

1 Rice Gene Index (RGI): a comprehensive pan-genome database for comparative and
2 functional genomics of Asian rice

3 Zhichao Yu (于志超)^{1a}, Yongming Chen (陈永明)^{2a}, Yong Zhou (周勇)^{3a}, Yulu Zhang
4 (张雨露)¹, Mengyuan Li (李梦圆)¹, Yidan Ouyang (欧阳亦聃)¹, Dmytro Chebotarov⁴,
5 Ramil Mauleon⁴, Hu Zhao (赵虎)¹, Weibo Xie (谢为博)¹, Kenneth L. McNally⁴, Rod
6 A. Wing^{3,5*}, Weilong Guo (郭伟龙)^{2*}, Jianwei Zhang (张建伟)^{1*}

7

8 ¹National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory,
9 Huazhong Agricultural University, Wuhan, 430070, China

10 ²Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop
11 Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic
12 Improvement, China Agricultural University, Beijing 100193, China

13 ³Center for Desert Agriculture, Biological and Environmental Sciences & Engineering
14 Division (BESE), King Abdullah University of Science and Technology (KAUST),
15 Thuwal, 23955-6900, Saudi Arabia

16 ⁴International Rice Research Institute (IRRI), Los Baños, 4031 Laguna, Philippines

17 ⁵Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson,
18 Arizona 85721, USA

19 ^aThese authors contributed equally to this work.

20 *Correspondence: Rod A. Wing (rod.wing@kaust.edu.sa), Weilong Guo
21 (guoweilong@cau.edu.cn), Jianwei Zhang (jzhang@mail.hzau.edu.cn)

22

23 **Author list:**

24 Zhichao Yu (于志超)^{1a} <proyu@webmail.hzau.edu.cn>, Z.Y., ORCID 0000-0003-
25 2155-4830

26 Yongming Chen (陈永明)^{2a} <chen_yongming@126.com>, Y.C., ORCID 0000-0002-
27 2143-3134

28 Yong Zhou (周勇)^{3a} <yong.zhou@kaust.edu.sa>, Y.Z., ORCID 0000-0002-1662-9589

29 Yulu Zhang (张雨露)¹ <zhangyulu@webmail.hzau.edu.cn>, YU.Z., ORCID 0000-
30 0001-6993-9049

31 Mengyuan Li (李梦圆)¹ <limengyuan0209@webmail.hzau.edu.cn>, M.L., ORCID
32 0000-0003-0028-5512

33 Yidan Ouyang (欧阳亦聃)¹ <diana1983941@mail.hzau.edu.cn>, Y.O., ORCID 0000-
34 0003-4966-1005

35 Dmytro Chebotarov⁴ <d.chebotarov@irri.org>, D.C., ORCID 0000-0003-1351-9453

36 Ramil Mauleon⁴, <r.mauleon@irri.org>, R.M., ORCID 0000-0001-8512-144X

37 Hu Zhao (赵虎)¹, <zhaohu@mail.hzau.edu.cn>, H.Z., ORCID 0000-0001-5046-6632

38 Weibo Xie (谢为博)¹, <weibo.xie@mail.hzau.edu.cn>, W.X., ORCID 0000-0002-
39 2768-3572

40 Kenneth L. McNally⁴ <k.mcnnally@irri.org>, K.L.M., ORCID 0000-0002-9613-5537

41 Rod A. Wing^{3,5*} <rod.wing@kaust.edu.sa>, R.A.W., ORCID 0000-0001-6633-6226

42 Weilong Guo (郭伟龙)^{2*} <guoweilong@cau.edu.cn>, W.G., ORCID 0000-0001-5199-
43 1359

44 Jianwei Zhang (张建伟)^{1*} <jzhang@mail.hzau.edu.cn>, J.Z., ORCID 0000-0001-
45 8030-5346

46

47 **Abstract**

48 To integrate the genomic information of the rice pan-genome, we performed
49 comparative analyses and established a user-friendly Rice Gene Index (RGI,
50 <https://riceome.hzau.edu.cn>) platform with 16 platinum standard reference genomes
51 and supplementary transcriptome data. To logically organize and scientifically the
52 index of 744,233 genes among rice accessions, we detected 112,658 Ortholog Gene
53 Indices, and provide ‘GeneCard’ pages to query genomic, transcriptomic, and
54 homology information for each gene. The RGI allows users to search for relationships
55 and comprehensive information of genes in keyword-based, sequence-based, and
56 relationship-based ways. Furthermore, users can visualize these relationships at local
57 and global scales corresponding to ‘Microcollinearity’ and ‘Macrocollinearity’ modules.

58

59 **Keywords**

60 Rice; Pan-genome; Homologs; Index; Visualization

61

62 **Background**

63 Asian rice (*Oryza sativa*) is the staple food for half the world and is a model crop
64 that has been extensively studied. It contributes ~20% of calories to the human diet
65 (Stein et al., 2018). With the increase in global population and rapid changes in climate,
66 rice breeders need to develop new and sustainable cultivars with higher yields, healthier
67 grains, and reduced environmental footprints (Wing et al., 2018). Since the first gold
68 standard reference genome of rice variety Nipponbare has been published (International
69 Rice Genome Sequencing Project., 2005), an increasing number of rice accessions have
70 been sequenced, assembled, and annotated with global efforts. Nowadays, a single
71 reference genome is obviously insufficient to perform the genetic difference analysis
72 for rice accessions (Huang et al., 2021). Therefore, the pan-genome has been proposed
73 as a solution, which allows the discovery of more presence-absence variants, as
74 compared with single reference genome-based studies (Zhao et al., 2018). Over the past
75 years, several databases, such as RAP-db (<https://rapdb.dna.affrc.go.jp>), RGAP
76 (<http://rice.uga.edu>), and Gramene (<https://www.gramene.org>), have long-term served

77 rice genomic research by providing information based on one or a series of individual
78 reference genomes. To integrate and utilize the genomic information of multiple
79 accessions, we performed comparative analyses and established a user-friendly Rice
80 Gene Index (RGI, <https://riceome.hzau.edu.cn>) platform. RGI is the first gene-based
81 pan-genome database for rice.

82

83 **Data collection**

84 To set up a solid foundation for this database, we selected 16 platinum standard
85 reference genomes of rice accessions that represent the major Asian rice subpopulations
86 when K=15 (Song et al., 2021; Stein *et al.*, 2018; Zhou et al., 2020), (Figure 1A).
87 Starting with a set of unified *de novo* annotations performed by Gramene (unpublished)
88 of 14 genomes and 4 published annotations including Minghui 63 (MH63), Zhenshan
89 97 (ZS97), and Nipponbare (RGAP and RAP-db) (Kawahara et al., 2013; Sakai et al.,
90 2013)), we incrementally integrated the genes and transcripts identified by newly
91 sequenced Iso-Seq data into the Gramene annotation results, as the basics to build
92 homology relationships between 18 annotations. (Supplemental Table 1) In addition, a
93 series of Iso-Seq and RNA-Seq data of multiple tissues from selected accessions
94 (Supplemental Table 2) were collected and fully presented as baseline information in
95 RGI, which included gene expression, full-length transcripts, and alternative splicing
96 (AS) events. Details on data processing are described in supplemental methods.

97

98 **Result**

99 As the primary datasets in RGI, the genome annotations of 16 rice accessions
100 contained an average of 41,346 genes, of which an average of 1,178 genes are
101 supplemented by Iso-Seq data (Supplementary Table 3). The GeneTribe pipeline (Chen
102 et al., 2020) identified an average of 33,350 gene pairs between annotations
103 (Supplemental Figure 2), which classified ‘reciprocal best hits’ (RBHs), ‘single-side
104 best hits’ (SBHs), ‘1-to-many’ hits or ‘singleton’ hits. By counting unique homolog
105 gene groups, a total of 119,783 non-redundant gene groups were determined to
106 represent the whole Asian rice gene set. To further unify the gene groups in *Oryza sativa*,

107 we defined a unified and sustainable number — Ortholog Gene Index (OGI), which is
108 a homolog group clustered by connected graph methods based on RBH relationships,
109 with an updatable score that indicates its representativeness in all accessions. Of the
110 112,658 Ortholog Gene Indices, we classified them into 21,418 OGI core genes (19.01%
111 of OGI) appearing in all rice accessions, 40,141 OGI dispensable genes, and 51,099
112 OGI accession-specific genes ([Supplemental Figure 1A](#)). And we found that the
113 specific genes are younger and shorter (T-test, $p = 2e-16$) than core genes ([Supplemental](#)
114 [Information 1](#)).

115

116 **Utility**

117 The first objective of RGI is to logically organize and scientifically index all genes
118 among rice accessions. RGI provides ‘GeneCard’ to show comprehensive information
119 for individual genes with convenient links to other modules and outside databases on
120 one page ([Figure 1C](#)). By entering a gene ID of rice, through the search box on the
121 homepage, users may browse the ‘GeneCard’ page on 3 sections: 1) Basic information
122 includes sequence, gene function, gene expression, links for accessing various modules
123 and other databases, etc. ([Supplemental Figure 4A](#)). 2) ‘Transcripts’ exhibits graph and
124 table of transcripts structure. In addition to the baseline expression analysis of all genes,
125 116,640 AS events at the transcriptome level were extensively revealed by the analysis
126 of different groups ([Supplemental Figure 4B](#), [Supplemental Table 4](#)). For example, two
127 AS events were detected for *OsNiR* (OsNip_01g0357100), a critical gene that encodes
128 nitrite reductase in nitrogen assimilation (Yu et al., 2021) ([Figure 1D](#)). Additionally,
129 ‘Homologues’ lists all associated homologs of a gene across annotations through links
130 graph and table ways. This section also shows the phylogenetic tree. Furthermore, RGI
131 provides informative pages to show the association graph of genes in each Ortholog
132 Gene Index ([Supplemental Figure 4C](#)).

133 Second, RGI provides three ways to search for relationships and comprehensive
134 information for genes.

135 (1) Through keyword-based searches, users can easily search OGI#, gene ID, gene
136 symbol, Gene Ontology, or functional terms in the query box. If users search

137 the famous gene *SD1* in RGI, 306 items will be returned with basic information,
138 which could link to other modules or databases.

139 (2) In the way of sequence-based searches, the classical ‘BLAST’ tool allows users
140 to query amino acid or nucleotide sequences in sequence databases of the whole
141 genome and protein. To easily access other modules, the tool returns gene ID
142 linking to ‘GeneCard’ or chromosome location linking to ‘JBrowse’ when using
143 the protein or nucleotide database, respectively.

144 (3) For association-based searches, the ‘Homologues’ module allows users to
145 query and connect the homologous genes through a given gene ID, which may
146 obtain the homology relationship among annotations then build a homologous
147 gene tree and display gene structures ([Figure 1F](#)), as well as multiple sequence
148 alignments and positions on the chromosome of these homologs. For example,
149 *OsTPP7* (LOC_Os09g20390), an anaerobic germination tolerance gene, was
150 found to be absent in IR64 but present in other accessions by ‘Homologues’
151 ([Supplemental Table 5](#)) and manually verified the results. It indicates that IR64
152 has less tolerance to anaerobic germination (Yang et al., 2019).

153 Third, RGI can visualize the relationship of these annotated genes across
154 accessions at local and global scales corresponding to two modules as follows:

155 (1) At the local scale, the ‘MicroCollinearity’ module enables users to demonstrate
156 genomic collinearities of a gene and its flanking genes in selected accessions
157 ([Figure 1E](#)). The homologous relations among genomes help to investigate
158 gene-based variations in the local regions of multiple accessions. Many genes
159 encoding nucleotide-binding site leucine-rich repeat (NLR) proteins are found
160 in the region close to the end of rice chromosome 11 long arm ([Supplemental](#)
161 [Figure 5](#)) (Song et al., 2021), the collinearity comparison results detected by
162 this module show that these NLR genes are significantly more abundant in
163 MH63 than in other accessions, which potentially contribute to MH63’s
164 superior resistance to rice diseases.

165 (2) At the global scale, ‘MacroCollinearity’ helps users to explore collinearity
166 between accessions and study rearrangements of rice genome at the whole-

167 chromosome level. With this module, structure variations may be easily
168 detected and the interactive tool ‘Dot Plot’ was embedded to show the
169 collinearity details and links to associated genome loci on ‘JBrowse’. (Figure
170 1G). A useful module ‘GenePair’ is provided to visualize collinearity
171 comparisons of ortholog gene pairs between two accessions on both global and
172 local scales.

173 All information mentioned above is logically organized and seamlessly integrated
174 by modules and tools in RGI. Four extra modules (‘JBrowse’ (Figure 1I),
175 ‘GOEnrichment’ (Figure 1H), ‘GeneDescription’, and ‘Download’) were additionally
176 integrated to enhance RGI’s serviceability (Supplemental Information 2). The technical
177 details on RGI construction of RGI are described in Supplemental Information 3.

178

179 **Discussion**

180 Although more than 100 chromosomal-level genomes of Asian rice have been
181 published, most of the relevant databases focus on single genomes for specific domains
182 (e.g., LncRNA, epigenomic, etc.) (Copetti et al., 2015; Xie et al., 2021; Zhang et al.,
183 2021). Two ‘pan-genome’ databases have been published (i.e. RPAN
184 (<https://cgm.sjtu.edu.cn/3kricedb/index.php>) provides data on individual rice
185 accessions, and Rice RC (<http://ricerc.sicau.edu.cn/RiceRC>) has a focus on structure
186 variants), while our RGI comprehensively creates and focuses on gene-level
187 relationships across representative Asian rice accessions, establishes a standardized
188 gene index for Asian rice, and provides richer search and visualization capabilities for
189 the whole rice research community.

190

191 **DECLARATIONS**

192 **Availability of data and materials**

193 The datasets generated during and/or analyzed during the current study are available in
194 <https://riceome.hzau.edu.cn/>. PacBio Iso-Seq raw data are available from NCBI under
195 BioProject PRJNA760839. The RNA-Seq raw data are available from NCBI under
196 BioProject PRJNA659864 and PRJNA5970706.

197 **Funding**

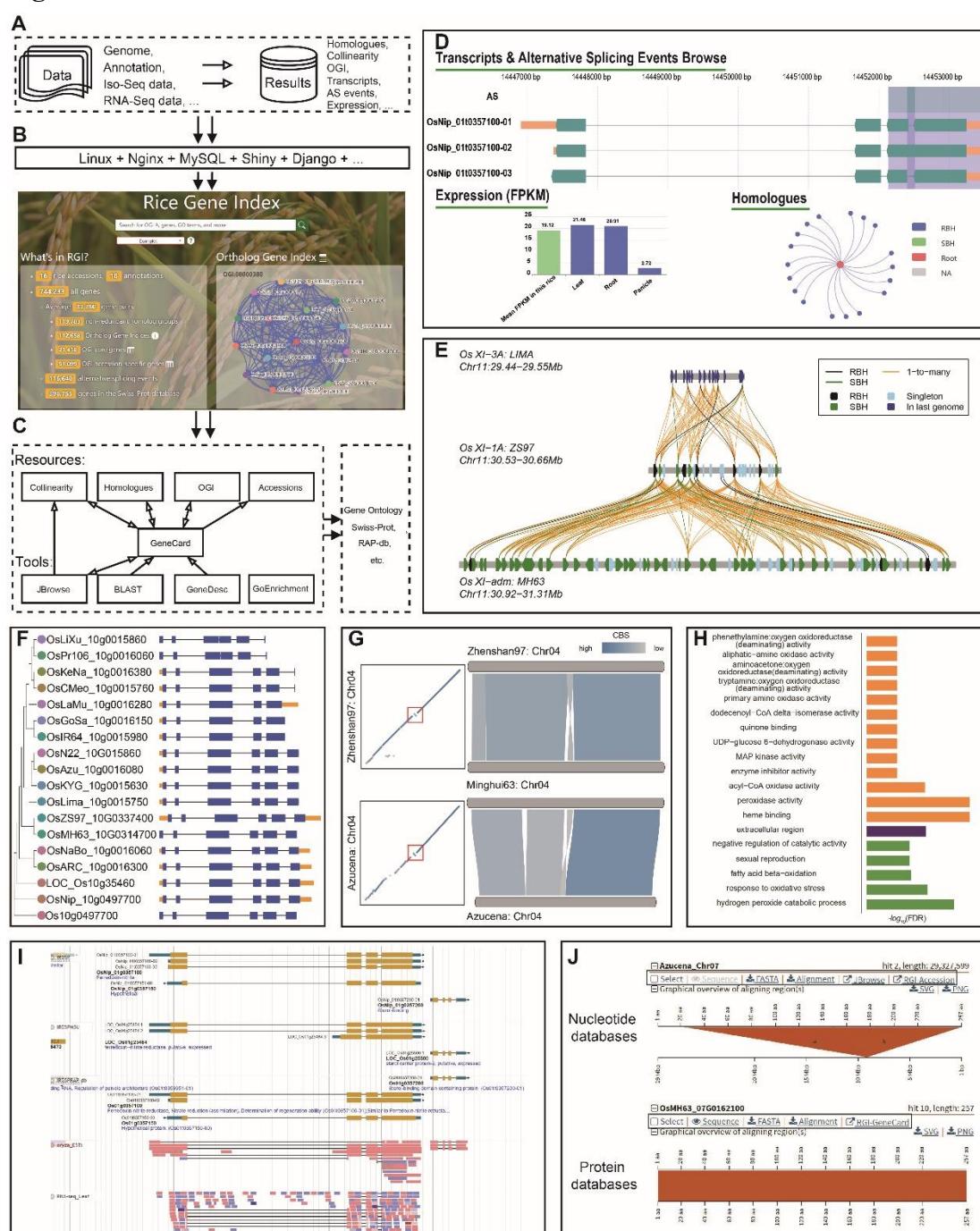
198 This research was supported by Fundamental Research Funds for the Central
199 Universities (2662020SKPY010) and the Major Project of Hubei Hongshan Laboratory
200 (2022HSZD031) to J.Z.

201 **Authors' contributions**

202 R.A.W., W.G. and J.Z. designed and conceived the research. K.L.M. provided SSD seed,
203 extracted DNA and RNA for genome and transcript sequencing (both by PacBio and
204 Illumina) for 12 Asian rice. Z.Y., Y.Z., YU.Z. and M.L. performed the homologues and
205 transcriptome analysis. Z.Y. and Y.C. built the database and managed the computing
206 platforms. Z.Y., Y.C., Y.Z., Y.O., D.C., R.M., H.Z., W.X., K.L.M., R.A.W., W.G. and
207 J.Z. wrote and edited the paper. All authors read and approved the final manuscript.

208 **Acknowledgments**

209 We thank access to the annotation for the Magic 16 gene structure annotation from the
210 Gramene project, specifically K. Chougule, Z. Lu, and D. Ware supported by USDA
211 8062-21000-041-00D. We sincerely thank the computing platform of the National Key
212 Laboratory of Crop Genetic Improvement in HZAU for providing the computational
213 resources. No conflict of interest declared.

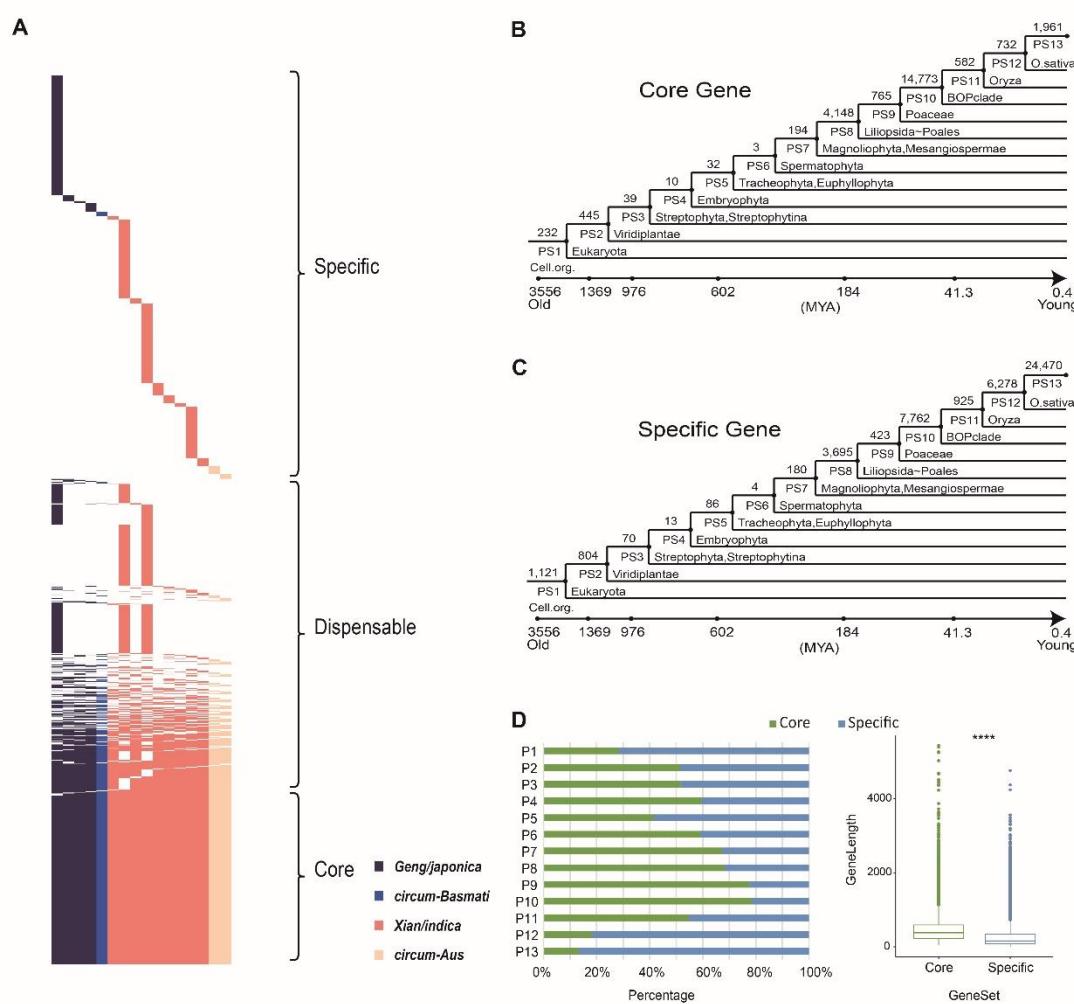

214

215 **Supplemental Information**

216 See the Supplementary Information.

217

218 **Figures**

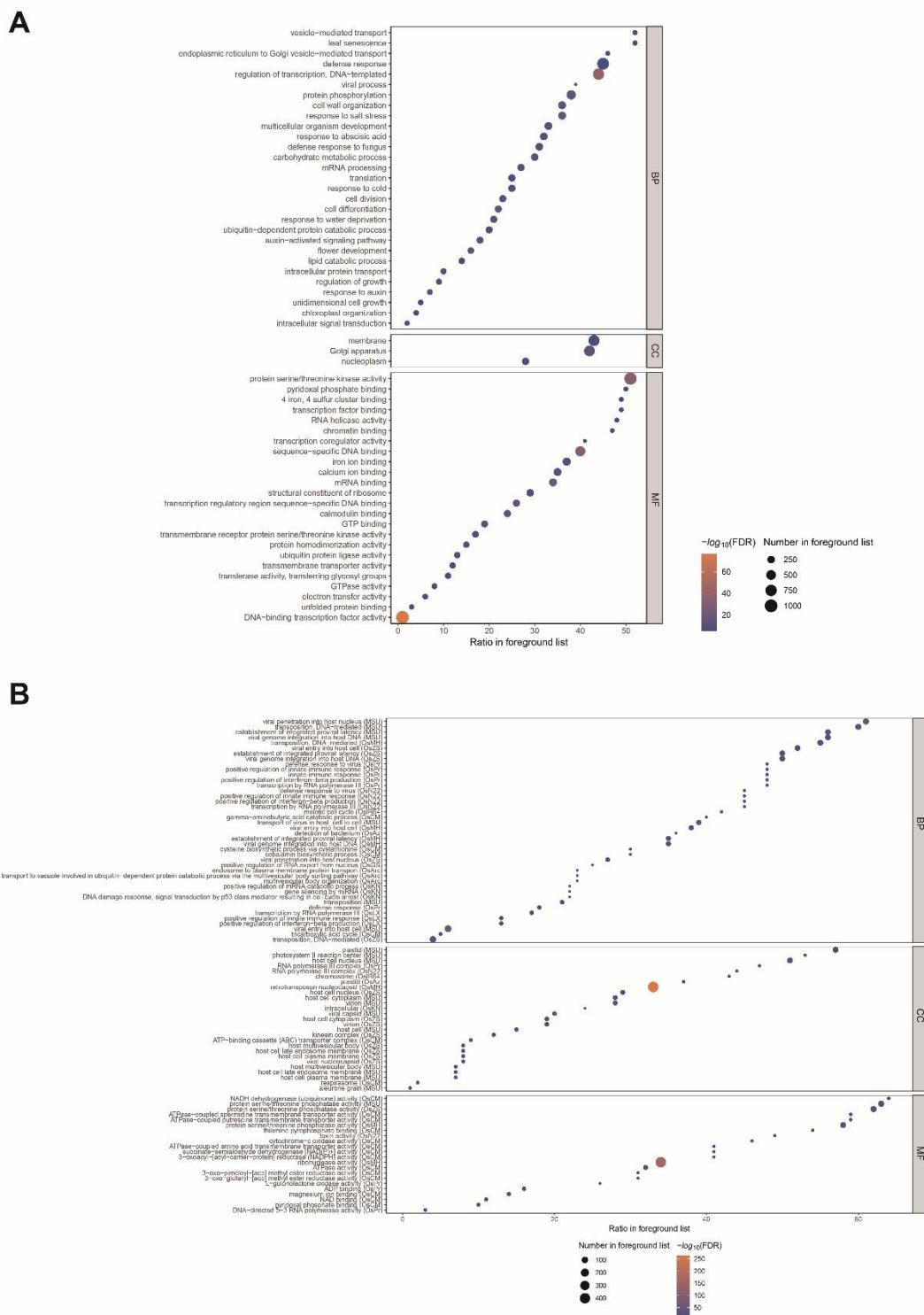

219

220 **Figure 1. Design and online output example of RGI.**

221 (A-C) Overview of the construction of the Rice Gene Index (RGI). (A) The data layer
 222 demonstrates the source data and results provided in RGI. (B) The middleware layer
 223 shows the tools used to build the RGI website. (C) The architecture of RGI shows
 224 functions and tools. ‘GeneCard’ is a central module in RGI, which links to other
 225 modules via a network. (D) ‘GeneCard’ page shows *OsNipR*’s transcripts structure, AS
 226 events, Gene expression, and homologs. (E) ‘MicroColinearity’ module shows

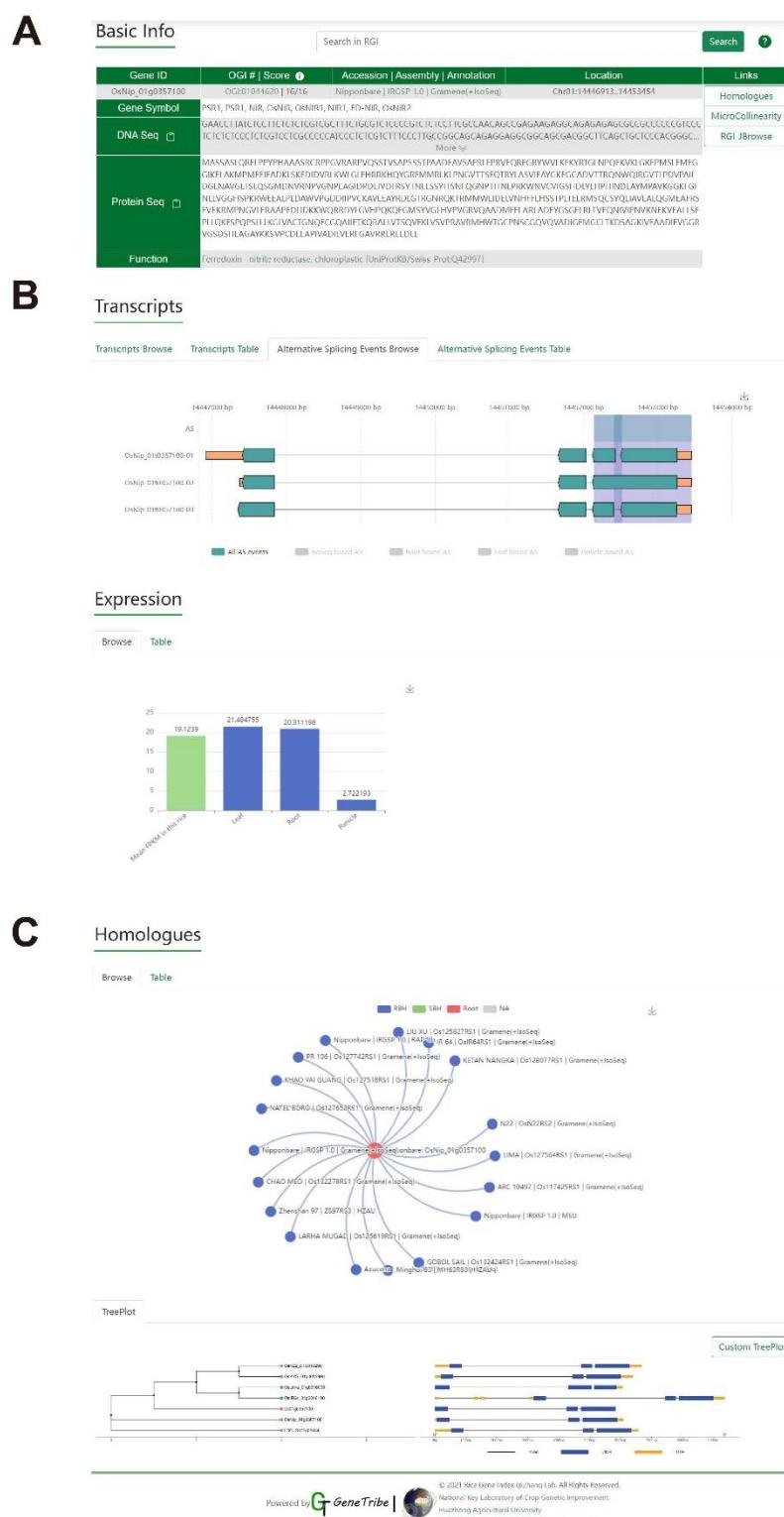
227 homologous relationships of a disease-resistant gene cluster on the local scale between
228 the MH63 and ZS97 genomes. The black, green, and yellow lines represent RBH, SBH,
229 and 1-to-many relationships, respectively. For genes, black, green, blue, and yellow
230 represent genes with RBH, SBH, singleton, and 1-to-many relationships, respectively.
231 (F) Gene tree in the ‘Homologues’ module. (G) ‘MacroCollinearity’ module shows the
232 collinear blocks in chromosome 4 between ZS97 and MH63, and chromosome 4
233 between MH63 and Azucena. Colors indicate the collinear block scores. Inversions
234 were highlighted by red triangle. (H) GO enrichment analysis. (I) *OsNiR*’s location in
235 JBrowse. (J) The partial result of searching *GHD7*’s sequence in sequence databases of
236 the whole genome (from 16 assemblies) and protein (from 18 annotations) by the
237 ‘BLAST’ tool. The black triangles show the functions and links to other pages.
238

239

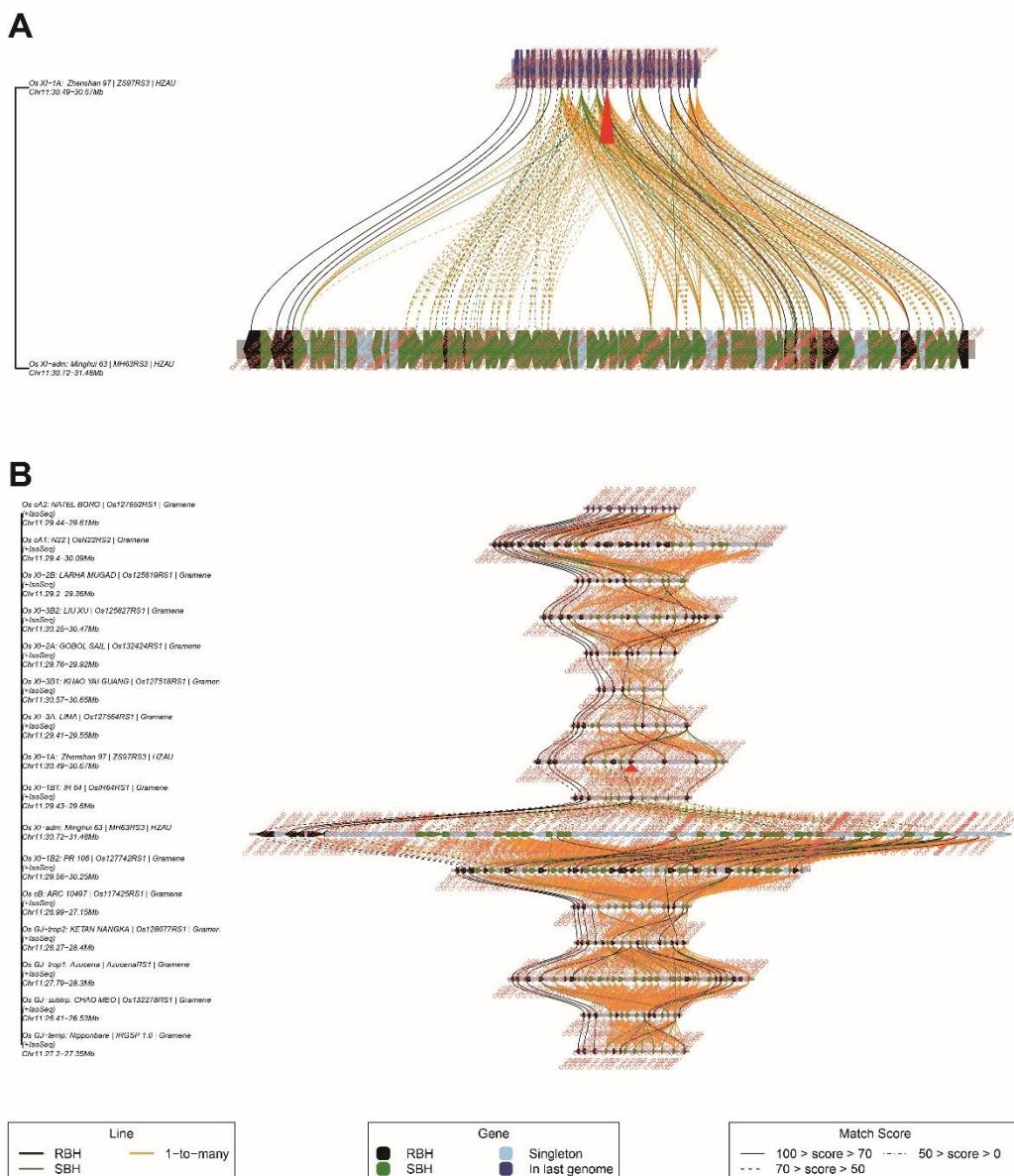

240

241 **Supplemental Figure 1. Gene presence/absence variations in 16 Asian rice**
242 **accessions.** (A) The core genes are present in all accessions, the dispensable genes are
243 present in <16 of accessions, and the accession-specific genes are only present in one
244 accession. The presence of genes is colorful (4 subpopulations in Asian rice:
245 *Geng/japonica*, *Xian/indica*, *circum-Aus*, and *circum-Basmati*), and the absence of
246 genes is white. (B and C) The numbers of core genes (B) and accession-specific genes
247 (C) that emerged at different evolutionary times, from PS1 (single-cell organisms) to
248 PS13 (*O. sativa*). (D) The age distribution (left) and gene length (right) of the core and
249 genes. (See Methods)

	Os GJ-temp: Nipponbare IRGSP 1.0 MSU	Os GJ-temp: Nipponbare IRGSP 1.0 RAPdb	Os GJ-temp: Nipponbare IRGSP 1.0 RAPdb	Os GJ-temp: CHAO MEO Os12807RS1 Gramene(+IsoSeq)	Os GJ-temp: Azucena AzucenaRS1 Gramene(+IsoSeq)	Os GJ-temp: KETAN NANIGKA Os12807RS1 Gramene(+IsoSeq)	Os cB: ARC 10497 Os12807RS1 Gramene(+IsoSeq)	Os XI-1B2: PR 106 Os12807RS1 Gramene(+IsoSeq)	Os XI-1B2: PR 106 Os12807RS1 Gramene(+IsoSeq)	Os XI-1A: Zhenshan 97 ZS97RS1 Gramene(+IsoSeq)	Os XI-3A: LIMA Os12754RS1 Gramene(+IsoSeq)	Os XI-3B1: KHAO YAI GUANG Os127518RS1 Gramene(+IsoSeq)	Os XI-3B2: LIU XU Os125827RS1 Gramene(+IsoSeq)	Os XI-2B: LARHUA MUGAO Os125618RS1 Gramene(+IsoSeq)	Os cA1: N22 OsN22RS2 Gramene(+IsoSeq)	Os cA2: NATEL BORO Os127652RS1 Gramene(+IsoSeq)	
Os GJ-temp: Nipponbare IRGSP 1.0 MSU	-	28365	28169	32747	32703	32678	32354	32121	47376	31789	49471	32849	32318	32118	38300	32139	31858
Os GJ-temp: Nipponbare IRGSP 1.0 RAPdb	32576	-	35396	28760	28730	28620	28523	28665	29786	28326	30393	29211	28879	28639	33808	28632	28462
Os GJ-temp: Nipponbare IRGSP 1.0 RAPdb	32598	35493	-	28773	28724	28639	28572	28563	29691	28287	30336	29127	28792	28521	33747	28573	28398
Os GJ-temp: CHAO MEO Os12807RS1 Gramene(+IsoSeq)	34911	28552	28398	-	35441	35287	34813	34106	31273	33680	31991	34811	34300	34015	40535	34072	34121
Os GJ-temp: Azucena AzucenaRS1 Gramene(+IsoSeq)	34915	28534	28390	35447	-	35421	34869	34220	31330	33747	32018	34921	34319	34087	40717	34143	34199
Os GJ-temp: KETAN NANIGKA Os12807RS1 Gramene(+IsoSeq)	35665	28522	28410	35224	35359	-	35002	34225	32020	33950	32636	3498	34399	34076	40793	34253	34329
Os cB: ARC 10497 Os117425RS1 Gramene(+IsoSeq)	34440	28374	28285	34813	34877	35075	-	34156	31195	33954	31863	34971	34335	34022	40739	34252	34400
Os XI-1B2: PR 106 Os127742RS1 Gramene(+IsoSeq)	34296	28360	28160	33989	34111	34190	34035	-	31787	34672	32299	35342	35013	34757	41352	34606	34277
Os XI-adm: Minghui 63 MH63RS3 HZAU	48304	27546	27342	31531	31592	31666	31459	31934	-	31581	54830	32475	31995	31815	37866	31671	31632
Os XI-1B1: IR 64 OsIR64RS1 Gramene(+IsoSeq)	34077	28141	28000	33696	33758	34040	33966	34797	31673	-	32164	35247	34873	34557	41177	34465	34254
Os XI-1A: Zhenshan 97 ZS97RS3 HZAU	48497	27855	27665	31751	31810	31901	31650	32044	52951	31712	-	32602	32136	31891	38134	31856	31585
Os XI-3A: LIMA Os12754RS1 Gramene(+IsoSeq)	34186	28375	28186	34004	34103	34248	34127	34669	31610	34430	32106	-	35182	34816	41504	34657	34264
Os XI-3B1: KHAO YAI GUANG Os127518RS1 Gramene(+IsoSeq)	34071	28389	28213	34007	33999	34168	34037	34800	31478	34557	32041	35718	-	34867	41504	34686	34329
Os XI-2A: GOBOL SAIL Os132424RS1 Gramene(+IsoSeq)	33982	28385	28168	33887	33968	34006	33887	34724	31441	34394	31913	35495	35029	-	41318	34583	34281
Os XI-3B2: LIU XU Os125827RS1 Gramene(+IsoSeq)	34362	28517	28346	34181	34290	34451	34357	34887	31709	34654	32239	35728	35217	34890	-	34767	34589
Os XI-2B: LARHUA MUGAO Os125618RS1 Gramene(+IsoSeq)	34159	28333	28166	33985	34028	34221	34149	34628	31377	34353	31955	35372	34890	34597	41120	-	34363
Os cA1: N22 OsN22RS2 Gramene(+IsoSeq)	34442	28425	28290	34059	34172	34353	34362	34359	31536	34192	32188	35002	34575	34347	41010	34411	-
Os cA2: NATEL BORO Os127652RS1 Gramene(+IsoSeq)	34053	28365	28190	33779	33978	33974	33934	34067	31239	33727	31788	34728	34230	34220	40557	34140	34713


250

251 **Supplemental Figure 2.** The 18 × 18 gene annotation matrix, which shows the number
 252 of 1-to-1 homologs, and demonstrates the homologous gene pairs. The color
 253 corresponds to the number of homologs. Red represents higher gene pairs number and
 254 blue represents lower gene pairs number.


255

256 **Supplemental Figure 3.** The bubble plot of the Gene Ontology enrichment analysis in
257 (A) the core gene set and (B) the accession-specific gene set.

258

259 Supplemental Figure 4. The ‘GeneCard’ page.

260

261 **Supplemental Figure 5.** In previous studies, NLR genes were found to be highly
 262 duplicated in chromosome 11 of MH63 compared with other genomes. (A) displays the
 263 micro-collinearity of NLR genes in MH63 and ZS97 by searching NLR gene
 264 *OsZS97_11G0430400* in the ‘MicroCollinearity’ module. (B) displays the micro-

265 collinearity of NLR genes in 16 varieties by searching NLR gene *OsZS97_11G0430400*
266 in the ‘MicroCollinearity’ module. (A) and (B) show *OsZS97_11G0430400*’s 15
267 flanking genes.

268

269

270 **Supplementary Tables**

271 **Supplemental Table 1.** Summary of RGI data composition.

Supplemental Table 1. Summary of RGI data composition

Accession Name	Subpopulations	Assembly	Annotation ^a	Locus Tag Prefix
Os GJ-temp: Nipponbare	Geng-japonica-temp	IRGSP1.0	Gramene (+Isoseq) MSU RAP-db	OsNip_ LOC_Os Os
Os GJ-subtrp: CHAO MEO	Geng-japonica-trop1	AzucenaRS1	Gramene (+Isoseq)	OsAzu_
Os GJ-trop1: Azucena	Geng-japonica-trop2	Os128077RS1	Gramene (+Isoseq)	OsKeNa_
Os GJ-trop2: KETAN NANGKA	Geng-japonica-subtrp	Os132278RS1	Gramene (+Isoseq)	OsCMeo_
Os cB: ARC 10497	circum-Basmati	Os117425RS1	Gramene (+Isoseq)	OsARC_
Os XI-1B2: PR 106	Xian-indica-1B2	Os127742RS1	Gramene (+Isoseq)	OsPr106_
Os XI-adm: MH63	Xian-indica-adm	MH63RS3	HZAU	OsMH63_
Os XI-1B1: IR 64	Xian-indica-1B1	OsIR64RS1	Gramene (+Isoseq)	OsIR64_
Os XI-1A: ZS97	Xian-indica-1A	ZS97RS3	HZAU	OsZS97_
Os XI-3A: LIMA	Xian-indica-3A	Os127564RS1	Gramene (+Isoseq)	OsLima_
Os XI-3B1: KHAO YAI GUANG	Xian-indica-3B1	Os127518RS1	Gramene (+Isoseq)	OsKYG_
Os XI-2A: GOBOL SAIL	Xian-indica-2A	Os132424RS1	Gramene (+Isoseq)	OsGoSa_
Os XI-3B2: LIU XU	Xian-indica-3B2	Os125827RS1	Gramene (+Isoseq)	OsLiXu_
Os XI-2B: LARHA MUGAD	Xian-indica-2B	Os125619RS1	Gramene (+Isoseq)	OsLaMu_
Os cA1: N22	circum-Aus1	OsN22RS2	Gramene (+Isoseq)	OsN22_
Os cA2: NATEL BORO	circum-Aus2	Os127652RS1	Gramene (+Isoseq)	OsNaBo_

a. this row is the annotation source, Gramene (+Isoseq) means *de novo* annotation attached transcripts from Iso-Seq data

272

273

274 **Supplemental Table 2.** Iso-Seq and RNA-Seq data from multiple tissues (i.e., leaves,
 275 roots, and immature panicles) of 16 rice accessions.

Supplemental Table 2A. Iso-Seq data of 16 rice accessions

Accessions	SMRT CELL ^a			HQ FLNC Reads			HQ Transcripts			
	Leaf	Panicle	Root	Leaf	Panicle	Root	Leaf	Panicle	Root	Merged
Os GJ-temp: Nipponbare	1	1	1	19,101	26,760	34,261	14,751	20,883	27,415	40,644
Os GJ-subtrp: CHAO MEO	1	1	1	26,589	28,501	26,100	22,916	17,237	22,084	40,025
Os GJ-trop1: Azucena	1	1	1	29,209	33,939	32,440	24,908	25,060	23,557	45,578
Os GJ-trop2: KETAN NANGKA	1	1	2	17,148	53,122	28,529	9,905	25,429	24,123	37,942
Os cB: ARC 10497	1	-	1	25,932	-	25,265	19,225	-	19,584	29,880
Os XI-1B2: PR 106	1	1	1	31,088	44,374	26,093	19,008	21,528	21,720	38,785
Os XI-adm: MH63	-	-	-	-	-	-	-	-	-	-
Os XI-1B1: IR 64	1	1	1	19,168	31,556	31,937	14,951	24,625	21,376	39,818
Os XI-1A: ZS97	-	-	-	-	-	-	-	-	-	-
Os XI-3A: LIMA	1	-	1	32,067	-	26,603	17,771	-	14,487	23,989
Os XI-3B1: KHAO YAI GUANG	1	1	1	31,036	-	43,031	19,756	-	22,178	30,559
Os XI-2A: GOBOL SAIL	2	-	1	31,967	-	42,680	15,857	-	21,485	26,869
Os XI-3B2: LIU XU	1	1	1	23,628	31,519	23,625	14,308	16,786	19,427	32,223
Os XI-2B: LARHA MUGAD	1	-	1	29,618	-	38,265	15,838	-	19,437	25,832
Os cA1: N22	1	1	1	43,709	50,872	29,457	26,290	24,509	21,098	43,742
Os cA2: NATEL BORO	1	1	1	37,614	41,834	28,826	17,928	20,225	21,157	35,923

a. this row shows the number of PacBio SMRT cells

Supplemental Table 2B. RNA-Seq data of 16 rice accessions

Accessions	Biological Replication ^a			Alignment Rate		
	Leaf	Panicle	Root	Leaf	Panicle	Root
Os GJ-temp: Nipponbare	1	1	1	99.54%	99.29%	99.57%
Os GJ-subtrp: CHAO MEO	1	1	1	96.14%	93.87%	92.04%
Os GJ-trop1: Azucena	1	1	1	99.50%	99.41%	98.48%
Os GJ-trop2: KETAN NANGKA	1	1	1	71.11%	37.23%	17.79%
Os cB: ARC 10497	1	-	1	98.54%	-	94.72%
Os XI-1B2: PR 106	1	1	1	62.25%	29.27%	20.68%
Os XI-adm: MH63	2	2	2	95.12%	89.89%	85.26%
Os XI-1B1: IR 64	1	1	1	99.24%	99.22%	98.29%
Os XI-1A: ZS97	2	2	2	88.25%	88.36%	60.60%
Os XI-3A: LIMA	1	-	1	98.56%	-	96.37%
Os XI-3B1: KHAO YAI GUANG	1	1	1	94.99%	-	99.45%
Os XI-2A: GOBOL SAIL	1	-	1	96.66%	-	93.84%
Os XI-3B2: LIU XU	1	1	1	99.51%	99.29%	99.42%
Os XI-2B: LARHA MUGAD	1	-	1	86.39%	-	78.36%
Os cA1: N22	1	1	1	99.60%	99.73%	98.58%
Os cA2: NATEL BORO	1	1	1	96.37%	86.24%	86.43%

a. this row shows the number of biological replication

277 **Supplemental Table 3.** Numbers of annotated genes in 16 rice accessions.

Supplemental Table 3. Gene number of 16 rice varieties with 18 gene annotation

Accession Assembly Annotation	Annotated Genes	Genes from Iso-Seq Data
Os GJ-temp: Nipponbare IRGSP 1.0 MSU	55,801	-
Os GJ-temp: Nipponbare IRGSP 1.0 RAPdb	37,859	-
Os GJ-temp: Nipponbare IRGSP 1.0 Gramene(+IsoSeq)	38,404	733
Os GJ-subtrp: CHAO MEO Os132278RS1 Gramene(+IsoSeq)	37,240	1,054
Os GJ-trop1: Azucena AzucenaRS1 Gramene(+IsoSeq)	36,882	1,079
Os GJ-trop2: KETAN NANGKA Os128077RS1 Gramene(+IsoSeq)	37,994	1,388
Os cB: ARC 10497 Os117425RS1 Gramene(+IsoSeq)	37,181	844
Os XI-1B2: PR 106 Os127742RS1 Gramene(+IsoSeq)	36,720	1,255
Os XI-adm: Minghui 63 MH63RS3 HZAU	59,903	-
Os XI-1B1: IR 64 OsIR64RS1 Gramene(+IsoSeq)	36,925	987
Os XI-1A: Zhenshan 97 ZS97RS3 HZAU	60,935	-
Os XI-3A: LIMA Os127564RS1 Gramene(+IsoSeq)	37,994	973
Os XI-3B1: KHAO YAI GUANG Os127518RS1 Gramene(+IsoSeq)	37,522	1,105
Os XI-2A: GOBOL SAIL Os132424RS1 Gramene(+IsoSeq)	36,467	1,810
Os XI-3B2: LIU XU Os125827RS1 Gramene(+IsoSeq)	44,942	1,183
Os XI-2B: LARHA MUGAD Os125619RS1 Gramene(+IsoSeq)	37,474	1,244
Os cA1: N22 OsN22RS2 Gramene(+IsoSeq)	37,598	1,280
Os cA2: NATEL BORO Os127652RS1 Gramene(+IsoSeq)	36,392	1,664

278

279 **Supplemental Table 4.** Summary of alternative splicing events in 16 rice accessions.

Supplemental Table 4. Summary of alternative splicing events in 16 rice accessions

Accession Assembly Annotation	A3	A5	AF	AL	MX	RI	SE	Total
Os GJ-temp: Nipponbare IRGSP 1.0 Gramene(+IsoSeq)	1,250	634	237	91	2	1,181	326	3,721
Os GJ-subtrp: CHAO MEO Os132278RS1 Gramene(+IsoSeq)	2,761	2,574	530	182	113	2,228	1,715	10,103
Os GJ-trop1: Azucena AzucenaRS1 Gramene(+IsoSeq)	2,735	2,583	575	187	100	2,257	1,719	10,156
Os GJ-trop2: KETAN NANGKA Os128077RS1 Gramene(+IsoSeq)	2,484	2,350	509	167	101	2,072	1,581	9,264
Os cB: ARC 10497 Os117425RS1 Gramene(+IsoSeq)	2,253	2,009	451	151	91	1,912	1,396	8,263
Os XI-1B2: PR 106 Os127742RS1 Gramene(+IsoSeq)	2,530	2,415	519	169	116	2,153	1,637	9,539
Os XI-adm: Minghui 63 MH63RS3 HZAU	-	-	-	-	-	-	-	-
Os XI-1B1: IR 64 OsIR64RS1 Gramene(+IsoSeq)	2,634	2,434	546	208	96	2,177	1,646	9,741
Os XI-1A: Zhenshan 97 ZS97RS3 HZAU	-	-	-	-	-	-	-	-
Os XI-3A: LIMA Os127564RS1 Gramene(+IsoSeq)	1,841	1,670	367	127	62	1,791	1,182	7,040
Os XI-3B1: KHAO YAI GUANG Os127518RS1 Gramene(+IsoSeq)	1,986	1,770	403	149	60	1,792	1,236	7,396
Os XI-2A: GOBOL SAIL Os132424RS1 Gramene(+IsoSeq)	1,563	1,355	351	115	45	1,450	940	5,819
Os XI-3B2: LIU XU Os125827RS1 Gramene(+IsoSeq)	2,537	2,424	493	168	97	1,981	1,683	9,383
Os XI-2B: LARHA MUGAD Os125619RS1 Gramene(+IsoSeq)	1,803	1,588	377	154	57	1,611	1,129	6,719
Os cA1: N22 OsN22RS2 Gramene(+IsoSeq)	2,742	2,548	514	937	108	2,464	1,705	11,018
Os cA2: NATEL BORO Os127652RS1 Gramene(+IsoSeq)	2,281	2,198	474	156	104	1,796	1,469	8,478

280

281 **Supplemental Table 5.** Homologues of gene *LOC_Os11g29290* in 16 accessions. The
282 result was produced by the ‘Homologues’ module and checked manually.

Supplemental Table 5. Homologs of *OsTPP7*(*LOC_Os09g20390*) in 16 accessions

Accession Assembly Annotation	Homologous	Type
Os GJ-temp: Nipponbare IRGSP 1.0 MSU	LOC_Os11g29290	RBH
Os GJ-temp: Nipponbare IRGSP 1.0 RAPdb	Os11g0483000	RBH
Os GJ-temp: Nipponbare IRGSP 1.0 Gramene(+IsoSeq)	OsNip_11g0483000	RBH
Os GJ-subtrp: CHAO MEO Os132278RS1 Gramene(+IsoSeq)	OsCMeo_11g0013950	RBH
Os GJ-trop1: Azucena AzucenaRS1 Gramene(+IsoSeq)	OsAzu_11g0014030	RBH
Os GJ-trop2: KETAN NANGKA Os128077RS1 Gramene(+IsoSeq)	OsKeNa_11g0013990	RBH
Os cB: ARC 10497 Os117425RS1 Gramene(+IsoSeq)	OsARC_11g0013770	RBH
Os XI-1B2: PR 106 Os127742RS1 Gramene(+IsoSeq)	OsPr106_11g0014050	RBH
Os XI-adm: Minghui 63 MH63RS3 HZAU	OsMH63_11G0261700	RBH
Os XI-1B1: IR 64 OsIR64RS1 Gramene(+IsoSeq)	NA	NA
Os XI-1A: Zhenshan 97 ZS97RS3 HZAU	OsZS97_11G0273800	RBH
Os XI-3A: LIMA Os127564RS1 Gramene(+IsoSeq)	OsLima_11g0014120	RBH
Os XI-3B1: KHAO YAI GUANG Os127518RS1 Gramene(+IsoSeq)	OsKYG_11g0014170	RBH
Os XI-2A: GOBOL SAIL Os132424RS1 Gramene(+IsoSeq)	OsGoSa_11g0013820	RBH
Os XI-3B2: LIU XU Os125827RS1 Gramene(+IsoSeq)	OsLiXu_11g0013660	RBH
Os XI-2B: LARHA MUGAD Os125619RS1 Gramene(+IsoSeq)	OsLaMu_11g0013960	RBH
Os cA1: N22 OsN22RS2 Gramene(+IsoSeq)	OsN22_11G013780	RBH
Os cA2: NATEL BORO Os127652RS1 Gramene(+IsoSeq)	OsNaBo_11g0014000	RBH

283

284 **References**

285 **Chen, Y., Song, W., Xie, X., Wang, Z., Guan, P., Peng, H., Jiao, Y., Ni, Z., Sun, Q., and Guo, W.** (2020). A
286 Collinearity-Incorporating Homology Inference Strategy for Connecting Emerging Assemblies in the
287 Triticeae Tribe as a Pilot Practice in the Plant Pangenomic Era. *Molecular Plant* **13**:1694-1708.
288 10.1016/j.molp.2020.09.019.

289 **Copetti, D., Zhang, J., El Baidouri, M., Gao, D., Wang, J., Barghini, E., Cossu, R.M., Angelova, A.,**
290 **Maldonado L, C.E., Roffler, S., et al.** (2015). RiTE database: a resource database for genus-wide rice
291 genomics and evolutionary biology. *BMC Genomics* **16**:538. 10.1186/s12864-015-1762-3.

292 **Huang, C., Chen, Z., and Liang, C.** (2021). Oryza pan-genomics: A new foundation for future rice research
293 and improvement. *The Crop Journal* **9**:622-632. 10.1016/j.cj.2021.04.003.

294 **International Rice Genome Sequencing Project., S., T.** (2005). The map-based sequence of the rice
295 genome. *Nature* **436**:793-800. 10.1038/nature03895.

296 **Kawahara, Y., de la Bastide, M., Hamilton, J.P., Kanamori, H., McCombie, W.R., Ouyang, S., Schwartz,**
297 **D.C., Tanaka, T., Wu, J., Zhou, S., et al.** (2013). Improvement of the *Oryza sativa* Nipponbare reference
298 genome using next generation sequence and optical map data. *Rice* **6**:4. 10.1186/1939-8433-6-4.

299 **Sakai, H., Lee, S.S., Tanaka, T., Numa, H., Kim, J., Kawahara, Y., Wakimoto, H., Yang, C.-c., Iwamoto,**
300 **M., Abe, T., et al.** (2013). Rice Annotation Project Database (RAP-DB): An Integrative and Interactive
301 Database for Rice Genomics. *Plant and Cell Physiology* **54**:e6-e6. 10.1093/pcp/pcs183.

302 **Song, J.-M., Xie, W.-Z., Wang, S., Guo, Y.-X., Koo, D.-H., Kudrna, D., Gong, C., Huang, Y., Feng, J.-W.,**
303 **Zhang, W., et al.** (2021). Two gap-free reference genomes and a global view of the centromere
304 architecture in rice. *Molecular Plant* **14**:1757-1767. 10.1016/j.molp.2021.06.018.

305 **Stein, J.C., Yu, Y., Copetti, D., Zwickl, D.J., Zhang, L., Zhang, C., Chougule, K., Gao, D., Iwata, A.,**
306 **Goicoechea, J.L., et al.** (2018). Genomes of 13 domesticated and wild rice relatives highlight genetic
307 conservation, turnover and innovation across the genus *Oryza*. *Nature Genetics* **50**:285-296.
308 10.1038/s41588-018-0040-0.

309 **Wing, R.A., Purugganan, M.D., and Zhang, Q.** (2018). The rice genome revolution: from an ancient grain
310 to Green Super Rice. *Nature Reviews Genetics* **19**:505-517. 10.1038/s41576-018-0024-z.

311 **Xie, L., Liu, M., Zhao, L., Cao, K., Wang, P., Xu, W., Sung, W.-K., Li, X., and Li, G.** (2021). RiceENCODE: A
312 comprehensive epigenomic database as a rice Encyclopedia of DNA Elements. *Molecular Plant* **14**:1604-
313 1606. 10.1016/j.molp.2021.08.018.

314 **Yang, J., Sun, K., Li, D., Luo, L., Liu, Y., Huang, M., Yang, G., Liu, H., Wang, H., Chen, Z., et al.** (2019).
315 Identification of stable QTLs and candidate genes involved in anaerobic germination tolerance in rice
316 via high-density genetic mapping and RNA-Seq. *BMC Genomics* **20**:355. 10.1186/s12864-019-5741-y.

317 **Yu, J., Xuan, W., Tian, Y., Fan, L., Sun, J., Tang, W., Chen, G., Wang, B., Liu, Y., Wu, W., et al.** (2021).
318 Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice.
319 *Plant Biotechnology Journal* **19**:167-176. 10.1111/pbi.13450.

320 **Zhang, Z., Xu, Y., Yang, F., Xiao, B., and Li, G.** (2021). RiceLncPedia: a comprehensive database of rice
321 long non-coding RNAs. *Plant Biotechnology Journal* **19**:1492-1494. 10.1111/pbi.13639.

322 **Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., Zhan, Q., Lu, Y., Zhang, L., Huang, T., et al.** (2018).
323 Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. *Nature
324 Genetics* **50**:278-284. 10.1038/s41588-018-0041-z.

325 **Zhou, Y., Chebotarov, D., Kudrna, D., Llaca, V., Lee, S., Rajasekar, S., Mohammed, N., Al-Bader, N.,**
326 **Sobel-Sorenson, C., Parakkal, P., et al.** (2020). A platinum standard pan-genome resource that
327 represents the population structure of Asian rice. *Scientific Data* **7**:113. 10.1038/s41597-020-0438-2.

328