

1 **A Theoretical Formalization of Consequence-Based Decision-Making**

2
3 Gloria Cecchini^{1,2}, Michael DePass², Emre Baspınar³, Marta Andujar⁴, Surabhi Ramawat⁴,
4 Pierpaolo Pani⁴, Stefano Ferraina⁴, Alain Destexhe³, Rubén Moreno-Bote^{2,5}, Ignasi Cos^{1,5}

5
6
7 ¹ *Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Catalonia,
8 Spain*

9 ² *Center for Brain and Cognition, DTIC, Universitat Pompeu Fabra, Barcelona, Catalonia,
10 Spain*

11 ³ *CNRS, Paris-Saclay University, Institute of Neuroscience (NeuroPSI), Saclay, France*

12 ⁴ *Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy*

13 ⁵ *Serra-Hunter Fellow Programme, Barcelona, Catalonia, Spain*

14 *Corresponding Author: gloria.cecchini@ub.edu*

19 ABSTRACT

20 Learning to make adaptive decisions depends on exploring options, experiencing their
21 consequence, and reassessing one's strategy for the future. Although several studies have
22 analyzed various aspects of value-based decision-making, most of them have focused on
23 decisions in which gratification is cued and immediate. By contrast, how the brain gauges
24 delayed consequence for decision-making remains poorly understood.

25 To investigate this, we designed a novel decision-making task in which each decision altered
26 future options to decide upon. The task was organized in groups of inter-dependent trials, and
27 the participants were instructed to maximize cumulative reward value within each group. In
28 the absence of any explicit performance feedback, the participants had to test and internally
29 assess specific criteria to make decisions. The absence of explicit feedback was key to
30 specifically study how the assessment of consequence forms and influences decisions as
31 learning progresses.

32 We formalized this operation mathematically by means of a multi-layered decision-making
33 model. It uses a mean-field approximation to describe the dynamics of two populations of
34 neurons which characterize the binary decision-making process. The resulting decision-making
35 policy is dynamically modulated by an internal oversight mechanism based on the prediction
36 of consequence. This policy is reinforced by rewarding outcomes. The model was validated by
37 fitting each individual participants' behavior. It faithfully predicted non-trivial patterns of
38 decision-making, regardless of performance level.

39 These findings provide an explanation to how delayed consequence may be computed and
40 incorporated into the neural dynamics of decision-making, and to how adaptation occurs in the
41 absence of explicit feedback.

46 AUTHOR SUMMARY

47 Decision-making often entails anticipating the consequences of one's choices over time.
48 However, real-world choice outcomes are not always immediate, adding significant challenges
49 to determining their long-term implications for behavior. Most previous studies on reward-
50 driven decision-making focus on task paradigms in which the decision outcomes are immediate
51 and explicitly cued. However, the cognitive and neurobiological mechanisms by which the
52 brain learns about and incorporates delayed and uncertain consequences remain unclear.
53 Consequently, the primary aim of our study was twofold. First, we designed an experimental
54 task in which participants were instructed to maximize the reward value across sequences of
55 trials in which some of the stimuli offers were dependent on previous choices. Crucially,
56 participants had to learn the decision-making strategy by making exploratory decisions in the
57 absence of any explicit feedback. We analyzed the resulting behavior to characterize individual
58 differences in decision strategy and learning rates. Secondly, we built a model of the underlying
59 cognitive processes involved in strategy learning and consequence-based decision-making. We
60 formalized this by using a three-layer model which accurately reproduced the behavior of
61 individual participants. The resulting model provides a discrete computational account of
62 consequence-based decision-making.

64 1 INTRODUCTION

65 Adaptive behavior requires making choices that maximize long-term reward while also
66 minimizing effort, costs and risk (1–4). This is commonly studied under the value-based wide
67 framework of decision-making (5–7), which conceptualizes choice behavior as a trade-off
68 between the various benefits and costs associated with different decision options. In most
69 contexts, choice outcomes are immediate, unambiguous, and explicitly cued. These features
70 make calculating the costs/benefits straightforward, as all the necessary information is directly
71 and immediately available to the decision maker for calculation (8–11). However, it is
72 significantly less clear how decision-makers can compute the time-extended costs and benefits,
73 and thus how they learn to make adaptive choices in contexts where decision outcomes are not
74 made explicit or depend on a prediction of future consequence. In other words, a complete
75 account of value-based choice behavior requires understanding how the brain detects and
76 computes the non-immediate consequences of choices, and how to use this information to guide
77 subsequent decision strategies.

78 Why are consequence-based decisions more complicated than simple sensory accumulation
79 perceptual decision-making (12,13)? Firstly, they require an increased temporal span of
80 consideration, they are often more uncertain, since there is a greater number of factors to
81 consider, and the environmental variability/unpredictability should be taken into account. All
82 these aspects make option evaluation more computationally demanding, yielding longer
83 deliberation times and a poorer decision accuracy (14,15). This is well-founded by an extensive
84 body of previous empirical work (16–19). Secondly, because of the aforementioned factors,
85 consequence-based decisions also depend on a much broader range of cognitive functions and
86 brain regions than those involved in purely concurrent sensory/perceptual decisions (20), e.g.,
87 structures related to working memory (21,22) and higher cognitive processing (23,24). There
88 is no consensus about what a minimal set of functions required for consequence-based
89 decisions would be, and little evidence about the neural mechanisms potentially involved
90 (7,25).

92 To add clarity to how these cognitive processes unfold in the human brain to achieve
93 consequence-based decision-making, we carried out a two-part study. This consisted of a
94 behavioral experiment with human participants and a neurally-inspired model that reproduce
95 their decision behavior and formalize some of the potential underlying brain mechanisms. First,
96 we designed a novel behavioral paradigm, i.e., the consequential task, in which participants
97 had to learn an optimal strategy to maximize their cumulative reward values across groups of
98 trials. Specifically, participants made perceptual choices between two stimuli. In some blocks,
99 after overcoming the perceptual discrimination, decisions were one-shot, and the reward could
100 be maximized right away by choosing the option associated with the greatest immediate
101 amount. However, other decisions involved groups of trials in which the reward values
102 available in later trials were dependent on choices made in earlier ones. Namely, it was
103 designed in such a way that choosing the larger value in the first trial led to a much lesser
104 overall amount in the next trials within the same group. Therefore, participants could not
105 maximize the cumulative reward value by optimizing the single-trial reward value. By contrast,
106 the optimal strategy necessarily entails learning that short-term reward value must often be
107 sacrificed for larger subsequent reward values. This mechanism is known from studies in delay
108 discounting (26–30), such as the marshmallow experiment (31,32), which we here apply to
109 decision-making in a broader sense. In our task, the optimal decision policy could only be
110 discovered via exploratory decision-making in the absence of explicit cues, i.e., the participants
111 had to rely on subjective feedback to pick up on the delayed consequences of their decisions
112 across successive trials. In other words, unlike previous experimental paradigms, our task is

114 structured such that maximum cumulative reward value can only be attained when exploiting
115 covert dependencies across trials. This makes the consequential task uniquely well-suited to
116 tap into the neural mechanisms specifically involved in consequence-based decisions.

117
118 In the second part of our study, we described a novel computational model designed to
119 formalize the dynamics and strategy of decision-making, including the patterns of inhibition
120 and of assessment of far-sighted consequence required to gain maximum cumulative reward.
121 The model is organized in three layers, here identified as low, middle and top. The lower layer,
122 in line with the Amari, Wilson-Cowan and Wong-Wang models (33–38), describes the average
123 dynamics of two populations of neurons in the context of perceptual binary decision-making.
124 The middle and top layers are needed to assess the consequence across the group of trials,
125 incorporating complexity and consequence into the competitive dynamics of decision-making.
126 Despite its simplicity, this model can accurately reproduce the full variety of performance
127 observed across the different participants; in other words, the model captures the full range of
128 processes required for real-world consequence-based decision-making. This model therefore
129 implements the minimal core processes required for consequence-based learning and decision-
130 making, and it is an achievement in its own right. The model describes the assessment of
131 consequence as a complex process which may be described as an extension of value-based
132 decision-making. The decision-making process is supervised by an oversight mechanism that
133 monitors overall performance by means of an internal subjective mechanism of value
134 assessment that integrates information from different sources, and after a few iterations, yields
135 a correct prediction of consequence for each option.

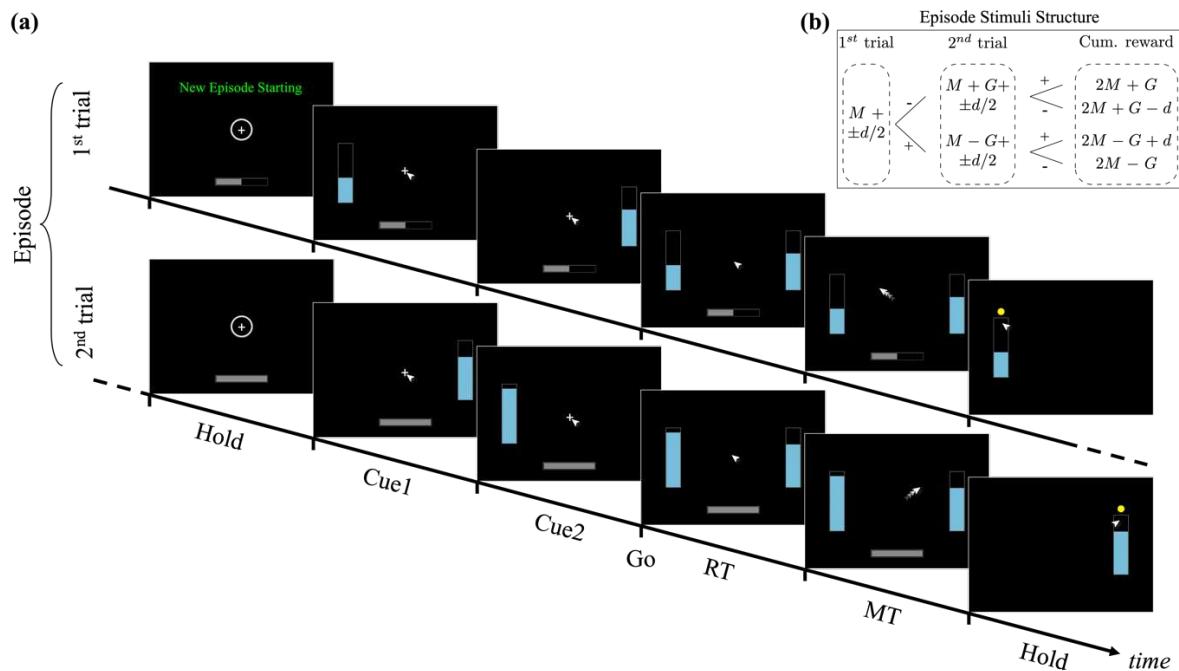
137 2 RESULTS

138 2.1 Task design

139 In this section, we describe the consequential task, specifically designed to tap into the
140 cognitive mechanisms involved in learning delayed consequences in the absence of feedback.
141 In this task, 28 healthy participants were instructed to choose one of the two stimuli, depicting
142 reward values through differently filled water containers, presented left and right on the screen.
143 The participants reported their choices by sliding the computer mouse's cursor from the central
144 cue to the chosen stimulus (see Figure 1 and Materials and Methods for a thorough description).

145
146 Since consequence depends on a predictive assessment of future contexts, the task was
147 organized into two main types of trial blocks, in which the participants had to maximize the
148 reward value. There were the blocks in which trials required one-shot decisions, purely
149 independent from each other. As in most typical decision-making paradigms, the reward value
150 in these trials could be maximized by picking the best available option in that instance.
151 However, in other blocks, trials were grouped into pairs or triads of interdependent trials. We
152 called each group of linked consecutive trials an episode to signify the boundary of
153 interdependence between them, and defined the notion of horizon (n_H) as a metric for its
154 quantification. The horizon of a specific episode equaled the number of dependent trials
155 following the first trial of each episode. The nature of the dependence between trials of an
156 episode was such that the mean reward values of the stimuli in the second/third trial were
157 systematically increased or decreased based on the participant's choice in the preceding trial.
158 Specifically, choosing the greater stimulus value led to a reduction of stimuli values in the
159 subsequent trial, whereas achieving greater future value options required deliberately choosing
160 the lesser option in the previous trial (Figure 1b).

162
163 Participants were instructed that their goal was to maximize the cumulative reward value per
164 episode. Optimal performance across the task as a whole was achieved by choosing “big” in
165 single trial episodes (horizon $n_H=0$), and deliberately choosing “small” in all trials of $n_H=1$ and
166 $n_H=2$ episodes except the last, in which “big” should be chosen. However, learning this policy
167 was made challenging by a number of different factors. First, perceptual discrimination,
168 quantifying the size difference between stimuli varies within 1-20% of the container. Second,
169 although the participants were instructed that their choices affect future trials within the
170 episode, the nature of this dependency was not signaled in any obvious way. This means that
171 from the perspective of the participants, the value of the reward offers might at first appear
172 random. Third, explicit feedback after each episode was crucially omitted from the task. The
173 reason for this is that the presence of feedback might have had the undesirable effect of
174 participants focusing on finding the specific sequence of choices within episode yielding
175 optimal feedback, without having to learn the relationship between their decisions and the
176 subsequent trials. In other words, an explicit measure of performance might have reduced the
177 task to an explicit trial-and-error test of deciding for example, “big-small”, “small-big”, etc.,
178 until finding the sequence of choices leading to maximum performance, rather than learning to
179 evaluate each option’s consequence in terms of their prediction of future reward value to attain
180 the goal. In contrast, the absence of feedback made the participants not informed about their
181 performance throughout the block, and ought to oblige them to create an internal sense of
182 assessment, which can only rely on two mechanisms: the sensory perception of the systematic
183 stimuli changes in the subsequent trial after each choice, and the exploration of option choices
184 at each trial during the earlier part of each block. The resulting task essentially becomes a
185 measure of learning about delayed consequences associated with each option in the absence of
186 explicit feedback.
187
188 In summary, for the participants to be able to perform the task, they were informed of the
189 episode-based organization of trials at each block, i.e., the horizon. The instruction to the
190 participant was to find the strategy leading to the most cumulative reward value for each
191 episode and, for the reasons mentioned previously, to actively explore their choices. Further
192 details are shown in the Methods section, and in Figure 1.
193



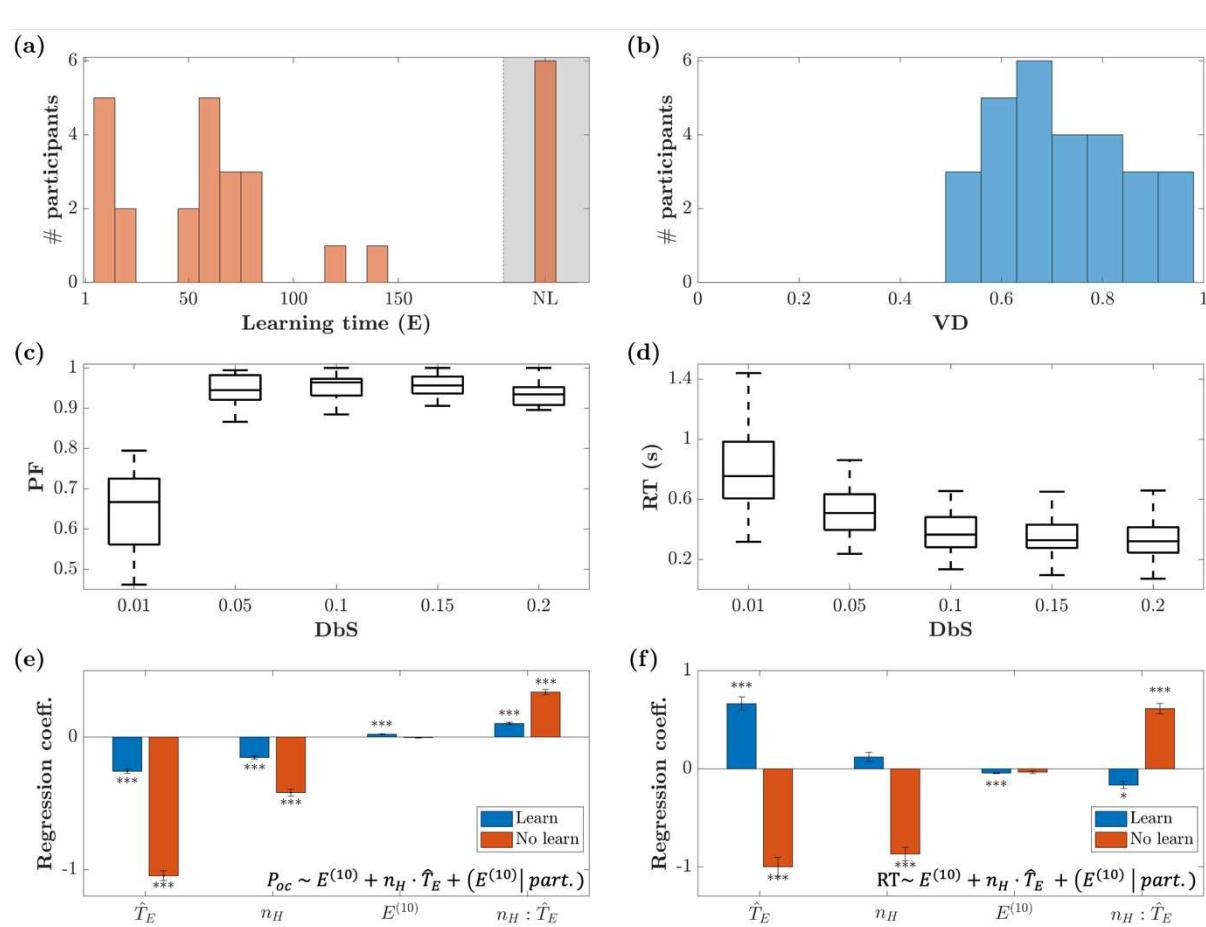
194
195 *Figure 1. Time-course of a typical horizon 1 episode of the consequential decision-making task. (a)* The episode consists of
196 two dependent trials. The first starts with the message “New Episode Starting” in the center-top of the screen, a circle
197 surrounding a cross in the center (central target), and half full progress bar at the bottom of the screen. The progress bar
198 indicates the current trial within the episode (for horizon 1, 50% during the first trial, 100% during the second trial). After
199 holding for 500ms, the left or right (chosen at random) stimulus is shown, followed by its complementary stimulus 500ms later.
200 Both stimuli are shown together 500ms later which serves as the GO signal. At GO, the participant has to slide the mouse
201 from the central target to the bar of their choosing. Once the selected target is reached, a yellow dot appears over that target.
202 The second trial follows the same pattern as the first. See Methods for more details. **(b):** Construction scheme for the size of
203 the stimuli in each episode. The first trial within the episode consists of 2 stimuli of size $M+d/2$ and $M-d/2$. The second trial
204 within the episode depends on the selection made in the previous trial. If the first selected stimulus is $M-d/2$ (following symbol
205 “-” in the figure), then the second trial consists of stimuli with size $M+G+d/2$ and $M+G-d/2$, otherwise $M-G+d/2$ and $M-G-
206 d/2$ (following symbol “+” in the figure). The cumulative reward value of the episode can therefore assume 4 distinct values
207 (ordered from best to worst): $2M+G$, $2M+G-d$, $2M-G+d$, and $2M-G$. See Methods for more details on the values of M , G , d .

2.2 Behavioral Results

The metrics extracted from the participants’ behavioral data were their performance (PF), reported choices (CH), reaction time (RT), and visual discrimination (VD) sensitivity. The PF is a single-episode metric assuming values from 0 (worst) to 1 (best), and is calculated as the percentage of reward value obtained throughout the episode normalized by the maximum and minimum that could have been obtained. CH was the choice made by the participant in each trial, in terms of small or large reward stimulus. The RT was calculated as the time difference between the simultaneous presentation of both stimuli (the GO signal), and the onset of the movement. The VD is the ability to visually discriminate between stimuli, i.e., identifying which one is the bigger/smaller (see Methods for further details). As shown below, when the difference between stimuli (DbS) is small, participants were not able to accurately distinguish between stimuli. The DbS varies within 1-20% of the size of the container.

The absence of explicit performance-related feedback at the end of each episode made the task more difficult, and, consequently, not all participants were able to find the optimal strategy. For horizon $n_H=0$, all twenty-eight participants but one learned and applied the optimal strategy, i.e., repeatedly selecting the larger stimulus. By contrast, only twenty-two participants learned the optimal strategy during horizon $n_H=1,2$ blocks, i.e., selecting the larger stimulus in

227 the last trial only. Most participants who did not learn the optimal strategy for $n_H=1,2$
 228 repeatedly chose the larger stimulus for all trials.



230
 231 *Figure 2. Summary results across participants. (a)* Histogram of learning times, in terms of episodes (E). The learning time is
 232 defined as the first episode throughout the whole session in which the optimal strategy was applied repeatedly (see Methods).
 233 We identified four groups of participants: fast, medium and slow learners, and participants who did not discover the optimal
 234 strategy (NL – No Learning). *(b)* Histogram of the visual discrimination (VD) calculated by computing the percentage of
 235 correct selections of the last 80 episodes, in the horizon 0 block, for only the most difficult trials (DbS = 0.01). *(c)* Performance
 236 as a function of DbS, for the trials after the optimal strategy was applied. *(d)* Reaction Time (RT) versus DbS. The more similar
 237 the stimuli, the longer participants needed to make a decision. *(e-f)* Regression coefficients for the linear mixed-effects models
 238 $P_{oc} \sim E^{(10)} + n_H \cdot \hat{T}_E + (E^{(10)} | part.)$ and $RT \sim E^{(10)} + n_H \cdot \hat{T}_E + (E^{(10)} | part.)$, where P_{oc} is the percentage of optimal
 239 choices, RT is the reaction time, $E^{(10)}$ is the moment in time (counting episodes in groups of 10), n_H is the horizon number,
 240 \hat{T}_E is the trial within episode counting backwards from last to first, and $part.$ is the participant. We used maximum likelihood
 241 to estimate the model parameters. Participants were divided into two groups: those who learned the optimal strategy (blue)
 242 and those who did not (red), see Panel (a).

243
 244 Figure 2 shows the summary results for all twenty-eight participants. In Panel (a) we show the
 245 histogram of their learning time in terms of episodes (E), defined as the first episode of the
 246 session in which the optimal strategy was assimilated. Namely, we defined the time at which
 247 the strategy was assimilated as the moment after which the optimal strategy was used in at least
 248 9 out of the following 10 episodes. To ensure that a low success rate was not caused by
 249 perceptual discrimination errors (during low VD), we excluded the most difficult episodes in
 250 terms of DbS to calculate the learning time. The last histogram bar in Figure 2a (shown as NL
 251 – No Learning), shows the aggregate of the 6 participants who never learned the optimal
 252 strategy. We can identify four types of participants as a function of their learning speed: slow,
 253 medium, fast learners, and those participants who did not ever learn the strategy. Figure 2b
 254 shows the VD, for all difficult trials (smallest DbS) and participants, where VD was calculated

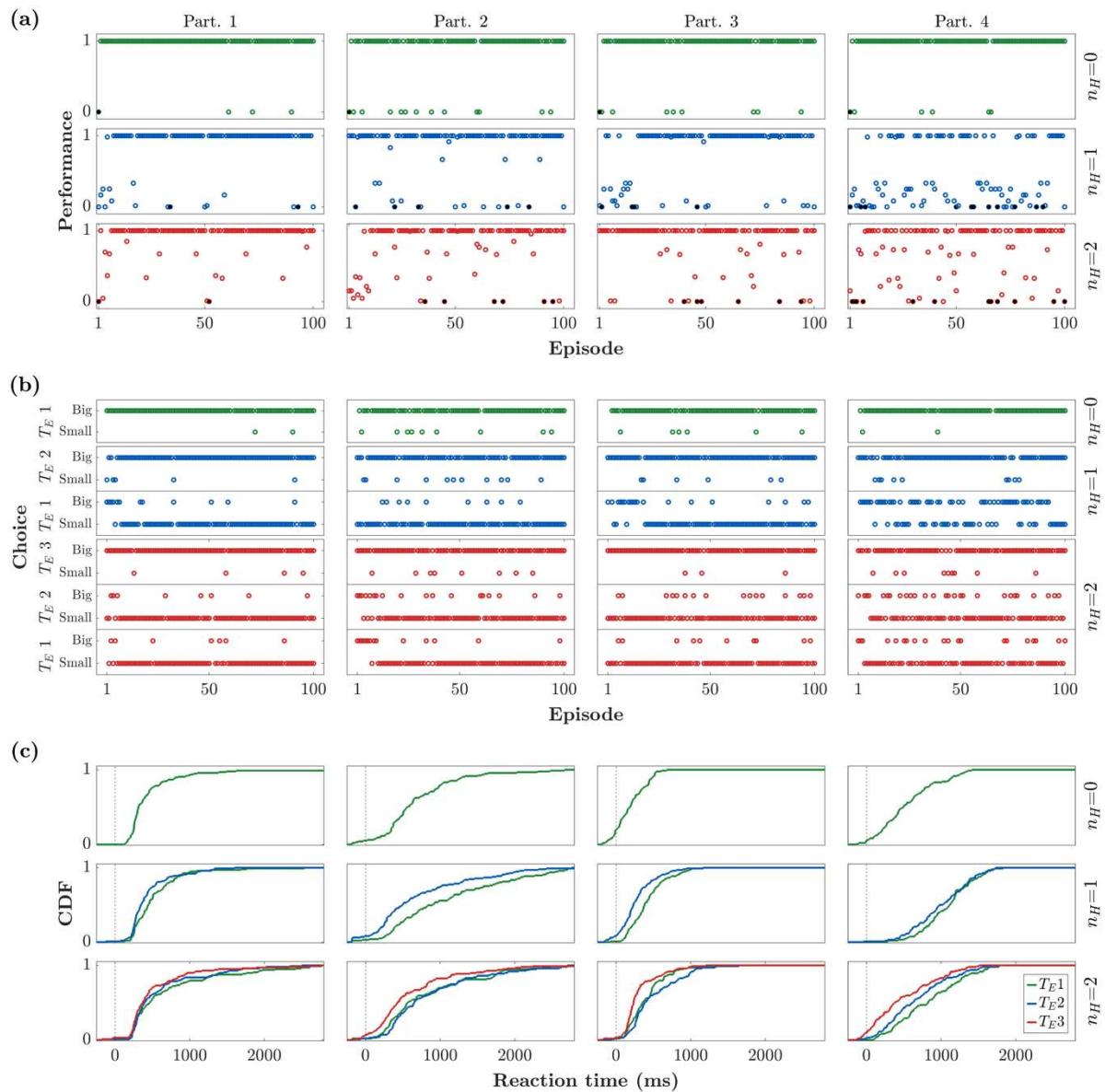
as the percentage of correct choices over the last 80 episodes in the horizon $n_H=0$ block. On average, stimuli were discriminated correctly in 71% of the most difficult trials. Thus, despite having learned the optimal strategy, because of the low VD, most participants continued making some errors. This is reported in Figure 2c, showing the grand average and standard error of the PF across subjects as a function of the difficulty level of the episode, for all episodes following each participant's learning time (Mixed effects model fit; AIC = -168.88, BIC = -158.442, Log-likelihood = 88.442, $p = 7.11\text{E-}11$). Note that the RT gradually increased with growing difficulty to discriminate the stimuli (Figure 2d), thus exhibiting a gradual and significant sensitivity to VD (Mixed effects model fit; AIC=-101.61, BIC=-89.85, Log-likelihood = 54.81, $p = 7.67\text{E-}25$).

While both PF and RT vary with VD, their dependency on other variables must be established statistically. To assess the learning process, we quantified the relationship of PF and RT with horizon n_H , trial within episode T_E , and episode E . To obtain consistent results, we adjusted these variables as follows: the trial within episode is reversed, from last to first, because the optimal choice for the last T_E (large) is the same regardless of the horizon number. The variable representing the trial within episode counted backwards is denoted as \hat{T}_E . Furthermore, we grouped the episodes in blocks of 10 and used their average. This new variable is called $E^{(10)}$. Finally, to consider trials within episode independently, we adapted the notion of PF (defined as a summary measure per episode) to an equivalent of PF per trial, i.e., the percentage optimal choices P_{oc} . We then used a linear mixed effects model (39,40) to predict PF and RT. The independent variables for the fixed effects are horizon n_H , trial within episode \hat{T}_E (counted backwards), and the passage of time expressed as groups of 10 episodes $E^{(10)}$ each. We set the random effects for the intercept and the episodes grouped by participant. The resulting models are: $P_{oc} \sim E^{(10)} + n_H \cdot \hat{T}_E + (E^{(10)}|part.)$ and $RT \sim E^{(10)} + n_H \cdot \hat{T}_E + (E^{(10)}|part.)$. The independent variables for the fixed effects are horizon n_H , trial within episode \hat{T}_E (counted backwards), and the passage of time expressed as groups of 10 episodes $E^{(10)}$ each. We set the random effects for the intercept and the episodes grouped by participant. The resulting models are: $P_{oc} \sim E^{(10)} + n_H \cdot \hat{T}_E + (E^{(10)}|part.)$ and $RT \sim E^{(10)} + n_H \cdot \hat{T}_E + (E^{(10)}|part.)$. The regression coefficients, with their respective group significance, are shown in Figure 2e-f. The results of the statistical analysis are reported in the Supplementary Materials Table 2-3. Here, we made the distinction between the group of participants that learned the optimal strategy and the ones who did not, according to Figure 2a. In panel (e), P_{oc} decreases with \hat{T}_E , suggesting that the first trial(s) within the episode are less likely to be guessed right, i.e., favoring the smaller of both stimuli. This makes sense, since only the early trials within the episode required inhibition. Moreover, looking at the amplitude of the regression coefficients, we can state that this has a larger impact in the no-learning case. The same argument can be made for the dependency with n_H . The difference between learning and no-learning can be realized when considering the time dependence: for the learners' group P_{oc} increases as time goes by, i.e., $E^{(10)}$ increases, while it is not significant for the group that did not learn the optimal strategy. In panel (f), RT shows converse effect directions between learning and no-learning groups for both dependencies on \hat{T}_E and n_H . The participants who learned the optimal strategy exhibited longer RT for the earlier trials within the episode, consistently with the need of inhibiting the selection of the larger stimulus.

Although we analyzed the data from all twenty-eight participants, in Figure 3 we show the data from four participants whose behavior was representative of the four groups we defined as a function of their learning speed (no learning, slow, medium, & fast learning). Figure 3 shows their associated PFs, CHs, and RTs metrics. Each column corresponds to a participant and each

304 row to a different horizon level. Note that all four participants performed the $n_H=0$ task
 305 correctly (Figure 3a,b). The first three participants also performed $n_H=1$ correctly, while
 306 participant 4 did not learn the correct strategy until he executed $n_H=2$. Note that participant 2
 307 performed $n_H=2$ before $n_H=1$, they learned during $n_H=2$, and then applied the same strategy
 308 for $n_H=1$. Because of this, no learning process can be detected during the $n_H=1$ block. In Figure
 309 3c, note that some RTs are negative. In these cases, the participant did not wait for the
 310 presentation of the GO signal to start the movement.

311
 312



313
 314
 315
 316
 317

Figure 3. Behavioral results for four representative participants. Rows and columns refer to horizons (n_H) and participants, respectively. (a) Performance per episode. (b) Choice behavior per trial, in terms of selecting the bigger or smaller stimulus. Results are gathered by horizon (n_H) and respective trial within episode (T_E). (c) Cumulative density function (CDF) of reaction times. The color code indicates the trial within episode (green for $T_E=1$, blue for $T_E=2$, and red for $T_E=3$).

318

319 2.3 A Neurally-inspired Model of Consequential Decision-Making

320 In this section, we describe our mathematical formalization of consequential decision-making,
321 incorporating a variable foresight mechanism, adaptive to the specifics of how reward is
322 distributed across trials of each episode. We formalized these processes using a three-layer
323 neural model, described next.

324 2.3.1 Layer 1: Neural dynamics

325 To describe the neural dynamics at each trial, we used a mean-field approximation of a
326 biophysically based binary decision-making model (38,41–43). This approximation has been
327 often used to analytically study neuronal dynamics, through analysis of population averages.
328 This included a simplified version that reproduced most features of the original spiking neuron
329 model while using only two internal variables (33).

330 The core of the model consists of two populations of excitatory neurons: one sensitive to the
331 stimulus on the left-hand side of the screen (L), and the other to the stimulus on the right (R).
332 The intensity of the evidence is the size of each stimulus, which is directly proportional to the
333 amount of reward displayed. In the model this is captured by the parameters λ_L, λ_R , respectively.
334 Although in the interest of our task we distinguish between the bigger and smaller stimulus
335 values, in the formulation of the model it is convenient to characterize stimuli based on their
336 position, i.e., left/right. The reason here is that the information on which target is bigger is
337 already conveyed by the respective stimuli values, i.e., the parameters λ_L, λ_R . Moreover, this
338 allows to introduce an extra degree of freedom in the model, without increasing the number of
339 variables. The equations

$$\begin{cases} \tau \frac{dr_L(t)}{dt} = -r_L(t) + f(\lambda_L + \omega_+ r_L(t) - \omega_- r_R(t)) + \sigma \xi_L(t) \\ \tau \frac{dr_R(t)}{dt} = -r_R(t) + f(\lambda_R + \omega_+ r_R(t) - \omega_- r_L(t)) + \sigma \xi_R(t) \end{cases} \quad \text{Eq. 1}$$

343 describe the temporal dynamics of the firing rates (r_L, r_R) for each of the two populations, and
344 may be interpreted as originating from a neural network as shown in Figure 4a. Each pool has
345 recurrent excitation (ω_+), and mutual inhibition (ω_-). Although the schematic indicates that both
346 excitation and inhibition emanate from a single population of excitatory neurons, this
347 connectivity could be achieved with an equivalent network of excitatory and inhibitory
348 subpopulations (33,35,42,44,45). In particular, we refer to the work by Wong and Wang (33),
349 where they reduced a spiking neural network of both excitatory and inhibitory neurons to a
350 two-variable system describing the firing rate of the mean-field dynamics of two populations
351 of excitatory neurons. We opted for this simplified architecture because they are equivalent
352 under some conditions and provide a more compact formulation. Furthermore, the network
353 shares a basic feature with many other models of bi-stability: to ensure that only one population
354 is active at any time (mutual exclusivity; (46,47)), mutual inhibition is exerted between the two
355 populations ((48–50)). The overall neuronal dynamics are regulated by the time constant τ , and
356 Gaussian noise ξ with zero mean and standard deviation σ . The sigmoidal function f is defined
357 as $f(x) = F_{max}/(1 + \exp(-(x - \theta)/\tilde{k}))$, with F_{max} denoting the firing rate saturation value.
358

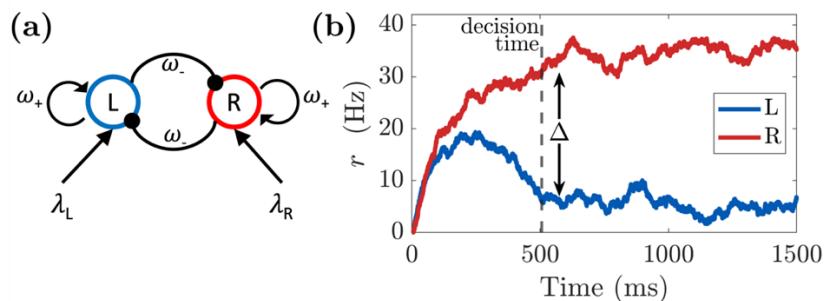


Figure 4. (a) Network structure of binary decision model of mean-field dynamics. The L pool is selective for the stimulus L (λ_L), while the other population is sensitive to the appearance of the stimulus R (λ_R). The two pools mutually inhibit each other (ω_-) and have self-excitatory recurrent connections (ω_+). (b) Firing rate of the two populations (L, R) of excitatory neurons according to the dynamics in Eq. 1. A decision is taken at time 506 ms (vertical dashed line) when the difference in activity between L and R pools passes the threshold of $\Delta = 25$ Hz. The strengths of the stimuli are set to $\lambda_L = 0.0203$ and $\lambda_R = 0.0227$. The time constant and the noise are set to $\tau = 80$ and $\sigma = 0.003$, respectively.

The neural dynamics described in this section refer to the time-course of a single trial, and is related to the discrimination of the two stimuli. The model commits to a perceptual decision when the difference between the L and R pool activity crosses a threshold Δ (51), see Figure 4b. This event defines the trial's decision time. Note that the decision time and the likelihood of picking the larger stimulus are conditioned by the evidence associated with the two stimuli (λ_L, λ_R), i.e., how easy it is to distinguish between them. Namely, the larger the difference between the stimuli is, the more likely and quickly it is that the larger stimulus is selected.

This type of decision-making model is made such that the larger stimulus is always favored. Although the target with the stronger evidence in Eq. 1 is the most likely to be selected, this behavior becomes a particular case when this first layer interacts with the middle layer of our model, as described in the next section.

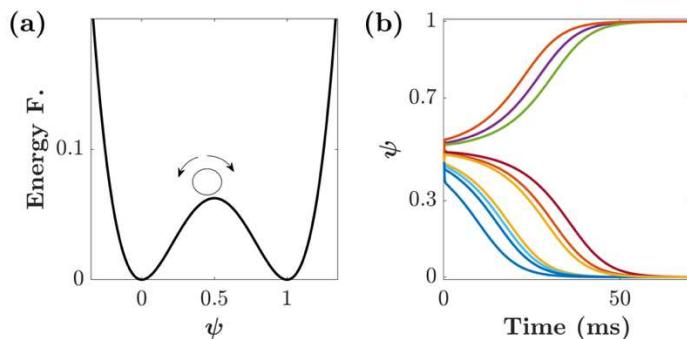
2.3.2 Layer 2: Intended decision

While most decision-making models consider only information involving one-shot decisions (33,51–54), the increased temporal span consideration and the uncertainty due to the consequence of the decision-making processes involved in the consequential task require additional elements for our model. The second layer of our model is devoted to build a mechanism capable of dynamically shifting from the natural (perceptual based) impulse of choosing the larger stimulus, to inhibiting that preference and choosing the smaller one. We implemented such a mechanism by means of an inhibitory control pool, which regulates, when desired, the reversal of the selection criterion towards the smaller or larger stimulus. We called this mechanism *intended decision*, as it defines the intended target to select at each trial. This constitutes the layer enabling the model to switch preference as a function of the context (see layer 3 description).

Specifically, the intended decision mechanism at each trial is represented as a two-attractor dynamical system. If the state of the model may be interpreted as the continuous expression of its tendency for one over another choice, an attractor is the state towards which the dynamics of the system naturally evolve. Since we have two choices, to implement this we considered the energy function $E(\psi) = \psi^2(\psi - 1)^2$ that has two basins of attraction at 0 and 1, associated to the small and big stimulus, respectively (see Figure 5a). Hence, the dynamics of ψ are regulated by

$$\tau_\psi \frac{d\psi(t)}{dt} = -4\psi(t)(\psi(t) - 1)(\psi(t) - 1/2) + \frac{1}{t^2} \sigma_\psi \xi_\psi(t) \quad \text{Eq. 2}$$

401
402 where τ_ψ is a time constant. The Gaussian noise $\xi_\psi(t)$ is scaled by a constant (σ_ψ) and decays
403 quadratically with time. Thus, the noise exerts a strong influence at the beginning of the process
404 and becomes negligible as one of both basins of attraction is reached.
405



406
407 *Figure 5. Dynamics of the second layer of the model. a) Energy function $E(\psi) = \psi^2(\psi - 1)^2$ with two basins of attraction in
408 0 and 1, associated with the small/big targets, respectively. The small circle represents a possible initial condition for the
409 dynamics of ψ . (b) Ten simulated trajectories for $\psi(t)$ according to Eq. 2 with initial condition $\psi(0) = 0.45$ and noise
410 amplitude $\sigma_\psi = 0.4$.*

411
412 If we set the initial condition to $\psi_0 = 0.5$ and let the system evolve, the final state would be
413 either 0 or 1 with equal probability. Shifting the initial condition towards one of the attractors
414 results in an increased likelihood of leaning towards that same attractor, and ultimately its fixed
415 point, i.e., the basin of attraction that was reached. For example, Figure 5b shows 10 simulated
416 trajectories of $\psi(t)$ where the initial condition was set to $\psi_0 = 0.45$. Since the initial condition
417 is smaller than 0.5, most of the trajectories have a fixed point of 0. Nevertheless, due to the
418 initial noise level, the fewer of them reach 1 as their final state.
419

420 The initial condition (ψ_0) and the noise intensity (σ_ψ) are interdependent. The closer an initial
421 condition is to one of the attractors, the larger the noise is required to escape that basin of
422 attraction. Behaviorally, the role of the initial condition is to capture the a-priori bias of
423 choosing the smaller/bigger target. Though this is true, please note that a strong initial bias
424 towards one of the targets does not guarantee the final decision, especially when the level of
425 uncertainty is large. Because of this behavioral effect, we refer to the noise intensity σ_ψ as
426 *decisional uncertainty*.
427

428 The evolution of the dynamical system in Eq. 2 describes the intention of the decision-making
429 process, at each trial T , of choosing the smaller/bigger target. Once a fixed point is reached, the
430 intention is established. We call $\tilde{\psi}(T)$ the fixed point reached at trial T , i.e.,
431

$$\tilde{\psi}(T) = \lim_{t \rightarrow \infty} \psi(t) = \begin{cases} 0 \\ 1 \end{cases}$$

432 is the intended decision of choosing the smaller (0) or bigger (1) stimulus.
433

434 Although the small/big stimulus may be favored at each trial, the final decision still depends
435 on the stimuli intensity ratio. More specifically, if the evidence associated with the small/large
436 stimulus is higher/lower than that of its counterpart, the dynamics of the system will evolve as
437 described in the previous section, see Eq. 1. For this reason, we incorporated the *intention* term

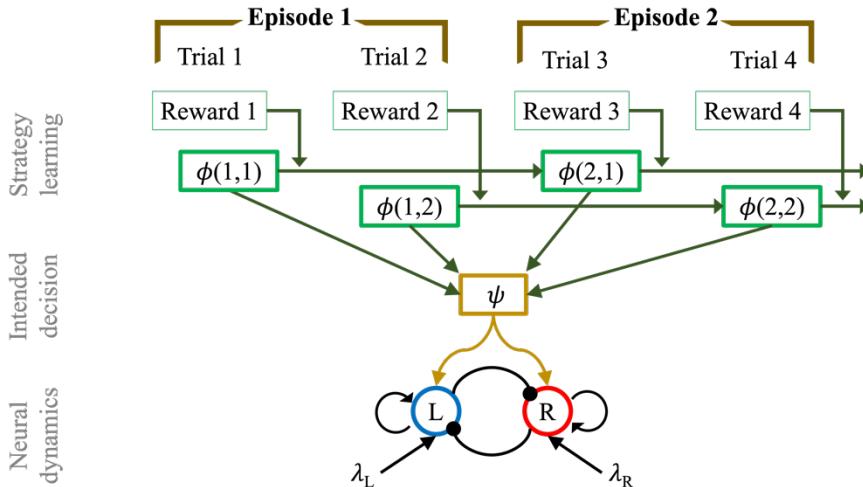
438 $\tilde{\psi}(T)$ into Eq. 1, connecting the *intended decision layer* with the *neural dynamics layer*. This
 439 yields a novel set of equations
 440

$$\begin{cases} \tau \frac{dr_L(t)}{dt} = -r_L(t) + f \left(\tilde{\psi}(T) \lambda_L + (1 - \tilde{\psi}(T)) \lambda_R + \omega_+ r_L(t) - \omega_- r_R(t) \right) + \sigma \xi_L(t) \\ \tau \frac{dr_R(t)}{dt} = -r_R(t) + f \left(\tilde{\psi}(T) \lambda_R + (1 - \tilde{\psi}(T)) \lambda_L + \omega_+ r_R(t) - \omega_- r_L(t) \right) + \sigma \xi_R(t) \end{cases} \quad \text{Eq. 3}$$

441 which exhibit the competence of switching preference between the large and small stimulus. If
 442 $\tilde{\psi}(T) = 1$, the larger stimulus is favored (and the equations reduce to Eq. 1); however, if
 443 $\tilde{\psi}(T) = 0$ the smaller is preferred.
 444

445 To summarize, this *intended decision* layer endows the dynamics of decision-making hereby
 446 described with the ability of directing their preference towards either the smaller or bigger
 447 stimulus in a dynamical fashion. This inhibitory control plays the role of the regulatory criterion
 448 (size-wise) with which a decision is made in the consequential task, as described by Eq. 2.
 449

450
 451
 452 2.3.3 Layer 3: Learning the Strategy



453
 454 *Figure 6. Multi-layer network structure of mean-field model of consequence-based decision making, in the case of a horizon 1*
 455 *experiment. From the bottom: Neural dynamics layer: pool L is selective for the stimulus L (λ_L), while the other population is*
 456 *sensitive to the appearance of the stimulus R (λ_R). The two pools mutually inhibit each other (ω_-) and have self-excitatory*
 457 *recurrent connections (ω_+). The dynamics of the firing rate of the two populations is regulated by Eq. 3. Intended decision*
 458 *layer: the function ψ represents the intention, in terms of decision process, made at each trial T , of aiming for the smaller or*
 459 *bigger target. The dynamics of the intended decision is regulated by Eq. 2. Strategy learning layer: after each trial the strategy*
 460 *is revised, in a reinforcement learning fashion, depending on the magnitude of the gained reward value. The strategy is updated*
 461 *according to Eq. 4.*

462
 463 Although the previously described intended decision layer endowed our model with the ability
 464 of targeting a specific type of stimulus at each trial, a second mechanism to internally oversee
 465 performance and to promote only beneficial strategies is a requirement. The overall goal for
 466 each participant of the consequential task is to maximize the cumulative reward value
 467 throughout an episode. As shown by previous analyses, most participants attained the optimal
 468 strategy after an exploratory phase, gradually improving their performance until the optimum
 469 is reached. Inspired by the same principle of exploration and reinforcement, we incorporated
 470 the strategy learning layer to our model.

471
472 The internal dynamics of an episode are such that selecting the small/large stimulus in a trial
473 implies an increase/decrease of the mean value of the presented stimuli in the next trial (Figure
474 1). Consequently, the strategy to maximize the reward value must vary as a function of the
475 position of the trial within episode (T_E). For clarity, we labelled each trial T via the episode E
476 and the number of trial within episode T_E , i.e., $T=(E, T_E)$. We use both notations
477 interchangeably.

478
479 The strategy learning implemented for the model abides by the general principle of reinforcing
480 beneficial strategies and weakening unprofitable ones, much like a reinforcement learning
481 algorithm (55). At each episode E , the strategy function $\phi = \phi(E, T_E)$ is updated by
482 considering the intended choice $\tilde{\psi}(T)$ and the reward value $R(T)$ obtained. In our case, this
483 reward value originates from subjective evaluation for each individual participant in the
484 absence of explicit feedback. This internal assessment yields a positive or negative perception
485 of reward, i.e., a subjective reward. Learning implies that the preference for the selected
486 strategy is reinforced if the subjective reward is considered beneficial. Namely, with a positive
487 reward ($R(T) > 0$), ϕ is increased if the larger stimulus was chosen ($\tilde{\psi}(T) = 1$) and decreased
488 otherwise ($\tilde{\psi}(T) = 0$). Notice that a negative reward discourages the current strategy but
489 promotes the exploration of alternative strategies and makes possible, eventually, to learn the
490 optimal one over time. Mathematically, we describe the dynamics of learning as

491

$$\phi(E + 1, T_E) = \phi(E, T_E) + kR(E, T_E)(2\tilde{\psi}(E, T_E) - 1)(\phi(E, T_E) - 1)^2(\phi(E, T_E))^2 \quad \text{Eq. 4}$$

492
493 where k is the learning rate. Note that if $k=0$, $\phi(E, T_E)$ remains constant, i.e., there is no
494 learning. The term $(\phi(E, T_E) - 1)^2(\phi(E, T_E))^2$ is required to gradually reduce the increment
495 to zero the closer ϕ gets to either zero or one, thus bounding ϕ in the interval $[0,1]$. The reward
496 function $R(E, T_E)$ represents the subjective reward. The only requirement for this function is
497 that $R(E, T_E)$ must be positive/negative if the subjective reward is considered beneficial or not.
498 In the absence of explicit feedback, as is the case in the current task, participants must look for
499 clues that convey some indirect information about their performance that could feed their
500 internal criterion of assessment. In our case, the correct clue to look for was the change in the
501 mean $M(T)$ stimuli between consecutive trials within an episode. For this reason, in our
502 simulations we use $R(E, T_E) = M(E, T_E + 1) - M(E, T_E)$ in Eq. 4.

503
504 Complementary to the lower layers, the strategy layer operates at a slower-pace, adaptive at a
505 time scale of episodes. At the end of each episode, the strategy is updated by
506 reinforcing/weakening the policy that has yielded a positive/negative reward. Mathematically,
507 as mentioned before, this means that with a positive reward ($R(T) > 0$), ϕ is increased if the
508 larger stimulus was chosen ($\tilde{\psi}(T) = 1$) and decreased otherwise ($\tilde{\psi}(T) = 0$). In the long term,
509 in the case that both the larger stimulus is repeatedly chosen and positive rewards obtained,
510 then ϕ converges to 1. Otherwise, if both the smaller stimulus is repeatedly chosen and positive
511 rewards obtained, then ϕ converges to 0. This update manifests in the next episode as a change
512 in the initial condition for the intended decision ψ (Eq. 2), i.e., suggesting the direction for the
513 intended decision to go. As shown in Figure 5, shifting the initial condition towards one of the
514 two basins (0 or 1) increases the likelihood of reaching it. In other words, the closer the initial
515 condition to zero/one, the more likely the intended decision will be small/big. Mathematically,
516 this can be implemented by setting $\psi(0) = \phi(T)$ for each trial. In other words, the connection
517 between the intended decision and the strategy layers lays in the influence the strategy learning
518 exerts at each decision.

519

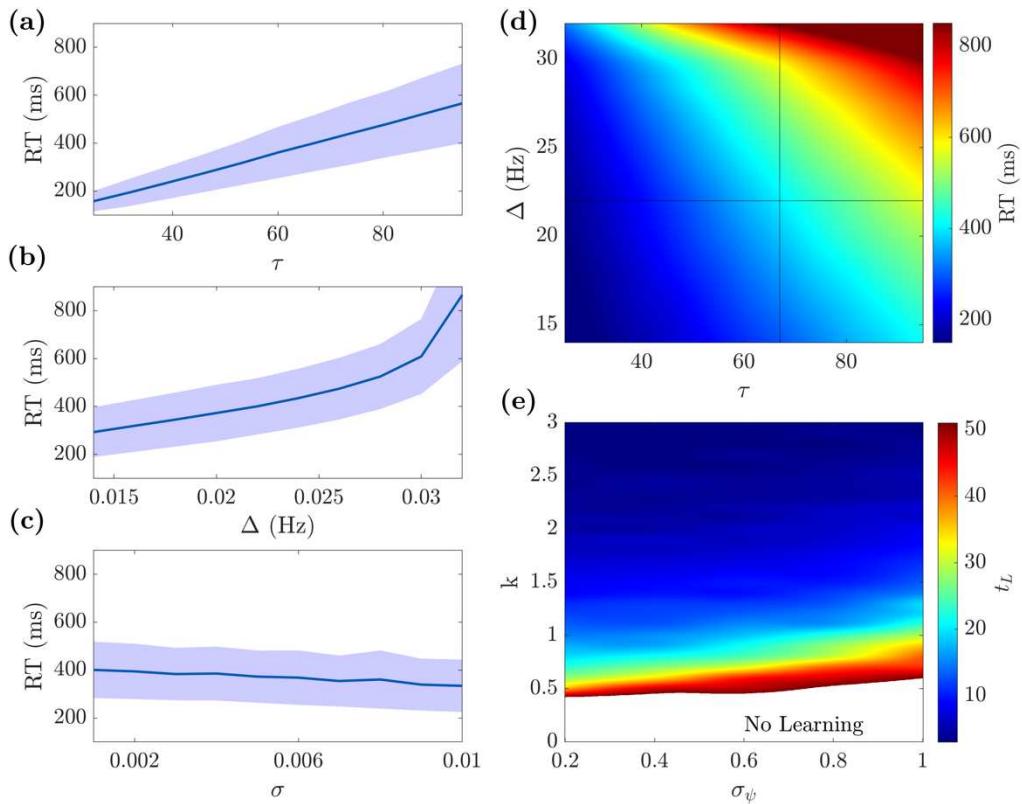
520 To conclude, our model consists of a three concurrent layer structure. The dynamics of each
521 layer are defined by Eq. 3 (neural dynamics), Eq. 2 (intended decision), and Eq. 4 (strategy
522 learning). Figure 6 shows a schematic of the model here described. The bottom part depicts the
523 neural dynamics originated from two pools of neurons encoding the responses to two external
524 stimuli (L, R). The middle (in yellow) shows the intended decision layer at every trial. Finally,
525 the top (in green) presents the strategy learning layer, which evolves at a much slower
526 timescale; the combined information of the intended decision and the subjective reward drives
527 the learning of the strategy.

528

529 2.4 Model Simulations

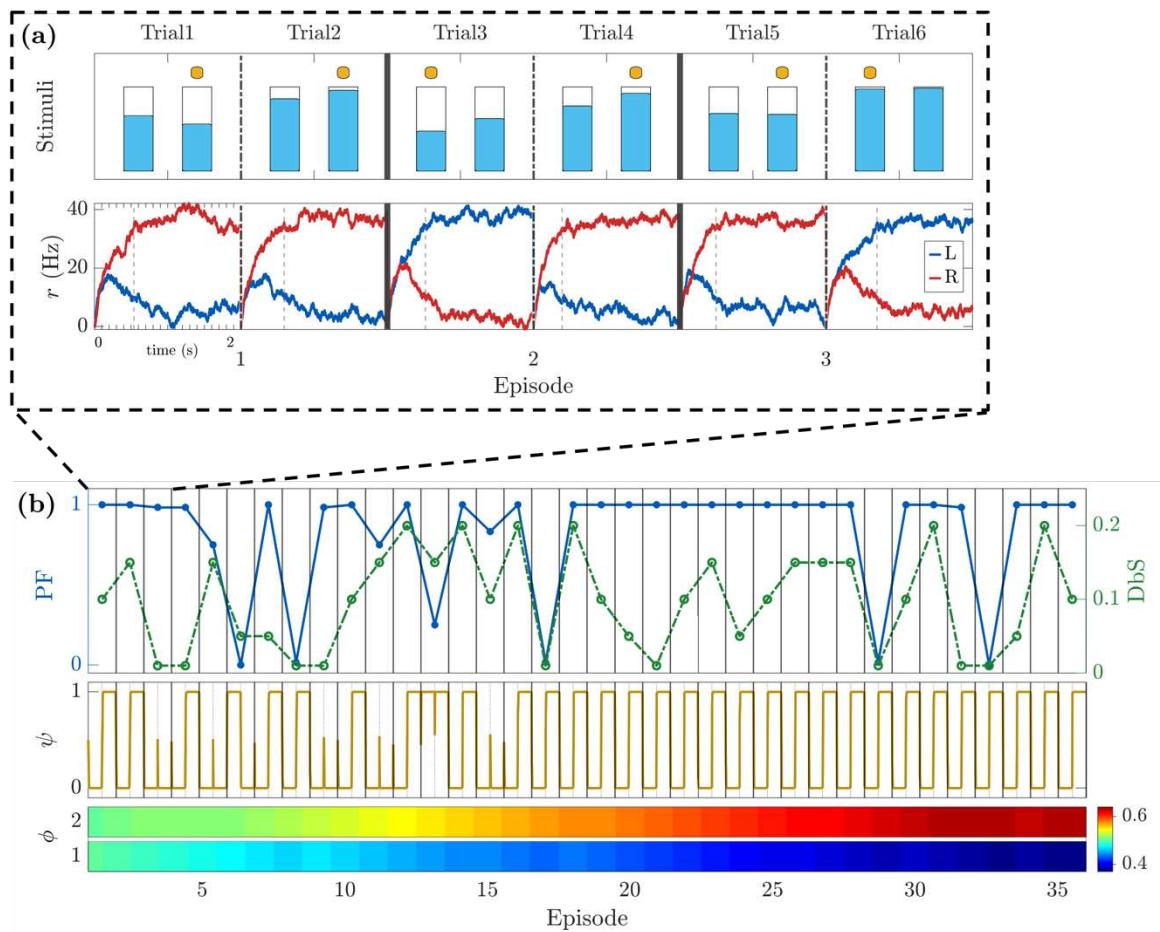
530 We performed a parameter space analysis to assess the influence of the model parameters on
531 the main behavioral metrics of interest: reaction time (RT) and performance (PF). To obtain
532 meaningful biophysical results for the neuronal dynamics, we simulated our model varying the
533 time constant τ , the noise amplitude σ , and the decision threshold Δ (in Eq. 3) in the following
534 ranges: $\tau \in [25, 95]$, $\sigma \in [10^{-3}, 10^{-2}]$, and $\Delta \in [0.01, 0.035]$ (see (35)). Also, we set $F_{\max} =$
535 0.04 ms^{-1} , $\theta = 0.015 \text{ ms}^{-1}$, $\tilde{k} = 0.022 \text{ ms}^{-1}$, $\omega_+ = 1.4$, $\omega_- = 1.5$. We decided to keep most of the
536 parameters fixed (as in (35)), i.e., the ones defined within the function f (see Eq. 3) and the
537 strengths of connection between pools of neurons (ω_+ and ω_-). As we will see below, by only
538 varying τ , σ , and Δ we can simulate a wide range of different behaviors. In Eq. 2, we set $\tau_\psi = 10$
539 such that the dynamics of Eq. 2 is faster than the dynamics of Eq. 3 while remaining the same
540 order of magnitude. Figure 7 a-d shows how RT is affected by τ and Δ . By increasing the time
541 constant τ , the RT increases both in mean and standard deviation (panel a). The same trend
542 occurs when increasing the threshold Δ (panel b), as expected. When varying the noise σ , we
543 did not find a substantial difference in the RT (panel c). Panel (d) shows the joint influence of
544 τ and Δ on the RT for a fixed value of σ . By fixing τ , σ , and Δ , we studied the influence of the
545 learning rate k and the decisional uncertainty σ_ψ on the PF, and, consequently, on the learning
546 time t_L . Figure 7e shows that learning time decreases as learning rate k increases, and as
547 decisional uncertainty σ_ψ decreases. Note that for these simulations we used $n_H = 1$ with 50
548 episodes, therefore any t_L bigger than 50 means that the optimal strategy was not learned.

549



550
551 *Figure 7. Parameter space analysis. Both the mean and standard deviation of the reaction time increase consistently with both*
552 *(a) the time constant τ and (b) the threshold Δ . (c) The noise intensity σ does not have a substantial influence on the reaction*
553 *time. (d) Mean RT varying τ and Δ for a fixed value of σ . The horizontal and vertical black lines indicate the values for Δ and τ*
554 *used for (a-c). (e) The learning time t_L decreases when increasing the learning rate k and decreasing the decisional uncertainty*
555 *σ_ψ . – For all panels we used $\tau=67$, $\sigma=0.001$, and $\Delta=22$ Hz, when not varied for the plot.*

556
557 To demonstrate the behavior of the model, Figure 8 shows the results of a typical simulation of
558 a horizon $n_H = 1$ experiment. Figure 8a shows the example dynamics of the neural dynamics
559 layer of our model together with the stimuli used in the simulation during the first three
560 episodes. More specifically, the bottom row shows the time course of the two population firing
561 rates (Eq. 3) encoding the stimuli L, R depicted in the top row. To better understand the
562 progression of this process over time, Figure 8b gives an outlook of 36 episodes. The top row
563 shows the performance and difficulty (in terms of difference between stimuli DbS) metrics.
564 Note that the optimal strategy in this simulation was learned and applied from the 17th episode
565 onward. After this point, only the most difficult episodes (smallest DbS) managed to diminish
566 the performance. The same conclusions can be drawn by looking at the middle inset, indeed
567 after the 17th episode, the intended decision metric exhibits the same pattern (small for $T_E=1$,
568 and big for $T_E=2$) repeatedly. The bottom row shows the strategy learning. For the first trial
569 within episode ($T_E=1$), ϕ tends to 0, i.e., it pushes the intended decision to choose the smaller
570 stimulus. For the second trial within episode ($T_E=2$), the trend is reversed, capturing indeed the
571 optimal policy.
572



573
574 *Figure 8. Model example simulations for a horizon 1 block. (a) Simulation of the first 3 episodes. Top row: Stimuli presentation*
575 *with respective selection made in each trial displayed with a yellow dot. Bottom row: firing rate of the two populations of*
576 *neurons encoding the left (in blue) and right (in red) stimuli (Eq. 3). Vertical dashed bars indicate the time the decision*
577 *threshold was crossed. (b) Simulation of 36 consecutive episodes. First row: Performance (blue - solid) and difference between*
578 *stimuli DbS (green - dashed). Second row: intended decision dynamics of choosing the bigger (1) or smaller (0) stimulus.*
579 *Third row: evolution of strategy learning for each trial within episode (T_E). Parameters used for the simulations: $G=0.3$,*
580 *$\Delta=0.025$, $\tau=80$, $\sigma=0.006$, $\phi_0(1, T_E) = 0.5$ for $T_E=1,2$, $k=0.4$, $\sigma_\psi=0.4$.*

581 2.5 Individual Participants' Behavioral Fit

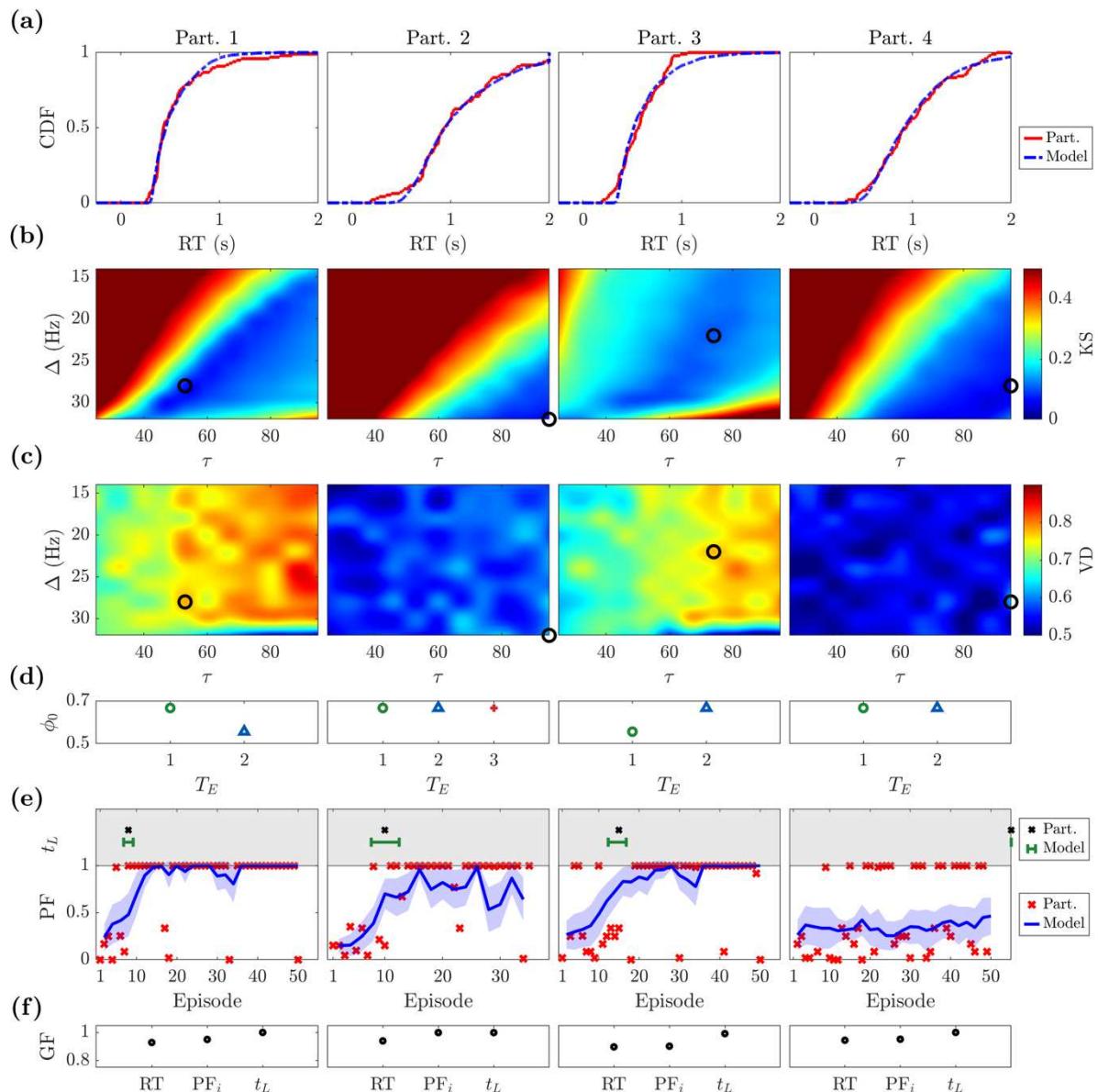
582 This section describes the fit of the model parameters to the participants' individual behavioral
583 metrics. The fitting process is described as a pipeline process. In the first step, the goal is to
584 find the best fit for the neural dynamics by fitting the reaction time (RT) and the visual
585 discrimination (VD), i.e., fit the parameters τ , σ , Δ , α and β involved in Eq. 3. We then focus
586 on the behavioral part. The second step consists of calculating the initial preferential bias ϕ_0 .
587 Finally, in the third step, we ran the model using the previously established parameters, and
588 found the best fit for σ_ψ and k , i.e., the decisional uncertainty and the learning rate. The reason
589 why we fit the parameters in a sequential fashion is the following. The estimates of both RT
590 and VD depend uniquely on Eq. 3. In order to evaluate the dynamics of the perceptual
591 processes, RT and VD are fit using horizon $n_H=0$ only. Once these have been established, we
592 focus on the behavioral part, by fitting the initial preferential bias, the learning rate and the
593 decisional uncertainty.

594 2.5.1 Reaction Times and Visual Discrimination

595 The fitting of the model parameters to each of the participant's behavioral metrics was
596 performed in stages. First, we started by considering the neural dynamics layer, and fitting each

599 parameter of Eq. 3. The first metric to fit is each participant's RT. Note that due to response
600 anticipation of the GO signal, the experimental RTs could be negative in a few cases (see Figure
601 3c). A free parameter was incorporated into the model to control for this temporal shift.

602
603 The second metric to fit is the VD, i.e., the ability to distinguish between stimuli. We assumed
604 VD to be specific to each participant, and constant across blocks of each session. As a means
605 of assessment, we checked how often the larger stimulus had been selected over the last 50
606 correct trials of the $n_H=0$ block for each level of difficulty. The only case where accuracy was
607 low was the highest difficulty level ($DbS = 0.01$). For our model to capture this aspect, we used
608 a linear transformation $\tilde{s} = \alpha + \beta s$ to re-scale the stimuli s , ranging from 0 (empty) and 1 (full),
609 to a range of meaningful stimuli for the model ($\lambda_{L,R} \sim 10^{-2}$, [22]). Furthermore, additional
610 constraints were set for α and β , such that this transformation did not swap the intensities
611 between stimuli (i.e. if $s_L \geq s_R$ then $\tilde{s}_L \geq \tilde{s}_R$), and that the input stimuli were always positive
612 ($\tilde{s}_{L,R} > 0$). Abiding by these conditions, we varied α and β and ran a grid-search set of
613 simulations of Eq. 3 (with $DbS |s_L - s_R| = 0.01$). We calculated the frequency with which
614 the firing rate of the population encoding the larger stimulus was bigger than the alternative.
615 The result depends not only on α and β , but also on τ , σ , and Δ (see Supplementary Figure 2).
616 Thus, to capture the large variety of results encompassed by the ranges of τ , σ , and Δ (see Sec.
617 Model simulations for the respective ranges of values), while abiding by the aforementioned
618 constraints, we let α vary between -0.03 and 0, and β vary between 0 and $0.055-2.5\alpha$. These
619 ranges allowed for proper exploration of the parameter space.



622
623
624
625
626
627
628
629
630
631
632
633
634
635

Figure 9. Model fit to four sample participants' behavioral metrics. Data used: one block of horizon 1 for participants 1, 3 and 4; one block of horizon 2 for participant 2. The specific parameter values of the fit are displayed in Table 1. (a) Cumulative distribution function (CDF) of the reaction times (RT) for the participant data (solid red) and model simulation (dashed blue). (b) Kolmogorov-Smirnov distance (KSD) between the participant and the model's RT varying τ and Δ for the best fitting values of σ , α and β . The black circle refers to the best fit. (c) Visual discrimination (VD) extracted from model simulations varying τ and Δ for the best fitting values of σ , α and β . The black circle refers to the best fit. (d) Initial bias ϕ_0 of the participant at the beginning of the block for each trial within episode (T_E). The more the preferred choice tends towards choosing the larger (smaller) stimulus, the bigger (smaller) ϕ_0 is. (e) Bottom: Performance of the participant (red crosses) and of the model's simulations (blue line: mean, shaded area: confidence interval). Top: Learning time for the participant (black cross) and model simulations (green error bar). (f) Goodness of fit (GF) for three metrics: reaction time (RT), initial performance (PF_i), and learning time (t_L). Goodness of fit is calculated as follows: RT = 1 - Kolmogorov-Smirnov distance between CDF, PF_i = 1 - mean square error, t_L: 1 - difference between learning times of participant and model's mean divided by the total number of episodes.

636

637 We ran 100-trial simulations of a horizon $n_H=0$ block for each combination of the parameters
638 τ , σ , Δ , α and β . We then calculated the empirical cumulative distribution functions (CDF) of
639 the RTs for all trials, and the VDs only for the difficult trials, i.e., when the DbS is 0.01. The
640 distribution of simulated RTs were then compared with the distributions of experimental RTs
641 by means of the Kolmogorov-Smirnov distance (KSD) between CDFs (56–59). Since both RTs

642 and VDs strongly depend on all parameters, both were fit simultaneously. Namely, we consider
643 the error metric $\hat{M} = KSD + c |VD^{sim} - VD^{real}|$, with c being a constant and VD^{sim} , VD^{real}
644 being the VD from the simulated and real data, respectively. The value of c is discussed at the
645 end of the Results Section. The parameters τ , σ , Δ , α and β that minimize \hat{M} are selected for
646 the fit.

647
648 Panels (a-c) in Figure 9 show the optimal parameters for the RT and VD of the four sample
649 participants introduced in the Behavioral Results Section. Figure 9a depicts the CDF of the RT
650 for the participants and for the best-fit model simulation. Figure 9b presents the KSD between
651 the model and shifted-participant CDFs varying τ and Δ , for a fixed (best-fit) σ . Likewise,
652 Figure 9c shows the mean VD for the model simulations. In both panels (b-c) the circle mark
653 indicates the combination of parameters that gives the best fit.

654
655 To summarize, in the first step of the fit, we focused on the neural dynamics layer fit all the
656 free parameters of Eq. 3, i.e., τ , σ , Δ , α and β , concerned with the visual discrimination. The
657 following steps will consider the behavioral component of the data.

660 2.5.2 Initial Preferential Bias

661 Each participant performing our current task might have an initial choice preference, i.e., a
662 natural bias towards the larger (or smaller) stimulus. In our model this is captured by the
663 parameter ϕ_0 in Eq. 4. In the absence of bias ϕ_0 equals 0.5. The greater the preference towards
664 the bigger choice, the closer to 1 ϕ_0 will be.

665
666 We set a vector of initial conditions $\phi(E = 1, T_E) = \phi_0(T_E)$ for each trial within episode (T_E).
667 To quantify ϕ_0 , we selected the first 3 episodes for each participant, and calculated the
668 frequency f with which the larger stimulus was selected. The parameter ϕ_0 works as an initial
669 condition for the intended decision process (see Eq. 2). In agreement with the attractor
670 dynamics, if the initial condition coincides with one of the basins of attraction, the system will
671 be locked in that state. To prevent this (since ϕ_0 should only be an initial bias), we rescaled the
672 frequency of the selected choices f to make the value closer to 0.5, i.e., $\phi_0 = (1 + f)/3$ (other
673 rescaling factors could be used and would not change the results). Figure 9d shows the values
674 obtained for ϕ_0 for each trial within episode T_E . Note that we have selected one block from
675 $n_H=2$ for participant 2 and $n_H=1$ for the others.

677 2.5.3 Learning Rate and Decisional Uncertainty

678 Finally, to fit the remaining parameters σ_ψ and k to each participant's data, we ran the model
679 using the previously established parameters (τ , σ , Δ , α , β , and ϕ_0) and fitted its resulting
680 performance to that of each participant. For each set of σ_ψ and k , we ran 50 simulations and
681 extracted the performance mean and standard deviation. To compare model and participant
682 performances, we considered different metrics such as goodness-of-fit and likelihood, e.g.,
683 Bayesian (BIC) and Akaike information criterions (AIC) (57,59–62). While these are accurate
684 methods to compare model performance, these metrics disregard the specific time dependency
685 throughout each block, which is a key factor to characterize the learning process of the
686 participant. To fill in this gap, we designed an ad-hoc novel metric consisting of two factors
687 that determine the best fit of the learning process. The first is the initial condition, obtained by
688 calculating the mean-square error of the performance between the model and the data during
689 the first five episodes. By minimizing the mean-square error, we ensured that the learning

690 process began under similar conditions for the model and for the participant. The second factor
691 is the time required to learn the strategy. As already introduced in the Behavioral Results
692 Section, we defined the time at which the strategy was learned as the moment after which the
693 optimal strategy was employed in at least 9 out of the following 10 episodes. To ensure that a
694 low success rate was not due to errors caused by visual discrimination, we excluded the
695 episodes with $DbS < 0.01$ from this part of the fit. In summary, by combining the results for the
696 initial conditions (I) and the learning time (L), we could extrapolate the best fit for σ_ψ and k by
697 minimizing the linear combination $L + 0.1 \cdot I$.

698
699 Figure 9e shows the participants' performance (red marks) as well as the associated best-fit
700 model performance (the blue line is the mean, and the colored area is the 95% confidence
701 interval). The top part of the plots depicts the learning time (t_L) calculated for the participant
702 (black mark) as well as for the best fit model simulations (green error-bar). Table 1 shows the
703 best-fit parameter values per participant.

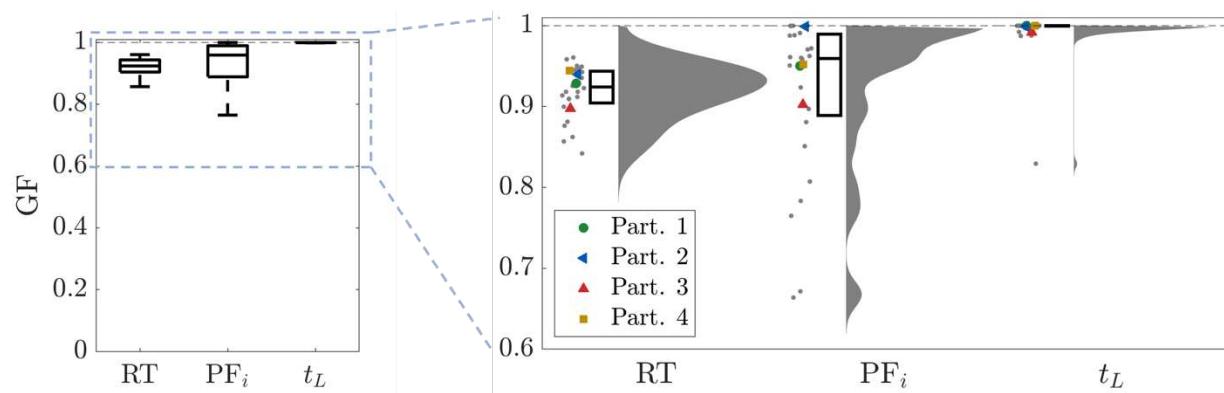
704
705 All participants except one learned the strategy yielding maximum reward value. Specifically,
706 participant 1 learned very fast (in 8 episodes). This was fitted by the model with the highest
707 learning rate ($k=2.6$). Interestingly, even if participant 4 did not learn the correct strategy, the
708 parameters obtained from the fitting process still reported a slow learning process ($k=0.2$). In
709 addition to this, we noticed that a slightly higher learning rate was reported for participant 3,
710 even if the strategy in this case was learned after 15 episodes only. The reason the learning
711 rates for these two participants are similar, even though they reflect two distinct strategies, lays
712 in the initial condition. Namely, participant 4 began the task with a stronger bias towards
713 choosing the larger stimulus ($\phi_0(T_E) = \{0.67, 0.67\}$ against $\{0.56, 0.67\}$ for participant 3).
714 Moreover, the noise amplitude for participant 4 is higher for both the neural dynamics σ and
715 the decisional uncertainty σ_ψ . When combining high noise and disadvantageous initial
716 conditions, a weak learning rate is not enough for the strategy to be learned in a block of 50
717 episodes.

718
719 Figure 9f shows the goodness of fit for the two main behavioral metrics we aimed to reproduce:
720 the reaction time (RT), and the performance, in terms of initial performance (PF_i) and learning
721 time (t_L). To measure the goodness of fit, while remaining consistent with our fitting procedure,
722 we used the following measures. For RT we calculated the KSD, for PF_i we evaluated the
723 mean-square error, and for t_L we took the difference between the participant's data and the
724 model's mean divided by the total number of episodes.

725
726 To summarize, we have first found the best fit for the RT and the VD by minimizing the metric
727 $\hat{M} = KSD + c |VD^{sim} - VD^{real}|$ obtained by varying all the free parameters of Eq. 3, i.e., τ ,
728 σ , Δ , α and β . Then, we calculated the subjective initial bias ϕ_0 . Finally, employing these
729 parameters, we found the best fit for the decisional uncertainty σ_ψ , and the learning rate k . The
730 very last value that needs to be set, is the constant c in $\hat{M} = KSD + c |VD^{sim} - VD^{real}|$. To
731 this end, we repeated all the simulations described so far, varying c from 0.1 to 1 in step of 0.1
732 and selecting the value of c that minimize the global goodness of fit. Namely, we minimize the
733 norm of the three-dimensional vector that has as elements the goodness of fit for the reaction
734 time (RT), and the performance, in terms of initial performance (PF_i) and learning time (t_L).
735 Figure 9 (and Figure 10) shows the results for the best value of c .

736
737 Finally, we show summary results for all 28 participants. To illustrate that the model is able to
738 capture all participants' behavioral results, Figure 10 shows the goodness of fit for the RT,

739 initial performance PF_i , and learning time t_L for the entire set of 28 participants. For all three
 740 metrics, we show the scatter plot including each participant, the respective distribution, and the
 741 boxplot depicting the median and the 25th/75th percentile. For reference, we superposed
 742 colored markers on the results of the four sample participants shown in the previous figure.
 743
 744



745
 746 *Figure 10. Goodness of fit. For RT we calculated KSD, for PF_i we evaluated the mean-square error, and for t_L we took the*
 747 *difference between the participant's data and the model's mean divided by the total number of episodes. For all three metrics,*
 748 *we show the scatter plot of each single participant, the respective distribution, and the boxplot depicting the median and the*
 749 *25/75 percentile. For reference, we superposed (colored markers) the results for the four participants shown in the previous*
 750 *figure.*

P.	c	GF (RT, PF_i , t_L)	t_L	k	σ_ψ	τ	σ	Δ	α	β	$\phi_0 (T_E)$
1	0.1	{0.93,0.95,1}	8	2.8	0.4	53	0.001	0.028	0	0.036	{0.67,0.56}
2	0.2	{0.94,1,1}	10	2.7	0.4	95	0.005	0.032	-0.006	0.045	{0.67,0.67,0.67}
3	0.2	{0.90,0.90,1}	15	0.5	0.2	74	0.001	0.022	0	0.030	{0.56,0.67}
4	0.2	{0.94,0.95,1}	-	0.4	0.4	95	0.006	0.028	0	0.024	{0.67,0.67}

751 *Table 1 – Parameter values obtained when fitting data from 1 block for each of the 4 participants. The parameters τ , σ , Δ , α ,*
 752 *and β refer to Eq. 3; ϕ_0 and k belong to Eq. 4; σ_ψ is deployed in Eq. 2. The learning time (t_L) and the goodness of fit (GF)*

753 *are shown in the last 2 columns.*

754 To summarize, we performed an individual fit to each of the participant's behavioral metrics.
 755 We first used the RT distribution and VD of each participant to fit the parameters in Eq. 3.
 756 Once these parameters were fixed, we moved on to calculate the initial bias, and ran simulations
 757 of the model. Finally, we compared the results of the simulations with the performance of the
 758 participants and found the best fit for the behavioral parameters, i.e., the learning rate and
 759 decisional uncertainty.

760 3 DISCUSSION

761 Here we studied decision-making as a process in which options may be assessed in terms of
 762 their future consequence, and provided a computational account of their associated cognitive
 763 processes and of their dynamics for adaptive decision-making. To this end, we designed a novel
 764 experimental task in which trials were grouped into episodes of one to three trials, and the
 765 decisions at a trial influence the subsequent stimuli to select upon in the same episode. In brief,
 766 the stimuli during the trials of an episode were deliberately varied to promote inhibitory choices
 767 in the initial trial(s) and incentive ones in the last one. To specifically study how a consequence-

773 based assessment forms and influences decisions as learning progresses, we provided the
774 participant with the instruction to explore his/her decisions to find the strategy yielding the
775 most cumulative reward value per episode, while depriving them of any performance feedback.
776 In this manner, our purpose was to promote the participant to develop his/her own subjective
777 assessment of performance, based on the observation of stimuli changes in trials after
778 performing each decision. Although the participants acted in a variety of ways, for the most
779 part they explored the space of choices and learned the optimal strategy after a few episodes.
780 This demonstrates that they had grasped the relationship between actual decisions and
781 consequences, incorporated that information to their internal assessment of performance, and
782 modified their decisions-making policies to maximize the reward value.

783
784 In addition to the experimental analyses, this manuscript also introduces a novel mathematical
785 model encompassing the cognitive processes required for consequence-based decision-making
786 in a joint framework. The model is organized in three-layers. The bottom layer describes the
787 average dynamics of two neural populations, representing each the preference for one option,
788 competing against each other until their difference in activity reaches a threshold. The middle
789 layer encompasses the definition of the so-called intended decision, which implements the
790 participant's preference of choosing the bigger or smaller stimulus at each specific trial. The
791 top layer describes the strategy learning process, which oversees the model's performance,
792 adapts by reinforcement to maximize the cumulative reward value, and drives the intended
793 decision layer. We argue that this oversight mechanism, combined with the modulation of
794 preference, is consistent with an internal process of consequence assessment and subsequent
795 policy update. As part of a global validation process, the model parameters were fit to each
796 participant's behavioral data (reaction time distribution, visual discrimination, initial bias, and
797 performance). The model predictions faithfully reproduced these metrics along with the
798 learning time for each participant, regardless of their level of accuracy throughout the session.
799

800 3.1 Rule-Based vs Far-Sighted Assessment of Consequence

801 The optimal strategy to attain maximum cumulative reward value may be reduced to a set of
802 decision rules: choose small, then big in horizon 1 episodes; choose small, then small, then big,
803 in horizon 2 episodes. Although these sequential choices were expected once the learning was
804 complete and the decision strategy leading to maximum reward value established, the main
805 focus of this study was on how consequence-based assessment forms and influences the
806 learning of decision strategies. Thus, it was crucial to run a task design devoid of any explicit
807 external feedback, which could potentially inform the participant of his/her performance
808 throughout each episode and ultimately promote a rule-based strategy from the very beginning.

809 For the same purpose, and to promote exploration, the participants were left in the uncertainty
810 of neither having a clear criterion to decide upon nor the knowledge about which aspect of the
811 stimuli to prioritize to obtain bigger reward values in the trial next and across the episode. Note
812 that, in addition to the height of the bars (proportional to reward value), the stimuli at each trial
813 were presented on the right and left of the screen, and were shown sequentially, randomly
814 alternating their order of presentation across trials. Although meaningless from the perspective
815 of gaining the most of reward value, both the position and order of presentation contributed to
816 increase the uncertainty as to which dimension of the stimuli were relevant to attain the goal
817 during the learning phase. In fact, under these conditions, the participants were left with a single
818 element that could aid them build their internal criterion to assess performance: perceiving the
819 relationship between their choice at a trial, and the stimuli being subsequently presented in the
820 next. If noticed, over a few episodes, this piece of evidence could then be used to predict the
821 consequence associated with choosing each option at each trial within episode. To this end,

823 participants had to rely on their own subjective perception of performance, fed alone by their
824 observations of the stimuli presented after each decision, and by their own internal assessment
825 criterion, based on their skill at estimating the sum of water (reward value) throughout the trials
826 of each episode. Importantly, learning the optimal strategy could only be achieved via
827 exploration, either purposely or randomly, testing the pairing between the stimuli presented at
828 each trial, the choice made, and, most importantly, the stimuli of the trial next.

829
830 To summarize, the problem of having explicit feedback is that the learning of the optimal
831 strategy could be reduced to testing rule-based sequences until the one that gives the optimal
832 feedback is found. Although the optimal strategy consists of the same rule-based sequence, the
833 crucial element of the task is that, to reach that stage, the participant must first forego a phase
834 of exploration in which learning is driven by exploration and assessment of the reward-based
835 consequence associated with each option. Until then, the learning depends on a computation of
836 reward value encompassing the consideration of far-sighted effect of each decision within
837 episode, on the grounds of an internal subjective assessment criterion that makes this learning
838 possible, and the results hereby presented non-trivial.

840 3.2 Building a Subjective Assessment Criterion

841 The crucial element of the aforementioned process is that, in the absence of explicit
842 performance feedback, learning depends on first building up a subjective criterion of reward.
843 This criterion necessarily depends on cognitive processes implementing an oversight
844 mechanism of whether the correct decision criterion is being used, and whether the proper
845 association between the choice and subsequent stimuli is being correctly perceived (63–66).
846 Moreover, despite the participants being able to find the optimal strategy and diminishing the
847 uncertainty of their behavior to reach the optimal strategy, the fact they never get an explicit
848 external confirmation forces them to bear the doubt of whether their strategy is indeed the
849 optimal one. The discussion of the theoretical formalization presented next suggests a minimal
850 implementation for these mechanisms. This suggests a plausible strategy for this subjective
851 mechanism to capture the relationship between stimuli and subsequent stimuli are established
852 on a single trial basis, within the wider decision-making strategy of maximizing cumulative
853 reward value.

855 3.3 Computational models of consequence

856 The analyses described in the results section demonstrate that the consequential task is an
857 appropriate framework to study how consequence-based option assessment forms and
858 influences decision-making. In parallel, the model we developed has the goal of reaching a
859 formal characterization of the cognitive processes underlying the operations necessary to
860 perform this task. As for most value-based decision-making models (41,51,67–70), learning in
861 our model is operationalized by a reinforcement comparison algorithm, scaled by the difference
862 between predicted vs. obtained reward value (71,72), measured accordingly to the participant's
863 subjectively perceived scale. For simplicity, we assumed a fixed function across participants
864 to quantify reward value ($R(T)$ function in Eq. 4). Furthermore, to provide the necessary
865 flexibility for the model to capture the full range of participants' learning dynamics, the model
866 included a free parameter of learning rate, to be fit to the participant's behavior. The result is a
867 model that could faithfully reproduce the full range of behaviors of each participant: RT
868 distribution, pattern of decision-making, and learning time.

869
870 The structure of the model, organized in three layers, responds to the requirements of a minimal
871 implementation of consequence-based decision-making within the context of our experimental

872 task. The lower layer (neural dynamics) represents the average activity of two neural
873 populations competing for the selection, each representing one of the two stimuli to decide
874 upon. The commitment for one of the two options is taken when the difference in firing rate
875 between the two populations crosses a given threshold (35,41,67). These processes, with small
876 variations, have been used to model decision-making in a broad set of tasks (33,35,73,74) and
877 can describe most types of single-trial, binary decision-making, including value-based and
878 perceptual paradigms. Although is outside of the scope of this investigation, we would like to
879 mention that this type of model can subserve working memory (33,75); a transient input can
880 bring the system from the resting state to one of the two stimulus-selective persistent activity
881 states, which can be internally maintained across a delay period. However, modelling
882 consequence-based decision-making requires at least two additional mechanisms beyond
883 binary population competition. The first one is to define hypothetical criteria to prioritize a
884 specific policy for decision-making. The second one is to create an internal mechanism of
885 performance to evaluate these criteria, based on the difference between predicted and obtained
886 reward value. Accordingly, the role of the middle layer (intended decision) is precisely the
887 implementation of specific criteria, which in our case depends on the relative value of the
888 stimuli and on the number of trial within episode. Finally, the top layer (strategy learning)
889 implements the learning via reinforcement comparison (55) and temporal difference (71,76).
890 The results and predictions depicted in the model descriptive section show that the dynamics
891 of the three layers combined can accurately reproduce the behavior of each single participant,
892 including those who did not attain the optimal strategy. The low number of equations in the
893 model, together with the low number of free parameters, makes this model a simple, yet
894 powerful tool able to reproduce a large variety of behavioral results. Moreover, unlike the basic
895 reinforcement learning agents or models for evidence accumulation, our model is biologically
896 plausible and therefore able to fit individual behavioral metrics. Furthermore, it allows to
897 extract model-based features of participants, e.g., their initial bias, visual discrimination and
898 learning rate.

901 4 Conclusion and Future Work

902 In this manuscript we have introduced a novel minimalistic formalism of the brain dynamics
903 of consequence-based decision-making and its associated learning process. We validated this
904 formalism with the behavioral data gathered from twenty-eight human participants, which the
905 model could accurately reproduce. By extension of the classic single-trial binary decision-
906 making, we designed a mechanism of oversight based on the assessment of the effect of prior
907 decisions on subsequent stimuli, and a reinforcement rule to modify behavioral preferences.
908 As part of the same project, we also designed the consequential task, a novel experimental
909 framework in which gaining the most of reward value required learning to assess the
910 consequence associated with each option during the decision-making process. Both the
911 experimental results and the model predictions review consequence-based decision-making as
912 an extended version of value-based decision-making in which the computation of predicted
913 reward value may extend over several trials. The formalism introduces the necessary notions
914 of oversight of the current strategy and of adaptive reinforcement, as the minimal requirements
915 to learn consequence-based decision-making.

916 Although our model has been designed and tested in the consequential task described here, we
917 argue that its generalization to similar paradigms in which optimal decisions require assessing
918 the consequence associated to the options presented, or sequences of multiple decisions, may
919 be relatively straightforward. Specifically, we envision three possible extensions to facilitate

921 its generalization. First, the model could incorporate several preference criteria simultaneously
922 or combinations thereof to the intended decision layer: left vs. right or first vs. second, instead
923 of small vs. big, to be determined in a dynamical fashion. This could be achieved with a multi-
924 dimensional attractor model, with as many basins of attraction as the number of preference
925 criteria to be considered.

926
927 The second extension we propose is a re-definition of the reward function $R(T)$ according to
928 the subjective criterion of preference. Namely, if not clearly specified, a reward value can be
929 perceived differently by different subjects, i.e., people operate optimally according to their own
930 subjective perception of the reward value. Because of this, a possible extension is to incorporate
931 an individual reward value function per participant ($R(T)$ in Eq. 4). For simplicity, in this
932 manuscript we set $R(T)$ to be fixed and to be the objective reward value function. In case a
933 participant did not perceive what was the optimal reward value, he/she performed sub-
934 optimally according to objective reward function, and the model responded by allowing the
935 learning constant k to be zero. This holds since the optimal strategy was never reached, and the
936 fitting of the participant's performance was correct. Nevertheless, it remains a standing work
937 of significant interest to investigate different subjective reward mechanisms and their
938 implementation in the model.

939
940 Finally, the third enhancement we propose for our model is making the learning rate time
941 dependent, i.e., $k(E)$. This would facilitate reproducing learning processes starting at different
942 times throughout the session. For example, it is possible that participants initiate the session
943 having in mind a possible (incorrect) strategy and they stick to it without looking for clues, and
944 therefore without learning the optimal policy. Nevertheless, after many trials they may change
945 their mind and begin to explore different strategies. In this case the learning rate $k(E)$ would be
946 set to zero for all the initial trials when indeed there is no learning.

947
948 Again, we want to emphasize that even if this model is built ad-hoc for the task we designed,
949 it can be easily adapted to reproduce other tasks of sequential consequence-based decision-
950 making. Note that the strategy learning mechanism is already general enough to adapt to tasks
951 where the optimal policy is not fixed throughout the experiment. Indeed, if the optimal policy
952 would change suddenly at some point during the block, the learning mechanism would be able
953 to detect a change and adapt accordingly. Finally, we want to stress that our model could be
954 applied to other decision-making paradigms, such as a version of the consequential random-
955 dot task (77) or other multiple-option paradigms. Moreover, our model can be employed not
956 only in human experiments, but also with non-human primates or rodents.

959 5 MATERIALS AND METHODS

960 5.1 Participants

961 A total of 28 participants (15 males, 13 females; age range 18-30 years; all right hand dominant)
962 participated in the experimental task. All participants were neurologically healthy, had normal
963 or corrected to normal vision, were naive as to the purpose of the study, and gave informed
964 consent before participating. The study was approved by the local Clinical Research Ethics
965 Committee (CEIm Ref. #2021/9743/I) and was conducted in accordance with relevant
966 guidelines and regulations. Participants were paid a €10 show-up fee.

968

969 5.2 Experimental Setup

970 Participants were situated in the laboratory room at the Facultat de Matemàtica i Informàtica,
971 Universitat de Barcelona, where the task was performed. The participants were seated in a
972 chair, facing the experimental table, with their chest approximately 10cm from the table edge
973 and their right arm resting on its surface. The table defined the plane where reaching
974 movements were to be performed by sliding a light computer mouse (Logitech Inc). On the
975 table, approximately 60cm away from the participant's sitting position, we placed a vertically-
976 oriented, 24" Acer G245HQ computer screen (1920x1080). This monitor was connected to an
977 Intel i5 (3.20GHz, 64-bit OS, 8 GB RAM) portable computer that ran custom-made scripts,
978 programmed in MATLAB with the help of the MonkeyLogic toolbox, to control task flow
979 (NIMH MonkeyLogic, NIH, USA; <https://monkeylogic.nimh.nih.gov>). The screen was used to
980 show the stimuli at each trial and the position of the mouse in real time.

981

982 As part of the experiment, the participants had to respond by performing overt movements with
983 their arm along the table plane while holding the computer mouse. Their movements were
984 recorded with a Mouse (Logitech, Inc), sampled at 1 kHz, which we used to track hand position.
985 Given that the monitor was placed upright on the table and movements were performed on the
986 table plane (horizontally, approximately from the center of the table to the left or right target
987 side), the plane of movement was perpendicular to that of the screen, where the stimuli and
988 finger trajectories were presented. Data analyses were performed with custom-built MATLAB
989 scripts (The Mathworks, Natick, MA), licensed to the Universitat de Barcelona.

990

991 Each participant was required to maintain posture at a fixed distance from the table and to place
992 his/her chin on the chinrest. Pupil diameter from both eyes were tracked and recorded with an
993 EyeTribe oculometer (Oculus, Menlo Park, CA, USA), sampling at 60Hz. We used a chinrest
994 to stabilize posture and to fix the head position at approximately 60cm from the screen and
995 from the oculometer. The signals delivered by the oculometer were recorded by the
996 OpenFrameworks custom-made code, along with the movement trajectories and other
997 behavioral data. Behavioral data from each session were transferred to a MySQL community
998 server database (Oracle, Redwood Shores, CA, USA) for further analysis using custom-
999 designed MATLAB scripts (Mathworks, Natick, MA, USA). External pulses, generated by the
1000 custom made Openframeworks v1.1 code, were used to synchronize the recordings from both
1001 computers at each trial.

1002

1003 5.3 Consequential Decision-Making Task

1004 This section describes the consequential decision-making task, designed to assess the role of
1005 consequence on decision-making while promoting prefrontal inhibitory control (78). Since
1006 consequence depends on a predictive evaluation of future contexts, we designed a task in which
1007 trials were grouped together into episodes (groups of one, two or three consecutive trials),
1008 establishing the horizon of consequence for the decision-making problem within that block of
1009 trials.

1010

1011 The number of trials per episode equals the horizon n_H plus 1. In brief, within an episode, a
1012 decision in the initial trial influences the stimuli to be shown in the next trial(s) in a specific
1013 fashion, unbeknown to our participants. Although a reward value is gained by selecting one of
1014 the stimuli presented in each trial, the goal is not to gain the largest amount as possible per trial,
1015 but rather per episode.

1016

1017 Each participant performed 100 episodes for each horizon $n_H = 0, 1$, and 2 . In the interest of
1018 comparing results, we have generated a list of stimuli for each n_H and used it for all participants.
1019 To avoid fatigue and keep the participants focused, we divided the experiment into 6 blocks,
1020 to be performed on the same day, each consisting of approximately 100 trials. More
1021 specifically, there was 1 block of $n_H=0$ with 100 trials, 2 blocks of $n_H=1$ each with 100 trials,
1022 and 3 blocks of $n_H=2$ with two of them of 105 trials and one of 90. Finally, we have randomized
1023 the order in which participants performed the horizons.

1024
1025 Figure 1 shows the timeline of one horizon 1 episode (2 consecutive trials). At the beginning
1026 of the trial, the participant was required to move the cursor onto a central target. After a fixation
1027 time (500 ms), the two target boxes were shown one after the other (for 500 ms each) to the
1028 left and right of the screen, in a random order. Targets were rectangles filled in blue by a
1029 percentage corresponding to the reward value associated with each stimulus (analogous to
1030 water containers). Next, both targets were presented together. This served as the GO signal for
1031 the participant to choose one of them (within an interval of 4s). Participants had to report their
1032 choice by making a reaching movement with the computer mouse from the central target to
1033 the target of their choice (right or left container). If the participant did not make a choice within
1034 4 s, the trial was marked as an error trial. Once one of the targets had been reached for and the
1035 participant had held that position (500ms), the selection was recorded, and a yellow dot
1036 appeared above the selected target, indicating successful selection and reward value
1037 acquisition. In case of horizons larger than 0, the second trial started following the same pattern,
1038 although with a set of stimuli that depended on the previous decision (see next section).

1039
1040

5.4 Episode Structure

1041 The participants were instructed to maximize the cumulative reward value throughout each
1042 episode, namely the sum of water contained by the selected targets across the trials of the
1043 episode. If trials within an episode were independent, the optimal choice would be to always
1044 choose the largest stimulus. Since one of the major goals of our study was to investigate delayed
1045 consequence assessment involving adaptive choices, we deliberately created dependent trial
1046 contexts in which making incentive decisions (selecting the larger stimulus) would not
1047 necessarily lead to the most cumulative reward value within episode.

1048 To promote inhibitory choices, the inter-trial relationship was designed such that selecting the
1049 small (large) stimulus in a trial, yielded an increase (decrease) in the mean value of the options
1050 presented in the next trial. For this reason, always choosing the larger stimulus did not
1051 maximize cumulative reward value for $n_H=1, 2$.

1053 Trials were generated according to 3 parameters: horizon's depth n_H , perceptual discrimination
1054 (in terms of difference d between the stimuli), and the gain/loss G in mean size of stimuli for
1055 successive trials. The stimuli $s_{1,2}$ presented on the screen could take values ranging from 0 to
1056 1. Trials were divided into five difficulty levels by setting the difference between stimuli (DbS)
1057 $d \in \{0.01, 0.05, 0.1, 0.15, 0.2\}$.

1059 For horizon $n_H=0$, for each trial the stimuli $s_{1,2}$ are generated as to have mean M and difference
1060 d between them, i.e., $s_{1,2} = M \pm d/2$. To have stimuli ranging from 0 to 1, the mean M is
1061 randomly generated using a uniform distribution with bounds $[d_{max}/2, 1 - d_{max}/2]$, where
1062 $d_{max} = 0.2$ is the maximum DbS. In horizon $n_H=1$, each episode consists of 2 dependent trials.
1063 Specifically, the stimuli presented in the second trial depend on the selection reported in the
1064 previous trial of that same episode. More specifically, the rule is such that if the choice of the
1065

1066 first trial is the smaller/larger stimulus, the mean of the pair of stimuli in the second trial will
1067 be increased/decreased by a specific gain G . In practice, the first trial of an $n_H=1$ episode is
1068 generated in the same way as for horizon $n_H=0$, i.e., the two stimuli equal $s_{1,2} = M \pm d/2$. The
1069 stimuli in the second trial within the same episode could be either $s_{1,2} = M + G \pm d/2$ or
1070 $s_{1,2} = M - G \pm d/2$, depending on the previous decision. Note that the difficulty of the trial
1071 remains constant within episode. A schematic for the trial structure is shown in Figure 1. Again,
1072 to have stimuli ranging from 0 to 1, the mean M is randomly generated using a uniform
1073 distribution with bounds $[G + d_{max}/2, 1 - G - d_{max}/2]$. In horizon $n_H=2$, episodes consist of
1074 three trials. The trial generation is structured as for horizon $n_H=1$. Namely, the first trial has
1075 stimuli $s_{1,2} = M \pm d/2$, the second $s_{1,2} = M \pm G \pm d/2$, and the third $s_{1,2} = M \pm G \pm G \pm$
1076 $d/2$. To have stimuli ranging from 0 to 1, the mean M is randomly generated from a uniform
1077 distribution with bounds $[2G + d_{max}/2, 1 - 2G - d_{max}/2]$. We set the gain/loss parameter to
1078 $G=0.3$ and $G=0.19$ for horizon $n_H=1$ and $n_H=2$, respectively. Our choice was motivated by
1079 the fact that G should be big enough to let the participants perceive the gain/loss between trials,
1080 while simultaneously allowing some variability for the randomly generated means M .

1083 5.5 Statistical analysis

1084 We are interested in testing the relationship of the performance (PF) and the reaction time (RT)
1085 with the horizon n_H , trial within episode T_E , and episode E . To have coherent and meaningful
1086 results we have adjusted these variables as follows. The trial within episode is counted
1087 backwards from last to first, for the reason that the optimal choice for the last T_E is the same
1088 for any horizon. The variable representing the trial within episode counted backwards is
1089 denoted \hat{T}_E . The other adjustment we made is clustering the episodes in groups of 10. This new
1090 variable is called $E^{(10)}$. Finally, in order to consider trials within episode independently, we
1091 had to adapt the concept of PF since, by definition, it is a measure defined per episode. The
1092 equivalent of PF for a single trial is the percentage of selected optimal choices P_{oc} . We used a
1093 linear mixed effects model (39,40) to predict PF and RT. The independent variables for the
1094 fixed effects are horizon n_H , trial within episode \hat{T}_E (counted backwards), and the evolution in
1095 time expressed as blocks of 10 episodes $E^{(10)}$, and we set the random effects for the intercept
1096 and the episodes grouped by participant. The resulting formulae are $P_{oc} \sim E^{(10)} + n_H \cdot \hat{T}_E +$
1097 $(E^{(10)}|part.)$ and $RT \sim E^{(10)} + n_H \cdot \hat{T}_E + (E^{(10)}|part.)$.

1098 The statistics were run separately for the group of participants that learned the optimal strategy
1099 and the ones who did not, according to **Error! Reference source not found.a**. In addition, the R
1100 T were z-scored to run the analysis. The results of the statistical analysis are reported in Table
1101 2. The regression coefficients, with respective significance, are shown in **Error! Reference**
1102 **source not found.e-f**.

1106

$P_{oc} \sim E^{(10)} + n_H \cdot \hat{T}_E + (E^{(10)} part.)$												
	Group Learn						Group No-Learn					
AIC	-299.61						75.41					
BIC	-253.81						110.38					
Log-likel.	158.8						-28.7					
Fixed effects	Estimate	SE	tStat	pVal	Lower	Upper	Estimate	SE	tStat	pVal	Lower	Upper
Intercept	1.14	0.05	23.7	10^{-102}	1.05	1.24	1.19	0.10	20.4	10^{-62}	1.77	2.14
\hat{T}_E	-0.26	0.03	-7.8	10^{-14}	-0.32	-0.19	-1.05	0.07	-14.0	10^{-36}	-1.19	-0.90
n_H	-0.16	0.02	-6.7	10^{-11}	-0.20	-0.11	-0.42	0.05	-8.1	10^{-14}	-0.52	-0.32
$E^{(10)}$	0.02	0.00	7.1	10^{-12}	0.02	0.03	-0.00	0.01	-0.6	0.58	-0.02	0.01
$\hat{T}_E : n_H$	0.10	0.02	5.8	10^{-9}	0.07	0.14	0.34	0.04	8.6	10^{-16}	0.26	0.42

1107 *Table 2 – Linear mixed effects model with formula $P_{oc} \sim E^{(10)} + n_H \cdot \hat{T}_E + (E^{(10)} | part.)$ for the percentage of optimal*
 1108 *choices selected (P_{oc}), horizon nH , trial within episode \hat{T}_E (counted backwards), and the evolution in time expressed as*
 1109 *blocks of 10 episodes $E^{(10)}$.*

1110

1111

1112

$RT \sim E^{(10)} + n_H \cdot \hat{T}_E + (E^{(10)} part.)$												
	Group Learn						Group No-Learn					
AIC	3105						780					
BIC	3151						815					
Log-likel.	-1544						-381					
Fixed effects	Estimate	SE	tStat	pVal	Lower	Upper	Estimate	SE	tStat	pVal	Lower	Upper
Intercept	-0.70	0.20	-3.6	10^{-4}	-1.08	-0.31	1.58	0.41	3.85	10^{-4}	0.77	2.38
\hat{T}_E	0.66	0.14	4.9	10^{-6}	0.40	0.93	-1.00	0.20	-5.09	10^{-7}	-1.39	-0.61
n_H	0.12	0.09	1.3	0.20	-0.06	0.31	-0.87	0.14	-6.34	10^{-10}	-1.14	-0.60
$E^{(10)}$	-0.04	0.01	-4.0	10^{-5}	-0.06	-0.02	-0.03	0.03	-1.21	0.23	-0.09	0.02
$\hat{T}_E : n_H$	-0.17	0.07	-2.3	0.02	-0.31	-0.02	0.61	0.10	5.88	10^{-9}	0.41	0.82

1113 *Table 3 – Linear mixed effects model with formula $RT \sim E^{(10)} + n_H \cdot \hat{T}_E + (E^{(10)} | part.)$ for the percentage of optimal*
 1114 *choices selected (P_{oc}), horizon nH , trial within episode \hat{T}_E (counted backwards), and the evolution in time expressed as*
 1115 *blocks of 10 episodes $E^{(10)}$.*

1116

1117 Acknowledgments

1118

1119 This project has received funding from the European Union’s Horizon 2020 Framework
 1120 Programme for Research and Innovation under the Specific Grant Agreement N. 945539
 1121 COREDEM (Human Brain Project SGA3).

1122

1123

1124 References

1. Kahneman D, Tversky A. Prospect theory: An analysis of decision under risk. *Econometrica*. 1979 Apr 27;47(2):263–92.
2. Birnbaum MH. New paradoxes of risky decision making. *Psychol Rev* [Internet]. 2008 Apr [cited 2022 Dec 21];115(2):463–501. Available from: <https://pubmed.ncbi.nlm.nih.gov/18426300/>
3. Eichberger J, Pasichnichenko I. Decision-making with partial information. *J Econ Theory*. 2021 Dec 1;198:105369.
4. Drugowitsch J, Moreno-Bote RN, Churchland AK, Shadlen MN, Pouget A. The Cost of Accumulating Evidence in Perceptual Decision Making. *Journal of Neuroscience* [Internet]. 2012 Mar 14 [cited 2023 Feb 13];32(11):3612–28. Available from: <https://www.jneurosci.org/content/32/11/3612>
5. Wallis JD. Cross-species studies of orbitofrontal cortex and value-based decision-making. *Nature Neuroscience* 2011 15:1 [Internet]. 2011 Nov 20 [cited 2022 Dec 21];15(1):13–9. Available from: <https://www.nature.com/articles/nn.2956>
6. Gluth S, Rieskamp J, Büchel C. Neural Evidence for Adaptive Strategy Selection in Value-Based Decision-Making. *Cerebral Cortex* [Internet]. 2014 Aug 1 [cited 2022 Aug 13];24(8):2009–21. Available from: <https://academic.oup.com/cercor/article/24/8/2009/466902>
7. Cai X, Padoa-Schioppa C. Neuronal evidence for good-based economic decisions under variable action costs. *Nature Communications* 2019 10:1 [Internet]. 2019 Jan 23 [cited 2022 Dec 21];10(1):1–13. Available from: <https://www.nature.com/articles/s41467-018-08209-3>
8. Kurniawan IT, Guitart-Masip M, Dayan P, Dolan RJ. Effort and Valuation in the Brain: The Effects of Anticipation and Execution. *Journal of Neuroscience* [Internet]. 2013 Apr 3 [cited 2022 Dec 21];33(14):6160–9. Available from: <https://www.jneurosci.org/content/33/14/6160>
9. Skvortsova V, Palminteri S, Pessiglione M. Learning To Minimize Efforts versus Maximizing Rewards: Computational Principles and Neural Correlates. *Journal of Neuroscience* [Internet]. 2014 Nov 19 [cited 2022 Dec 21];34(47):15621–30. Available from: <https://www.jneurosci.org/content/34/47/15621>
10. Apps MAJ, Grima LL, Manohar S, Husain M. The role of cognitive effort in subjective reward devaluation and risky decision-making. *Scientific Reports* 2015 5:1 [Internet]. 2015 Nov 20 [cited 2022 Dec 21];5(1):1–11. Available from: <https://www.nature.com/articles/srep16880>
11. Thura D, Cisek P. Modulation of Premotor and Primary Motor Cortical Activity during Volitional Adjustments of Speed-Accuracy Trade-Offs. *J Neurosci* [Internet]. 2016 Jan 20 [cited 2022 Dec 21];36(3):938–56. Available from: <https://pubmed.ncbi.nlm.nih.gov/26791222/>
12. Gold JI, Shadlen MN. The Neural Basis of Decision Making. <http://dx.doi.org/10.1146/annurev.neuro.29.051605.113038> [Internet]. 2007 Jun 28 [cited 2022 Aug 13];30:535–74. Available from: <https://www.annualreviews.org/doi/abs/10.1146/annurev.neuro.29.051605.113038>
13. Cisek P, Puskas GA, El-Murr S. Decisions in Changing Conditions: The Urgency-Gating Model. *Journal of Neuroscience* [Internet]. 2009 Sep 16 [cited 2022 Dec 21];29(37):11560–71. Available from: <https://www.jneurosci.org/content/29/37/11560>

1171 14. Schuck-Paim C, Kacelnik A. Choice processes in multialternative decision making.
1172 Behavioral Ecology [Internet]. 2007 May 1 [cited 2022 Aug 13];18(3):541–50.
1173 Available from: <https://academic.oup.com/beheco/article/18/3/541/221587>

1174 15. Drugowitsch J, Wyart V, Devauchelle AD, Koechlin E. Computational Precision of
1175 Mental Inference as Critical Source of Human Choice Suboptimality. Neuron [Internet].
1176 2016 Dec 21 [cited 2022 Dec 21];92(6):1398–411. Available from:
1177 <https://pubmed.ncbi.nlm.nih.gov/27916454/>

1178 16. Trommershäuser J, Maloney LT, Landy MS. Decision making, movement planning and
1179 statistical decision theory. Trends Cogn Sci [Internet]. 2008 Aug [cited 2022 Dec
1180 21];12(8):291–7. Available from: <https://pubmed.ncbi.nlm.nih.gov/18614390/>

1181 17. Nagengast AJ, Braun DA, Wolpert DM. Risk sensitivity in a motor task with speed-
1182 accuracy trade-off. J Neurophysiol [Internet]. 2011 Jun [cited 2022 Dec
1183 21];105(6):2668–74. Available from: <https://pubmed.ncbi.nlm.nih.gov/21430284/>

1184 18. O'Brien MK, Ahmed AA. Threat affects risk preferences in movement decision making.
1185 Front Behav Neurosci. 2015 Jun 9;9(June):150.

1186 19. Kirchler M, Andersson D, Bonn C, Johannesson M, Sørensen E, Stefan M, et al. The
1187 effect of fast and slow decisions on risk taking. J Risk Uncertain [Internet]. 2017 Feb 1
1188 [cited 2022 Dec 21];54(1):37–59. Available from:
1189 <https://pubmed.ncbi.nlm.nih.gov/28725117/>

1190 20. Donner TH, Siegel M, Fries P, Engel AK. Buildup of choice-predictive activity in
1191 human motor cortex during perceptual decision making. Curr Biol [Internet]. 2009 Sep
1192 29 [cited 2022 Dec 21];19(18):1581–5. Available from:
1193 <https://pubmed.ncbi.nlm.nih.gov/19747828/>

1194 21. Cavanagh SE, Towers JP, Wallis JD, Hunt LT, Kennerley SW. Reconciling persistent
1195 and dynamic hypotheses of working memory coding in prefrontal cortex. Nature
1196 Communications 2018 9:1 [Internet]. 2018 Aug 29 [cited 2022 Dec 21];9(1):1–16.
1197 Available from: <https://www.nature.com/articles/s41467-018-05873-3>

1198 22. Barbosa J, Stein H, Martinez RL, Galan-Gadea A, Li S, Dalmau J, et al. Interplay
1199 between persistent activity and activity-silent dynamics in the prefrontal cortex underlies
1200 serial biases in working memory. Nature Neuroscience 2020 23:8 [Internet]. 2020 Jun
1201 22 [cited 2022 Dec 21];23(8):1016–24. Available from:
1202 <https://www.nature.com/articles/s41593-020-0644-4>

1203 23. Klaes C, Westendorff S, Chakrabarti S, Gail A. Choosing goals, not rules: deciding
1204 among rule-based action plans. Neuron [Internet]. 2011 May 12 [cited 2022 Dec
1205 21];70(3):536–48. Available from: <https://pubmed.ncbi.nlm.nih.gov/21555078/>

1206 24. Goodwin SJ, Blackman RK, Sakellaridi S, Chafee M v. Executive Control Over
1207 Cognition: Stronger and Earlier Rule-Based Modulation of Spatial Category Signals in
1208 Prefrontal Cortex Relative to Parietal Cortex. Journal of Neuroscience [Internet]. 2012
1209 Mar 7 [cited 2022 Dec 21];32(10):3499–515. Available from:
1210 <https://www.jneurosci.org/content/32/10/3499>

1211 25. Balasubramani PP, Hayden BY. Overlapping neural processes for stopping and
1212 economic choice in orbitofrontal cortex. bioRxiv [Internet]. 2018 Apr 20 [cited 2022
1213 Dec 21];304709. Available from: <https://www.biorxiv.org/content/10.1101/304709v1>

1214 26. Hayden BY. Time discounting and time preference in animals: A critical review.
1215 Psychon Bull Rev [Internet]. 2016 Feb 1 [cited 2023 Jan 2];23(1):39–53. Available
1216 from: <https://pubmed.ncbi.nlm.nih.gov/26063653/>

1217 27. Alexander WH, Brown JW. Hyperbolically discounted temporal difference learning.
1218 Neural Comput [Internet]. 2010 Jun [cited 2023 Jan 2];22(6):1511–27. Available from:
1219 <https://pubmed.ncbi.nlm.nih.gov/20100071/>

1220 28. Kim S, Hwang J, Lee D. Prefrontal coding of temporally discounted values during
1221 intertemporal choice. *Neuron* [Internet]. 2008 Jul 10 [cited 2023 Jan 2];59(1):161–72.
1222 Available from: <https://pubmed.ncbi.nlm.nih.gov/18614037/>

1223 29. Hwang J, Kim S, Lee D. Temporal discounting and inter-temporal choice in rhesus
1224 monkeys. *Front Behav Neurosci* [Internet]. 2009 Jun 11 [cited 2023 Jan 2];3(JUN).
1225 Available from: <https://pubmed.ncbi.nlm.nih.gov/19562091/>

1226 30. Hayden BY, Platt ML. Temporal discounting predicts risk sensitivity in rhesus
1227 macaques. *Curr Biol* [Internet]. 2007 Jan 9 [cited 2023 Jan 2];17(1):49–53. Available
1228 from: <https://pubmed.ncbi.nlm.nih.gov/17208186/>

1229 31. Mischel W, Ebbesen EB, Raskoff Zeiss A. Cognitive and attentional mechanisms in
1230 delay of gratification. *J Pers Soc Psychol* [Internet]. 1972 Feb [cited 2023 Jan
1231 2];21(2):204–18. Available from: <https://pubmed.ncbi.nlm.nih.gov/5010404/>

1232 32. Kempermann G. Delayed gratification in the adult brain. *Elife* [Internet]. 2020 Jul 1
1233 [cited 2023 Jan 2];9:1–3. Available from: <https://pubmed.ncbi.nlm.nih.gov/32690134/>

1234 33. Wong KF, Wang XJ. A Recurrent Network Mechanism of Time Integration in
1235 Perceptual Decisions. *Journal of Neuroscience* [Internet]. 2006 Jan 25 [cited 2022 Feb
1236 1];26(4):1314–28. Available from: <https://www.jneurosci.org/content/26/4/1314>

1237 34. Soltani A, Lee D, Wang XJ. Neural mechanism for stochastic behaviour during a
1238 competitive game. *Neural Networks* [Internet]. 2006 [cited 2022 Feb 1];19:1075–90.
1239 Available from: www.elsevier.com

1240 35. Marcos E, Pani P, Brunamonti E, Deco G, Ferraina S, Verschure P. Neural variability
1241 in premotor cortex is modulated by trial history and predicts behavioral performance.
1242 *Neuron* [Internet]. 2013 Apr 24 [cited 2022 Feb 2];78(2):249–55. Available from:
1243 <http://www.cell.com/article/S0896627313001372/fulltext>

1244 36. Hertäg L, Durstewitz D, Brunel N. Analytical approximations of the firing rate of an
1245 adaptive exponential integrate-and-fire neuron in the presence of synaptic noise. *Front
1246 Comput Neurosci*. 2014 Sep 18;8:116.

1247 37. Webb TJ, Rolls ET, Deco G, Feng J. Noise in Attractor Networks in the Brain Produced
1248 by Graded Firing Rate Representations. *PLoS One* [Internet]. 2011 Sep 8 [cited 2022
1249 May 25];6(9):e23630. Available from: <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023630>

1250 38. Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations
1251 of model neurons. *Biophys J* [Internet]. 1972 [cited 2022 Feb 2];12(1):1–24. Available
1252 from: <https://pubmed.ncbi.nlm.nih.gov/4332108/>

1253 39. Gałecki A, Burzykowski T. Linear Mixed-Effects Models Using R: A Step-by-Step
1254 Approach [Internet]. Springer New York; 2013. (Springer Texts in Statistics). Available
1255 from: https://books.google.es/books?id=rbk_AAAQBAJ

1256 40. Verbeke G, Molenberghs G. Linear Mixed Models for Longitudinal Data [Internet].
1257 Springer New York; 2009. (Springer Series in Statistics). Available from:
1258 <https://books.google.es/books?id=jmPkX4VU7h0C>

1259 41. Brunel N, Wang XJ. Effects of Neuromodulation in a Cortical Network Model of Object
1260 Working Memory Dominated by Recurrent Inhibition. *Journal of Computational
1261 Neuroscience* 2001 11:1 [Internet]. 2001 [cited 2022 Feb 2];11(1):63–85. Available
1262 from: <https://link.springer.com/article/10.1023/A:1011204814320>

1263 42. Thura D, Cabana JF, Feghaly A, Cisek P. Unified neural dynamics of decisions and
1264 actions in the cerebral cortex and basal ganglia. *bioRxiv* [Internet]. 2020 Oct 29 [cited
1265 2022 Feb 2];2020.10.22.350280. Available from: <https://www.biorxiv.org/content/10.1101/2020.10.22.350280v2>

1266 43. Wang XJ. Probabilistic Decision Making by Slow Reverberation in Cortical Circuits.
1267 *Neuron*. 2002 Dec 5;36(5):955–68.

1268

1269

1270 44. Wong KF, Huk AC, Shadlen MN, Wang XJ. Neural circuit dynamics underlying
1271 accumulation of time-varying evidence during perceptual decision making. *Front*
1272 *Comput Neurosci*. 2007 Nov 2;1(NOV):6.

1273 45. Moreno-Bote R, Rinzel J, Rubin N. Noise-induced alternations in an attractor network
1274 model of perceptual bistability. *J Neurophysiol* [Internet]. 2007 Sep [cited 2022 Feb
1275 2];98(3):1125–39. Available from: <https://journals.physiology.org/doi/abs/10.1152/jn.00116.2007>

1276 46. Leopold DA, Logothetis NK. Multistable phenomena: changing views in perception.
1277 *Trends Cogn Sci* [Internet]. 1999 Jul 1 [cited 2022 May 25];3(7):254–64. Available
1278 from: <https://pubmed.ncbi.nlm.nih.gov/10377540/>

1279 47. Rubin N. Binocular rivalry and perceptual multi-stability. *Trends Neurosci*. 2003 Jun
1280 1;26(6):289–91.

1281 48. Blake R. A Neural Theory of Binocular Rivalry. *Psychol Rev* [Internet]. 1989 [cited
1282 2022 May 25];96(1):145–67. Available from: [/record/1989-14663-001](https://doi.org/10.1037/0033-295X.96.1.145)

1283 49. Laing CR, Chow CC. A Spiking Neuron Model for Binocular Rivalry. *Journal of
1284 Computational Neuroscience* 2002 12:1 [Internet]. 2002 [cited 2022 May 25];12(1):39–
1285 53. Available from: <https://link.springer.com/article/10.1023/A:1014942129705>

1286 50. Wilson HR. Computational evidence for a rivalry hierarchy in vision. *Proc Natl Acad
1287 Sci U S A* [Internet]. 2003 Nov 25 [cited 2022 May 25];100(SUPPL. 2):14499–503.
1288 Available from: www.pnas.org/cgi/doi/10.1073/pnas.2333622100

1289 51. Roxin A, Ledberg A. Neurobiological Models of Two-Choice Decision Making Can Be
1290 Reduced to a One-Dimensional Nonlinear Diffusion Equation. *PLoS Comput Biol*
1291 [Internet]. 2008 Mar [cited 2022 Feb 2];4(3):e1000046. Available from:
1292 <https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000046>

1293 52. Salinas E. So many choices: what computational models reveal about decision-making
1294 mechanisms. *Neuron* [Internet]. 2008 Dec 26 [cited 2022 Dec 21];60(6):946–9.
1295 Available from: <https://pubmed.ncbi.nlm.nih.gov/19109902/>

1296 53. Kilpatrick ZP, Holmes WR, Eissa TL, Josić K. Optimal models of decision-making in
1297 dynamic environments. *Curr Opin Neurobiol*. 2019 Oct 1;58:54–60.

1298 54. Hernández A, Nácher V, Luna R, Zainos A, Lemus L, Alvarez M, et al. Decoding a
1299 perceptual decision process across cortex. *Neuron* [Internet]. 2010 Apr [cited 2022 Dec
1300 21];66(2):300–14. Available from: <https://pubmed.ncbi.nlm.nih.gov/20435005/>

1301 55. Sutton RS, Barto AG. Reinforcement Learning [Internet]. Second. MIT Press; 2018
1302 [cited 2022 Aug 13]. Available from: <https://mitpress.mit.edu/9780262039246/>

1303 56. Quinn GP, Keough MJ. Experimental Design and Data Analysis for Biologists.
1304 Experimental Design and Data Analysis for Biologists. 2002 Mar 21;

1305 57. Stephens MA. EDF statistics for goodness of fit and some comparisons. *J Am Stat
1306 Assoc*. 1974;69(347):730–7.

1307 58. Marsaglia G, Tsang WW, Wang J. Evaluating Kolmogorov's Distribution. *J Stat Softw*
1308 [Internet]. 2003 Nov 10 [cited 2022 May 25];8:1–4. Available from:
1309 <https://www.jstatsoft.org/index.php/jss/article/view/v008i18>

1310 59. Smirnov N. Table for Estimating the Goodness of Fit of Empirical Distributions.
1311 <https://doi.org/10.1214/aoms/1177730256> [Internet]. 1948 Jun 1 [cited 2022 May
1312 25];19(2):279–81. Available from: [https://projecteuclid.org/journals/annals-of-
1315 mathematical-statistics/volume-19/issue-2/Table-for-Estimating-the-Goodness-of-Fit-
1316 of-Empirical-Distributions/10.1214/aoms/1177730256.full](https://projecteuclid.org/journals/annals-of-
1313 mathematical-statistics/volume-19/issue-2/Table-for-Estimating-the-Goodness-of-Fit-
1314 of-Empirical-Distributions/10.1214/aoms/1177730256.full)

1317 60. Huber-Carol C, Nikulin M, Nikulin MS, Chimitova E v. Chi-squared Goodness-of-fit
1318 Tests for Censored Data. Chi-squared Goodness-of-fit Tests for Censored Data
1319 [Internet]. 2017 Jun 30 [cited 2022 May 25]; Available from:
<https://onlinelibrary.wiley.com/doi/book/10.1002/9781119427605>

1320 61. HUBER-CAROL C, BALAKRISHNAN N, NIKULIN MS, MESBAH M. Goodness-
1321 of-Fit Tests and Model Validity [Internet]. HUBER-CAROL C, BALAKRISHNAN N,
1322 NIKULIN MS, MESBAH M, editors. Biometrics. Boston: Birkhäuser; 2002 [cited 2022
1323 May 25]. Available from: <https://onlinelibrary.wiley.com/doi/full/10.1111/1541-0420.t01-1-00026>

1325 62. Nikulin MS, Chimitova E v. Comparison of the Chi-squared Goodness-of-fit Test with
1326 Other Tests. Chi-squared Goodness-of-fit Tests for Censored Data. 2017 Jun 30;71:86.

1327 63. Peters J, Büchel C. Neural representations of subjective reward value. Behavioural brain
1328 research [Internet]. 2010 Dec [cited 2022 Dec 21];213(2):135–41. Available from:
1329 <https://pubmed.ncbi.nlm.nih.gov/20420859/>

1330 64. Schultz W. Subjective neuronal coding of reward: temporal value discounting and risk.
1331 Eur J Neurosci [Internet]. 2010 Jun [cited 2022 Dec 21];31(12):2124–35. Available
1332 from: <https://pubmed.ncbi.nlm.nih.gov/20497474/>

1333 65. Zénon A, Duclos Y, Carron R, Witjas T, Baunez C, Régis J, et al. The human
1334 subthalamic nucleus encodes the subjective value of reward and the cost of effort during
1335 decision-making. Brain [Internet]. 2016 Jun 1 [cited 2022 Dec 21];139(Pt 6):1830–43.
1336 Available from: <https://pubmed.ncbi.nlm.nih.gov/27190012/>

1337 66. Galaro JK, Celnik P, Chib VS. Motor Cortex Excitability Reflects the Subjective Value
1338 of Reward and Mediates Its Effects on Incentive-Motivated Performance. J Neurosci
1339 [Internet]. 2019 Feb 13 [cited 2022 Dec 21];39(7):1236–48. Available from:
1340 <https://pubmed.ncbi.nlm.nih.gov/30552182/>

1341 67. Amari SI. Natural Gradient Works Efficiently in Learning. Neural Comput [Internet].
1342 1998 Feb 15 [cited 2022 Aug 13];10(2):251–76. Available from:
1343 <https://direct.mit.edu/neco/article/10/2/251/6143/Natural-Gradient-Works-Efficiently-in-Learning>

1344 68. Krajbich I, Armel C, Rangel A. Visual fixations and the computation and comparison
1345 of value in simple choice. Nature Neuroscience 2010 13:10 [Internet]. 2010 Sep 12
1346 [cited 2022 Dec 21];13(10):1292–8. Available from:
1347 <https://www.nature.com/articles/nn.2635>

1348 69. Cos I, Khamassi M, Girard B. Modelling the learning of biomechanics and visual
1349 planning for decision-making of motor actions. Journal of Physiology-Paris. 2013 Nov
1350 1;107(5):399–408.

1351 70. Shahar N, Hauser TU, Moutoussis M, Moran R, Keramati M, Consortium NSPN, et al.
1352 Improving the reliability of model-based decision-making estimates in the two-stage
1353 decision task with reaction-times and drift-diffusion modeling. PLoS Comput Biol
1354 [Internet]. 2019 Feb 1 [cited 2022 Dec 21];15(2):e1006803. Available from:
1355 <https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006803>

1356 71. Sutton RS, Barto AG. Toward a modern theory of adaptive networks: Expectation and
1357 prediction. Psychol Rev [Internet]. 1981 Mar [cited 2022 Dec 21];88(2):135–70.
1358 Available from: /record/1981-20731-001

1359 72. Dayan P. The Convergence of TD(λ) for General λ . Mach Learn [Internet]. 1992 [cited
1360 2022 Dec 21];8(3):341–62. Available from:
1361 <https://link.springer.com/article/10.1023/A:1022632907294>

1362 73. Marcos E, Genovesio A. Determining Monkey Free Choice Long before the Choice Is
1363 Made: The Principal Role of Prefrontal Neurons Involved in Both Decision and Motor
1364 Processes. Front Neural Circuits [Internet]. 2016 Sep 22 [cited 2022 Dec 21];10(SEP).
1365 Available from: /pmc/articles/PMC5031774/

1366 74. Lam NH, Borduqui T, Hallak J, Roque A, Anticevic A, Krystal JH, et al. Effects of
1367 Altered Excitation-Inhibition Balance on Decision Making in a Cortical Circuit Model.
1368

1369 J Neurosci [Internet]. 2022 Feb 9 [cited 2022 Dec 21];42(6):1035–53. Available from:
1370 <https://pubmed.ncbi.nlm.nih.gov/34887320/>

1371 75. Deco G, Rolls ET. Attention, short-term memory, and action selection: a unifying
1372 theory. Prog Neurobiol [Internet]. 2005 [cited 2023 Jan 3];76(4):236–56. Available
1373 from: <https://pubmed.ncbi.nlm.nih.gov/16257103/>

1374 76. Houk JC, Davis JL, Beiser DG. A Model of How the Basal Ganglia Generate and Use
1375 Neural Signals That Predict Reinforcement. In: Models of Information Processing in the
1376 Basal Ganglia. 1994. p. 249–70.

1377 77. Britten KH, Shadlen MN, Newsome WT, Movshon JA. Responses of neurons in
1378 macaque MT to stochastic motion signals. Vis Neurosci [Internet]. 1993 [cited 2022 Dec
1379 29];10(6):1157–69. Available from: <https://www.cambridge.org/core/journals/visual-neuroscience/article/abs/responses-of-neurons-in-macaque-mt-to-stochastic-motion-signals/C47F087B4BE2FBB6FDE7FC602BE42BDC>

1380 78. Wessel JR, Aron AR. On the Globality of Motor Suppression: Unexpected Events and
1381 Their Influence on Behavior and Cognition. Neuron [Internet]. 2017 Jan 18 [cited 2023
1382 Jan 3];93(2):259–80. Available from: <https://pubmed.ncbi.nlm.nih.gov/28103476/>

1383

1384

1385