

1

2

3

4 **Distinct roles of α - and β -tubulin C-terminal tails for**
5 **ciliary function as revealed by a CRISPR/Cas9**
6 **mediated gene editing in *Chlamydomonas***

7

8

9 **Tomohiro Kubo^{1*}, Yuma Tani², Haru-Aki Yanagisawa², Masahide Kikkawa², and**
10 **Toshiyuki Oda^{1*}**

11 ¹Department of Anatomy and Structural Biology, Graduate School of Medicine,
12 University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan

13 ² Department of Cell Biology and Anatomy, Graduate School of Medicine, The
14 University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan.

15 *Corresponding authors

16 Email addresses: tkubo@yamanashi.ac.jp; toda@yamanashi.ac.jp

17

18

19 **Running title**

20 Ciliary roles of tubulin C-termini

21

22 **Keywords**

23 Cilia, flagella, tubulin, polyglutamylation, polyglycylation, *Chlamydomonas*

24

25 **Summary statement**

26 *Chlamydomonas* mutants were produced by CRISPR/Cas9 mediated gene editing to
27 investigate ciliary function of tubulin C-terminal tails (CTTs). We found that α - and
28 β -tubulin CTTs are essential for ciliary motility and assembly.

29

30 **Abstract**

31 α - and β -tubulin have an unstructured glutamate-rich region at their C-terminal tails
32 (CTT). The function of this region in cilia/flagella is still unclear, except that glutamates
33 in CTT act as the sites for posttranslational modifications that affect ciliary motility. A
34 unicellular alga *Chlamydomonas* possesses only two α -tubulin genes and two β -tubulin
35 genes, each pair encoding an identical protein. This simple gene organization may
36 enable a complete replacement of the wild-type tubulin with its mutated version. Here,
37 using CRISPR/Cas9, we generated mutants expressing tubulins with modified CTTs.
38 We found that the mutant whose four glutamate residues in the α -tubulin CTT have
39 been replaced by alanine almost completely lacked polyglutamylated tubulin and
40 displayed paralyzed cilia. In contrast, the mutant lacking the glutamate-rich region of
41 the β -tubulin CTT assembled short cilia without the central apparatus. This phenotype is
42 similar to the mutants harboring a mutation in a subunit of katanin, whose function has
43 been shown to depend on the β -tubulin CTT. Therefore, our study reveals distinct and
44 important roles of α - and β -tubulin CTT in the formation and function of cilia.

45 (178 words)

46 **Introduction**

47 A tubulin molecule consists of an ~400 amino-acid core and an unstructured ~20
48 amino-acid C-terminal tail (CTT) abundant in glutamate residues (Nogales et al., 1998).
49 In microtubules, the C-terminal region protrudes from protofilaments and affects
50 various aspects of microtubule function: tubulin polymerization (Serrano et al., 1984),
51 microtubule severing (Roll-Mecak and Vale, 2008), kinetochore dynamics (Miller et al.,
52 2008), and interactions with motor proteins (Wang and Sheetz et al., 2000; Sirajuddin et
53 al., 2014) and microtubule-associated proteins (Hinrichs et al., 2012). However, the
54 function of tubulin CTT in cilia and flagella (interchangeable terms), whose abnormality
55 causes various human diseases collectively called the “ciliopathy,” is still obscure.

56 Several kinds of posttranslational modifications (PTMs), including
57 polyglutamylation and polyglycylation, occur in the tubulin CTT. Polyglutamylation, a
58 modification on the γ -carboxyl group of glutamate residues, forms side chains of up to
59 20 glutamate units (Eddé et al., 1990; Rüdiger et al., 1992; Audebert et al., 1994;
60 Redeker et al., 2005). We and others have previously shown that this modification
61 regulates ciliary motility (Kubo et al., 2010; Suryavanshi et al., 2010; Ikegami et al.,
62 2010) by affecting an axonemal structure called the nexin-dynein regulatory complex
63 (Kubo et al., 2012; 2017). Another kind of tubulin modification, polyglycylation,
64 competes with polyglutamylation for the same glutamate residues and generates side
65 chains of up to 34 glycyl units (Redeker et al., 1994; 2005). Polyglycylation was shown
66 to be involved in the stability and maintenance of ependymal cilia (Bosch Grau et al.,
67 2013) and primary cilia (Rocha et al., 2014). Recently, this modification was also found
68 to affect the motility of mouse sperm by modulating the power generation of axonemal
69 dyneins (Gadadhar et al., 2021). In mammals, seven out of the 13 members of the
70 tubulin tyrosine ligase-like (TTLL) protein family possess glutamylation activity (Janke
71 et al., 2005; Dijk et al., 2007), and three other members possess glycylation activity
72 (Wloga et al., 2009; Ikegami et al., 2009). In cilia, the levels of glutamylation and
73 glycylation affect each other; namely, the lack of glutamylation causes the increase in
74 glycylation and vice versa (Redeker et al., 2005). However, physiological significance
75 of this anticorrelation between the two PTMs for ciliary functions is still unclear.

76 We used *Chlamydomonas reinhardtii*, which possesses only two α -tubulin
77 genes (*TUA1* and *TUA2*) and two β -tubulin genes (*TUB1* and *TUB2*), each pair
78 encoding an identical protein (Silflow et al., 1985; Figure 1A, 5A). Such a small
79 number of tubulin genes and species variation is a feature not seen in mammalian cells,
80 which normally have multiple genes for both α - and β -tubulins. The simple gene
81 organization of tubulins in *Chlamydomonas* may enable complete replacements of the

82 wild-type tubulin with mutated versions by gene editing. In this study, using a
83 CRISPR/Cas9, we generated strains harboring mutations in the CTT of either α - or
84 β -tubulin. For α -tubulin, we generated mutants in which the four glutamate residues in
85 the CTT were replaced by alanine. For β -tubulin, we produced mutants lacking variable
86 lengths of the CTT region where multiple glutamate residues are clustered. The
87 α -tubulin mutant named *TUA1(4A)* without four glutamate residues (E445, E447, E449,
88 E450) was found to completely lack polyglutamylation and ciliary motility. On the other
89 hand, the β -tubulin CTT mutant *TUB2(Δ6E)* without six glutamates (E435, E437, E439,
90 E440, E441, E442) was found to lack glyylation and assemble only short cilia without
91 the central-pair microtubules. Our study thus reveals distinct and important roles of α -
92 and β -tubulin CTTs for ciliary function.

93 **Results**

94

95 **Generation of a mutant lacking glutamate residues in the α -tubulin CTT**

96 We set out to produce an α -tubulin CTT mutant lacking the four glutamate residues
97 (E445, E447, E449, and E450; Figure 1B) predicted as glutamylation and glycation
98 sites (Redeker et al., 2005). Because either one of the two α -tubulin genes of
99 *Chlamydomonas*, *TUA1* (Cre03.g190950) and *TUA2* (Cre04.g216850) (Figure 1A), can
100 complement the lack of the other (Fromherz et al., 2004; Kato-Minoura et al., 2020), we
101 used a strain lacking the *TUA2* gene and replaced all the four glutamates with alanine in
102 the *TUA1* protein.

103 First, a *TUA2*-knockout strain was generated. A paromomycin-resistant gene
104 cassette was inserted into the intron 1 of *TUA2* in the wild-type strain by a
105 CRISPR/Cas9 mediated gene editing (Figure 1C, upper panel). Insertion was detected
106 by PCR and verified by sequencing (Supplemental Figure 1). Semi-quantitative
107 RT-PCR showed that *TUA2* was not expressed whereas *TUA1* expression was nearly
108 doubled in a transformant named *tua2(int1)* (not shown) as in other α -tubulin mutants
109 generated by insertional-mutagenesis (Kato-Minoura et al., 2020). This indicates that
110 α -tubulin is expressed exclusively from *TUA1* in the *tua2(int1)* cell. Next, we
111 introduced a specific donor DNA into the *TUA1*-coding sequence in *tua2(int1)*. The
112 donor DNA encodes a C-terminal sequence of the *TUA1* protein with or without the
113 mutations (Figure 1B), the 3' UTR of *TUA1*, and a hygromycin-resistant gene cassette
114 (Figure 1C, lower panel; Supplemental Figure 2). PCR screening identified several
115 candidates for both the control and the *TUA1* mutant, which were subsequently selected
116 by sequencing of *TUA1* gene for the control and a mutant with four “GAG” to “GCG”
117 mutations reflecting glutamate to alanine replacements (Figure 1D). Representative
118 strains were chosen and named “*TUA1(WT)*” for the control and “*TUA1(4A)*” for the
119 *TUA1* mutant with the glutamate replacements.

120

121 **Tubulin polyglutamylation occurs mostly on the α -tubulin CTT in *Chlamydomonas***

122 We performed indirect immunofluorescence microscopy of nuclear-flagellar apparatus
123 (NFAp) isolated from wild type (cc124), *tpg1*, *TUA1(WT)*, and *TUA1(4A)* to examine
124 the level of polyglutamylation. The mutant *tpg1* lacks TTLL9 polyglutamylase and
125 thereby has a reduced level of axonemal tubulin polyglutamylation (Kubo et al., 2010).
126 PolyE#2, an antibody that recognizes side chains of three or more glutamates (Kubo and
127 Oda, 2017), showed uniform staining of both wild-type and *TUA1(WT)* axonemes along
128 the entire length (Figure 2A). The *tpg1* axoneme had a signal only in the proximal

129 region, consistent with our previous study (Figure 2A; Kubo et al., 2010). In contrast to
130 wild-type and *tpg1* NFAs, the *TUA1(4A)* NFAs displayed very faint fluorescence
131 (Figure 2A). GT335, an antibody that recognizes glutamate side chains of any length
132 including monoglutamylated, showed a staining pattern different from the polyE#2
133 pattern (Figure 2B). The wild-type and *TUA1(WT)* axonemes showed a signal along the
134 length with decreasing intensity towards the tip (Figure 2B). The *tpg1* axoneme
135 displayed a signal only in one third of the proximal region. In contrast, the *TUA1(4A)*
136 axoneme showed essentially no signal (Figure 2B). However, for an unknown reason,
137 the nuclei had intense staining in *TUA1(4A)*.

138 Western blotting of the axonemes supported the immunostaining observation
139 (Figure 3B). In contrast to the wild-type axonemes, which were intensely
140 polyglutamylated, the *tpg1* and *TUA1(4A)* axonemes were much less glutamylated.
141 Absence of both polyE and GT335 signals in the *TUA1(4A)* axonemes suggests that
142 polyglutamylation occurs mostly on the α -tubulin CTT. This is consistent with our
143 previous conclusion that β -tubulin is poorly glutamylated in the *Chlamydomonas*
144 axoneme (Kubo et al., 2010).

145 Indirect immunofluorescence microscopy with an antibody (Gly-pep1)
146 recognizing mono- and bi-glycylated tubulin demonstrated that glycylated tubulin was
147 present along the full length of both wild-type and *TUA1(WT)* axonemes but was absent
148 in their basal bodies and cytoplasmic microtubules (Figure 3C). Interestingly, the level
149 of glycylation increased by ~1.5 times in the *TUA1(4A)* axoneme compared to that of
150 *TUA1(WT)* (Figure 3B, 3C). This result is in accordance with a previous report that
151 mutation in the α -tubulin CTT causes an increase in β -tubulin glyylation, implicating a
152 “cross-talk” between α - and β -tubulin polymodification (Redeker et al., 2005). It must
153 be noted, however, that an antibody recognizing tubulin with long polyglycylated side
154 chains failed to detect signals by Western blotting in any of the axonemal samples used
155 (not shown). As in human cilia (Bré et al., 1996; Rogowski et al., 2009), glycylated side
156 chains most likely do not significantly elongate in *Chlamydomonas* cilia. Indeed,
157 *Chlamydomonas* genome does not have a gene encoding a protein homologous to
158 TTLL10, an enzyme that elongates glycyl side chains (Kubo and Oda, 2019).

159

160 **α -tubulin CTT affects ciliary motility possibly through modulation of the**
161 **inter-doublet friction in the axoneme**

162 Although the *TUA1(4A)* axoneme had an apparently normal protein composition
163 (Figure 3A) and structure (Figure 3D), the cells of this strain were severely defective in
164 motility and showed only some irregular movements (Figure 4A). In contrast, the *tpg1*

165 cells can swim at a reduced velocity (Figure 4A). This suggests that residual
166 polyglutamylation or the glutamate residues of the α -tubulin CTT in the *tpg1* axoneme
167 is important for ciliary motility.

168 To further explore the motility of *TUA1(4A)* cilia, we performed sliding
169 disintegration assay, wherein fragmented axonemes are treated with a protease in the
170 presence of ATP to induce microtubule sliding (Okagaki and Kamiya, 1986; Kurimoto
171 and Kamiya, 1991). Strikingly, nonmotile *TUA1(4A)* axoneme did display sliding
172 disintegration and the velocity of microtubule sliding was much higher than the velocity
173 in the axonemes of wild type, *TUA1(WT)*, or *tpg1* (Figure 4B). The *tpg1* mutation has
174 also been shown to produce faster microtubule sliding in the axoneme lacking outer-arm
175 dyneins (Kubo et al., 2010; 2012). Therefore, the result of *TUA1(4A)* supports the idea
176 that the negative charges of the tubulin C-terminus region increase the inter-microtubule
177 friction (or some inter-doublet binding force) occurring in the axoneme (Kubo et al.,
178 2010; 2012). Together with the fact that *TUA1(4A)* is unable to swim, it is most likely
179 that the polyglutamylation or glutamates in the α -tubulin CTT are necessary for proper
180 force generation of dynein required for the regular ciliary beating.

181

182 **Generation of mutants lacking C-terminal tail of β -tubulin**

183 We next investigated the function of the β -tubulin CTT by truncating its glutamate-rich
184 region. *Chlamydomonas* has two β -tubulin genes, *TUB1* (Cre12.g542250) and *TUB2*
185 (Cre12.g549550) (Figure 5A), encoding an identical polypeptide with nine glutamate
186 residues in their CTT (Figure 5B). We first generated a *TUB1*-knockout mutant by
187 inserting a paromomycin-resistant gene cassette into the *TUB1* gene of the wild-type
188 strain (Figure 5C; upper panel). Genotyping and semi-quantitative RT-PCR revealed
189 that *TUB1* expression is undetectable in the novel *tub1(int2)* mutant indicating that it
190 expresses β -tubulin only from *TUB2* (not shown). We then introduced a donor DNA in
191 the *TUB2* coding sequence of *tub1(int2)* to completely or partially truncate the
192 glutamate-rich region of the β -tubulin CTT (Figure 5C; lower panel). We generated
193 mutants lacking four or six glutamates by inserting a stop codon in the *TUB2* coding
194 sequence near the 3' UTR (Figure 5B, 5C). PCR and sequencing identified an insertion
195 of the donor DNA encoding a stop codon, the 3'UTR of *TUB2*, and the
196 hygromycin-resistant gene for the three transformants designated *TUB2(WT)*,
197 *TUB2(Δ4E)*, and *TUB2(Δ6E)*, respectively (Figure 5D). Despite repeated trials, we
198 could not isolate a mutant lacking nine glutamates of β -tubulin CTT in the background
199 of *tub1(int2)*, indicating that a mutant without nine glutamates in the β -tubulin CTT is
200 lethal. All of the isolated strains proliferated normally in the TAP medium. The viability

201 of *TUB2(Δ6E)* was unexpected, because *Tetrahymena* mutants whose β -tubulin
202 glutamates were substituted in three out of the five positions in CTT (E437, E438, E439,
203 E440, and E442) show a hypomorphic or lethal phenotype (Xia et al., 2000; Thazhath et
204 al., 2002; Redeker et al., 2005).

205

206 **Mutants lacking the C-terminal tail of β -tubulin have short nonmotile cilia**

207 Both *TUB2(Δ4E)* and *TUB2(Δ6E)* cells were severely impaired in motility (Figure 6A),
208 suggesting that the β -tubulin CTT is also involved in ciliary function like the α -tubulin
209 CTT. Most severely impaired was *TUB2(Δ6E)*, which did not display swimming at all
210 (Figure 6A). This motility defect may well be due to the abnormal ciliary structure
211 because the *TUB2(Δ6E)* cilia were about half the length of wild-type cilia (Figure 6B).
212 In addition, *TUB2(Δ6E)* failed to regenerate cilia after pH-shock-induced ciliary
213 detachment, while *TUB2(Δ4E)* showed almost normal ciliary regeneration (Figure 6C).

214

215 **Tubulin glyylation takes place mostly on β -tubulin in *Chlamydomonas***

216 Western blotting using polyE and GT335 antibodies showed that the level of
217 polyglutamylation is increased or unchanged in *TUB2(Δ4E)* and *TUB2(Δ6E)* axonemes
218 (Figure 7A). In contrast, the glyylation levels of axonemes in these mutants were
219 significantly decreased; in particular, the signal was almost completely missing in
220 *TUB2(Δ6E)* (Figure 7A). Therefore, it is likely that glyylation mainly occurs on the
221 β -tubulin CTT in *Chlamydomonas*.

222 To determine the localization of axonemal glutamylation and glyylation, we
223 performed immunostaining of NFAs. As expected, both *TUB2(Δ4E)* and *TUB2(Δ6E)*
224 axonemes showed slightly increased polyE#2 staining (Figure 7B). Also as expected,
225 while the NFAp of wild type and *TUB2(WT)* showed intense axonemal staining with the
226 antibody recognizing glyetylated tubulin (Gly-pep1), the NFAs of *TUB2(Δ4E)* and
227 *TUB2(Δ6E)* had significantly decreased levels of the staining (Figure 7C).

228

229 **The *TUB2(Δ6E)* axoneme lacks the central apparatus**

230 To explore the reason for the paralyzed cilia of *TUB2(Δ6E)*, we examined the
231 cross-section images of the isolated axonemes by electron microscopy. The wild type
232 (cc124), *TUB2(WT)*, and *TUB2(Δ4E)* axonemes had a normal “9+2” configuration
233 (Figure 8A; Table 1). Interestingly, however, almost all of the *TUB2(Δ6E)* axoneme
234 images lacked the two central-apparatus microtubules and, instead, contained
235 electron-dense materials in the central lumen (Figure 8A). Several *Chlamydomonas*
236 mutants are also known to lack the central apparatus. It is interesting to note that two

237 central apparatus lacking mutants, *pf15* and *pf19*, have mutations in the subunits of
238 katanin (Dymek et al., 2004; 2012), a protein complex that severs microtubules
239 (McNally and Vale, 1993) depending on its interaction with the β -tubulin CTT (Zehr et
240 al., 2020).

241 The presence of central-apparatus proteins was examined in the axonemes from
242 wild type, *TUB2(WT)*, *TUB2(Δ4E)*, and *TUB2(Δ6E)* by a silver stained SDS-PAGE gel.
243 While the *TUB2(Δ4E)* cilia showed a normal band pattern, the *TUB2(Δ6E)* cilia lacked
244 several bands reflecting the deficiency of the central apparatus (Figure 8B, left). To
245 assess the presence of the proteins that constitute the central-apparatus projections,
246 polyclonal antibodies were raised against CPC1 (C1b projection; 205.1 kDa), FAP221
247 (C1d projection; 104 kDa), FAP101 (C1a projection; 85.7 kDa), KLP1 (C2c projection;
248 83 kDa), PF20 (C2 projection; 53 kDa), and FAP7 (C1a projection; 54.7 kDa)
249 (Supplemental Figure 3) and used for Western blotting of ciliary samples. The results
250 showed that the *TUB2(Δ6E)* cilia lack all the proteins examined (Figure 8B, right).

251

252 **Discussion**

253

254 **Glutamate residues in both α - and β -tubulin CTTs are pivotal for ciliary motility**

255 Our study suggests that glutamylation specifically occurs on α -tubulin whereas
256 glyylation specifically occurs on β -tubulin in *Chlamydomonas* cilia. More specifically,
257 some or all of the four glutamate residues (E445, E447, E449, and E450) in the
258 α -tubulin CTT are likely the main sites for glutamylation, whereas some or all of the six
259 residues (E435, E437, E439, E440, E441, and E442) in the β -tubulin CTT are likely the
260 main sites for glyylation. This feature is the same as that of *Tetrahymena* (Redeker et
261 al., 2005) but different from those of sea urchin sperm (Multigner et al., 1996),
262 mammals (van Dijk et al., 2007), and *Drosophila* (Rogowski et al., 2009) in which the
263 two species of tubulin likely undergo both glutamylation and glyylation.

264 We found that *TUA1(4A)* is almost completely immotile in contrast to *tpg1*,
265 which displays motility albeit reduced. This may be due to the different degrees of
266 tubulin polyglutamylation inhibition in their axonemes; *tpg1* retains polyglutamylated
267 tubulin in the ciliary basal region presumably catalyzed by TTLL enzyme(s) other than
268 TTLL9, while *TUA1(4A)* almost completely lacks polyglutamylation from the base to
269 tip of the axoneme (Figure 2). Previously, we speculated that polyglutamylation
270 increased inter-doublet friction of the outer-doublet microtubules. This speculation was
271 based on the observation that the microtubule sliding in the axonemal fragments of
272 *tpg1oda2* double mutant, which lacks outer-arm dynein, was faster than that in the
273 axonemal fragments of *oda2*. We thought that the putative friction (strong
274 dynein-microtubule interaction) might be important for the generation of ciliary motility
275 (Kubo et al., 2010; 2012). The presence of motility in *tpg1* but not in *TUA1(4A)* cilia
276 suggests that, if the inter-doublet friction was, in fact, important for motility, friction in
277 the proximal region of the cilium may function as a trigger of the ciliary beating cycle.
278 Another possible reason for the loss of motility in *TUA1(4A)* is that axonemal dyneins
279 cannot generate force in the absence of the four glutamates in the α -tubulin CTT.
280 Whether the loss of polyglutamylation per se is the cause of the motility loss in
281 *TUA1(4A)* awaits further studies.

282 Motility analyses of *tpg1* combined with various dynein-lacking mutants led to
283 a conclusion that polyglutamylation is important for the function of inner-arm dynein
284 but not that of outer-arm dynein, because inner-arm dynein deficient mutants with
285 normal outer-arm dynein, but not mutants lacking outer arm, remain motile in the
286 absence of polyglutamylation (Kubo et al., 2010; 2012). A later detailed study strongly
287 suggested that polyglutamylated tubulin directly associates with the nexin-dynein

288 regulatory complex (N-DRC; Kubo et al., 2012; 2017), a structure that bridges between
289 the adjacent outer-doublets and regulates the function of inner-arm dynein. However,
290 our present study suggests that the polyglutamylated side chains or the glutamate
291 residues of the α -tubulin CTT may also affect the function of outer-arm dynein since
292 their loss resulted in a non-motile phenotype even when outer-arm dynein was intact.
293 The true importance of the α -tubulin CTT needs to be examined using various
294 dynein-lacking mutants in the background of mutations that inactivate
295 polyglutamylation while preserving the four glutamates of α -tubulin CTT.

296 Many cells of *TUB2(Δ4E)* failed to swim (Figure 6A) though its axonemal
297 structure was normal (Figure 8A). This suggests that negative charges of glutamate
298 residues of the β -tubulin CTT are also involved in the ciliary motility. However,
299 because the lack of glutamate residues in *TUB2(Δ4E)* coincidentally causes decreased
300 glyylation (Figure 7), there is another possibility that glyylated tubulin also is
301 affecting the ciliary motility. Indeed, tubulin polyglyylation is reported to regulate the
302 function of axonemal dyneins (Gadadhar et al., 2021). Although “poly”glyylation
303 likely does not occur in the *Chlamydomonas* axoneme, glyylation may be important for
304 the ciliary motility. This can be clarified by generating a novel *Chlamydomonas* mutant
305 lacking enzyme(s) responsible for glyylation.

306 In the *TUA1(4A)* axoneme, polyglutamylation was completely missing whereas
307 glyylation increased (Figure 3C). In the *TUB2(Δ4E)* axoneme, in contrast, glyylation
308 was missing whereas polyglutamylation slightly increased. This is consistent with the
309 previous reports that there is an inverse correlation between the level of glutamylation
310 and that of glyylation (Redeker et al., 2005; Wloga et al., 2009; Rogowski et al., 2009).
311 In accordance with these studies, TTLL3 (monoglycylase) and TTLL7 (glutamylase)
312 were found to compete for the same sites on β -tubulin *in vitro* (Garnham et al., 2017).
313 This competition for the same substrate is interpreted as a regulatory mechanism to
314 control the level of tubulin modification, but we still do not understand how the level of
315 α -tubulin glutamylation affects the level of β -tubulin glyylation. Because
316 polyglyylation was also found to modulate ciliary motility (Gadadhar et al., 2021), one
317 idea is that polyglyylation can partially complement the motility defect caused by the
318 lack of polyglutamylation. How these two modifications affect ciliary motility in a
319 coordinated way still needs to be explored.

320

321 **Six glutamate residues of the β -tubulin CTT are dispensable for cell survival in**
322 ***Chlamydomonas***

323 Unexpectedly, we found that the *TUB2(Δ6E)* cells are viable. This is different from

324 *Tetrahymena* mutants with three mutations in five glycation sites of β -tubulin (E437,
325 E438, E439, E440, and E442) showing hypomorphic or lethal phenotype (Xia et al.,
326 2000; Thazhath et al., 2002; Redeker et al., 2005). Although a *Chlamydomonas* cell
327 appears to be inviable without the nine glutamates in the β -tubulin CTT (Figure 5B),
328 our results indicate that the six glutamate residues (E435, E437, E439, E440, E441, and
329 E442) corresponding to the five glycation sites of *Tetrahymena* are dispensable for
330 cell survival in *Chlamydomonas*.

331 In addition to this viable phenotype of *TUB2(Δ6E)*, we noticed some
332 differences between the *TUB2(Δ6E)* cilia and those of the previously reported
333 *Tetrahymena* mutants. The *Tetrahymena* mutants harboring a mutation in the glycation
334 sites of β -tubulin CTT partially lack the B-tubule outer doublets and the central-pair
335 microtubules, and abnormally accumulate IFT-particle proteins between the ciliary
336 membrane and outer doublets (Thazhath et al., 2002; Redeker et al., 2005). However,
337 *TUB2(Δ6E)* cilium had normal outer doublets although it completely lacks the central
338 apparatus (Figure 8A). In addition, IFT particles were of normal level or only slightly
339 increased in the cilia (not shown), and bulged cilia reflecting the abnormal accumulation
340 of IFT-particle proteins were not observed.

341

342 **Glutamate residues of the β -tubulin CTT may be involved in the IFT of tubulin**

343 *TUB2(Δ6E)* is unable to regenerate cilia after pH-shock induced deciliation (Figure 6C).
344 During the assembly of cilia, vast amounts of tubulins are transported into cilia by IFT
345 (Craft et al., 2015). *In vitro* pull-down assay suggested that the N-terminal domains of
346 IFT-particle proteins, IFT74 and IFT81, form a tubulin-binding module. More
347 specifically, the calponin homology domain of the IFT81 N-terminus binds with the
348 globular cores of the tubulin dimer and the basic IFT74 N-terminus likely associates
349 with the acidic tail of β -tubulin (Bhogaraju et al., 2013). In accordance with this idea,
350 the *Chlamydomonas* mutants deficient in either the IFT81 or the IFT74 N-terminus
351 assemble flagella with reduced speed (Kubo et al., 2016; Brown et al., 2015). The
352 inability of *TUB2(Δ6E)* to assemble full-length cilium is consistent with these previous
353 results, indicating that the β -tubulin CTT is involved in the IFT of tubulin. To confirm
354 this idea, the frequency of IFT in the *TUB2(Δ6E)* cilia should be investigated.

355

356 **Glutamate residues of the β -tubulin CTT may be involved in the katanin-mediated 357 assembly of the central apparatus**

358 The phenotype of *TUB2(Δ6E)* - having nonmotile cilia lacking the central apparatus - is
359 shared by *pf15* and *pf19*, each with a mutation in a gene encoding a katanin subunit

360 (Dymek et al., 2004; 2012). Katanin, an AAA ATPase (ATPases associated with diverse
361 cellular activities), is one of the microtubule-severing enzymes (McNally and Vale,
362 1993). Recently, katanin was shown to be involved in the formation of the central
363 apparatus by severing peripheral microtubules to produce central microtubule seeds (Liu
364 et al., 2021). Furthermore, the β -tubulin CTT is necessary and sufficient for katanin to
365 sever microtubules *in vitro* (Zehr et al., 2020). Therefore, the loss of the central
366 apparatus in *TUB2(Δ6E)* lacking the β -tubulin CTT could also be due to the deficiency
367 of katanin function. Even if this is the case, however, we still do not understand why, in
368 the first place, such *Chlamydomonas* mutants with deficient katanin show normal cell
369 proliferation because katanin has been suggested to be also involved in cell mitosis
370 (Vale, 1991; McNally and Thomas, 1998; McNally et al., 2006). Therefore, various
371 aspects of katanin function dependent on the β -tubulin CTT still need to be explored.
372 Our system to introduce a tubulin mutation in *Chlamydomonas* must contribute to
373 clarifying such important microtubule-based functions in the future.

374 **Materials and Methods**

375 **Strains and Cultures**

376 The cells (cc124 and generated mutants, Supplemental Table 1) were maintained on
377 Tris-acetate-phosphate (TAP; Gorman and Levine, 1965) agar plates for long-term
378 storage. For the experiments, the cells were cultured in liquid TAP medium at 25°C with
379 a light/dark cycle of 12:12 h and aeration.

380

381 **Generation of mutants by a CRISPR/Cas9 mediated gene editing**

382 1) Preparation of a Cas9/guide RNA ribonucleoprotein

383 The target sequences were searched using CRISPRdirect (<http://crispr.dbcls.jp/>). The
384 crRNAs (Supplemental Table 2) and tracrRNAs (fasmac) were dissolved in
385 Nuclease-Free Duplex Buffer (Integrated DNA technologies; IDT buffer), dispensed in
386 micro-8-tube strips, and cryo-preserved at -80°C. The crRNA (1 µl, 40 µM) was
387 annealed with tracrRNA (1 µl, 40 µM) by heating at 95°C for 2 min and then cooling
388 down gradually to 25°C over 90 min. 2 µl of annealed guide RNA was then incubated
389 with 0.5 µl Cas9 protein (10 µg/ml; fasmac) with 7.5 µl IDT buffer at 37°C for 15 min
390 to generate Cas9/gRNA RNP.

391

392 2) Transformation of the cell

393 The cells were grown on a TAP agar plate for 5 days under constant light and treated
394 with ~6 ml autolysin (Picariello et al., 2020) for an hour to remove cell walls. The cells
395 were then agitated gently at 40°C for 30 min. The cells were collected by centrifugation
396 (~2,000 rpm, 3 min, room temperature) and washed by 2% sucrose in the TAP medium
397 (TAP sucrose). After centrifugation (~2,000 rpm, 3 min, room temperature), the cells
398 were resuspended to a concentration of 2-7×10⁹ cells/ml. Cas9/gRNA RNP (10 µl),
399 donor DNA (~10 µl; up to 2 µg; Table S2), and the cells (~110 µl) were mixed to give a
400 final volume of 125 µl. The mixture was transferred to a cuvette (0.2 cm gap; Bio-Rad)
401 and electroporated (ECM 630 Electroporation System, BTX) immediately at 350 V,
402 25Ω, and 600 µF. The cuvette was then incubated at 15°C for 60 min. The transformed
403 cells were suspended into 10 ml of TAP sucrose and gently rocked for 24 hours under
404 dim light. The cells were collected by centrifugation, plated on a TAP-agar containing
405 10 µg/ml hygromycin or 10 µg/ml paromomycin, and cultured for 5-7 days under
406 constant light.

407

408 **Western blotting**

409 Western blotting was performed according to Towbin et al. (1979) with some

410 modifications. SDS-protein samples were separated by electrophoresis using a
411 handmade SDS-polyacrylamide gel (7.5 or 9% polyacrylamide) and transferred to a
412 PVDF membrane (Immobilon-P, pore size 0.45 μ m; Merck-Millipore). The membrane
413 was probed with primary antibodies listed in Supplemental Table 3.

414

415 **Production of the antibodies against the central-apparatus proteins**

416 The cDNA sequences encoding partial CPC1 (Cre03.g183200; amino acids 395-801),
417 FAP221 (Cre11.g476376; amino acids 1-762), FAP101 (Cre02.g112100; amino acids
418 652-835), KLP1 (Cre02.g073750; amino acids 451-633), PF20 (Cre04.g227900; amino
419 acids 9-606), and FAP7 (Cre12.g531800; amino acids 269-507) were inserted into the
420 pGEX vector and the polypeptides were expressed in BL21 (DE3) competent E. coli
421 (NEB). Rabbit polyclonal antibodies were raised against the purified polypeptides.

422

423 **Isolation of cilia**

424 Cilia were isolated according to Witman et al. (1972) with some modifications. Briefly,
425 fully grown cells were collected with centrifugation (3,000 rpm, 5 min) and treated with
426 1 mM dibucaine-HCl (Wako) to amputate their cilia. Cilia were washed and collected
427 by centrifugation (10,000 rpm, 20 min, 4°C). Occasionally, flagella were
428 demembranated by 0.1% Igepal CA-630 (Sigma) to prepare axonemal samples.

429

430 **Indirect immunofluorescence microscopy**

431 Immunostaining was carried out following Sanders and Salisbury (1995). Cells from
432 5-10 ml culture were collected by gentle centrifugation and treated with 6 ml autolysin
433 for 60 min to remove cell walls. The cells were washed with NB buffer (6.7 mM
434 Tris-HCl (pH 7.2), 3.7 mM EGTA, 10 mM MgCl₂, and 0.25 mM KCl) and placed on an
435 8 well-slide glass (8 mm well; Matsunami) treated with polyethylenimine. The cells
436 were then fixed with -20°C methanol and -20°C acetone for 5 min, respectively. The
437 cells were first treated with blocking buffer (1% BSA and 3% Fish Skin gelatin in PBS)
438 and incubated with primary antibodies (Supplemental Table 3) followed by secondary
439 antibodies (goat anti-rabbit IgG Alexa 488, 1:200, Invitrogen; goat anti-mouse IgG
440 Alexa Fluor 594, 1:200, Invitrogen). The cells were treated with antifade mountant
441 (SlowFade Diamond, Thermo Fisher Scientific) and encapsulated with a glass cover slip.
442 The sample was examined with a microscope (BX53, Olympus) equipped with an
443 objective lens (100 \times UPlan FL N Oil objective, Olympus). Images were acquired with a
444 CCD camera (ORCA-Flash4.0 sCMOS, Hamamatsu).

445

446 **Transmission electron microscopy (TEM)**

447 TEM observation of the isolated axonemes was performed as described previously
448 (Huang et al., 1979). Briefly, the isolated axonemes were fixed for 1 hour with 2%
449 glutaraldehyde in 10 mM phosphate buffer (pH 7.0) containing 1% tannic acid. After
450 three washes with the buffer, the axonemal pellets were fixed on ice for 45 min with 1%
451 osmium tetroxide in phosphate buffer. The pellets were dehydrated with graded series of
452 ethanol. The pellets were treated with propylene oxide and then embedded in epoxy
453 resin. Thin sections were made by ultra-microtome and were stained with uranyl acetate
454 and lead citrate. Images were obtained by JEM-2100F transmission electron microscope
455 (JEOL, Tokyo, Japan).

456

457 **Ciliary length measurement and motility analyses**

458 To assess ciliary regeneration kinetics, cells were deflagellated by pH shock
459 (Rosenbaum et al., 1969). After the deflagellation, aliquots of the cells were isolated and
460 fixed by 1% glutaraldehyde at 15 min intervals up to 180 min. One cilium each from at
461 least 30 cells was measured by ImageJ to obtain the average length of each time point.

462 Swimming velocity was acquired by tracking images of the moving cells.
463 Briefly, the cells under the dark-field microscope equipped with 40x objective were
464 recorded using a digital camera, and the obtained movies were processed with ImageJ.

465 Microtubule sliding velocity during axonemal disintegration was measured as
466 described previously (Kurimoto and Kamiya, 1991). Briefly, fragmented axonemes (~5
467 μm in length) were placed in a perfusion chamber under a dark-field microscope.
468 Microtubule sliding was induced by a solution containing 0.5 $\mu\text{g}/\text{ml}$ of Type VII
469 bacterial protease (Sigma) and ATP. This process was recorded using a $\times 100$ objective,
470 an oil-immersion dark-field condenser, a light source of a mercury lamp (Olympus,
471 U-RLF-T), and a CCD camera (Olympus, M-3204C).

472

473

474

475 **Acknowledgment**

476 We greatly appreciate Dr. Ritsu Kamiya (Chuo University, Tokyo) for critically reading
477 the manuscript and a constructive discussion.

478

479 **Competing interests**

480 No competing interests declared.

481

482 **Funding**

483 This work was supported by Takeda Science Foundation (to T.K. and T.O.), the Uehara
484 Memorial Foundation (to T.K.), Koyanagi Foundation (to T.K.) and Japan Society for
485 the Promotion of Science [19K16123 (to T.K.), 21H02654 (to T.O.), and 21H05248 (to
486 M.K.)].

487

488 **References**

489

490 Audebert S, Koulakoff A, Berwald-Netter Y, Gros F, Denoulet P, and Eddé B. (1994).
491 Developmental regulation of polyglutamylated alpha- and beta-tubulin in mouse brain
492 neurons. *J Cell Sci.* 107, 2313-2322.

493

494 Bhogaraju S, Cajanek L, Fort C, Blisnick T, Weber K, Taschner M, Mizuno N, Lamla S,
495 Bastin P, Nigg EA, and Lorentzen E. (2013). Molecular basis of tubulin transport within
496 the cilium by IFT74 and IFT81. *Science.* 341, 1009-1012.

497

498 Bosch Grau M, Gonzalez Curto G, Rocha C, Magiera MM, Marques Sousa P, Giordano
499 T, Spassky N, and Janke C. (2013). Tubulin glycylases and glutamylases have distinct
500 functions in stabilization and motility of ependymal cilia. *J Cell Biol.* 202, 441-451.

501

502 Bré MH, Redeker V, Quibell M, Darmanaden-Delorme J, Bressac C, Cosson J, Huitorel
503 P, Schmitter JM, Rossler J, Johnson T, Adoutte A, and Levilliers N. (1996). Axonemal
504 tubulin polyglycylation probed with two monoclonal antibodies: widespread
505 evolutionary distribution, appearance during spermatozoan maturation and possible
506 function in motility. *J Cell Sci.* 109, 727-738.

507

508 Brown JM, Cochran DA, Craige B, Kubo T, and Witman GB. (2015). Assembly of IFT
509 trains at the ciliary base depends on IFT74. *Curr Biol.* 25, 1583-1593.

510

511 Craft JM, Harris JA, Hyman S, Kner P, and Lechtreck KF. (2015). Tubulin transport by
512 IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. *J Cell*
513 *Biol.* 208, 223-237.

514

515 Dymek EE, Lefebvre PA, and Smith EF. (2004). PF15p is the *chlamydomonas*
516 homologue of the Katanin p80 subunit and is required for assembly of flagellar central
517 microtubules. *Eukaryot Cell.* 3, 870-879.

518

519 Dymek EE, and Smith EF. (2012). PF19 encodes the p60 catalytic subunit of katanin
520 and is required for assembly of the flagellar central apparatus in *Chlamydomonas*. *J Cell*
521 *Sci.* 125, 3357-3366.

522

523 Eddé B, Rossier J, Le Caer JP, Desbruyères E, Gros F, and Denoulet P. (1990).

524 Posttranslational glutamylation of alpha-tubulin. *Science*. 247, 83-85.

525

526 Fromherz S, Giddings TH Jr, Gomez-Ospina N, and Dutcher SK. (2004). Mutations in
527 alpha-tubulin promote basal body maturation and flagellar assembly in the absence of
528 delta-tubulin. *J Cell Sci*. 117, 303-314.

529

530 Gadadhar S, Alvarez Viar G, Hansen JN, Gong A, Kostarev A, Italy-Radio C, Leboucher
531 S, Whitfield M, Ziyyat A, Touré A, Alvarez L, Pigno G, and Janke C. (2021). Tubulin
532 glyylation controls axonemal dynein activity, flagellar beat, and male fertility. *Science*.
533 371, pii: eabd4914.

534

535 Garnham CP, Yu I, Li Y, and Roll-Mecak A. (2017). Crystal structure of tubulin tyrosine
536 ligase-like 3 reveals essential architectural elements unique to tubulin monoglycylases.
537 *Proc Natl Acad Sci U S A*. 114, 6545-6550.

538

539 Gorman DS and Levine RP. (1965). Cytochrome f and plastocyanin: their sequence in
540 the photosynthetic electron transport chain of *Chlamydomonas reinhardtii*. *Proc. Natl.*
541 *Acad. Sci. USA*. 54, 1665-1669.

542

543 Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, and Hegemann P. (2017).
544 Targeting of Photoreceptor Genes in *Chlamydomonas reinhardtii* via Zinc-Finger
545 Nucleases and CRISPR/Cas9. *Plant Cell*. 29, 2498-2518.

546

547 Han L, Rao Q, Yang R, Wang Y, Chai P, Xiong Y, and Zhang K. (2021). Cryo-EM
548 structure of an active central apparatus. *Nat Struct Mol Biol*. 29, 472-482.

549

550 Hinrichs MH, Jalal A, Brenner B, Mandelkow E, Kumar S, and Scholz T. (2012). Tau
551 protein diffuses along the microtubule lattice. *J Biol Chem*. 287, 38559-38568.

552

553 Huang B, Piperno G, and Luck DJ. (1979). Paralyzed flagella mutants of
554 *Chlamydomonas reinhardtii*. Defective for axonemal doublet microtubule arms. *J Biol*
555 *Chem*. 254, 3091-3099.

556

557 Ikegami K, Mukai M, Tsuchida J, Heier RL, Macgregor GR, and Setou M. (2006).
558 TTLL7 is a mammalian beta-tubulin polyglutamylase required for growth of
559 MAP2-positive neurites. *J Biol Chem*. 281, 30707-30716.

560

561 Ikegami K, Sato S, Nakamura K, Ostrowski LE, and Setou M. (2010). Tubulin

562 polyglutamylation is essential for airway ciliary function through the regulation of

563 beating asymmetry. *Proc Natl Acad Sci U S A.* 107, 10490-10495.

564

565 Janke C, Rogowski K, Wloga D, Regnard C, Kajava AV, Strub JM, Temurak N, van

566 Dijk J, Boucher D, van Dorsselaer A, Suryavanshi S, Gaertig J, and Eddé B. (2005).

567 Tubulin polyglutamylase enzymes are members of the TTL domain protein family.

568 *Science.* 308, 1758-1762.

569

570 McNally F J and Thomas S. (1998). Katanin is responsible for the M-phase

571 microtubule-severing activity in Xenopus eggs. *Mol Biol Cell* 9, 1847-1861.

572

573 Kamiya R, and Okamoto M. (1985). A mutant of *Chlamydomonas reinhardtii* that lacks

574 the flagellar outer dynein arm but can swim. *J Cell Sci.* 74, 181-191.

575

576 Kato-Minoura T, Ogiwara Y, Yamano T, Fukuzawa H, and Kamiya R. (2020).

577 *Chlamydomonas reinhardtii* tubulin-gene disruptants for efficient isolation of strains

578 bearing tubulin mutations. *PLoS One.* 15, e0242694.

579

580 Kozminski KG, Johnson KA, Forscher P, and Rosenbaum JL. (1993). A motility in the

581 eukaryotic flagellum unrelated to flagellar beating. *Proc Natl Acad Sci U S A.* 90,

582 5519-5523.

583

584 Kubo T, Brown JM, Bellve K, Craige B, Craft JM, Fogarty K, Lechtreck KF, and

585 Witman GB. Together, the IFT81 and IFT74 N-termini form the main module for

586 intraflagellar transport of tubulin. *J Cell Sci.* 129, 2106-2119.

587

588 Kubo T, Hirono M, Aikawa T, Kamiya R, and Witman GB. (2015). Reduced tubulin

589 polyglutamylation suppresses flagellar shortness in *Chlamydomonas*. *Mol Biol Cell.* 26,

590 2810-2822.

591

592 Kubo T, and Oda T. (2017). Electrostatic interaction between polyglutamylated tubulin

593 and the nexin-dynein regulatory complex regulates flagellar motility. *Mol Biol Cell.* 28,

594 2260-2266.

595

596 Kubo T, and Oda T. (2019). *Chlamydomonas* as a tool to study tubulin
597 polyglutamylation. *Microscopy (Oxf)*. 68, 80-91.

598

599 Kubo T, Yagi T, and Kamiya R. (2012). Tubulin polyglutamylation regulates flagellar
600 motility by controlling a specific inner-arm dynein that interacts with the dynein
601 regulatory complex. *Cytoskeleton*. 69, 1059-1068.

602

603 Kubo T, Yanagisawa HA, Yagi T, Hirono M, and Kamiya R. (2010). Tubulin
604 polyglutamylation regulates axonemal motility by modulating activities of inner-arm
605 dyneins. *Curr Biol*. 20, 441-445.

606

607 Kurimoto E, and Kamiya R. (1991). Microtubule sliding in flagellar axonemes of
608 *Chlamydomonas* mutants missing inner- or outer-arm dynein: velocity measurements on
609 new types of mutants by an improved method. *Cell Motil Cytoskeleton*. 19, 275-281.

610

611 Lefebvre PA, Nordstrom SA, Moulder JE, and Rosenbaum JL. (1978). Flagellar
612 elongation and shortening in *Chlamydomonas*. IV. Effects of flagellar detachment,
613 regeneration, and resorption on the induction of flagellar protein synthesis. *J Cell Biol*.
614 78, 8-27.

615

616 Liu H, Zheng J, Zhu L, Xie L, Chen Y, Zhang Y, Zhang W, Yin Y, Peng C, Zhou J, Zhu
617 X, and Yan X. (2021). Wdr47, Camsaps, and Katanin cooperate to generate ciliary
618 central microtubules. *Nat Commun*. 12, 5796.

619

620 McNally K, Audhya A, Oegema K, and McNally FJ. (2006). Katanin controls mitotic
621 and meiotic spindle length. *J Cell Biol*. 175, 881-891.

622

623 McNally FJ, and Vale RD. (1993). Identification of katanin, an ATPase that severs and
624 disassembles stable microtubules. *Cell*. 75, 419-429.

625

626 Miller SA, Johnson ML, and Stukenberg PT. (2008). Kinetochore attachments require
627 an interaction between unstructured tails on microtubules and Ndc80(Hec1). *Curr Biol*.
628 18, 1785-1791

629

630 Multigner L, Pignot-Paintrand I, Saoudi Y, Job D, Plessmann U, Rüdiger M, and Weber
631 K. (1996). The A and B tubules of the outer doublets of sea urchin sperm axonemes are

632 composed of different tubulin variants. *Biochemistry*. 35, 10862-10871.

633

634 Nogales E, Wolf SG, and Downing KH. (1998). Structure of the alpha beta tubulin

635 dimer by electron crystallography. *Nature*. 391, 199-203.

636

637 Okagaki T, and Kamiya R. (1986). Microtubule sliding in mutant *Chlamydomonas*

638 axonemes devoid of outer or inner dynein arms. *J Cell Biol*. 103, 1895-1902.

639

640 Picariello T, Hou Y, Kubo T, McNeill NA, Yanagisawa HA, Oda T, and Witman GB.

641 (2020). TIM, a targeted insertional mutagenesis method utilizing CRISPR/Cas9 in

642 *Chlamydomonas reinhardtii*. *PLoS One*. 15, e0232594.

643

644 Redeker V, Levilliers N, Vinolo E, Rossier J, Jaillard D, Burnette D, Gaertig J, and Bré

645 MH. (2005). Mutations of tubulin glyylation sites reveal cross-talk between the C

646 termini of alpha- and beta-tubulin and affect the ciliary matrix in *Tetrahymena*. *J Biol*

647 *Chem*. 280, 596-606.

648

649 Redeker V, Melki R, Promé D, Le Caer JP, and Rossier J. (1992). Structure of tubulin

650 C-terminal domain obtained by subtilisin treatment. The major alpha and beta tubulin

651 isotypes from pig brain are glutamylated. *FEBS Lett*. 313, 185-192.

652

653 Rogowski K, Juge F, van Dijk J, Wloga D, Strub JM, Levilliers N, Thomas D, Bré MH,

654 Van Dorsselaer A, Gaertig J, and Janke C. (2009). Evolutionary divergence of

655 enzymatic mechanisms for posttranslational polyglyylation. *Cell*. 137, 1076-1087.

656

657 Roll-Mecak A, and Vale RD. (2008). Structural basis of microtubule severing by the

658 hereditary spastic paraplegia protein spastin. *Nature*. 451, 363-367.

659

660 Rosenbaum JL, Moulder JE, and Ringo DL. (1969). Flagellar elongation and shortening

661 in *Chlamydomonas*. The use of cycloheximide and colchicine to study the synthesis and

662 assembly of flagellar proteins. *J Cell Biol*. 41, 600-619.

663

664 Rocha C, Papon L, Cacheux W, Marques Sousa P, Lascano V, Tort O, Giordano T,

665 Vacher S, Lemmers B, Mariani P, Meseure D, Medema JP, Bièche I, Hahne M, and

666 Janke C. (2014). Tubulin glycylases are required for primary cilia, control of cell

667 proliferation and tumor development in colon. *EMBO J*. 33, 2247-2260.

668

669 Rüdiger M, Plessman U, Klöppel KD, Wehland J, and Weber K. (1992). Class II tubulin,
670 the major brain beta tubulin isotype is polyglutamylated on glutamic acid residue 435.
671 *FEBS Lett.* 308, 101-105.

672

673 Serrano L, de la Torre J, Maccioni RB, and Avila J. (1984). Involvement of the
674 carboxyl-terminal domain of tubulin in the regulation of its assembly. *Proc Natl Acad
675 Sci U S A.* 81, 5989-5993.

676

677 Shamoto N, Narita K, Kubo T, Oda T, and Takeda S. (2018). CFAP70 Is a Novel
678 Axoneme-Binding Protein That Localizes at the Base of the Outer Dynein Arm and
679 Regulates Ciliary Motility. *Cells.* 7(9), 124.

680

681 Silflow CD, Chisholm RL, Conner TW, and Ranum LP. (1985). The two alpha-tubulin
682 genes of *Chlamydomonas reinhardtii* code for slightly different proteins. *Mol Cell Biol.* 5,
683 2389–2398.

684

685 Sirajuddin M, Rice LM, and Vale RD. (2014). Regulation of microtubule motors by
686 tubulin isotypes and post-translational modifications. *Nat Cell Biol.* 16, 335-344.

687

688 Suryavanshi S, Eddé B, Fox LA, Guerrero S, Hard R, Hennessey T, Kabi A, Malison D,
689 Pennock D, Sale WS, Wloga D, and Gaertig J. (2010). Tubulin glutamylation regulates
690 ciliary motility by altering inner dynein arm activity. *Curr Biol.* 20, 435-440.

691

692 Thazhath R, Liu C, and Gaertig J. (2002). Polyglycylation domain of beta-tubulin
693 maintains axonemal architecture and affects cytokinesis in *Tetrahymena*. *Nat Cell Biol.*
694 4, 256-259.

695

696 Towbin H, Staehelin T, and Gordon J. (1979). Electrophoretic transfer of proteins from
697 polyacrylamide gels to nitrocellulose sheets: procedure and some applications.
698 *Biotechnology.* 24, 145-149.

699

700 Vale, R. (1991). Severing of stable microtubules by a mitotically activated protein in
701 Xenopus egg extracts. *Cell.* 64, 827-839.

702

703 van Dijk J, Rogowski K, Miro J, Lacroix B, Eddé B, and Janke C. (2007). A targeted

704 multienzyme mechanism for selective microtubule polyglutamylation. *Mol Cell.* 26,
705 437-448.

706

707 Wang Z, and Sheetz MP. (2000). The C-terminus of tubulin increases cytoplasmic
708 dynein and kinesin processivity. *Biophys J.* 78, 1955-1964.

709

710 Witman GB, Carlson K, Berliner J, and Rosenbaum JL. (1972). *Chlamydomonas*
711 flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes,
712 and mastigonemes. *J Cell Biol.* 54, 507-539.

713

714 Wloga D, Webster DM, Rogowski K, Bré MH, Levilliers N, Jerka-Dziadosz M, Janke C,
715 Dougan ST, and Gaertig J. (2009). TTLL3 Is a tubulin glycine ligase that regulates the
716 assembly of cilia. *Dev Cell.* 16, 867-876.

717

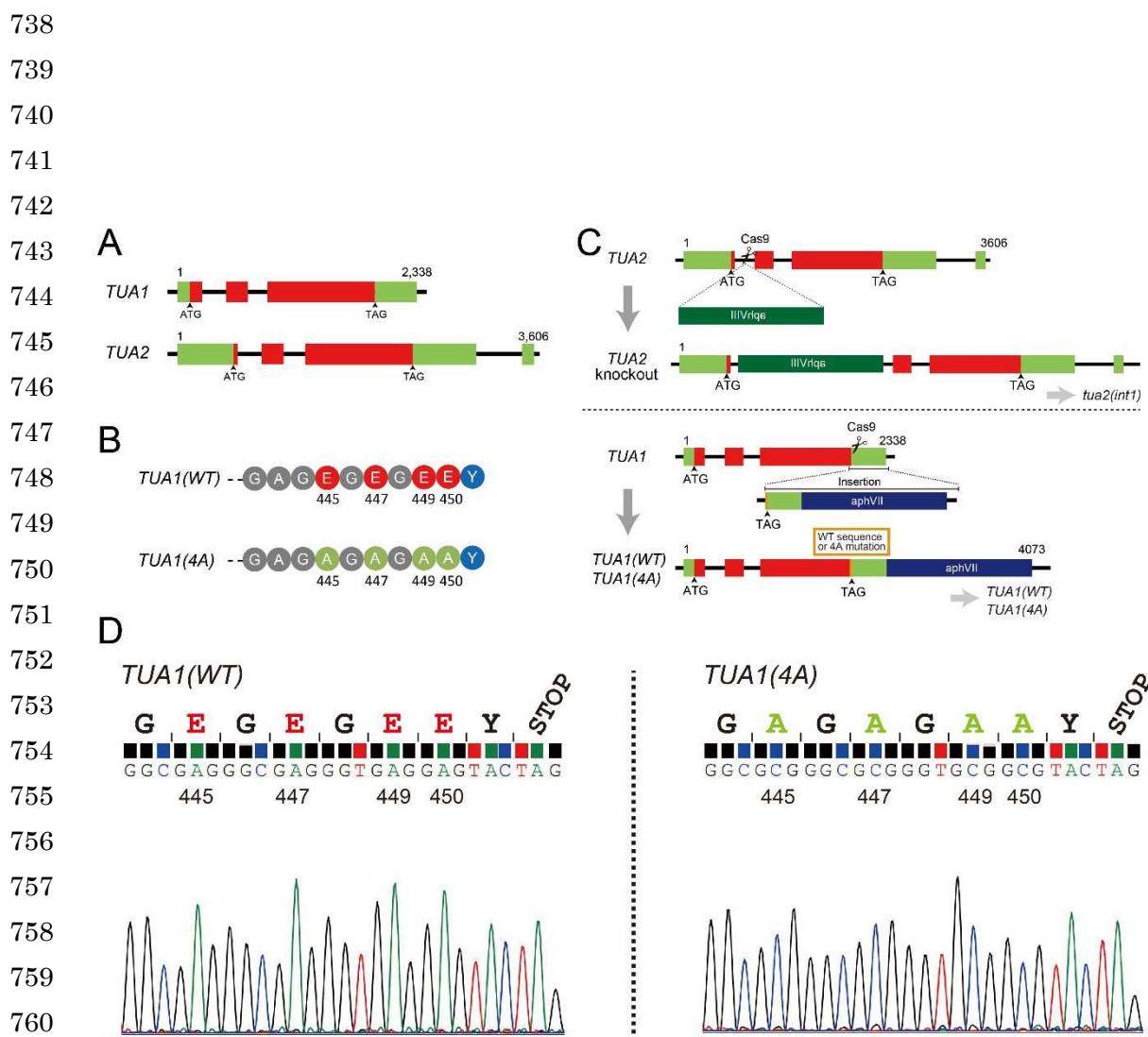
718 Wolff A, de Néchaud B, Chillet D, Mazarguil H, Desbruyères E, Audebert S, Eddé B,
719 Gros F, and Denoulet P. (1992). Distribution of glutamylated alpha and beta-tubulin in
720 mouse tissues using a specific monoclonal antibody, GT335. *Eur J Cell Biol.* 59,
721 425-432.

722

723 Xia L, Hai B, Gao Y, Burnette D, Thazhath R, Duan J, Bré MH, Levilliers N, Gorovsky
724 MA, and Gaertig J. (2000). Polyglycylation of tubulin is essential and affects cell
725 motility and division in *Tetrahymena thermophila*. *J Cell Biol.* 149, 1097-1106.

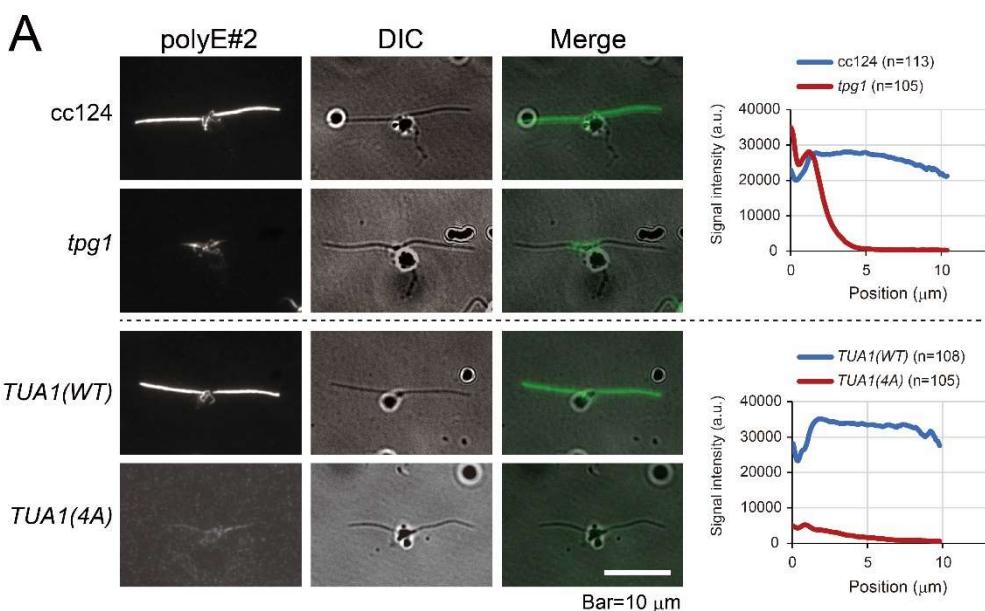
726

727 Yagi T, Uematsu K, Liu Z, and Kamiya R. (2009). Identification of dyneins that localize
728 exclusively to the proximal portion of *Chlamydomonas* flagella. *J Cell Sci.* 122,
729 1306-1314.


730

731 Zehr EA, Szyk A, Szczesna E, and Roll-Mecak A. (2020). Katanin Grips the β -Tubulin
732 Tail through an Electropositive Double Spiral to Sever Microtubules. *Dev Cell.* 52,
733 118-131.

734


735 Zhao L, Hou Y, Picariello T, Craige B, and Witman GB. (2019). Proteome of the central
736 apparatus of a ciliary axoneme. *J Cell Biol.* 218, 2051-2070.

737

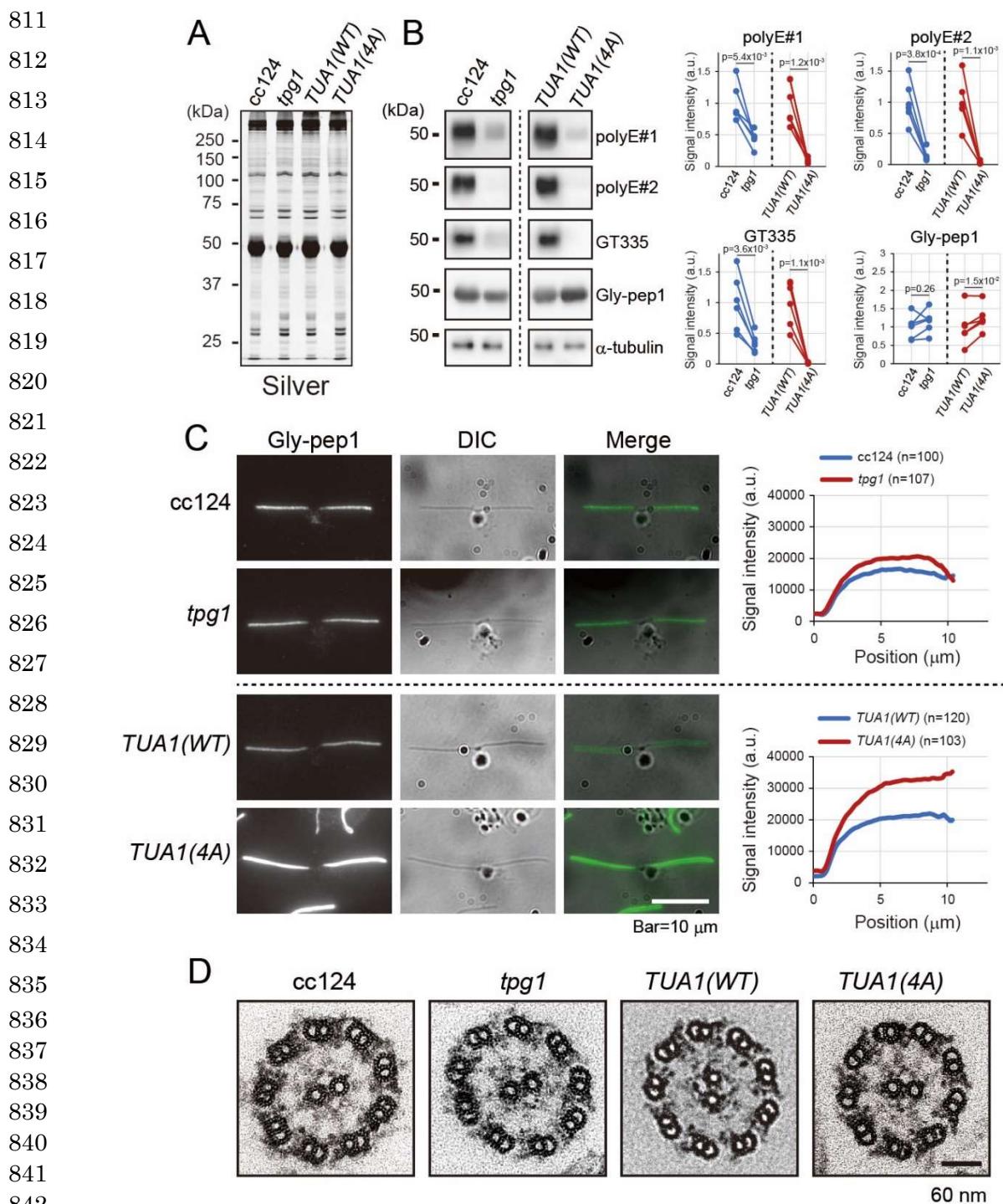
776

777

Figure 2. The mutant *TUA1(4A)* completely lacks α -tubulin glutamylation

Immunostaining of nuclear-flagellar apparatus (NFAp) of wild type (cc124), *tpg1*, *TUA1(WT)*, and *TUA1(4A)* using (A) polyE#2 and (B) GT335 antibodies. One cilium each on at least 100 cells was investigated and the average signal intensity was obtained.

805


806

807

808

809

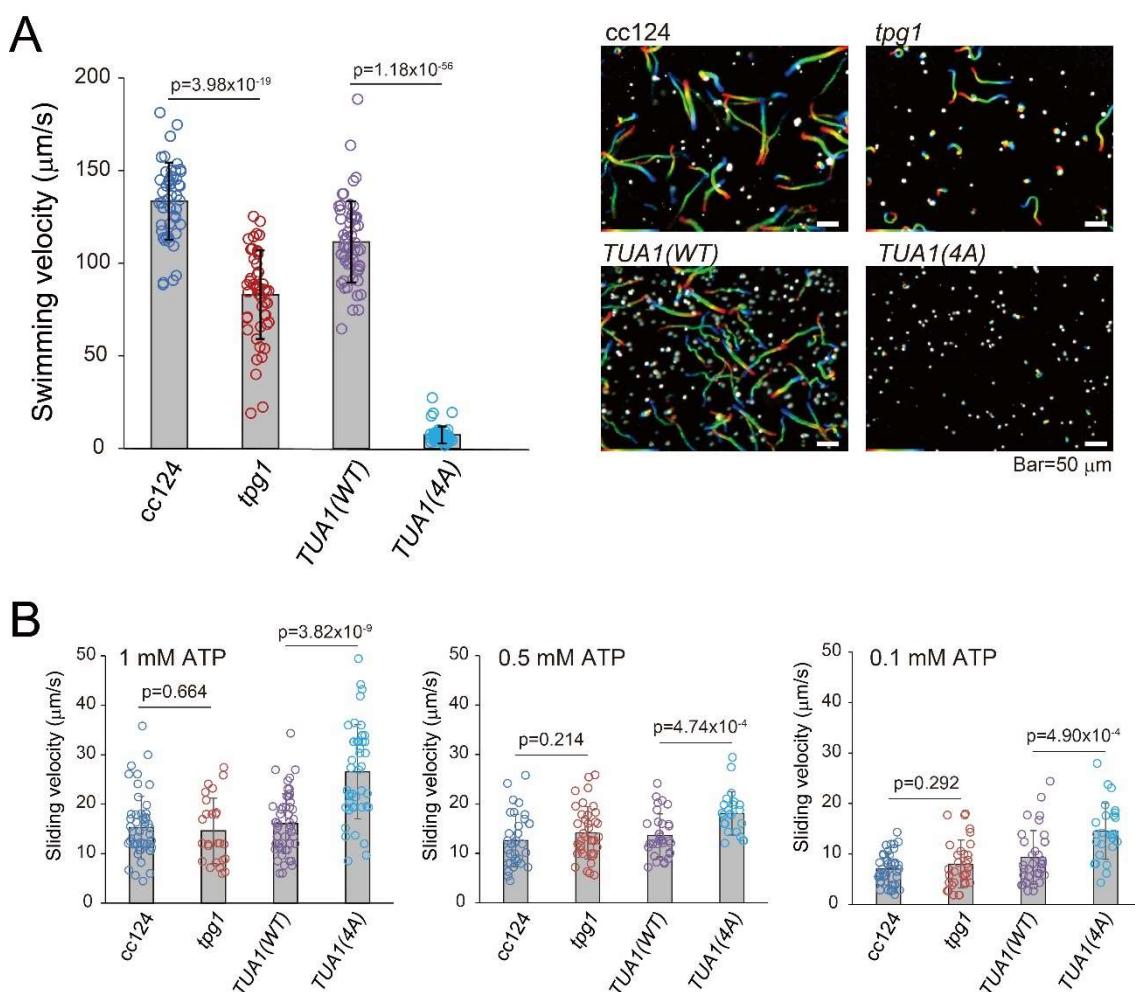
810

Figure 3. The *TUA1(4A)* axoneme has normal structure with increased glycation

(A) Silver-stained gel and (B) Western blotting of cc124, *tpg1*, *TUA1(WT)*, and *TUA1(4A)* axonemes. For the Western blotting, six different blots of each pair were statistically analyzed by t-test. (C) Indirect immunofluorescence microscopy using Gly-pep1 antibody. One cilium each on at least 100 different cells was investigated and average signal intensity was obtained. (D) Cross sections of the axoneme observed by transmission electron microscope.

850

851


852

853

854

855

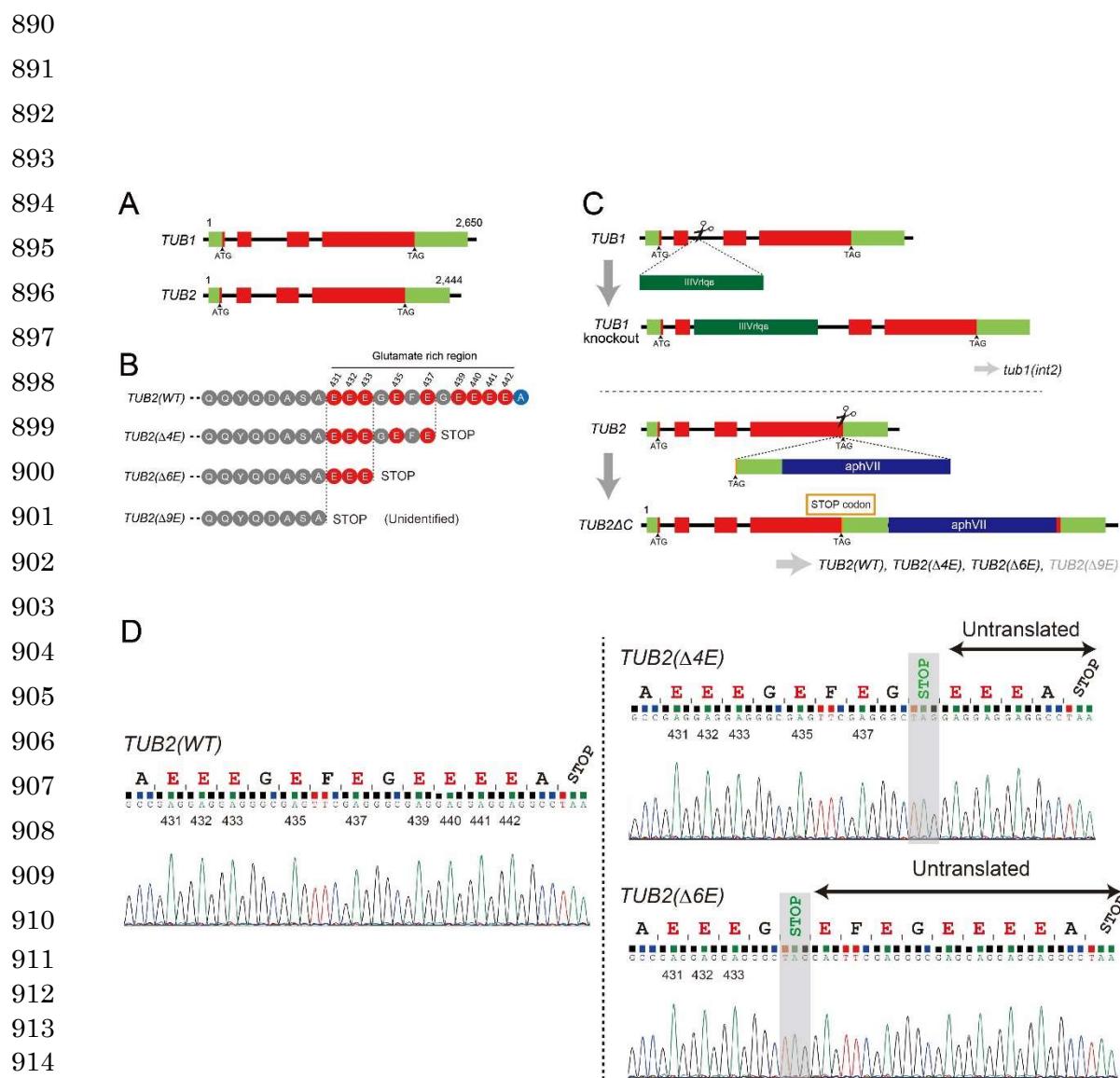

856

Figure 4. The mutant *TUA1(4A)* almost completely lacks ciliary motility but shows extremely fast axonemal microtubule sliding

(A) Swimming velocities (left) and trajectories (right; 1 s exposure) of wild type (cc124), *tpg1*, *tua2(int1)*, *TUA1(WT)*, and *TUA1(4A)*. (B) Axonemal sliding velocities of cc124, *tpg1*, *TUA1(WT)*, and *TUA1(4A)* in the presence of 1, 0.5, and 0.1 mM ATP.

889

902 **Figure 5. Generation of mutants lacking the β -tubulin C-terminal tail**

903 **(A)** Structures of *TUB1* (Cre12.g542250) and *TUB2* (Cre12.g549550) genes. Both
904 genes encode identical proteins. **(B)** Amino-acid sequence of the β -tubulin C-terminal
905 tail. The glutamate region was partially abolished by introducing a stop codon. The
906 mutant lacking nine glutamate residues was not identified. **(C)** Production of *tub1(int2)*
907 and *TUB2(WT)*, *TUB2(Δ4E)*, *TUB2(Δ6E)*, and *TUB2(Δ9E)* by a CRISPR/Cas9
908 mediated gene editing. First, a paromomycin-resistant gene cassette was inserted into
909 the *TUB1* gene of wild type to produce *tub1(int2)* mutant (upper panel). *tub1(int2)*
910 expresses only *TUB2* for β -tubulin (not shown). Secondly, a stop codon and a
911 hygromycin-resistant gene was inserted into *TUB2* of *tub1(int2)* (lower panel). Despite
912 multiple trials, *TUB2(Δ9E)* was not identified. **(D)** Genomic sequences encoding the
913 mutated *TUB2* proteins in the *TUB2(WT)*, *TUB2(Δ4E)*, and *TUB2(Δ6E)* strains.
914
915

916
917
918
919
920
921
922
923
924
925
926
927
928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

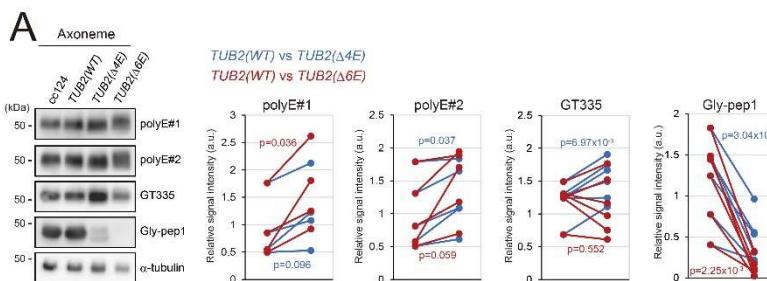
962

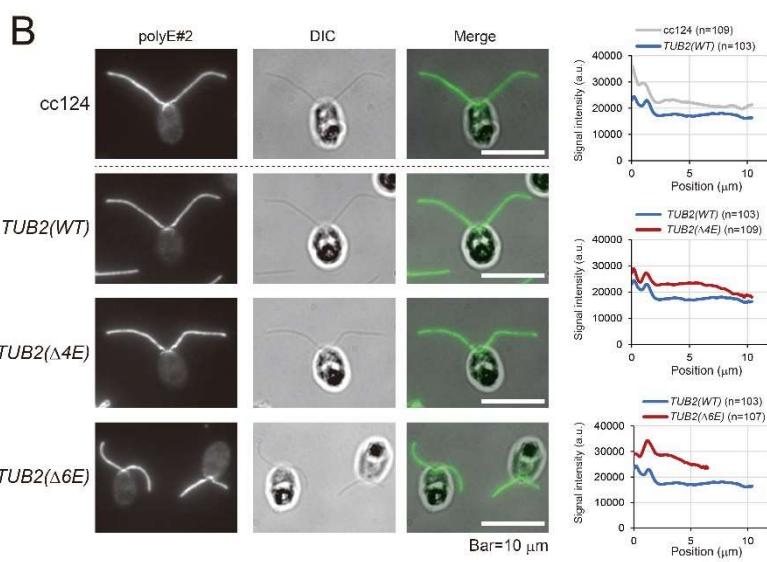
963

964

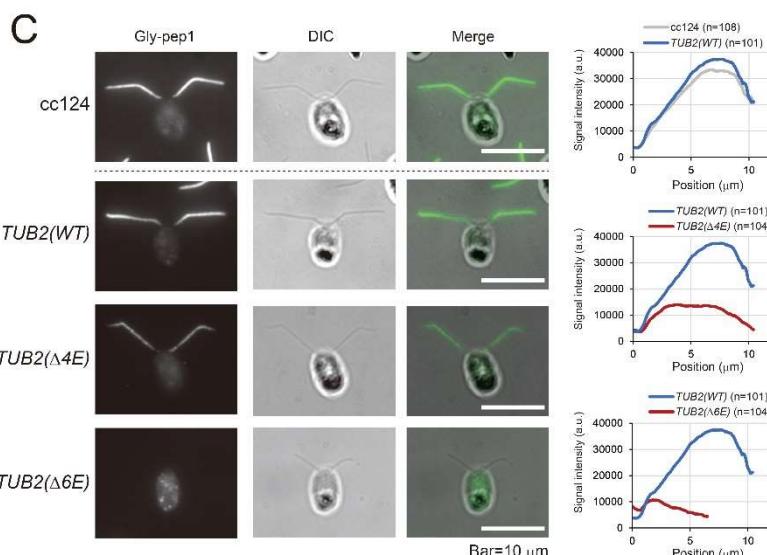
965

966

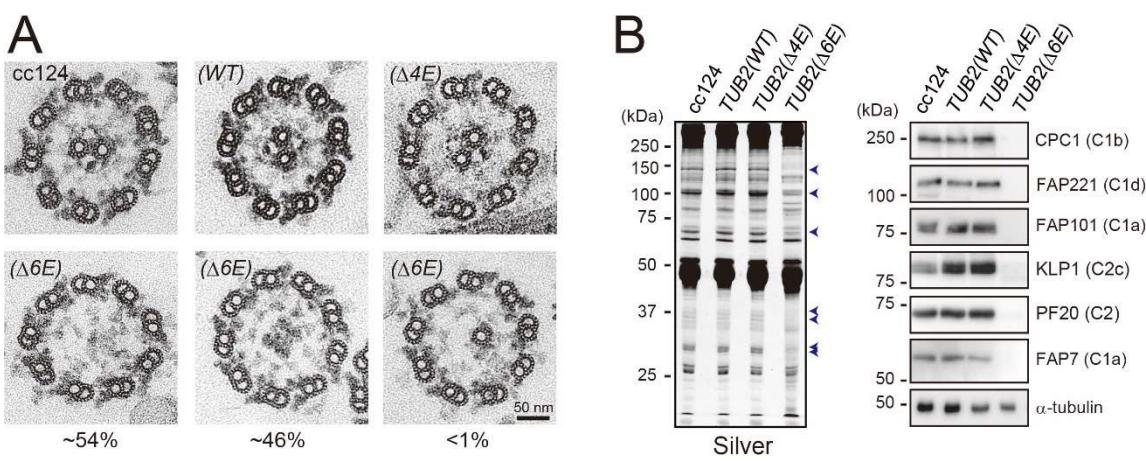

967


Figure 6. The mutant *TUB2*($\Delta 6E$) displays short cilia without motility

(A) Swimming velocities (left) and trajectories (right; 1 s exposure) of wild type (cc124), *TUB2*(WT), *TUB2*($\Delta 4E$), and *TUB2*($\Delta 6E$). Ciliary lengths (B) and ciliary regeneration speeds (C) of wild type (cc124), *TUB2*(WT), *TUB2*($\Delta 4E$), and *TUB2*($\Delta 6E$).


974
975
976
977
978
979
980
981

982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997


998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

1013 **Figure 7. The mutants deficient in β -tubulin CTT lack tubulin glycation**

1014 (A) Western blotting of the axonemes isolated from cc124, *TUB2(WT)*, *TUB2(Δ4E)*, and
1015 *TUB2(Δ6E)* using the indicated antibodies. Signal intensities of the *TUB2(Δ4E)* and
1016 *TUB2(Δ6E)* axonemes were each compared to that of the *TUB2(WT)*. Immunostaining of
1017 cc124, *TUB2(WT)*, *TUB2(Δ4E)*, and *TUB2(Δ6E)* using polyE#2 (B) or Gly-pep1
1018 antibodies (C).

1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Figure 8. The *TUB2(Δ6E)* cilium lacks the central apparatus

(A) Cross section of the axoneme isolated from cc124, *TUB2(WT)*, *TUB2(Δ4E)*, and *TUB2(Δ6E)* observed by transmission electron microscope. The mutant *TUB2(Δ6E)* lacks the central-pair microtubules. (B) (Left) Silver-stained gel of the isolated cilia. Bands decreased in the *TUB2(Δ6E)* were indicated by the arrowheads. (Right) Western blot of the isolated cilia using the antibodies against several central apparatus (CA) proteins. Predicted locations of the CA proteins in the C1 and C2 microtubules are based on Zhao et al. (2019) and Han et al. (2021).

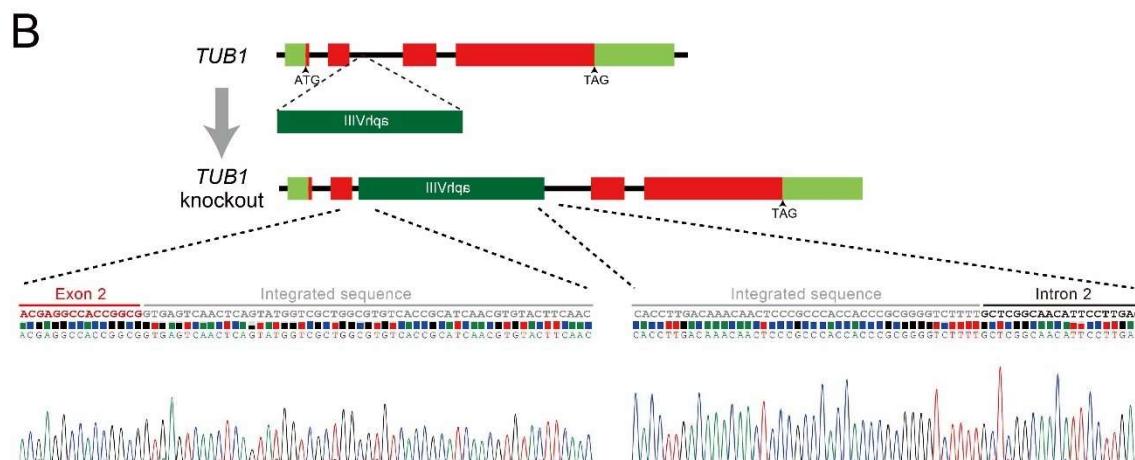
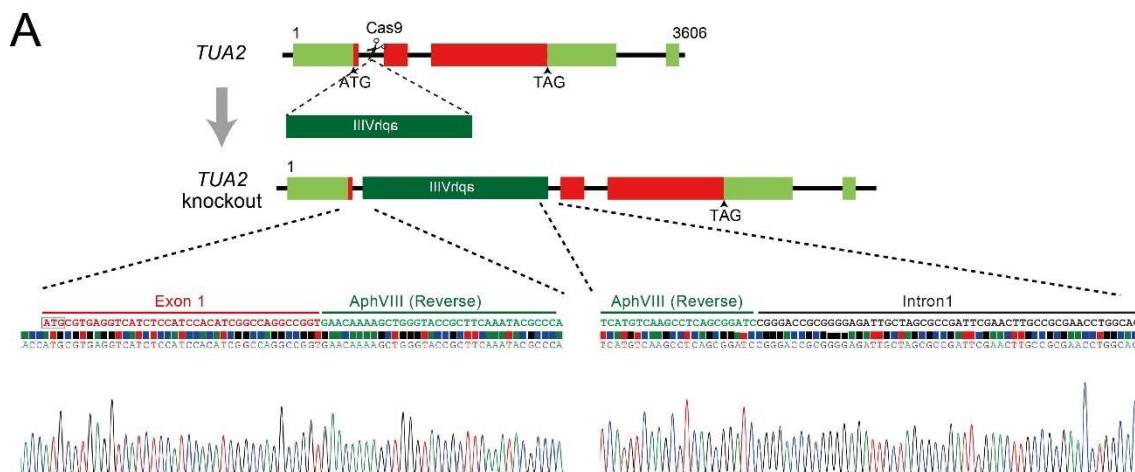
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

	cc124		<i>TUB2(WT)</i>		<i>TUB2(Δ4E)</i>		<i>TUB2(Δ6E)</i>	
	n	%	n	%	n	%	n	%
Central pair	147	93.0	155	95.1	89	80.2	0	0.0
Single microtubule	10	6.3	4	2.5	19	17.1	1	1.0
No Central pair	1	0.6	4	2.5	3	2.7	57	54.3
Electron dense material	0	0.0	0	0.0	0	0.0	47	44.8
Total	158	100	163	100	111	100	105	100

1065
1066 **Table 1. The central-pair microtubules deficiency in the β -tubulin mutants**
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

1083

1084



1085

1086

1087

1088

1089

Supplemental Figure 1. Generation of *tua2(int1)* and *tub1(int2)* mutants

Production of (A) *tua2(int1)* and (B) *tub1(int2)* by a CRISPR/Cas9 mediated gene editing. A paromomycin-resistant gene cassette (aphVIII) was inserted into either intron 1 of *TUA2* or intron 2 of *TUB1*. Sequencing results of the integrated areas are shown.

1113

1114

1115

1116

1117

1118

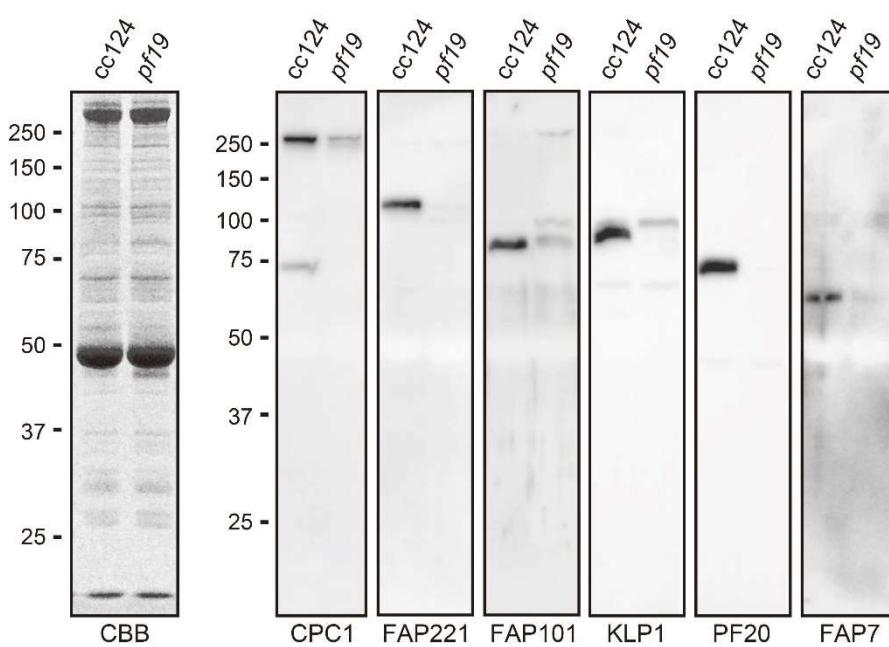
1119 Supplemental Figure 2

1120 1121 >Donor DNA for generating *tua2(int1)* (modification of pSI103)

1122 CTCCCATCCACATCGGCCAGGCCGTGAACAAAAGCTGGTACCGCTTCAAATACGCCAGGCCAGGCCATGGAGAAAGAGGCCAAATC
1123 AACGGAGGATCGTACAACCAACAAATTGCAAACACTCCTCCGTTTACGTGTTGAAAAAGACTGATCACGAAACGGGGACT
1124 AAGCTACCGCTTCAGCAGTGTGAGAGCAGTATCTTCATCCACCCGCGTCGTAGGGGGCAAGGCTCAGATCAACGAGGCCCTCATT
1125 TACACGGAGCGGGGATCGATCCAAAGTCCACACTGTGTGTCACCCACGCCAGCAGCAACCTACCCAGCCACCAACACCATCAGGTC
1126 CTCAGAAGAACACTCGTCAAACAGCGGTAAAAGCCAGCTTCTCCGATACCGCCCATCCACCCGCCGCGCCGTACTCCCGCAGGA
1127 CGGCCGGAACACTCCGCCAACACGGGCTCTCTCGTGGCCAGCTCGCAGCACAGCGCAGATCGGAGTGGCGTCCGGTCCGCA
1128 CGGCCGACCGCCCCACGTCGATCACGCCGTCAGCTCGCAGGTACGGGCTCGAGCAGCACGCTGGCGACAGGTCACCGTGGC
1129 AAACCGCCACTCTCGTCGCCAGGCCGAGTCCGCTCAGCTCGCAGAACGGCTCCCCGACCACCCCTCCGCTCTCGTCCAG
1130 ATCCTCAAAGTGTGACGCTCCCTCAGCGACAGCACGGCCGCCCTGCGCACCGTACCGCAGACTGCGATGAACGCCACCGCTCC
1131 CAGTCCAGGCCGTGCAGCGAACAGCGAGGCCGCCAGGCCACGCCAGTCCAGCCGCTGCTCCCGCCGCCACCGCCACTGGCCG
1132 GACGCCCGAACCGCTCGGTGACCAACCAGGCCACCCCTCTCGTCCACCCACACAGGAGTGCACCTTGACAAACAAACTCCGCCACCTC
1133 CGCCAACACACCCAGCCGCTCAGCTCACCCAAACAGCCACCCGCCAGAGCTGCCACCTTGACAAACAAACTCCGCCACCA
1134 CCCCGAAGCCATAAACACCCAGGCCGAGGCCATCTCCACAAACACCAACTCACAAACGGGATACCGACCCCGCAGTGCACCGCA
1135 ACGCATCGTCATGCTCGAAATTCTCGACCCCCGGAGGGGAGGGGACTGGGATCtgcataatggaaacggcgacgcagggttagat
1136 ctgcgttagacagcgcacaggacaaaggcttcgtgcacacaatggggcgttgcagaatctgcacgcgcgtgcgt
1137 cggccgggttcgtcgactcaCTGGCATTATAAGATGTTGAGTGAATCTCTTGATAAAAGTAAGAACATAGGCCCGTGGC
1138 CGGTTTATCAGGAGGGCACCGCTCAGGGGCTGATCGAACCTGCTTGATTGGCGCTAGCCTTGTGGGAGGGGCTTCCGGAT
1139 AAGGGTTGCAAAGTGTCAAATACCCATCAAACATCATCTGGTTGGCTGCCCTCTGGCGGCCGGATGCAAGCTTGATGG
1140 GATCTTAAGCTAGCTGAGTGGTTATGTATAGCGGAGAATAGTCGCGTATGTATAAGTGTGCTGTTGTGCTGAAAGTGGAGGTACCC
1141 GTTCGGGGTTCGGGGCTTTATACCGATGGGTGCCCGAGCGGGCTATGGCGCTTCTGGACGCCGCCCCATCGCGCCCT
1142 TCCAGAGCTCCCCGCCCTATAGCCGCCAAATCAGTCTGTAGCTTACAAACATACGCAACCAATCATGTCAAGCCTCAGCGG
1143 ATCCGGGACCGCGGGGAGATTGCTAGCG

1144 1145 >Donor DNA for generating *TUA1 (WT)* (modification of pHyg3)

1146 GAGTCGCCGAGGGCGCTGGCGAGGGCGAGGGTGAAGGAGTAC **TAG** ACTCTGGCATGGCATCAGGGTAGCAGCAAGTGTAGTGCTTTG
1147 CTGTTTGCCTGCAAGATGAACAGCGGTGCTAGGTTGATCGAAGGATCTAGCTAATGACGTTGATCGTTAGCGTGGACGGGCA
1148 CCCGTGCATGAGTCTGAACACATACTGCTGCCGTAACAAACAGCAGTGGCTGCTAGCTTACAAGTGGACAGAAAGGCTAGTAGTGC
1149 ACGTGACATGCCAACGCGTGTGGACACCCGTGATGAGTCTGAACACTGGCTGCTGCCACCGGAACATGGTGTAAATGGAC
1150 TTGGAAAGTCTTGCATTGGTCTCGCCAAAAGGTTCTGGGACAACCGTAGTGGCTGATGGGAGTCTGGAGTCATGCACAGCTGATT
1151 TGTCAGCCTGTAACATGCTGGCAG **AAGCTCTTCTTCGCTATGACATCTCCAGCAAAGGTTAGGGGGCTGCGAGACGGCTTCC**
1152 CGGCCTGCATGCAACACCGATGCTCGACCCCCCGAAGCTCCCTGGGGCTGCATGGGCGCTCCGATGCCGCTCAGGGCAGC
1153 GCTGTTAAATAGCCAGGCCCGATGCAAAGACATTATAGCGAGCTACCAAAGCCATATTCAAAACACTAGATCACTACCACTCT
1154 ACACAGGCCACTCGAGCTTGTGATCGCACTCGCTAACGGGGGCCCTTCTCGTTAGTCACAACCCGAAACATGACACAA
1155 GAATCCCTTAACTTCTCGACCGTATTGATTGGATATTCTACCGCAGGCTGCGAACGACAGGAAATTCTGGGAGGTGAGTCGAC
1156 GAGCAAGCCGGGATCAGGAGCGCTGCTGAGATTGACTGCAACGCCGATTGCTGCGACGAAGGCTTTGGCTCCTCTGTC
1157 GCTGCTCAAGCAGCATCTAACCTCGCTGCCGTTCCATTGCAAGCGCTGCCGAGGCCCTGGAGGAGCTCGGGCTGCCG
1158 CGCCGGGGTCTCGGGGGCCAGAGGCCAACCCCGTACTGGTCCGGGAGGCCCTGGGGCTACCTGGTGTATGAGCCGGATGACCGG
1159 TGGTGCCTCGGGAGGCCCTCGCTGGAGTCGGAGCGCTTGGGGCTCTGGGGCTACCTGGTGTATGAGCCGGATGACCGG
1160 CGGGCGAGCTCGGGGGCCACCGTGCTGGGGCTACCTGGTGTATGAGCCGGATGACCGGACACACTGGGGCTGCTGGGGCT
1161 GGACGGCACGACCGAACCGGAACCGCTGCTCGCCCTGGGGCGAACCTGGGGCTGCTGGGGCTGACAGGGTGGCGT
1162 GGGAACACCGTGTACCCCCCATTCCGAGGTCTCCCGAACCTGCTGGGGAACGCCGCGCCGGGACCGTCGAGGACACCGCGGG
1163 GGGGCTACCTCTGCCCGGCTGCTGGACCGCCGCTGGAGGACTGGCTGCCGGACGCTGGACACGCTGCTGGGGCCGCAACCCGGT
1164 CGTCCACCGCAGCTGCAACGGGACACATCTTCTGGACCTGGCCGACGCCGAGGGTACCGGGATCTGCGACTTCACCGACGCT
1165 GCGGGAGACTCCGCTACAGCGCTGGTCAACTGCGATCTCACCGCTTCCGGGGGAGCCGAGATCTGGCCGCGCTGCTCGACGGG
1166 CGCAGTGGAAAGGGAGGACTTCCCGCGAACCTGCGCTGCCCTCACCTGGTGTACGCTTCGAGGTGTTGAGGAGACCCGCT
1167 GGATCTCTCCGGCTTACCGATCGGAGGAACCTGGCGAGTCTCTGGGGCCGCCGACACGCCCGCCGCTGATAAGGATCC
1168 CGCGCTCCGTTAAATGGAGGCGCTGTTGATCTGAGCCTGGGGCTGACGAACGGCGGGATGGAAGGATACTGCTCTCAAGTGT
1169 AAGCGGTAGCTTAGCTCCCCGTTCTGCTGATCAGTCTTTCAACAGTAAAAGCGGGAGGAGTTGCAATTGTTGGGTGTA
1170 CGATCTCCGTTGATTGGCTCTTCTCCATGGGGGCTGGCGTATTGAGCG **ggtagccggccgtatccatggaaagctt**
1171 AGTGGGGAGGTACCGTGCACGTCGGGTTG **CG**


1172 1173 >Donor DNA for generating *TUA1 (4A)* (modification of pHyg3)

1174 GAGTCGCCGAGGGCGCTGGCGCGGGTGCCTGGTAC **TAG** ACTCTGGCATGGCATCAGGGTAGCAGCAAGTGTAGTGCTTTG
1175 CTGTTTGCCTGCAAGATGAACAGCGGTGCTAGGTTGATCGAAGGATCTAGCTAATGACGTTGATCGTTAGCGTGGACGGGCA
1176 CCCGTGCATGAGTCTGAACACATACTGCTGCCGTAACAAACAGCAGTGGCTGCTAGCTTACAAGTGGACAGAAAGGCTAGTAGTGC
1177 ACGTGACATGCCAACGCGTGTGGACACCCGTGATGAGTCTGAACACTGGCTGCTGCCACCGGAACATGGTGTAAATGGAC
1178 TTGGAAAGTCTTGCATTGGTCTCGCCAAAAGGTTCTGGGACAACCGTAGTGGCTGATGGGACTGGGAGTCATGCACAGCTGATT
1179 TGTCAGCCTGTAACATGCTGGCAG **AAGCTCTTCTTCGCTATGACACTTCCAGCAAAGGTTAGGGGGCTGCGAGACGGCTTCC**
1180 CGGCCTGCATGCAACACCGATGCTCGACCCCCCGAAGCTCCCTGGGGCTGCGATGGGGCTCCGATGCCGCTCAGGGCAGC
1181 GCTGTTAAATAGCCAGGCCCGATGCAAAGACATTATAGCGAGCTACCAAAGCCATATTCAAAACACTAGATCACTACCACTCT
1182 ACACAGGCCACTCGAGCTTGTGATCGCACTCGCTAACGGGGGCCCTTCTCTCGTTAGTCAGTCACAACCCGAAACATGACACAA
1183 GAATCCCTTAACTTCTCGACCGTATTGATTGGATATTCTACCGCAGGCTGCCGGACGCCAGGAATTCTGGGAGGTGAGTCGAC
1184 GAGCAAGCCGGGAGGCCGAGGAGCAGCTGGCGCTGGAGGACTGGTGGGGAGCCGAGGCCCTGGGGAGCTGGGGCTGCCG
1185 GCTGCTCAAGCAGCATCTAACCTCGCTGCCGTTCCATTGCAAGCGCTGGGGCCGCCGAGCCCTGGGGAGCTGGGGCTGCCG
1186 GCCGGCGAGCTGCCGGAGGCCGAGGCCCTGGGGCTACCGTGGGGCTGGGGAGGCCGAGGCCCTGGGGAGCTGGGGCTGCCG
1187 TGGTGCCTCGGGAGGCCGAGGCCCTCGCTGGAGGAGCTGGGGCTACCGTGGGGCTGGGGAGGCCGAGGCCCTGGGGAGCTGGGG
1188 GGACGGCACGACCGAACCGGAACCGCTGCTGCCCTGGGGCGAACCTGGGGCTGCCGAGGCCCTGGGGAGCTGGGGCTGCCG
1189 GGACGGCACGACCGAACCGGAACCGCTGCTGCCCTGGGGCGAACCTGGGGCTGCCGAGGCCCTGGGGAGCTGGGGCTGCCG

1190 GGGAACACCGTGTCACCCCCATTCCGAGGTCTCCCGAACCTGCTGCCGGAACGCCGCCGACCGTCGAGGACACCGCGGGT
1191 GGGGCTACCTCTGCCCGGCTGCTGGACCGCCGCTGGAGGACTGGCTGCCGGACGTGGACACCGCTGCTGCCGCCGAAACCCCGGT
1192 CGTCCACGGCAGCTGACGGGACCAACATCTCGGACCTGCCGCCGACCGAGGTCAACCGGATCGTCGACTTCACCGACGCTAT
1193 GCGGGAGACTCCGCTACAGCCTGGTCAACTGCACTCAACGCCCTCCGGGGCACCAGCAGATCCTGCCGCTGCTCGACGGG
1194 CGCAGTGGAAACGGGACCGAGGACTTCGCCGCCGAACTGCTGCCCTCACCTCTGCACTTCAGGAGTTGAGGAGACCCCGCT
1195 GGATCTCTCCGGCTTCACCGATCCGGAGGAACCTGGCGCAGTTCTCTGGGGGCCGCCGACACCGCCCCCGGCCCTGATAAGGATCC
1196 CGCCTCGGTAAATGGAGGCGCTGTTGATCTGAGCCTTGCCCCCTGAGAAGACGGCGGTTGAGAAGACTTGCTCTCAAGTGT
1197 AAGCGGTAGCTTAGCTCCCGTTGCTGATCAGTCTTTCAACAGTAAAAGCGGAGGAGTTTGAAGTAACTTGCTCTCAAGTGT
1198 CGATCCTCGGTGATTTGGCCTTCTCCATGGCGGCTGGCGTATTGAAGCGGgttaccggccgtatccatggaagct
1199 AGTGCAGGGAGGTACCGTGCACGTCGGGTTGC
1200
1201 >Donor DNA for generating *tub1* (*int2*) (modification of pSI103)
1202 CTTCGGAGTTCCAATCGCTCGCCTCACCTCAATTTCGCTTCTGAAACAAAGCTGGTACCGCTTCAAAATACGCCAGCCGCCA
1203 TGGAGAAAGAGGCCAAATCAACGGGAGATCGTTACAACCAACAAATTGCAAAACTCCTCGTTTACGTGTTGAAAAGACTGA
1204 TCAGCAGAAACGGGAGCTAAGCTACCGCTTCACTCGCAGTGGAGAGCAGTATCTCCATCCACGCCGTTGTCAGGGGCAAGGCTA
1205 GATCAACAGGCCCTCATTACACGGAGCGGGGATCGATCCAAACAGTCCACACTGTGCTGTCACCCACCGACGCAACCCCTACCCAG
1206 CCACCAACACCATCAGGCCCTCAGAAGAACTCGTCAACAGCCGGTAAACAGCCAGCTTCTCCGATACGCCCATCCACCCG
1207 CGCCCGTACTCCCGCAGAACGCCGGAACACTCCGGCCGAACCACGGGCTCTCTGTTGGCCAGCTCGCAGCACCAGCGCA
1208 GATCGGAGTGCAGGTCGGTCCGACGCCGACCCGCCACGTCGATCAGCCGGTACACTCGCAGGTACGAGGGTCAGCAGCAGCTGTC
1209 CGGGCACAGGTACCGTGGCAACGCCAGATCCTCTGTCAGCAGCTCCCTCAGCGACAGCACGGGCCCTGCGGCAACCGTACCCGAC
1210 CCCTCCGCTCCCTGTCAGATCCTCAAGATCAGCTCGACGGCTCAGCGACAGCACGGGCCCTGCGGCAACCGTACCCGAGACTGC
1211 GATCGAACGGACACCGCTCCAGCTCAGCGCTGCAACGCAAGCGAGCAGCGACCCCGCAGCGCACCGTCAAGCCGCTGCTCC
1212 CGGCCACCGCGACTGGCGGACCCCGGAACCGCTCGGTGACCAACCAACCGCGCAGCCCTCTGTCCCCCACCCCTCCACAACACGA
1213 GGTACGGGAATCCCCACCTCCGCAACACCACAGCGCTCAGCCTCACCAACAGCCACCCCGAGGCCCCATCTCCACAACACCCACT
1214 CAAACAACCTCCGCCACCACCCGAAGCGATAAACACCACAGCCGGAGGCCCCATCTCCACAACACCCACTACAACCGGGATA
1215 CCGACCCCGCAGTCACGCAACGATCGTCATGCTCGAAATTCTCAGCACCGGGAGGGAGTGGCATCctgcaaatggaaa
1216 cggcgcacgcagggttagatgctgcttgcacgcacgcacgcacgcacatgcggcggtgcacgcacatgcggcggtgcacgcacatgc
1217 tcgacgcac
1218 AAGAACATAGGCCCCCTGGCGGTTATCAGGAGGGACCGCTCAGGGCTCAGGCTTAAAGTGTGAGTGCATCTCTGTTGAAAAAGTA
1219 GGGCCAGGGGCTCCGATAAGGGTGCAGTGTCAAATACCCATCAACATCATCTGTTGGCTGCGCTCTCTGGCGCC
1220 CGGCATGCAAGCTTGTGGATCTTAAGCTAGCTGAGTGGTTATGTTAGCGGAGAATAGTCGCGTATGTATAAGTGTGCTGTTGT
1221 CGCTGAAAGTGGAGGTACCGTCCGGGTCGGGCTTTTACCGGATGGGTGCGCCAGCGGGCGTATGGCGCTCTGGACGCC
1222 GCGGCCCATCGCGGCCCTTCAGAGCTCCCGCCCTCATAGCCGCAACATGCTGTAGCTTACACAAACATACGCACCA
1223 ATCATGTCAAGCCTCAGCGGATCGCAACAGATTGGTCTAAGTCTGGAGGTGCTCCGACGAG
1224
1225 >Donor DNA for generating *TUB2* (*WT*) (modification of pHyg3)
1226 CGAGGAGGGCAGTCAGGGCAGGGAGGAGGAGGCC TAA ATGCCGGCACCTCCATGCCACTGAACGTGAGCTGACTGTG
1227 CGGCCCTGGCAGTTTGACCGTACTGACCTGGACAAAGGATCCCTGACTGAAGACAACTGACATGTGATTGCCATTGACGTT
1228 GGTGTGGAGGCCGATTGTGAGATGGAGGGGGGCCATTGGCTCTGACCATAAACGACATCGAATTTCATACATGTGAAACAGTCAG
1229 CATGGACATTCATCTCGCGGATTAGCTTGTGATAGGCCATAGCAGCTGGACTGTTGAGCTCTCGATCTCGTAGCTACTGG
1230 CTGTTGATTGTGCTCAGGGCAGGGCAGGTAACGCCCTGAACTGAACGTAAGGTGAGCAGCAGACAGCGAGATGTGAGAACGAATAGC
1231 GCAGTGGATAAGGGTGTGGGTGCCACACTCGTCACGTTGAAATAGATACACGA AAC CTCTTCTTCTGCGCTATGACACTTCA
1232 GCAAAGGGTAGGGGGGCTGCGAGACGGCTCCCGCCTGCTGCACTGCAACACCCGATGATGCTCGACCCCCCGAAGCTCTCGGGCT
1233 GCATGGGCCGCTTCAGCGCTCCAGGGCGAGCGCTGTTAAATAGCCAGGGCCCGATTGCGAAAGACATATAGCGAGCTACAAAG
1234 CCATATTCAACACCATGACTACACTTCTACACAGGCCACTGAGCTTGTGATCGCAGTCCGCTAAGGGGCCCTTCT
1235 TCGTTTCAGTCACAACCCGAAACATGACACAAGAATCCCTGTTACTCTCGACCGTATTGATTGGATGATTCTACCGCAGCGCT
1236 GGAACGACCAAGGAATTCTGGGAGGTGAGTCGACGAGCAAGCCGGGAGTCAAGGGCAGCGTCTGAGATTGACTTGAACGCC
1237 ATTGTGTCAGCAAGGCTTTGGCTCTGTCGCGTCTCAAGCAGCATCTAACCTCTGCGCCGTTCCATTGAGCCGCTGG
1238 CCGCCGAGGCCCTGGAGGAGCTGGCGCTGCCGGTGGCCGGTCTGCGGTTGGCGAGAGCACCAACCCGACTGGTGGCG
1239 CCCGGCCGGTGTCAAGCTGTCGCGAGCACTGTCGCGGCTCGGAGGAGCTCGGCGAGGAGCTGGCGAGGCTACCGGCTGG
1240 ACGCCCGGGTGGCCGGTCCCGCCTCGGCCGCCGAGCTGGCGGAGCTGGCGGAGGAGCTGGCGAGGAGCTGGCGCTACCTGGTGT
1241 CGGATGACCGCCACCCACTGGCGCTCCGCGATGGACGGCACCGAACCGAACCGCGCTCGCCCTGGCCCGAACTCGGCC
1242 GTGCTCGGGCGCTGACAGGGTGGCGCTGACCGGAAACACCGTGTCTACCCCTGAGGTCTCCCGGAACTGCTGCGGGAA
1243 GCGCGCGGCCGACCGTCGAGGACCACCGCGGGTGGGCTACCTCTGCCCGGCTGCTGGACGCCCTGGAGGACTGGCTGCC
1244 GGACACGCTGCTGGCCGCCGCAACCCGGTCTGCCACGGCACCTGACGGGACCAACATCTCGTGGACCTGGCCGACCGAG
1245 GTCACCGGGAGTCGACTTACCGACGTCTATGGGGAGACTCCCGTACAGCCTGGTCAACTGCACTCAACGCCCTCCGGGG
1246 ACCCGCGAGATCTGGCCGCCGCTGACGGGGCCAGTGGAAAGCGGACCGAGGACTTCGGCCGCAACTGCTGCCCTACCTTC
1247 GCACGACTTCGAGGTGTTGAGGAGACCCCGCTGGAGATCTCCGGCTCACCCGCTACCGGAGGACTGGCGAGTCCCTCTGG
1248 CGGGACACGCCCGGCCGCTGATAAGGATCCCCCTCCGTGAAATGGAGGCGCTCGTTGATCTGAGCCTTCCCGTACGAAAC
1249 GCGGTGGATGGAAGATACTGCTCTCAAGTGTGAGCGGTAGCTTAGCTCCCGTTGCTGATCAGTCTTTCAACACGTA
1250 AGCGGAGGAGTTGCAATTGTTGTTGTAACGATCTCCGTTGATTTGGCCTTCTCCATGGCGGCTGGCGTATTGAA
1251 GCGgttaccggccgtatccatggaagct
1252 CGAGTACCAAGCAGTACCGAGCAGTACCGAGCAGCCTCCGCTAGGAGGAGGGCAG
1253
1254
1255
1256
1257
1258
1259
1260
1261

1262 >Donor DNA for generating *TUB2* (*Δ4E*) (modification of pHyg3)
1263 CGAGGAGGAGGGCAGTCAGGGCTAGGAGGAGGAGGCTAAATGCCGCACCTCCATGCCACTGAACGTGTAGCGTGACTG
1264 TGGCGGCCCTTGGCAGTTGACCGTGAACCTGGACAAAGGATCCCTGACTGAAGACAACCTGACATGTGATTGCCATTGACGC
1265 TTTGGTGTGGAGGCGGATTGTGAGATGGGAGGGGGCCATTGCCCTGCTGACCATACAGCATAACGACATCGAATTTCATACATGTGAACAGTT
1266 CAGCATGGACATTATCCTCGTCGGATTAGCTCTTGTGATAGGCCATAGCAGCTGGACTGTTGTGAGCTCTCGATCTCGTAGCTAC
1267 TGGCTGTGATTGTGCTTCAGGCAGGGCAGGTAACCTGCCCTGAACGTAAGGTGCAGCAGCAGACAGCGATGTGCAGAACGAAT
1268 AGCGCAGTGATAAGGTGATGGTGCCACACACTCGTCAGCTGATAAAAGATAACACAGAACGCTTCTTCGCGCTATGACACTT
1269 CCAGCAAAAGTAGGGCGGCTCGAGACGGCTTCCCGCCTGATGCCAACACCAGATGATGCTTCGAGCCCCCGAAGCTCCCTCGGG
1270 GCTGCATGGCGCTCCGATGCCCTCAGGGCGAGCGTGTAAATGAGGAGGCCCCGATTGCAAAAGACATTATAGCGAGCTACCA
1271 AAGCCATATTCAAACACTAGATCACTACCACTTACACAGGGCACTCGAGCTGTGATCGACTCCGTAAGGGGGCGCCTCTCC
1272 TCTCGTTTCACTGACAAACCGCAACATGACACAAGAAATCCCTGTTACTCTCGACCGTATTGATTCGATGATTCCTACCGGACCC
1273 TGCGGAACGACCAAGGAATTCTGGAGGTGAGTCGACGAGCAAGCCGGGATCAGGCAGCTGCTTCGAGATTGACTTGCAACGCC
1274 CGCATTGTGTCGACGAAGGCTTGGCTCTCTGTCGCTGTCAGCAGCATCTAACCCCTGCTGCCGTTCCATTGCAAGGCCGCT
1275 GGGCCGCCAGCCCTGGAGGAGCTGGCTGCCGCTGCCGGTCTCGGGTCCGGAGAGCACCAACCCGTAAGTGGTCCG
1276 GAGCCCGGCCGGTGTACAAGCTGTTGGCGAGCACTGGCTGCCGGAGGAGCCTCGCAGGAGTCGGAGGCGTACGCCGGTCTGG
1277 CGACGCCCGGTGCCGGTCCCGGCCCTCGGCCGGAGCTGCCGGCCGGAGCTGCCGGCCGGAGCTGCCGTGGCCCTACCTGGTGA
1278 GAGCCGGATGACCGCACCACTGCCGGTCCCGATGACGGCACGACCGAACGCCGCTGCTGCCCTGCCCGCGAACCTCGC
1279 CGGGTGCTGGCCGGCTGACAGGGTGGCTGACCCGGAACACCGTGTCACTCCGAGGTCTCCGGAAACTGCTGCCGG
1280 AACGCCGCGCCGGCACCGTCGAGGACACCGCGGGGGTGGCTACCTCTGCCCGGCTGCTGGACCGCCTGGAGGACTGGTCCG
1281 CGTGGACACCGCTGCTGGCGGCCGCAACCCCGGTTGCTCACCGCGACCTGACGGGACCAACATCTCGTGGACCTGGCGAC
1282 GAGGTACCGGGATGCTGCACTTACCCGACGTATGCCGCTACAGCGCTGCACTGCGATCTCAACGCCCTCCGG
1283 GCGACCCGGAGATCTGCCGGCTCTGCCGACCCGGCAGTGGAGACGGGACCGAGGACTCTGCCGCCGAACTGCTGCCCTCACCT
1284 CCTGCAACGACTCGAGGTGTTGAGGAGACCCCGTGGATCTCCGGCTTACCGATCCGGAGGAACCTGGCAGTCTCTGGGG
1285 CGCCGGACACCGCCCGCGCTGATAAGGATCCCGCTCCGTAAATGGAGGCGCTCGTGAATCTGAGCCTGCCCGTACCGA
1286 ACGGCGGTGGATGGAAGATACTGCTCTCAAGTGTGAGCTAGCTCCCGTTCTGCTGATCAGTTTCAACACGTA
1287 AAAAGCGGAGGAGTTGCAATTGTTGGTTGAAACGATCTCCGTTGATTGCTCTCCATGGCGGGCTGGCGTATT
1288 GAAGCGgttacccggccgtatccatggaaagcttGAGTACCAAGCAGTACCAAGGACGCCCGCTAGGAGGAGGGCGAG
1289
1290 >Donor DNA for generating *TUB2* (*Δ6E*) (modification of pHyg3)
1291 CGAGGAGGAGGGCTAGGAGGAGGAGGAGGAGGCTAAATGCCGCACCTCCATGCCACTGAACGTGTAGCGTGACTG
1292 TGGCGGCCCTTGGCAGTTGACCGTGAACCTGGACAAAGGATCCCTGACTGAAGACAACCTGACATGTGATTGCCATTGACGC
1293 TTTGGTGTGGAGGCGGATTGTGAGATGGGAGGGGGCCATTGCCCTGCTGACCATACAGCATAACGACATCGAATTTCATACATGTGAACAGTT
1294 CAGCATGGACATTATCCTCGTCGGATTAGCTCTTGTGATAGGCCATAGCAGCTGGACTGTTGTGAGCTCTCGATCTCGTAGCTAC
1295 TGGCTGTGATTGTGCTTCAGGCAGGGCAGGTAACCTGCCCTGAACGTAAGGTGCAGCAGCAGACAGCGATGTGCAGAACGAAT
1296 AGCGCAGTGATAAGGTGATGGTGCCACACACTCGTCAGCTGATAAAAGATAACACGAAGCTTCTTCGCGCTATGACACTT
1297 CCAGCAAAAGTAGGGCGGCTGCGAGACGGCTTCCCGCGCTGATGCCAACACCGATGATGCTTCGACCCCCCGAAGCTCCCTCGGG
1298 GCTGCATGGCGCTCCGATGCCCTCAGGGCGAGCGCTGTTAAATGAGGAGGCCCCGATTGCAAAAGACATTATAGCGAGCTACCA
1299 AAGCCATATTCAAACACTAGATCACTACCACTTACACAGGGCACTGAGGACTCTGATCGACTCCGTAAGGGGGCCCTCTCC
1300 TCTCGTTTCACTGACAAACGCAACATGACACAAGAAATCCCTGTTACTCTCGACCGTATTGATCGGATGATTCTACCGGAC
1301 TGCAGACCCAGGAATTCTGGAGGTGAGTCGACGAGCAAGCCGGGATCAGGCAGCTGCTTCGAGATTGACTGCAACGCC
1302 CGCATTGTGTCGACGAAGGCTTGGCTCTCTGTCGCTGTCAGCAGCATCTAACCCCTGCTGCCGTTCCATTGCAAGGCC
1303 GGGCCGCCAGCCCTGGAGGAGCTGGCTGCCGGTCCGCCGGTCTGCCGGTCCGGAGAGCAGACCAACCCGTACTGGTCCG
1304 GAGCCCGGCCGGTGTACAAGCTGTTGGCGAGCACTGGTGCCTCCGGAGAGCCTCGCCTCGCTGGAGTGGCTACCCGGTCTGG
1305 CGGACGCCCGGTGCCGGTCCCGCCCTCTCGGCCGGCGAGCTGCCGGCCGGCACGGCTGCCGTGGCCCTACCTGGTGA
1306 GAGCGCGATGACCCGACCCATGGCGCTGCCGATGGACGGCACCGAGCGAACCGGCTGCCCTGCCGCCGAAACTCGGC
1307 CGGGTGCTCGGCCGGCTGACAGGGTGCCGTGACCGGGGAAACACCGTGTCACTCCGGGAGGTCTCCCGGAACCTGCTGCCGG
1308 AACGCCGCGCCGGCACCGTCGAGGAGACCCCGGGTGGCTACCTCTGCCCGGCTGCTGGACCGCCTGGAGGACTGGCTGCCGG
1309 CGTGGACACCGCTGCTGGCGCCCGAACCCCGGTTGCTCACCGCGACCTGACGGGACCAACATCTCGTGGACCTGGCGAC
1310 GAGGTACCGGGATGCTGCACTTACCCGACGTATGCCGAGACTCCCGTACAGCCTGGTGAACCTGACATCTCAACGCCCTCCGG
1311 GCGACCCGAGATCTGCCCGCCTGCTGACGGGCGAGTGGAGCGGACCGAGGACTCTGCCCGCAACTGCTGCCCTCACCT
1312 CCTGCACGACTCGAGGTGTTGAGGAGACCCCGCTGGATCTCTCCGGCTTACCGATCCGGAGGAACCTGGCAGTCTCTGGGG
1313 CGCCGGACACCGCCCGGCCGCTGATAAGGATCCCGCTCCGTAAATGGAGGCGCTGTTGATCTGAGCCTGCCCGTACCGA
1314 ACGGCGGTGGATGGAAGATACTGCTCTCAAGTGTGAGCTAGCTCCCGTTCTGCTGATCAGTTTCAACACGTA
1315 AAAAGCGGAGGAGTTGCAATTGTTGGTTGAAACGATCTCCGTTGATTGCTCTCCATGGCGGGCTGGCGTATT
1316 GAAGCGgttacccggccgtatccatggaaagcttGAGTACCAAGCAGTACCAAGGACGCCCGCTAGGAGGAGGGCGAG
1317

1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363

1364 **Supplemental Figure 3. Characterization of the polyclonal antibodies against the**
1365 **central-apparatus proteins**

1366 CBB-stained gel (left) and Western blotting (right) of the axonemes of wild-type
1367 (cc124) and *pf19* deficient in the central apparatus. Purified antibodies against CPC1
1368 (205.1 kDa), FAP221 (104 kDa), FAP101 (85.7 kDa), KLP1 (83 kDa), PF20 (53 kDa),
1369 and FAP7 (54.7 kDa) were examined.

1370
1371

1372

Supplemental Table 1. List of mutants generated in this study

Name	Origin	Mating type	Antibiotic resistance
<i>tua2(int1)</i>	cc124	Minus	Paromomycin
<i>TUA1(WT)</i>	<i>tua2(int1)</i>	Minus	Hygromycin, paromomycin
<i>TUA1(4A)</i>	<i>tua2(int1)</i>	Minus	Hygromycin, paromomycin
<i>tub1(int2)</i>	cc124	Minus	Paromomycin
<i>TUB2(WT)</i>	<i>tub1(int2)</i>	Minus	Hygromycin, paromomycin
<i>TUB2(Δ4E)</i>	<i>tub1(int2)</i>	Minus	Hygromycin, paromomycin
<i>TUB2(Δ6E)</i>	<i>tub1(int2)</i>	Minus	Hygromycin, paromomycin

1373

1374 **Supplemental Table 2. List of crRNA sequences**

crRNAs	Sequence 5' - 3'	Description
TUA2 (int1)	GUCAGUCGCCUGCGAACGAGGuuuuuagagcuaugcuguuuug	For TUA2 knockout
TUA1 (3' UTR)	GGUGAGGAGUACUAGACUCCguuuuagagcuaugcuguuuug	For TUA1 mutation
TUB1 (int2)	GGUCGCUGGCGUGUCACGCGguuuuagagcuaugcuguuuug	For TUB1 knockout
TUB2 (3' UTR)	GGAGGGAGGAGGCCUAAAUGCguuuuagagcuaugcuguuuug	For TUB2 mutation

1375

1376

1377

1378

Supplemental Table 3

Antibody (clone #)	Host	Dilution	Reference
Anti- α -tubulin (B512)	Mouse	1:5000 (WB)	Sigma-Aldrich
Anti-polyglutamylated tubulin (polyE#1)	Rabbit	1:2000 (WB)	Kubo et al. (2017)
Anti-polyglutamylated tubulin (polyE#2)	Rabbit	1:2000 (WB), 1:200 (IFM)	Kubo et al. (2017)
Anti-glutamylated tubulin (GT335)	Mouse	1:2000 (WB), 1:200 (IFM)	Adipogen Life Sciences
Anti-glycylated tubulin (Gly-pep1)	Rabbit	1:2000 (WB), 1:200 (IFM)	Funakoshi
Anti-CPC1	Rabbit	1:5000 (WB)	This study
Anti-FAP221	Rabbit	1:5000 (WB)	This study
Anti-FAP101	Rabbit	1:5000 (WB)	This study
Anti-KLP1	Rabbit	1:5000 (WB)	This study
Anti-PF20	Rabbit	1:5000 (WB)	This study
Anti-FAP7	Rabbit	1:5000 (WB)	This study

1379

1380