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ABSTRACT

Learning to make adaptive decisions depends on exploring options, experiencing their
consequence, and reassessing one’s strategy for the future. Although several studies have
analyzed various aspects of value-based decision-making, most of them have focused on
decisions in which gratification is cued and immediate. By contrast, how the brain gauges
delayed consequence for decision-making remains poorly understood.

To investigate this, we designed a novel decision-making task in which each decision altered
future options to decide upon. The task was organized in groups of inter-dependent trials, and
the participants were instructed to maximize cumulative reward value within each group. In
the absence of any explicit performance feedback, the participants had to test and internally
assess specific criteria to make decisions. The absence of explicit feedback was key to
specifically study how the assessment of consequence forms and influences decisions as
learning progresses.

We formalized this operation mathematically by means of a multi-layered decision-making
model. It uses a mean-field approximation to describe the dynamics of two populations of
neurons which characterize the binary decision-making process. The resulting decision-making
policy is dynamically modulated by an internal oversight mechanism based on the prediction
of consequence. This policy is reinforced by rewarding outcomes. The model was validated by
fitting each individual participants’ behavior. It faithfully predicted non-trivial patterns of
decision-making, regardless of performance level.

These findings provide an explanation to how delayed consequence may be computed and
incorporated into the neural dynamics of decision-making, and to how adaptation occurs in the
absence of explicit feedback.

AUTHOR SUMMARY

Decision-making often entails anticipating the consequences of one’s choices over time.
However, real-world choice outcomes are not always immediate, adding significant challenges
to determining their long-term implications for behavior. Most previous studies on reward-
driven decision-making focus on task paradigms in which the decision outcomes are immediate
and explicitly cued. However, the cognitive and neurobiological mechanisms by which the
brain learns about and incorporates delayed and uncertain consequences remain unclear.
Consequently, the primary aim of our study was twofold. First, we designed an experimental
task in which participants were instructed to maximize the reward value across sequences of
trials in which some of the stimuli offers were dependent on previous choices. Crucially,
participants had to learn the decision-making strategy by making exploratory decisions in the
absence of any explicit feedback. We analyzed the resulting behavior to characterize individual
differences in decision strategy and learning rates. Secondly, we built a model of the underlying
cognitive processes involved in strategy learning and consequence-based decision-making. We
formalized this by using a three-layer model which accurately reproduced the behavior of
individual participants. The resulting model provides a discrete computational account of
consequence-based decision-making.
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s« 1 INTRODUCTION

6s  Adaptive behavior requires making choices that maximize long-term reward while also
66  minimizing effort, costs and risk (1—4). This is commonly studied under the value-based wide
¢7  framework of decision-making (5-7), which conceptualizes choice behavior as a trade-off
6s  between the various benefits and costs associated with different decision options. In most
¢  contexts, choice outcomes are immediate, unambiguous, and explicitly cued. These features
70 make calculating the costs/benefits straightforward, as all the necessary information is directly
71 and immediately available to the decision maker for calculation (8-11). However, it is
72 significantly less clear how decision-makers can compute the time-extended costs and benefits,
73 and thus how they learn to make adaptive choices in contexts where decision outcomes are not
74 made explicit or depend on a prediction of future consequence. In other words, a complete
75 account of value-based choice behavior requires understanding how the brain detects and
76 computes the non-immediate consequences of choices, and how to use this information to guide
77 subsequent decision strategies.

78

79 Why are consequence-based decisions more complicated than simple sensory accumulation
so  perceptual decision-making (12,13)? Firstly, they require an increased temporal span of
st consideration, they are often more uncertain, since there is a greater number of factors to
2 consider, and the environmental variability/unpredictability should be taken into account. All
s3  these aspects make option evaluation more computationally demanding, yielding longer
s deliberation times and a poorer decision accuracy (14,15). This is well-founded by an extensive
ss  body of previous empirical work (16—19). Secondly, because of the aforementioned factors,
s consequence-based decisions also depend on a much broader range of cognitive functions and
7 brain regions than those involved in purely concurrent sensory/perceptual decisions (20), e.g.,
s structures related to working memory (21,22) and higher cognitive processing (23,24). There
$» 1S no consensus about what a minimal set of functions required for consequence-based
90  decisions would be, and little evidence about the neural mechanisms potentially involved
o (7,25).

92

o3 To add clarity to how these cognitive processes unfold in the human brain to achieve
94  consequence-based decision-making, we carried out a two-part study. This consisted of a
os  behavioral experiment with human participants and a neurally-inspired model that reproduce
9 their decision behavior and formalize some of the potential underlying brain mechanisms. First,
97 we designed a novel behavioral paradigm, i.e., the consequential task, in which participants
os  had to learn an optimal strategy to maximize their cumulative reward values across groups of
90 trials. Specifically, participants made perceptual choices between two stimuli. In some blocks,
100 after overcoming the perceptual discrimination, decisions were one-shot, and the reward could
101 be maximized right away by choosing the option associated with the greatest immediate
102 amount. However, other decisions involved groups of trials in which the reward values
103 available in later trials were dependent on choices made in earlier ones. Namely, it was
14 designed in such a way that choosing the larger value in the first trial led to a much lesser
10s  overall amount in the next trials within the same group. Therefore, participants could not
106 maximize the cumulative reward value by optimizing the single-trial reward value. By contrast,
107 the optimal strategy necessarily entails learning that short-term reward value must often be
s sacrificed for larger subsequent reward values. This mechanism is known from studies in delay
100 discounting (26-30), such as the marshmallow experiment (31,32), which we here apply to
1o decision-making in a broader sense. In our task, the optimal decision policy could only be
i1 discovered via exploratory decision-making in the absence of explicit cues, i.e., the participants
12 had to rely on subjective feedback to pick up on the delayed consequences of their decisions
113 across successive trials. In other words, unlike previous experimental paradigms, our task is

3
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14 structured such that maximum cumulative reward value can only be attained when exploiting
s covert dependencies across trials. This makes the consequential task uniquely well-suited to
116 tap into the neural mechanisms specifically involved in consequence-based decisions.

117

s In the second part of our study, we described a novel computational model designed to
1o formalize the dynamics and strategy of decision-making, including the patterns of inhibition
120 and of assessment of far-sighted consequence required to gain maximum cumulative reward.
121 The model is organized in three layers, here identified as low, middle and top. The lower layer,
122 in line with the Amari, Wilson-Cowan and Wong-Wang models (33-38), describes the average
123 dynamics of two populations of neurons in the context of perceptual binary decision-making.
124 The middle and top layers are needed to assess the consequence across the group of trials,
125 incorporating complexity and consequence into the competitive dynamics of decision-making.
126 Despite its simplicity, this model can accurately reproduce the full variety of performance
127 observed across the different participants; in other words, the model captures the full range of
128 processes required for real-world consequence-based decision-making. This model therefore
120 implements the minimal core processes required for consequence-based learning and decision-
130 making, and it is an achievement in its own right. The model describes the assessment of
131 consequence as a complex process which may be described as an extension of value-based
132 decision-making. The decision-making process is supervised by an oversight mechanism that
133 monitors overall performance by means of an internal subjective mechanism of value
134 assessment that integrates information from different sources, and after a few iterations, yields
135 a correct prediction of consequence for each option.

136

w2 RESULTS

138

13 2.1 Task design

140 In this section, we describe the consequential task, specifically designed to tap into the
141 cognitive mechanisms involved in learning delayed consequences in the absence of feedback.
142 In this task, 28 healthy participants were instructed to choose one of the two stimuli, depicting
143 reward values through differently filled water containers, presented left and right on the screen.
144 The participants reported their choices by sliding the computer mouse’s cursor from the central
145 cue to the chosen stimulus (see Figure 1 and Materials and Methods for a thorough description).
146

147 Since consequence depends on a predictive assessment of future contexts, the task was
14¢  organized into two main types of trial blocks, in which the participants had to maximize the
149 reward value. There were the blocks in which trials required one-shot decisions, purely
150 independent from each other. As in most typical decision-making paradigms, the reward value
st in these trials could be maximized by picking the best available option in that instance.
152 However, in other blocks, trials were grouped into pairs or triads of interdependent trials. We
153 called each group of linked consecutive trials an episode to signify the boundary of
1s4+  interdependence between them, and defined the notion of horizon (nz) as a metric for its
1ss quantification. The horizon of a specific episode equaled the number of dependent trials
156 following the first trial of each episode. The nature of the dependence between trials of an
157 episode was such that the mean reward values of the stimuli in the second/third trial were
1ss  systematically increased or decreased based on the participant’s choice in the preceding trial.
150 Specifically, choosing the greater stimulus value led to a reduction of stimuli values in the
160 subsequent trial, whereas achieving greater future value options required deliberately choosing
161 the lesser option in the previous trial (Figure 1b).
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162

163 Participants were instructed that their goal was to maximize the cumulative reward value per
164 episode. Optimal performance across the task as a whole was achieved by choosing “big” in
165 single trial episodes (horizon ny=0), and deliberately choosing “small” in all trials of nz=1 and
166  np=2 episodes except the last, in which “big” should be chosen. However, learning this policy
167 was made challenging by a number of different factors. First, perceptual discrimination,
168 quantifying the size difference between stimuli varies within 1-20% of the container. Second,
160 although the participants were instructed that their choices affect future trials within the
170 episode, the nature of this dependency was not signaled in any obvious way. This means that
111 from the perspective of the participants, the value of the reward offers might at first appear
172 random. Third, explicit feedback after each episode was crucially omitted from the task. The
173 reason for this is that the presence of feedback might have had the undesirable effect of
174 participants focusing on finding the specific sequence of choices within episode yielding
175 optimal feedback, without having to learn the relationship between their decisions and the
176 subsequent trials. In other words, an explicit measure of performance might have reduced the
177 task to an explicit trial-and-error test of deciding for example, “big-small”, “small-big”, etc.,
178 until finding the sequence of choices leading to maximum performance, rather than learning to
179 evaluate each option’s consequence in terms of their prediction of future reward value to attain
150 the goal. In contrast, the absence of feedback made the participants not informed about their
151 performance throughout the block, and ought to oblige them to create an internal sense of
152 assessment, which can only rely on two mechanisms: the sensory perception of the systematic
153 stimuli changes in the subsequent trial after each choice, and the exploration of option choices
154 at each trial during the earlier part of each block. The resulting task essentially becomes a
155 measure of learning about delayed consequences associated with each option in the absence of
156 explicit feedback.

187

158 In summary, for the participants to be able to perform the task, they were informed of the
159 episode-based organization of trials at each block, i.e., the horizon. The instruction to the
190 participant was to find the strategy leading to the most cumulative reward value for each
191 episode and, for the reasons mentioned previously, to actively explore their choices. Further
192 details are shown in the Methods section, and in Figure 1.

193
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195 Figure 1. Time-course of a typical horizon 1 episode of the consequential decision-making task. (a) The episode consists of
196 two dependent trials. The first starts with the message “New Episode Starting” in the center-top of the screen, a circle
197 surrounding a cross in the center (central target), and half full progress bar at the bottom of the screen. The progress bar
198 indicates the current trial within the episode (for horizon 1, 50% during the first trial, 100% during the second trial). After
199 holding for 500ms, the left or right (chosen at random) stimulus is shown, followed by its complementary stimulus 500ms later.
200 Both stimuli are shown together 500ms later which serves as the GO signal. At GO, the participant has to slide the mouse
201 from the central target to the bar of their choosing. Once the selected target is reached, a yellow dot appears over that target.
202 The second trial follows the same pattern as the first. See Methods for more details. (b): Construction scheme for the size of
203 the stimuli in each episode. The first trial within the episode consists of 2 stimuli of size M~+d/2 and M-d/2. The second trial
204 within the episode depends on the selection made in the previous trial. If the first selected stimulus is M-d/2 (following symbol
205 “-""in the figure), then the second trial consists of stimuli with size M+G+d/2 and M+G-d/2, otherwise M-G+d/2 and M-G-
206 d/2 (following symbol “+ " in the figure). The cumulative reward value of the episode can therefore assume 4 distinct values

207 (ordered from best to worst): 2M+G, 2M+G-d, 2M-G+d, and 2M-G. See Methods for more details on the values of M, G, d.

209 2.2 Behavioral Results

210 The metrics extracted from the participants’ behavioral data were their performance (PF),
211 reported choices (CH), reaction time (RT), and visual discrimination (VD) sensitivity. The PF
212 18 a single-episode metric assuming values from 0 (worst) to 1 (best), and is calculated as the
213 percentage of reward value obtained throughout the episode normalized by the maximum and
214 minimum that could have been obtained. CH was the choice made by the participant in each
215 trial, in terms of small or large reward stimulus. The RT was calculated as the time difference
216 between the simultaneous presentation of both stimuli (the GO signal), and the onset of the
217 movement. The VD is the ability to visually discriminate between stimuli, i.e., identifying
218 which one is the bigger/smaller (see Methods for further details). As shown below, when the
219 difference between stimuli (DbS) is small, participants were not able to accurately distinguish
20 between stimuli. The DbS varies within 1-20% of the size of the container.

22 The absence of explicit performance-related feedback at the end of each episode made the task
223 more difficult, and, consequently, not all participants were able to find the optimal strategy.
224 For horizon np=0, all twenty-eight participants but one learned and applied the optimal
25 strategy, i.e., repeatedly selecting the larger stimulus. By contrast, only twenty-two participants
226 learned the optimal strategy during horizon ny=1,2 blocks, i.e., selecting the larger stimulus in
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the last trial only. Most participants who did not learn the optimal strategy for ny=1,2
repeatedly chose the larger stimulus for all trials.
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Figure 2. Summary results across participants. (a) Histogram of learning times, in terms of episodes (E). The learning time is
defined as the first episode throughout the whole session in which the optimal strategy was applied repeatedly (see Methods).
We identified four groups of participants: fast, medium and slow learners, and participants who did not discover the optimal
strategy (NL — No Learning). (b) Histogram of the visual discrimination (VD) calculated by computing the percentage of
correct selections of the last 80 episodes, in the horizon 0 block, for only the most difficult trials (DbS = 0.01). (c) Performance
as a function of DbS, for the trials after the optimal strategy was applied. (d) Reaction Time (RT) versus DbS. The more similar
the stimuli, the longer participants needed to make a decision. (e-f) Regression coefficients for the linear mixed-effects models
P, ~ EQO 4 ny - TE + (E(1°)|part.) and RT ~ EQ9 4 ny - TE + (E(10)|part. ), where P, is the percentage of optimal
choices, RT is the reaction time, E9 is the moment in time (counting episodes in groups of 10), nH is the horizon number,
Tz is the trial within episode counting backwards from last to first, and part. is the participant. We used maximum likelihood
to estimate the model parameters. Participants were divided into two groups: those who learned the optimal strategy (blue)
and those who did not (red), see Panel (a).

Figure 2 shows the summary results for all twenty-eight participants. In Panel (a) we show the
histogram of their learning time in terms of episodes (E), defined as the first episode of the
session in which the optimal strategy was assimilated. Namely, we defined the time at which
the strategy was assimilated as the moment after which the optimal strategy was used in at least
9 out of the following 10 episodes. To ensure that a low success rate was not caused by
perceptual discrimination errors (during low VD), we excluded the most difficult episodes in
terms of DbS to calculate the learning time. The last histogram bar in Figure 2a (shown as NL
— No Learning), shows the aggregate of the 6 participants who never learned the optimal
strategy. We can identify four types of participants as a function of their learning speed: slow,
medium, fast learners, and those participants who did not ever learn the strategy. Figure 2b
shows the VD, for all difficult trials (smallest DbS) and participants, where VD was calculated
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255 as the percentage of correct choices over the last 80 episodes in the horizon ny=0 block. On
256 average, stimuli were discriminated correctly in 71% of the most difficult trials. Thus, despite
257 having learned the optimal strategy, because of the low VD, most participants continued
2ss making some errors. This is reported in Figure 2c, showing the grand average and standard
259 error of the PF across subjects as a function of the difficulty level of the episode, for all episodes
260  following each participant’s learning time (Mixed effects model fit; AIC = -168.88, BIC = -
261 158.442, Log-likelihood = 88.442, p = 7.11E-11). Note that the RT gradually increased with
22 growing difficulty to discriminate the stimuli (Figure 2d), thus exhibiting a gradual and
263 significant sensitivity to VD (Mixed effects model fit; AIC=-101.61, BIC=-89.85, Log-
264 likelihood = 54.81, p =7.67E-25).

265

266 While both PF and RT vary with VD, their dependency on other variables must be established
267 statistically. To assess the learning process, we quantified the relationship of PF and RT with
268 horizon npy, trial within episode Tk, and episode E. To obtain consistent results, we adjusted
269 these variables as follows: the trial within episode is reversed, from last to first, because the
270 optimal choice for the last 7% (large) is the same regardless of the horizon number. The variable
a1 representing the trial within episode counted backwards is denoted as Tj. Furthermore, we
»n grouped the episodes in blocks of 10 and used their average. This new variable is called E(?.
273 Finally, to consider trials within episode independently, we adapted the notion of PF (defined
274 as a summary measure per episode) to an equivalent of PF per trial, i.e., the percentage optimal
275 choices P,.. We then used a linear mixed effects model (39,40) to predict PF and RT. The
276 independent variables for the fixed effects are horizon np, trial within episode T (counted
277 backwards), and the passage of time expressed as groups of 10 episodes E (1 each. We set the
273 random effects for the intercept and the episodes grouped by participant. The resulting models
wo are: Ppe~EQO +ny - Tp + (EA9|part.) and RT~E® +ny - Tz + (EA9|part.). The
0  independent variables for the fixed effects are horizon np, trial within episode T (counted
31 backwards), and the passage of time expressed as groups of 10 episodes E (1 each. We set the
22 random effects for the intercept and the episodes grouped by participant. The resulting models
ware: Pp~EQ0 +ny - Tp + (EA9|part.) and RT~EW® +ny - Tz + (EA9|part.). The
284 regression coefficients, with their respective group significance, are shown in Figure 2e-f. The
285 results of the statistical analysis are reported in the Supplementary Materials Table 2-3. Here,
236 we made the distinction between the group of participants that learned the optimal strategy and
2s7  the ones who did not, according to Figure 2a. In panel (e), P,. decreases with Ty, suggesting
283 that the first trial(s) within the episode are less likely to be guessed right, i.e., favoring the
239 smaller of both stimuli. This makes sense, since only the early trials within the episode required
200 inhibition. Moreover, looking at the amplitude of the regression coefficients, we can state that
201 this has a larger impact in the no-learning case. The same argument can be made for the
22 dependency with ng. The difference between learning and no-learning can be realized when
203 considering the time dependence: for the learners’ group P,. increases as time goes by, i.e.,
104 E(0 increases, while it is not significant for the group that did not learn the optimal strategy.
205 In panel (f), RT shows converse effect directions between learning and no-learning groups for
16  both dependencies on Ty and ny. The participants who learned the optimal strategy exhibited
207 longer RT for the earlier trials within the episode, consistently with the need of inhibiting the
298 selection of the larger stimulus.

300 Although we analyzed the data from all twenty-eight participants, in Figure 3 we show the data
300 from four participants whose behavior was representative of the four groups we defined as a
300 function of their learning speed (no learning, slow, medium, & fast learning). Figure 3 shows
303 their associated PFs, CHs, and RTs metrics. Each column corresponds to a participant and each

8
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row to a different horizon level. Note that all four participants performed the nyp=0 task
correctly (Figure 3a,b). The first three participants also performed ny=1I correctly, while
participant 4 did not learn the correct strategy until he executed ny=2. Note that participant 2
performed ny=2 before ny=1, they learned during ny=2, and then applied the same strategy
for ny=1. Because of this, no learning process can be detected during the ny=1 block. In Figure
3c, note that some RTs are negative. In these cases, the participant did not wait for the
presentation of the GO signal to start the movement.
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Figure 3. Behavioral results for four representative participants. Rows and columns refer to horizons (ny) and participants,
respectively. (a) Performance per episode. (b) Choice behavior per trial, in terms of selecting the bigger or smaller stimulus.
Results are gathered by horizon (ny) and respective trial within episode (Tg). (c) Cumulative density function (CDF) of reaction
times. The color code indicates the trial within episode (green for Te=1, blue for Tp=2, and red for Tp=3).
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3.9 2.3 A Neurally-inspired Model of Consequential Decision-Making

30  In this section, we describe our mathematical formalization of consequential decision-making,
321 incorporating a variable foresight mechanism, adaptive to the specifics of how reward is
32 distributed across trials of each episode. We formalized these processes using a three-layer
323 neural model, described next.

324

325 2.3.1 Layer 1: Neural dynamics

326  To describe the neural dynamics at each trial, we used a mean-field approximation of a
327  biophysically based binary decision-making model (38,41-43). This approximation has been
38 often used to analytically study neuronal dynamics, through analysis of population averages.
329 This included a simplified version that reproduced most features of the original spiking neuron
330 model while using only two internal variables (33).

331

32 The core of the model consists of two populations of excitatory neurons: one sensitive to the
333 stimulus on the left-hand side of the screen (L), and the other to the stimulus on the right (R).
334 The intensity of the evidence is the size of each stimulus, which is directly proportional to the
335 amount of reward displayed. In the model this is captured by the parameters Ar, Ag, respectively.
336 Although in the interest of our task we distinguish between the bigger and smaller stimulus
337 values, in the formulation of the model it is convenient to characterize stimuli based on their
338 position, i.e., left/right. The reason here is that the information on which target is bigger is
339 already conveyed by the respective stimuli values, i.e., the parameters Ar, Ar. Moreover, this
340 allows to introduce an extra degree of freedom in the model, without increasing the number of
341 variables. The equations

342

Tdr;it) = -1+ f(4 + 0, () — 01z (®)) + g€, ()
Eq. 1
t drgit) = —1p(t) + f (A + w47 (t) — 01, (D)) + 0 (O)

343

344 describe the temporal dynamics of the firing rates (7z, 7z) for each of the two populations, and
35 may be interpreted as originating from a neural network as shown in Figure 4a. Each pool has
346 recurrent excitation (w-+), and mutual inhibition (w.). Although the schematic indicates that both
347 excitation and inhibition emanate from a single population of excitatory neurons, this
;s connectivity could be achieved with an equivalent network of excitatory and inhibitory
349 subpopulations (33,35,42,44,45). In particular, we refer to the work by Wong and Wang (33),
350 where they reduced a spiking neural network of both excitatory and inhibitory neurons to a
351 two-variable system describing the firing rate of the mean-field dynamics of two populations
352 of excitatory neurons. We opted for this simplified architecture because they are equivalent
353 under some conditions and provide a more compact formulation. Furthermore, the network
354 shares a basic feature with many other models of bi-stability: to ensure that only one population
355 1s active at any time (mutual exclusivity; (46,47)), mutual inhibition is exerted between the two
356 populations ((48—50)). The overall neuronal dynamics are regulated by the time constant t, and
357 Gaussian noise & with zero mean and standard deviation ¢. The sigmoidal function fis defined

38 as f(X) = Epax/ (1 +exp(—(x — 6)/ E)), with F,,,, denoting the firing rate saturation value.

359
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361 Figure 4. (a) Network structure of binary decision model of mean-field dynamics. The L pool is selective for the stimulus L
362 (Ar), while the other population is sensitive to the appearance of the stimulus R (Ag). The two pools mutually inhibit each other
363 (w.) and have self-excitatory recurrent connections (w+). (b) Firing rate of the two populations (L, R) of excitatory neurons
364 according to the dynamics in Eq. 1. A decision is taken at time 506 ms (vertical dashed line) when the difference in activity
365 between L and R pools passes the threshold of A =25Hz. The strengths of the stimuli are set to A; = 0.0203 and Az = 0.0227.
366 The time constant and the noise are set to T = 80 and o = 0.003, respectively.

3s7  The neural dynamics described in this section refer to the time-course of a single trial, and is
368 related to the discrimination of the two stimuli. The model commits to a perceptual decision
360 when the difference between the L and R pool activity crosses a threshold A (51), see Figure
370 4b. This event defines the trial’s decision time. Note that the decision time and the likelihood
s of picking the larger stimulus are conditioned by the evidence associated with the two stimuli
32 (AL, AR), 1.e., how easy it is to distinguish between them. Namely, the larger the difference
373 between the stimuli is, the more likely and quickly it is that the larger stimulus is selected.

374

375 This type of decision-making model is made such that the larger stimulus is always favored.
376 Although the target with the stronger evidence in Eq. 1 is the most likely to be selected, this
377 behavior becomes a particular case when this first layer interacts with the middle layer of our
378 model, as described in the next section.

379

30 2.3.2 Layer 2: Intended decision

331 While most decision-making models consider only information involving one-shot decisions
32 (33,51-54), the increased temporal span consideration and the uncertainty due to the
383 consequence of the decision-making processes involved in the consequential task require
334 additional elements for our model. The second layer of our model is devoted to build a
385 mechanism capable of dynamically shifting from the natural (perceptual based) impulse of
386 choosing the larger stimulus, to inhibiting that preference and choosing the smaller one. We
337 implemented such a mechanism by means of an inhibitory control pool, which regulates, when
388 desired, the reversal of the selection criterion towards the smaller or larger stimulus. We called
389 this mechanism intended decision, as it defines the intended target to select at each trial. This
30  constitutes the layer enabling the model to switch preference as a function of the context (see
301 layer 3 description).

392

33 Specifically, the intended decision mechanism at each trial is represented as a two-attractor
304 dynamical system. If the state of the model may be interpreted as the continuous expression of
35 its tendency for one over another choice, an attractor is the state towards which the dynamics
36 of the system naturally evolve. Since we have two choices, to implement this we considered
37 the energy function E () = ¥?(y — 1)? that has two basins of attraction at 0 and 1, associated
398 to the small and big stimulus, respectively (see Figure 5a). Hence, the dynamics of ¢ are
399 regulated by

400
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d 1
Ty llc’lit) = 4O () ~ DW®) —1/2) + 5 0y6,() Eq. 2

401

a2 where Ty is a time constant. The Gaussian noise () is scaled by a constant (oy) and decays
a3 quadratically with time. Thus, the noise exerts a strong influence at the beginning of the process
s+ and becomes negligible as one of both basins of attraction is reached.

405

(a) (b) 1
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>
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406
407 Figure 5. Dynamics of the second layer of the model. a) Energy function E () = Y?(p — 1)? with two basins of attraction in
408 0 and 1, associated with the small/big targets, respectively. The small circle represents a possible initial condition for the

409 dynamics of . (b) Ten simulated trajectories for W(t) according to Eq. 2 with initial condition (0) = 0.45 and noise
410 amplitude oy = 0.4.

411

a2 If we set the initial condition to ¥, = 0.5 and let the system evolve, the final state would be
413 either 0 or 1 with equal probability. Shifting the initial condition towards one of the attractors
414 results in an increased likelihood of leaning towards that same attractor, and ultimately its fixed
415 point, i.e., the basin of attraction that was reached. For example, Figure 5b shows 10 simulated
a16  trajectories of ¥ (t) where the initial condition was set to ¥, = 0.45. Since the initial condition
417 1is smaller than 0.5, most of the trajectories have a fixed point of 0. Nevertheless, due to the
413 1nitial noise level, the fewer of them reach 1 as their final state.

419

420  The initial condition (1) and the noise intensity (gy) are interdependent. The closer an initial
421 condition is to one of the attractors, the larger the noise is required to escape that basin of
42 attraction. Behaviorally, the role of the initial condition is to capture the a-priori bias of
423 choosing the smaller/bigger target. Though this is true, please note that a strong initial bias
44  towards one of the targets does not guarantee the final decision, especially when the level of
45  uncertainty is large. Because of this behavioral effect, we refer to the noise intensity oy as
426  decisional uncertainty.

427

#28  The evolution of the dynamical system in Eq. 2 describes the intention of the decision-making
49  process, at each trial 7, of choosing the smaller/bigger target. Once a fixed point is reached, the
50 intention is established. We call 1)(T) the fixed point reached at trial 7, i.e.,

B = tim (o) = {]

42 is the intended decision of choosing the smaller (0) or bigger (1) stimulus.

433

434 Although the small/big stimulus may be favored at each trial, the final decision still depends
435 on the stimuli intensity ratio. More specifically, if the evidence associated with the small/large

436 stimulus is higher/lower than that of its counterpart, the dynamics of the system will evolve as
437 described in the previous section, see Eq. 1. For this reason, we incorporated the intention term

12
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ss  P(T) into Eq. 1, connecting the intended decision layer with the neural dynamics layer. This
430 yields a novel set of equations

dr ~ _
Td—?) =-n®+f (‘p(T)’lL + (1 - LP(T)) Ag + wyr () — w_rR(t)) + &, (t) .
Eq.
Tdr;ft) = —1r(0) + f (J;(T)AR + (1 - LTJ(T)) A+ w,rp(t) — w_rL(t)) +0E(0)

a2 which exhibit the competence of switching preference between the large and small stimulus. If
a3 Y(T) =1, the larger stimulus is favored (and the equations reduce to Eq. 1); however, if
ws P(T) = 0 the smaller is preferred.

445

46 To summarize, this intended decision layer endows the dynamics of decision-making hereby
a7 described with the ability of directing their preference towards either the smaller or bigger
a4s  stimulus in a dynamical fashion. This inhibitory control plays the role of the regulatory criterion
449 (size-wise) with which a decision is made in the consequential task, as described by Eq. 2.

450

451

452 2.3.3 Layer 3: Learning the Strategy

Episode 1 Episode 2
I Trial 1 Trial 2 | I Trial 3 Trial 4 |
Reward 1 —l Reward 2 Reward 3 —l Reward 4 —|

¢>(2 1) | T

[901.2) } / )

gy

learning

Strate

Intended
ecision

Neural
dynamics

A AR

453

454 Figure 6. Multi-layer network structure of mean-field model of consequence-based decision making, in the case of a horizon 1
455 experiment. From the bottom: Neural dynamics layer: pool L is selective for the stimulus L (i), while the other population is
456 sensitive to the appearance of the stimulus R (Ar). The two pools mutually inhibit each other (w.) and have self-excitatory
457 recurrent connections (w+). The dynamics of the firing rate of the two populations is regulated by Eq. 3. Intended decision
458 layer: the function y represents the intention, in terms of decision process, made at each trial T, of aiming for the smaller or
459 bigger target. The dynamics of the intended decision is regulated by Eq. 2. Strategy learning layer: after each trial the strategy
460 is revised, in a reinforcement learning fashion, depending on the magnitude of the gained reward value. The strategy is updated

461 according to Eq. 4.

462

43 Although the previously described intended decision layer endowed our model with the ability
a4 of targeting a specific type of stimulus at each trial, a second mechanism to internally oversee
ss  performance and to promote only beneficial strategies is a requirement. The overall goal for
a6 each participant of the consequential task is to maximize the cumulative reward value
47 throughout an episode. As shown by previous analyses, most participants attained the optimal
a8  strategy after an exploratory phase, gradually improving their performance until the optimum
a0 1is reached. Inspired by the same principle of exploration and reinforcement, we incorporated
470 the strategy learning layer to our model.

13
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471

472 The internal dynamics of an episode are such that selecting the small/large stimulus in a trial
4713 implies an increase/decrease of the mean value of the presented stimuli in the next trial (Figure
412 1). Consequently, the strategy to maximize the reward value must vary as a function of the
475 position of the trial within episode (7%). For clarity, we labelled each trial T via the episode £
476 and the number of trial within episode 7Tg, ie., T=(E,Tg). We use both notations
477 interchangeably.

478

479 The strategy learning implemented for the model abides by the general principle of reinforcing
a0 beneficial strategies and weakening unprofitable ones, much like a reinforcement learning
as1 algorithm (55). At each episode E, the strategy function ¢ = ¢(E,Tg) is updated by
42 considering the intended choice (T) and the reward value R(7) obtained. In our case, this
a3 reward value originates from subjective evaluation for each individual participant in the
a4 absence of explicit feedback. This internal assessment yields a positive or negative perception
a5 of reward, i.e., a subjective reward. Learning implies that the preference for the selected
a6 strategy is reinforced if the subjective reward is considered beneficial. Namely, with a positive
s7  reward (R(T)>0), ¢ is increased if the larger stimulus was chosen ({)(T) = 1) and decreased
sss  otherwise ((T) = 0). Notice that a negative reward discourages the current strategy but
a0 promotes the exploration of alternative strategies and makes possible, eventually, to learn the
a0  optimal one over time. Mathematically, we describe the dynamics of learning as

491

- 2
P(E +1,Tp) = ¢p(E, Tg) + kR(E, Tg) 29 (E, Tg) — 1)(p(E, Tp) — D*(¢(E,Tp))” Eq. 4

492

493 where k is the learning rate. Note that if k=0, ¢(E,Tg) remains constant, i.e., there is no

404 learning. The term (¢p(E,Tg) — 1)2(¢) (E, TE))2 is required to gradually reduce the increment
405 to zero the closer ¢ gets to either zero or one, thus bounding ¢ in the interval [0,1]. The reward
s96  function R(E, Tg) represents the subjective reward. The only requirement for this function is
a7 that R(E, Tg) must be positive/negative if the subjective reward is considered beneficial or not.
a8 In the absence of explicit feedback, as is the case in the current task, participants must look for
499 clues that convey some indirect information about their performance that could feed their
soo  internal criterion of assessment. In our case, the correct clue to look for was the change in the
so  mean M(T) stimuli between consecutive trials within an episode. For this reason, in our
so  simulations we use R(E,Tg) = M(E, Ty + 1) — M(E,Tg) in Eq. 4.

503

s Complementary to the lower layers, the strategy layer operates at a slower-pace, adaptive at a
sos  time scale of episodes. At the end of each episode, the strategy is updated by
sos  reinforcing/weakening the policy that has yielded a positive/negative reward. Mathematically,
so7  as mentioned before, this means that with a positive reward (R(7)>0), ¢ is increased if the
sis  larger stimulus was chosen (1)(T) = 1) and decreased otherwise ((T) = 0). In the long term,
soo  in the case that both the larger stimulus is repeatedly chosen and positive rewards obtained,
sio  then ¢ converges to 1. Otherwise, if both the smaller stimulus is repeatedly chosen and positive
sit rewards obtained, then ¢p converges to 0. This update manifests in the next episode as a change
si2 in the initial condition for the intended decision ¥ (Eq. 2), i.e., suggesting the direction for the
s1i3  intended decision to go. As shown in Figure 5, shifting the initial condition towards one of the
si4 two basins (0 or 1) increases the likelihood of reaching it. In other words, the closer the initial
sis  condition to zero/one, the more likely the intended decision will be small/big. Mathematically,
sie  this can be implemented by setting 1 (0) = ¢(T) for each trial. In other words, the connection
s17 between the intended decision and the strategy layers lays in the influence the strategy learning
sis exerts at each decision.
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519

s20  To conclude, our model consists of a three concurrent layer structure. The dynamics of each
st layer are defined by Eq. 3 (neural dynamics), Eq. 2 (intended decision), and Eq. 4 (strategy
s learning). Figure 6 shows a schematic of the model here described. The bottom part depicts the
523 neural dynamics originated from two pools of neurons encoding the responses to two external
s24  stimuli (L, R). The middle (in yellow) shows the intended decision layer at every trial. Finally,
s2s the top (in green) presents the strategy learning layer, which evolves at a much slower
s26  timescale; the combined information of the intended decision and the subjective reward drives
527 the learning of the strategy.

528

s 2.4 Model Simulations

s30  We performed a parameter space analysis to assess the influence of the model parameters on
s31 the main behavioral metrics of interest: reaction time (RT) and performance (PF). To obtain
s22 meaningful biophysical results for the neuronal dynamics, we simulated our model varying the
533 time constant 1, the noise amplitude o, and the decision threshold A (in Eq. 3) in the following
s34 ranges: T € [25,95], 0 € [1073,1072], and 4 € [0.01,0.035] (see (35)). Also, we set Fmax=
555 0.04ms?, 0=0.015ms", k =0.022 ms”, o+ = 1.4, ® = 1.5. We decided to keep most of the
s36  parameters fixed (as in (35)), i.e., the ones defined within the function /' (see Eq. 3) and the
537 strengths of connection between pools of neurons (o+ and ®.). As we will see below, by only
s33  varying T, o, and A we can simulate a wide range of different behaviors. In Eq. 2, we set t,~10
s39  such that the dynamics of Eq. 2 is faster than the dynamics of Eq. 3 while remaining the same
s40  order of magnitude. Figure 7 a-d shows how RT is affected by T and A. By increasing the time
s41  constant 1, the RT increases both in mean and standard deviation (panel a). The same trend
s&2 occurs when increasing the threshold A (panel b), as expected. When varying the noise G, we
s43  did not find a substantial difference in the RT (panel ¢). Panel (d) shows the joint influence of
s44  tand A on the RT for a fixed value of . By fixing 1, 5, and A, we studied the influence of the
s4s learning rate k and the decisional uncertainty oy, on the PF, and, consequently, on the learning
s46  time #7. Figure 7e shows that learning time decreases as learning rate k& increases, and as
s47  decisional uncertainty o, decreases. Note that for these simulations we used ny=1 with 50
sas episodes, therefore any 7, bigger than 50 means that the optimal strategy was not learned.

549
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551 Figure 7. Parameter space analysis. Both the mean and standard deviation of the reaction time increase consistently with both
552 (a) the time constant tand (b) the threshold A . (c) The noise intensity o does not have a substantial influence on the reaction
553 time. (d) Mean RT varying tand A for a fixed value of . The horizontal and vertical black lines indicate the values for A andt
554 used for (a-c). (e) The learning time t;, decreases when increasing the learning rate k and decreasing the decisional uncertainty

555 oy . — For all panels we used =67, 0=0.001, and A=22 Hz, when not varied for the plot.

556

ss7 To demonstrate the behavior of the model, Figure 8 shows the results of a typical simulation of
sss  a horizon ny =1 experiment. Figure 8a shows the example dynamics of the neural dynamics
sso layer of our model together with the stimuli used in the simulation during the first three
seo  episodes. More specifically, the bottom row shows the time course of the two population firing
sei  rates (Eq. 3) encoding the stimuli L, R depicted in the top row. To better understand the
se2  progression of this process over time, Figure 8b gives an outlook of 36 episodes. The top row
se3  shows the performance and difficulty (in terms of difference between stimuli DbS) metrics.
ses Note that the optimal strategy in this simulation was learned and applied from the 17" episode
ses  onward. After this point, only the most difficult episodes (smallest DbS) managed to diminish
seo  the performance. The same conclusions can be drawn by looking at the middle inset, indeed
ss7  after the 17" episode, the intended decision metric exhibits the same pattern (small for Tx=1,
ses  and big for 7=2) repeatedly. The bottom row shows the strategy learning. For the first trial
seo  within episode (7£=1), ¢ tends to 0, i.e., it pushes the intended decision to choose the smaller
s70 - stimulus. For the second trial within episode (7£=2), the trend is reversed, capturing indeed the
s71 optimal policy.

572
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574 Figure 8. Model example simulations for a horizon 1 block. (a) Simulation of the first 3 episodes. Top row: Stimuli presentation
575 with respective selection made in each trial displayed with a yellow dot. Bottom row: firing rate of the two populations of
576 neurons encoding the left (in blue) and right (in red) stimuli (Eq. 3). Vertical dashed bars indicate the time the decision
577 threshold was crossed. (b) Simulation of 36 consecutive episodes. First row: Performance (blue - solid) and difference between
578 stimuli DbS (green - dashed). Second row: intended decision dynamics of choosing the bigger (1) or smaller (0) stimulus.
579 Third row: evolution of strategy learning for each trial within episode (Tg). Parameters used for the simulations: G=0.3,

580 A=0.025, =80, 0=0.006, ¢po(1,Tz) = 0.5 for Te=1,2, k=0.4, 5;,=0.4.

581

ss2 2.5 Individual Participants’ Behavioral Fit

ss3 This section describes the fit of the model parameters to the participants’ individual behavioral
ssa  metrics. The fitting process is described as a pipeline process. In the first step, the goal is to
sss find the best fit for the neural dynamics by fitting the reaction time (RT) and the visual
sso  discrimination (VD), i.e., fit the parameters 1, 6, A, o and 3 involved in Eq. 3. We then focus
ss7 on the behavioral part. The second step consists of calculating the initial preferential bias ¢.
sss Finally, in the third step, we ran the model using the previously established parameters, and
sso  found the best fit for oy and £, i.e., the decisional uncertainty and the learning rate. The reason
s90  why we fit the parameters in a sequential fashion is the following. The estimates of both RT
so1 and VD depend uniquely on Eq. 3. In order to evaluate the dynamics of the perceptual
se2 processes, RT and VD are fit using horizon nyz=0 only. Once these have been established, we
s93  focus on the behavioral part, by fitting the initial preferential bias, the learning rate and the
so4  decisional uncertainty.

595

s96  2.5.1 Reaction Times and Visual Discrimination
s97  The fitting of the model parameters to each of the participant’s behavioral metrics was
sos  performed in stages. First, we started by considering the neural dynamics layer, and fitting each
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s99  parameter of Eq. 3. The first metric to fit is each participant’s RT. Note that due to response
600  anticipation of the GO signal, the experimental RTs could be negative in a few cases (see Figure
601 3c). A free parameter was incorporated into the model to control for this temporal shift.

602

603  The second metric to fit is the VD, i.e., the ability to distinguish between stimuli. We assumed
604 VD to be specific to each participant, and constant across blocks of each session. As a means
60s  of assessment, we checked how often the larger stimulus had been selected over the last 50
606 correct trials of the ny=0 block for each level of difficulty. The only case where accuracy was
607 low was the highest difficulty level (DbS = 0.01). For our model to capture this aspect, we used
60s  alinear transformation § = a + f3s to re-scale the stimuli s, ranging from 0 (empty) and 1 (full),
69  to a range of meaningful stimuli for the model (A, z~1072, [22]). Furthermore, additional
610 constraints were set for o and P, such that this transformation did not swap the intensities
611 between stimuli (i.e. if s; = sy then §; = §3), and that the input stimuli were always positive
612 (S,r > 0). Abiding by these conditions, we varied o and B and ran a grid-search set of
613  simulations of Eq. 3 (with DbS |s; — sz| = 0.01). We calculated the frequency with which
614  the firing rate of the population encoding the larger stimulus was bigger than the alternative.
615 The result depends not only on o and 3, but also on 1, o, and A (see Supplementary Figure 2).
616  Thus, to capture the large variety of results encompassed by the ranges of 1, 5, and A (see Sec.
617 Model simulations for the respective ranges of values), while abiding by the aforementioned
618  constraints, we let a vary between -0.03 and 0, and 3 vary between 0 and 0.055-2.5a.. These
619 ranges allowed for proper exploration of the parameter space.

620

621
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Figure 9. Model fit to four sample participants’ behavioral metrics. Data used: one block of horizon 1 for participants 1, 3 and
4; one block of horizon 2 for participant 2. The specific parameter values of the fit are displayed in Table 1. (a) Cumulative
distribution function (CDF) of the reaction times (RT) for the participant data (solid red) and model simulation (dashed blue).
(b) Kolmogorov-Smirnov distance (KSD) between the participant and the model’s RT varying tand Afor the best fitting values
of o, aand B The black circle refers to the best fit. (c) Visual discrimination (VD) extracted from model simulations varying
Tand A for the best fitting values of o, a and f. The black circle refers to the best fit. (d) Initial bias ¢y of the participant at
the beginning of the block for each trial within episode (Tg). The more the preferred choice tends towards choosing the larger
(smaller) stimulus, the bigger (smaller) ¢y is. (e) Bottom: Performance of the participant (red crosses) and of the model’s
simulations (blue line: mean, shaded area: confidence interval). Top: Learning time for the participant (black cross) and
model simulations (green error bar). (f) Goodness of fit (GF) for three metrics: reaction time (RT), initial performance (PF;),
and learning time (1). Goodness of fit is calculated as follows: RT = 1- Kolmogorov-Smirnov distance between CDF, PF; =
1- mean square error, t.: 1- difference between learning times of participant and model’s mean divided by the total number
of episodes.

We ran 100-trial simulations of a horizon ny=0 block for each combination of the parameters
1, 6, A, o and B. We then calculated the empirical cumulative distribution functions (CDF) of
the RTs for all trials, and the VDs only for the difficult trials, i.e., when the DbS is 0.01. The
distribution of simulated RTs were then compared with the distributions of experimental RTs
by means of the Kolmogorov-Smirnov distance (KSD) between CDFs (56-59). Since both RTs
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642 and VDs strongly depend on all parameters, both were fit simultaneously. Namely, we consider
o3 the error metric M = KSD + ¢ |VDS™ — VD"®%|, with c being a constant and VD™, VDrel
64«  being the VD from the simulated and real data, respectively. The value of ¢ is discussed at the
64s  end of the Results Section. The parameters t, 6, A, a and 3 that minimize M are selected for
646 the fit.

647

64s  Panels (a-c) in Figure 9 show the optimal parameters for the RT and VD of the four sample
649  participants introduced in the Behavioral Results Section. Figure 9a depicts the CDF of the RT
6so  for the participants and for the best-fit model simulation. Figure 9b presents the KSD between
651 the model and shifted-participant CDFs varying t and A, for a fixed (best-fit) . Likewise,
62 Figure 9¢ shows the mean VD for the model simulations. In both panels (b-c) the circle mark
653  indicates the combination of parameters that gives the best fit.

654

6ss  To summarize, in the first step of the fit, we focused on the neural dynamics layer fit all the
6so  free parameters of Eq. 3, 1i.e., 1, 0, A, a and B, concerned with the visual discrimination. The
6s7  following steps will consider the behavioral component of the data.

658

659

60  2.5.2 Initial Preferential Bias

61 Each participant performing our current task might have an initial choice preference, i.e., a
62 natural bias towards the larger (or smaller) stimulus. In our model this is captured by the
663 parameter ¢y in Eq. 4. In the absence of bias @y equals 0.5. The greater the preference towards
664  the bigger choice, the closer to 1 ¢ will be.

665

666 We set a vector of initial conditions ¢(E = 1,Tg) = ¢, (Tg) for each trial within episode (7%).
667 To quantify ¢y, we selected the first 3 episodes for each participant, and calculated the
6s  frequency fwith which the larger stimulus was selected. The parameter ¢ works as an initial
69 condition for the intended decision process (see Eq. 2). In agreement with the attractor
670 dynamics, if the initial condition coincides with one of the basins of attraction, the system will
671 be locked in that state. To prevent this (since ¢ should only be an initial bias), we rescaled the
62 frequency of the selected choices f'to make the value closer to 0.5, i.e., ¢ = (1 + f)/3 (other
673 rescaling factors could be used and would not change the results). Figure 9d shows the values
674  obtained for ¢y for each trial within episode 7x. Note that we have selected one block from
675 np=2 for participant 2 and ny=1 for the others.

676

677 2.5.3 Learning Rate and Decisional Uncertainty

¢7s  Finally, to fit the remaining parameters o, and k to each participant’s data, we ran the model
679 using the previously established parameters (1, o, A, o, B, and @) and fitted its resulting
eso  performance to that of each participant. For each set of o}, and k, we ran 50 simulations and
es1  extracted the performance mean and standard deviation. To compare model and participant
6s2  performances, we considered different metrics such as goodness-of-fit and likelihood, e.g.,
6s3  Bayesian (BIC) and Akaike information criterions (AIC) (57,59—62). While these are accurate
6s4  methods to compare model performance, these metrics disregard the specific time dependency
ess  throughout each block, which is a key factor to characterize the learning process of the
ess  participant. To fill in this gap, we designed an ad-hoc novel metric consisting of two factors
6s7  that determine the best fit of the learning process. The first is the initial condition, obtained by
ess  calculating the mean-square error of the performance between the model and the data during
6s9  the first five episodes. By minimizing the mean-square error, we ensured that the learning
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60  process began under similar conditions for the model and for the participant. The second factor
eo1 1S the time required to learn the strategy. As already introduced in the Behavioral Results
62  Section, we defined the time at which the strategy was learned as the moment after which the
63  optimal strategy was employed in at least 9 out of the following 10 episodes. To ensure that a
694  low success rate was not due to errors caused by visual discrimination, we excluded the
¢0s  episodes with DbS 0.0/ from this part of the fit. In summary, by combining the results for the
696 initial conditions (/) and the learning time (L), we could extrapolate the best fit for oy and & by
607 minimizing the linear combination L + 0.1 - [.

698

69  Figure 9e shows the participants’ performance (red marks) as well as the associated best-fit
700 model performance (the blue line is the mean, and the colored area is the 95% confidence
700 interval). The top part of the plots depicts the learning time (#,) calculated for the participant
700 (black mark) as well as for the best fit model simulations (green error-bar). Table 1 shows the
703 best-fit parameter values per participant.

704

705 All participants except one learned the strategy yielding maximum reward value. Specifically,
706 participant 1 learned very fast (in 8 episodes). This was fitted by the model with the highest
707 learning rate (k=2.6). Interestingly, even if participant 4 did not learn the correct strategy, the
708 parameters obtained from the fitting process still reported a slow learning process (k=0.2). In
700 addition to this, we noticed that a slightly higher learning rate was reported for participant 3,
710 even if the strategy in this case was learned after 15 episodes only. The reason the learning
711 rates for these two participants are similar, even though they reflect two distinct strategies, lays
712 in the initial condition. Namely, participant 4 began the task with a stronger bias towards
7135 choosing the larger stimulus (¢y(Tz) = {0.67,0.67} against {0.56,0.67} for participant 3).
714 Moreover, the noise amplitude for participant 4 is higher for both the neural dynamics o and
ns  the decisional uncertainty oy, When combining high noise and disadvantageous initial
716 conditions, a weak learning rate is not enough for the strategy to be learned in a block of 50
717 episodes.

718

719 Figure 9f shows the goodness of fit for the two main behavioral metrics we aimed to reproduce:
720 the reaction time (RT), and the performance, in terms of initial performance (PF;) and learning
721 time (#1). To measure the goodness of fit, while remaining consistent with our fitting procedure,
722 we used the following measures. For RT we calculated the KSD, for PF; we evaluated the
723 mean-square error, and for #z we took the difference between the participant’s data and the
724 model’s mean divided by the total number of episodes.

725

726 To summarize, we have first found the best fit for the RT and the VD by minimizing the metric
727 M = KSD + c |VDS™ — VD"¢%| obtained by varying all the free parameters of Eq. 3, i.e., T,
78 o, A, a and B. Then, we calculated the subjective initial bias ¢. Finally, employing these
79  parameters, we found the best fit for the decisional uncertainty oy, and the learning rate k. The
730 very last value that needs to be set, is the constant ¢ in M = KSD + ¢ |[VDS™ — VD" |, To
731 this end, we repeated all the simulations described so far, varying ¢ from 0.1 to 1 in step of 0.1
732 and selecting the value of ¢ that minimize the global goodness of fit. Namely, we minimize the
733 norm of the three-dimensional vector that has as elements the goodness of fit for the reaction
734 time (RT), and the performance, in terms of initial performance (PF;) and learning time (#7).
735 Figure 9 (and Figure 10) shows the results for the best value of c.

736

737 Finally, we show summary results for all 28 participants. To illustrate that the model is able to
733 capture all participants’ behavioral results, Figure 10 shows the goodness of fit for the RT,
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initial performance PF;, and learning time ti. for the entire set of 28 participants. For all three
metrics, we show the scatter plot including each participant, the respective distribution, and the
boxplot depicting the median and the 25th/75th percentile. For reference, we superposed
colored markers on the results of the four sample participants shown in the previous figure.

e T ey S ey =% W pm—
1 — i
= I‘j g im e

0.6 = ' o
E _ .
@) L

0.4 .

0.2 ' . 3 }

0

RT PF,; tr

L

RT PF, t

Figure 10. Goodness of fit. For RT we calculated KSD, for PF; we evaluated the mean-square error, and for t, we took the
difference between the participant’s data and the model’s mean divided by the total number of episodes. For all three metrics,
we show the scatter plot of each single participant, the respective distribution, and the boxplot depicting the median and the
25/75 percentile. For reference, we superposed (colored markers) the results for the four participants shown in the previous
figure.

P.l¢c |GF(RT, PF,t)|tL |k |oy,|T |o A a B & (Tk)

1 10.11{0.93,0.95,1} 8 [2.810.4]53/0.001]0.028]0 0.036]{0.67,0.56}

2 10.21{0.94,1,1} 10(2.7]0.4]195(0.005]0.032{-0.006{0.045|{0.67,0.67,0.67}
3 10.21{0.90,0.90,1} 15]0.5(0.2{74]0.001]0.022|0 0.030]{0.56,0.67}

4 10.21{0.94,0.95,1} - 10.4/0.4195/0.006/0.028|0 0.024]{0.67,0.67}

Table 1 — Parameter values obtained when fitting data from 1 block for each of the 4 participants. The parameters t, o, 4, a,
and Prefer to Eq. 3; ¢y and k belong to Eq. 4; o, is deployed in Eq. 2. The learning time (1) and the goodness of fit (GF)
are shown in the last 2 columns.

To summarize, we performed an individual fit to each of the participant’s behavioral metrics.
We first used the RT distribution and VD of each participant to fit the parameters in Eq. 3.
Once these parameters were fixed, we moved on to calculate the initial bias, and ran simulations
of the model. Finally, we compared the results of the simulations with the performance of the
participants and found the best fit for the behavioral parameters, i.e., the learning rate and
decisional uncertainty.

3 DISCUSSION

Here we studied decision-making as a process in which options may be assessed in terms of
their future consequence, and provided a computational account of their associated cognitive
processes and of their dynamics for adaptive decision-making. To this end, we designed a novel
experimental task in which trials were grouped into episodes of one to three trials, and the
decisions at a trial influence the subsequent stimuli to select upon in the same episode. In brief,
the stimuli during the trials of an episode were deliberately varied to promote inhibitory choices
in the initial trial(s) and incentive ones in the last one. To specifically study how a consequence-
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773 based assessment forms and influences decisions as learning progresses, we provided the
774 participant with the instruction to explore his/her decisions to find the strategy yielding the
775 most cumulative reward value per episode, while depriving them of any performance feedback.
776 In this manner, our purpose was to promote the participant to develop his/her own subjective
777 assessment of performance, based on the observation of stimuli changes in trials after
773 performing each decision. Although the participants acted in a variety of ways, for the most
779 part they explored the space of choices and learned the optimal strategy after a few episodes.
70 This demonstrates that they had grasped the relationship between actual decisions and
781 consequences, incorporated that information to their internal assessment of performance, and
72 modified their decisions-making policies to maximize the reward value.

783

734 In addition to the experimental analyses, this manuscript also introduces a novel mathematical
785 model encompassing the cognitive processes required for consequence-based decision-making
786 in a joint framework. The model is organized in three-layers. The bottom layer describes the
787 average dynamics of two neural populations, representing each the preference for one option,
788 competing against each other until their difference in activity reaches a threshold. The middle
739 layer encompasses the definition of the so-called intended decision, which implements the
790  participant’s preference of choosing the bigger or smaller stimulus at each specific trial. The
791 top layer describes the strategy learning process, which oversees the model’s performance,
792 adapts by reinforcement to maximize the cumulative reward value, and drives the intended
793 decision layer. We argue that this oversight mechanism, combined with the modulation of
794 preference, is consistent with an internal process of consequence assessment and subsequent
795 policy update. As part of a global validation process, the model parameters were fit to each
796  participant’s behavioral data (reaction time distribution, visual discrimination, initial bias, and
797 performance). The model predictions faithfully reproduced these metrics along with the
798 learning time for each participant, regardless of their level of accuracy throughout the session.
799

g0 3.1 Rule-Based vs Far-Sighted Assessment of Consequence

so1  The optimal strategy to attain maximum cumulative reward value may be reduced to a set of
2 decision rules: choose small, then big in horizon 1 episodes; choose small, then small, then big,
03 in horizon 2 episodes. Although these sequential choices were expected once the learning was
so4  complete and the decision strategy leading to maximum reward value established, the main
sos  focus of this study was on how consequence-based assessment forms and influences the
sos  learning of decision strategies. Thus, it was crucial to run a task design devoid of any explicit
so7  external feedback, which could potentially inform the participant of his/her performance
sos  throughout each episode and ultimately promote a rule-based strategy from the very beginning.
809

sio  For the same purpose, and to promote exploration, the participants were left in the uncertainty
st of neither having a clear criterion to decide upon nor the knowledge about which aspect of the
si2  stimuli to prioritize to obtain bigger reward values in the trial next and across the episode. Note
13 that, in addition to the height of the bars (proportional to reward value), the stimuli at each trial
s« were presented on the right and left of the screen, and were shown sequentially, randomly
sis  alternating their order of presentation across trials. Although meaningless from the perspective
sie  of gaining the most of reward value, both the position and order of presentation contributed to
17 increase the uncertainty as to which dimension of the stimuli were relevant to attain the goal
sis  during the learning phase. In fact, under these conditions, the participants were left with a single
sti9  element that could aid them build their internal criterion to assess performance: perceiving the
s20  relationship between their choice at a trial, and the stimuli being subsequently presented in the
21 next. If noticed, over a few episodes, this piece of evidence could then be used to predict the
22 consequence associated with choosing each option at each trial within episode. To this end,
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23 participants had to rely on their own subjective perception of performance, fed alone by their
24 observations of the stimuli presented after each decision, and by their own internal assessment
s2s  criterion, based on their skill at estimating the sum of water (reward value) throughout the trials
2 of each episode. Importantly, learning the optimal strategy could only be achieved via
27 exploration, either purposely or randomly, testing the pairing between the stimuli presented at
28 each trial, the choice made, and, most importantly, the stimuli of the trial next.

30 To summarize, the problem of having explicit feedback is that the learning of the optimal
31 strategy could be reduced to testing rule-based sequences until the one that gives the optimal
32 feedback is found. Although the optimal strategy consists of the same rule-based sequence, the
33 crucial element of the task is that, to reach that stage, the participant must first forego a phase
s34 of exploration in which learning is driven by exploration and assessment of the reward-based
35 consequence associated with each option. Until then, the learning depends on a computation of
3¢~ reward value encompassing the consideration of far-sighted effect of each decision within
337 episode, on the grounds of an internal subjective assessment criterion that makes this learning
38 possible, and the results hereby presented non-trivial.

s90 3.2 Building a Subjective Assessment Criterion

sst  The crucial element of the aforementioned process is that, in the absence of explicit
s42  performance feedback, learning depends on first building up a subjective criterion of reward.
s3 This criterion necessarily depends on cognitive processes implementing an oversight
s44 mechanism of whether the correct decision criterion is being used, and whether the proper
45 association between the choice and subsequent stimuli is being correctly perceived (63—66).
s46  Moreover, despite the participants being able to find the optimal strategy and diminishing the
s47  uncertainty of their behavior to reach the optimal strategy, the fact they never get an explicit
sas  external confirmation forces them to bear the doubt of whether their strategy is indeed the
s49  optimal one. The discussion of the theoretical formalization presented next suggests a minimal
sso  implementation for these mechanisms. This suggests a plausible strategy for this subjective
ss1 mechanism to capture the relationship between stimuli and subsequent stimuli are established
$s2  on a single trial basis, within the wider decision-making strategy of maximizing cumulative
ss3  reward value.

854

sss 3.3 Computational models of consequence

sse  The analyses described in the results section demonstrate that the consequential task is an
ss7  appropriate framework to study how consequence-based option assessment forms and
sss  influences decision-making. In parallel, the model we developed has the goal of reaching a
ss9  formal characterization of the cognitive processes underlying the operations necessary to
so  perform this task. As for most value-based decision-making models (41,51,67-70), learning in
st our model is operationalized by a reinforcement comparison algorithm, scaled by the difference
s2  between predicted vs. obtained reward value (71,72), measured accordingly to the participant’s
s63  subjectively perceived scale. For simplicity, we assumed a fixed function across participants
s+ to quantify reward value (R(T) function in Eq. 4). Furthermore, to provide the necessary
ses  flexibility for the model to capture the full range of participants’ learning dynamics, the model
66 included a free parameter of learning rate, to be fit to the participant’s behavior. The result is a
se7  model that could faithfully reproduce the full range of behaviors of each participant: RT
ses  distribution, pattern of decision-making, and learning time.

869

70 The structure of the model, organized in three layers, responds to the requirements of a minimal
71 implementation of consequence-based decision-making within the context of our experimental
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s task. The lower layer (neural dynamics) represents the average activity of two neural
73 populations competing for the selection, each representing one of the two stimuli to decide
74 upon. The commitment for one of the two options is taken when the difference in firing rate
75 between the two populations crosses a given threshold (35,41,67). These processes, with small
76 variations, have been used to model decision-making in a broad set of tasks (33,35,73,74) and
77 can describe most types of single-trial, binary decision-making, including value-based and
78 perceptual paradigms. Although is outside of the scope of this investigation, we would like to
s79  mention that this type of model can subserve working memory (33,75); a transient input can
ss0  bring the system from the resting state to one of the two stimulus-selective persistent activity
st states, which can be internally maintained across a delay period. However, modelling
ss2  consequence-based decision-making requires at least two additional mechanisms beyond
ss3  binary population competition. The first one is to define hypothetical criteria to prioritize a
ss4  specific policy for decision-making. The second one is to create an internal mechanism of
sss  performance to evaluate these criteria, based on the difference between predicted and obtained
sss  reward value. Accordingly, the role of the middle layer (intended decision) is precisely the
g7 implementation of specific criteria, which in our case depends on the relative value of the
sss  stimuli and on the number of trial within episode. Finally, the top layer (strategy learning)
ss9  implements the learning via reinforcement comparison (55) and temporal difference (71,76).
so00  The results and predictions depicted in the model descriptive section show that the dynamics
o1 of the three layers combined can accurately reproduce the behavior of each single participant,
2 including those who did not attain the optimal strategy. The low number of equations in the
03 model, together with the low number of free parameters, makes this model a simple, yet
so4  powerful tool able to reproduce a large variety of behavioral results. Moreover, unlike the basic
sos  reinforcement learning agents or models for evidence accumulation, our model is biologically
o6 plausible and therefore able to fit individual behavioral metrics. Furthermore, it allows to
97 extract model-based features of participants, e.g., their initial bias, visual discrimination and
o8  learning rate.

899

900

s 4 Conclusion and Future Work

902 In this manuscript we have introduced a novel minimalistic formalism of the brain dynamics
903  of consequence-based decision-making and its associated learning process. We validated this
904  formalism with the behavioral data gathered from twenty-eight human participants, which the
90s  model could accurately reproduce. By extension of the classic single-trial binary decision-
906  making, we designed a mechanism of oversight based on the assessment of the effect of prior
907  decisions on subsequent stimuli, and a reinforcement rule to modify behavioral preferences.
o0  As part of the same project, we also designed the consequential task, a novel experimental
909 framework in which gaining the most of reward value required learning to assess the
910 consequence associated with each option during the decision-making process. Both the
o1 experimental results and the model predictions review consequence-based decision-making as
912 an extended version of value-based decision-making in which the computation of predicted
913 reward value may extend over several trials. The formalism introduces the necessary notions
o14  of oversight of the current strategy and of adaptive reinforcement, as the minimal requirements
915 to learn consequence-based decision-making.

916

917 Although our model has been designed and tested in the consequential task described here, we
o1s  argue that its generalization to similar paradigms in which optimal decisions require assessing
919 the consequence associated to the options presented, or sequences of multiple decisions, may
920  be relatively straightforward. Specifically, we envision three possible extensions to facilitate
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921 its generalization. First, the model could incorporate several preference criteria simultaneously
922 or combinations thereof to the intended decision layer: left vs. right or first vs. second, instead
923 of small vs. big, to be determined in a dynamical fashion. This could be achieved with a multi-
924  dimensional attractor model, with as many basins of attraction as the number of preference
925 criteria to be considered.

927 The second extension we propose is a re-definition of the reward function R(T) according to
928  the subjective criterion of preference. Namely, if not clearly specified, a reward value can be
929  perceived differently by different subjects, i.e., people operate optimally according to their own
930  subjective perception of the reward value. Because of this, a possible extension is to incorporate
931 an individual reward value function per participant (R(T) in Eq. 4). For simplicity, in this
032 manuscript we set R(T) to be fixed and to be the objective reward value function. In case a
033 participant did not perceive what was the optimal reward value, he/she performed sub-
9034  optimally according to objective reward function, and the model responded by allowing the
935 learning constant k to be zero. This holds since the optimal strategy was never reached, and the
o3¢ fitting of the participant’s performance was correct. Nevertheless, it remains a standing work
037 of significant interest to investigate different subjective reward mechanisms and their
933 implementation in the model.

os0  Finally, the third enhancement we propose for our model is making the learning rate time
o41  dependent, i.e., k(E). This would facilitate reproducing learning processes starting at different
o2 times throughout the session. For example, it is possible that participants initiate the session
943 having in mind a possible (incorrect) strategy and they stick to it without looking for clues, and
os4  therefore without learning the optimal policy. Nevertheless, after many trials they may change
945 their mind and begin to explore different strategies. In this case the learning rate k(E) would be
s46  set to zero for all the initial trials when indeed there is no learning.

947

o4s  Again, we want to emphasize that even if this model is built ad-hoc for the task we designed,
o49 it can be easily adapted to reproduce other tasks of sequential consequence-based decision-
oso  making. Note that the strategy learning mechanism is already general enough to adapt to tasks
os1 where the optimal policy is not fixed throughout the experiment. Indeed, if the optimal policy
92 would change suddenly at some point during the block, the learning mechanism would be able
953 to detect a change and adapt accordingly. Finally, we want to stress that our model could be
os4  applied to other decision-making paradigms, such as a version of the consequential random-
9ss dot task (77) or other multiple-option paradigms. Moreover, our model can be employed not
9s¢ only in human experiments, but also with non-human primates or rodents.

957

958

9 5 MATERIALS AND METHODS

960

961 5.1 Participants

92 A total of 28 participants (15 males, 13 females; age range 18-30 years; all right hand dominant)
93  participated in the experimental task. All participants were neurologically healthy, had normal
94  or corrected to normal vision, were naive as to the purpose of the study, and gave informed
9s  consent before participating. The study was approved by the local Clinical Research Ethics
96  Committee (CEIm Ref. #2021/9743/1) and was conducted in accordance with relevant
97  guidelines and regulations. Participants were paid a €10 show-up fee.
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968

960 5.2 Experimental Setup

970  Participants were situated in the laboratory room at the Facultat de Matematica i Informatica,
971 Universitat de Barcelona, where the task was performed. The participants were seated in a
972 chair, facing the experimental table, with their chest approximately 10cm from the table edge
973 and their right arm resting on its surface. The table defined the plane where reaching
974 movements were to be performed by sliding a light computer mouse (Logitech Inc). On the
975 table, approximately 60cm away from the participant’s sitting position, we placed a vertically-
976 oriented, 24” Acer G245HQ computer screen (1920x1080). This monitor was connected to an
977 Intel 15 (3.20GHz, 64-bit OS, 8 GB RAM) portable computer that ran custom-made scripts,
973 programmed in MATLAB with the help of the MonkeyLogic toolbox, to control task flow
979 (NIMH MonkeyLogic, NIH, USA; https://monkeylogic.nimh.nih.gov). The screen was used to
os0  show the stimuli at each trial and the position of the mouse in real time.

981

o2 As part of the experiment, the participants had to respond by performing overt movements with
9os3  their arm along the table plane while holding the computer mouse. Their movements were
os4  recorded with a Mouse (Logitech, Inc), sampled at 1 kHz, which we used to track hand position.
oss  Given that the monitor was placed upright on the table and movements were performed on the
9ss  table plane (horizontally, approximately from the center of the table to the left or right target
937  side), the plane of movement was perpendicular to that of the screen, where the stimuli and
oss  finger trajectories were presented. Data analyses were performed with custom-built MATLAB
os9  scripts (The Mathworks, Natick, MA), licensed to the Universitat de Barcelona.

990

991 Each participant was required to maintain posture at a fixed distance from the table and to place
992 his/her chin on the chinrest. Pupil diameter from both eyes were tracked and recorded with an
993  EyeTribe oculometer (Oculus, Menlo Park, CA, USA), sampling at 60Hz. We used a chinrest
994  to stabilize posture and to fix the head position at approximately 60cm from the screen and
99s  from the oculometer. The signals delivered by the oculometer were recorded by the
996  OpenFrameworks custom-made code, along with the movement trajectories and other
997  behavioral data. Behavioral data from each session were transferred to a MySQL community
998  server database (Oracle, Redwood Shores, CA, USA) for further analysis using custom-
999  designed MATLAB scripts (Mathworks, Natick, MA, USA). External pulses, generated by the
1000 custom made Openframeworks v1.1 code, were used to synchronize the recordings from both
1001 computers at each trial.

1002

w03 5.3 Consequential Decision-Making Task

1004  This section describes the consequential decision-making task, designed to assess the role of
100s  consequence on decision-making while promoting prefrontal inhibitory control (78). Since
1006 consequence depends on a predictive evaluation of future contexts, we designed a task in which
1007 trials were grouped together into episodes (groups of one, two or three consecutive trials),
1008 establishing the horizon of consequence for the decision-making problem within that block of
1009 trials.

1010

o1 The number of trials per episode equals the horizon ny plus 1. In brief, within an episode, a
012 decision in the initial trial influences the stimuli to be shown in the next trial(s) in a specific
1013 fashion, unbeknown to our participants. Although a reward value is gained by selecting one of
1014 the stimuli presented in each trial, the goal is not to gain the largest amount as possible per trial,
1015 but rather per episode.

1016
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1017 Each participant performed 100 episodes for each horizon ny = 0, 1, and 2. In the interest of
1018 comparing results, we have generated a list of stimuli for each nx and used it for all participants.
010 To avoid fatigue and keep the participants focused, we divided the experiment into 6 blocks,
120 to be performed on the same day, each consisting of approximately 100 trials. More
1021 specifically, there was 1 block of ny=0 with 100 trials, 2 blocks of ny=1 each with 100 trials,
1022 and 3 blocks of ny=2 with two of them of 105 trials and one of 90. Finally, we have randomized
123 the order in which participants performed the horizons.

1024

1025 Figure 1 shows the timeline of one horizon 1 episode (2 consecutive trials). At the beginning
126 of the trial, the participant was required to move the cursor onto a central target. After a fixation
127 time (500 ms), the two target boxes were shown one after the other (for 500 ms each) to the
1028 left and right of the screen, in a random order. Targets were rectangles filled in blue by a
120 percentage corresponding to the reward value associated with each stimulus (analogous to
1030 water containers). Next, both targets were presented together. This served as the GO signal for
1031 the participant to choose one of them (within an interval of 4s). Participants had to report their
1032 choice by making a reaching movement with the computer mouse from the central target to
1033 the target of their choice (right or left container). If the participant did not make a choice within
1034 4 s, the trial was marked as an error trial. Once one of the targets had been reached for and the
1035 participant had held that position (500ms), the selection was recorded, and a yellow dot
1036 appeared above the selected target, indicating successful selection and reward value
1037 acquisition. In case of horizons larger than 0, the second trial started following the same pattern,
1038 although with a set of stimuli that depended on the previous decision (see next section).

1039

a0 5.4 Episode Structure

41 The participants were instructed to maximize the cumulative reward value throughout each
42 episode, namely the sum of water contained by the selected targets across the trials of the
143 episode. If trials within an episode were independent, the optimal choice would be to always
1044 choose the largest stimulus. Since one of the major goals of our study was to investigate delayed
145 consequence assessment involving adaptive choices, we deliberately created dependent trial
146 contexts in which making incentive decisions (selecting the larger stimulus) would not
147 necessarily lead to the most cumulative reward value within episode.

1048

140 To promote inhibitory choices, the inter-trial relationship was designed such that selecting the
10so  small (large) stimulus in a trial, yielded an increase (decrease) in the mean value of the options
10s1 presented in the next trial. For this reason, always choosing the larger stimulus did not
1052 maximize cumulative reward value for ny=1, 2.

1053

1054 Trials were generated according to 3 parameters: horizon’s depth ny, perceptual discrimination
1055 (in terms of difference d between the stimuli), and the gain/loss G in mean size of stimuli for
156 successive trials. The stimuli s; , presented on the screen could take values ranging from 0 to
057 1. Trials were divided into five difficulty levels by setting the difference between stimuli (DbS)
0ss  d € {0.01,0.05,0.1,0.15,0.2}.

1059

160 For horizon ny=0, for each trial the stimuli s, , are generated as to have mean M and difference
61 d between them, i.e., s, = M £ d/2. To have stimuli ranging from 0 to 1, the mean M is
02 randomly generated using a uniform distribution with bounds [d,4x/2,1 — dimax/2], Where
1063 dipax = 0.2 1s the maximum DbS. In horizon ny=1, each episode consists of 2 dependent trials.
64 Specifically, the stimuli presented in the second trial depend on the selection reported in the
1065 previous trial of that same episode. More specifically, the rule is such that if the choice of the
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066 first trial is the smaller/larger stimulus, the mean of the pair of stimuli in the second trial will
1067 be increased/decreased by a specific gain G. In practice, the first trial of an ny=1 episode is
68 generated in the same way as for horizon ny=0, i.e., the two stimuli equal s; , = M + d/2. The
169 stimuli in the second trial within the same episode could be either s;, =M + G £ d/2 or
00 S;, =M — G+ d/2, depending on the previous decision. Note that the difficulty of the trial
1071 remains constant within episode. A schematic for the trial structure is shown in Figure 1. Again,
102 to have stimuli ranging from 0 to 1, the mean M is randomly generated using a uniform
1073 distribution with bounds [G + d;;4 /2,1 — G — dppax/2). In horizon ny=2, episodes consist of
1074 three trials. The trial generation is structured as for horizon ny=1. Namely, the first trial has
75 stimuli 53, = M + d/2, the second s,, =M + G +d/2, and the third s, , =M+ G+ G
1076 d/2. To have stimuli ranging from 0 to 1, the mean M is randomly generated from a uniform
1077 distribution with bounds [2G + dpqx/2,1 — 2G — dpar/2]. We set the gain/loss parameter to
1078 G=0.3 and G=0.19 for horizon ny=1 and ny = 2, respectively. Our choice was motivated by
1079 the fact that G should be big enough to let the participants perceive the gain/loss between trials,
1080 while simultaneously allowing some variability for the randomly generated means M.

1081

1082

1083 5.5 Statistical analysis

1084 We are interested in testing the relationship of the performance (PF) and the reaction time (RT)
1085 with the horizon ng, trial within episode 7k, and episode E. To have coherent and meaningful
086 results we have adjusted these variables as follows. The trial within episode is counted
1087 backwards from last to first, for the reason that the optimal choice for the last 7% is the same
088 for any horizon. The variable representing the trial within episode counted backwards is
8o denoted Tg. The other adjustment we made is clustering the episodes in groups of 10. This new
100 variable is called E9. Finally, in order to consider trials within episode independently, we
1001 had to adapt the concept of PF since, by definition, it is a measure defined per episode. The
1002 equivalent of PF for a single trial is the percentage of selected optimal choices P,.. We used a
1003 linear mixed effects model (39,40) to predict PF and RT. The independent variables for the
1004 fixed effects are horizon ny, trial within episode Ty (counted backwards), and the evolution in
095 time expressed as blocks of 10 episodes E(1% and we set the random effects for the intercept
09  and the episodes grouped by participant. The resulting formulae are P,,~E1® +ny, - Ty +
w7 (EA9|part.) and RT~E®® +ny - T + (EAO|part.).

1098

1009 The statistics were run separately for the group of participants that learned the optimal strategy
oo and the ones who did not, according to Error! Reference source not found.a. In addition, the R
ot T were z-scored to run the analysis. The results of the statistical analysis are reported in Table
o2 2. The regression coefficients, with respective significance, are shown in Error! Reference
103 source not found.e-f.

1104

1105
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1106
P ~E®O +ny - Tp + (E19|part.)
Group Learn Group No-Learn

AIC -299.61 75.41

BIC -253.81 110.38

Log-likel. ]158.8 -28.7

Fixed Estimate |SE [tStat |pVal [Lower |Upper |Estimate |SE |tStat |[pVal |Lower |Upper

effects

Intercept  ]1.14 0.05[23.7 |10 1.05 1.24 1.19 0.10[20.4 |10 |1.77 2.14
T’E -0.26 0.03(-7.8 |10 ]-0.32 |-0.19 |-1.05 0.07 |-14.0 |10°¢ |-1.19 |-0.90
Ny -0.16 0.02(-6.7 |10 |-020 |-0.11 [-0.42 0.05(-8.1 |10 |-0.52 |-0.32
E(10) 0.02 0.0017.1 102 10.02 0.03 -0.00 0.01}-0.6 ]0.58 |[-0.02 ]0.01

9 -16
T'E:nH 0.10 0.025.8 10 0.07 0.14 10.34 0.04 8.6 10 0.26 0.42

1107 Table 2 — Linear mixed effects model with formula Py,~E® +ny, - Ty + (E (10) |part. ) for the percentage of optimal
1108 choices selected (P,.), horizon nH, trial within episode Tg (counted backwards), and the evolution in time expressed as
1109 blocks of 10 episodes E19.

1110
1111
1112
RT~EY% +ny, - Tp 4+ (EA|part.)
Group Learn Group No-Learn
AIC 3105 780
BIC 3151 815
Log-likel. |-1544 -381
Fixed Estimate |SE (tStat |pVal |Lower [Upper |Estimate SE [(tStat |pVal Lower |Upper
effects
Intercept -0.70 0.20-3.6 |10* |-1.08 |-0.31 1.58 0.41[3.85 [10* 10.77 2.38
T'E 0.66 0.14 |4.9 10 10.40 0.93 -1.00 0.20(-5.09 107 |-1.39 |-0.61
Ny 0.12 0.09 1.3 0.20 |-0.06 |0.31 -0.87 0.14]-6.34 |101° |-1.14 |-0.60
E(10) -0.04 0.01 [-4.0 (10° |-0.06 [-0.02 }-0.03 0.03]-1.21 {0.23 |-0.09 ]0.02
-9
TE: ny -0.17 0.07(-2.3 10.02 |[-0.31 |-0.02 Jo.61 0.105.88 |10 0.41 0.82
1113 Table 3 — Linear mixed effects model with formula RT~EQ® 4+ ny, - Tz + (E(lo) |part. ) for the percentage of optimal
1114 choices selected (P,.), horizon nH, trial within episode Tg (counted backwards), and the evolution in time expressed as

1115 blocks of 10 episodes E19.
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