0.14 -6.34 10-10 -1.14 -0.60 �(#$) -0.04 0.01 -4.0 10-5 -0.06 -0.02 -0.03 0.03 -1.21 0.23 -0.09 0.02 �̂!: �(  -0.17 0.07 -2.3 0.02 -0.31 -0.02 0.61 0.10 5.88 10-9 0.41 0.82 

Table 3 3 Linear mixed effects model with formula ��~�($%) + �' ç �=( + )�($%)*����. ) for the percentage of optimal 1113 

choices selected (�!"), horizon nH, trial within episode �=( (counted backwards), and the evolution in time expressed as 1114 

blocks of 10 episodes �($%). 1115 
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