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Abstract

Major depressive disorder (MDD) is the most burdensome psychiatric disorder characterized by
remarkably heterogeneous clinical phenotypes. It remains challenging to delineate the heterogeneity
of neurobiological abnormalities underlying the clinical variance and, on this basis, to identify
neurophysiological subtypes of MDD patients. Here, using a large multisite resting-state functional
MRI datafrom 1,148 MDD patients and 1,079 healthy controls, we generated lifespan normative
models of functional connectivity strengths, mapped the heterogeneity of patients’ individual
deviations, and identified neurobiological MDD subtypes. MDD patients showed positive deviations
mainly in the default mode and subcortical areas, and negative deviations widely distributed over the
cortex. However, there was a great inter-subject heterogeneity as indicated by that no more than 3.14%
of patients deviated from the normative range for any brain region. Two neurophysiological MDD
subtypes were identified. Subtype 1 showed severe deviations with positive deviations in the default
mode, limbic, and subcortical areas, and negative deviations in the sensorimotor, dorsal and ventral
attention areas, while subtype 2 showed a moderate but conversed deviation pattern. The
severe-deviation subtype had older age, higher medicated proportion, and higher Suicide item score,
while the moderate-deviation subtype showed higher Work and Activities and Depressed Mood item
scores. Moreover, the baseline deviationsin the severe-deviation subtype were predictive of 6-month
antidepressant treatment effects in a subsample. To our knowledge, the current study is the largest
multisite analysis of neurophysiological MDD subtyping to date and the findings shed light on our
understanding of the biological mechanisms underlying the intersubject heterogeneity of clinical

phenotypes, which are informative for the development of personalized treatments for this disorder.
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I ntroduction
Major depressive disorder (MDD) is one of the most prevalent and burdensome psychiatric disorders
worldwide, and it is accompanied by heterogeneous emotional, neurovegetative, and neurocognitive
symptoms [1, 2]. This clinical diversity among patients brings up a huge challenge for disease
diagnosis and the prediction of course trgectories and treatment responses. However, the underlying
neurophysiological substrates of this clinical heterogeneity remain largely unclear. Parsing the
neurophysiological heterogeneity is essential to better link complex biological dysregulations with
clinical manifestations, thus facilitating optimized treatment allocation for patients. Prior studies
have attempted to identify MDD subtypes based on clinical symptoms, such as melancholic
depression, atypical depression, and seasonal affective disorder [3-5]. These studies showed
neurophysiological differences between the clinical subtypes and indicated a possible relationship
between specific depressive symptom profiles and biological dysregulations. However, clinical
symptoms interact in a complex manner with biological substrates and may change over age and
disease course, the neurophysiological informed subtyping of MDD is still lacking. Exploring
neurophysiological subtypes of MDD is expected to provide a more objective understanding of the
biological mechanisms underlying the disorder and inform the devel opment of personalized
biomarkers for clinical diagnosis and treatment. This will help advance our understanding of the
complex clinical heterogeneity of MDD and improve its diagnosis and treatment in the future.
Based on resting-state functional magnetic resonance imaging (r-fMRI), many case-control
studies have documented the disrupted topological organization of the functional brain connectomes
and identified several critical functional foci in MDD patients [6-9], which largely enhanced our
understanding of the neurophysiological substrates of this disease. It is important to note that the

results from the between-group comparisons in small-sample studies were largely inconsistent, and
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the effect size was small in recent large-sample multisite studies, which suggests alarge degree of
heterogeneity in functional connectome aterationsin MDD patients. This has recently led to increase
focus on the heterogeneity of functional connectomesin MDD patients [10-12], with growing
attention on the investigation of neurophysiological subtypes based on functional connectomes
[13-17]. Studies have found important roles for functional connectomes of default mode networks
(DMN), limbic systems (LIM), and subcortical regions (SUB) in neurophysiological subtyping. For
example, Liang et al. [15] found hyperconnectivity of DMN areas in one subtype and
hypoconnectivity in the other subtype. Drysdale et al. [14] defined four neurophysiological subtypes
based on the distinct functional connectivity patternsin LIM and frontostriatal networks. These
studies observed differencesin clinical presentations and treatment response among
neurophysiological subtypes, which indicates the promise of discovering clinically valuable
neurobiological subtypes based on functional connectomes. However, previous studies have largely
ignored the fact that the functional connectomes can change dramatically over the lifespan and that
individual abnormal measurements, obtained from atypical change, can provide more accurate and
disease-specific information for subtyping. This aspect holds promise for the future personalized
diagnosis and treatment for a more general population of MDD.

The normative model, a cutting-edge statistical framework that maps demographic or behavioral
variables to a quantitative neuroimaging feature, has demonstrated its superiority in characterizing
the expected change trgjectory of neuroimaging features and identifying individual heterogeneous
deviations from the norm [18-20]. Similar to the widely-used normative growth chartsin pediatric
medicine, where a child’s height or weight is compared to the normative distribution for that
particular age and gender [21], the normative model can be used to evaluate individuals in relation to

a neuroimaging normative feature at a particular age and gender. Recently, the normative model has
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gained increased attention in the field of psychiatric disorders, asit has been applied to characterize
individual abnormalities and intersubject differences in neuroimaging features in disorders, such as
autism [22-24], attention deficit/hyperactivity disorder [25], and schizophrenia[26]. Unlike the
traditional case-control analysis that only provide information on group-level abnormities, the
normative model takes into account intersubject differences within the patient and control groups and
allows for measuring individual deviation from alarge reference cohort. These individual deviations
from the normative model are expected to complement the characterization of patients
developmental abnormalities and aid in the detection of neurobiological subtypes with distinct
biological dysregulations and clinical manifestations.

In this study, we conducted a comprehensive investigation into the neurobiol ogical
heterogeneity and subtypes of MDD using alarge multisite r-fMRI dataset of 1,148 patients with
MDD and 1,079 matched healthy controls (HCs). We adopted anovel normative model framework,
which alows us to estimate individual deviations from the lifespan trajectory of functional
connectivity strength (FCS). Through the analysis of these deviations, we aimed to uncover the
intersubject heterogeneity among patients with MDD and identify neurobiological subtypes based on
their deviation patterns. The identified neurobiological MDD subtypes were evaluated in the context

of demographic and clinical variable differences.

Materials and methods

Imaging dataset and preprocessing

This study included 2,414 participants (1,276 patients with MDD and 1,138 HCs) from nine research
centers through the Disease Imaging Data Archiving - Major Depressive Disorder Working Group

(DIDA-MDD) [9]. All participants were diagnosed by experienced psychiatrists using structured
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clinical interviews. The patients met the Diagnostic and Statistical Manual of Mental Disorders-IV
(DSM-IV) diagnostic criteriafor MDD [27] and had no other Axis | disorder. The clinical symptoms
of patients were assessed using the 17-item Hamilton Depression Rating Scale (HDRS-17). The HCs
had no current or lifetime history of an Axis | disorder. After strict quality control for both clinical
and imaging data (Supplement), the final sample consisted of 1,148 patients with MDD (aged 11-93)
and 1,079 HCs (aged 13-81) (Table 1 and Supplementary Fig. 1). Additionaly, a subsample of 43
patients (Supplementary Table 1) received a 6-month treatment with paroxetine (an antidepressant of
selective serotonin reuptake inhibitor, SSRI), and the treatment outcomes were recorded
(Supplement). This study was approved by the ethics committees of each research center. Written
informed consent was obtained from all participants. All R-fMRI data of participants were obtained
using 3.0-T MRI scanners. Detailed scanning parameters at each center are listed in Supplementary
Table 2. R-fMRI data were then preprocessed using a standard pipeline as described in our previous

work [9, 28] (Supplement).

Functional connectivity strength analysis

We first constructed a functional brain network for each participant. The network nodes were defined
according to a predefined functional parcellation [29], including 220 cerebral regions that had
gualified fMRI signalsin all participants. The connectivity network was estimated by calculating
Pearson’s correlation coefficients between the time series of any pairs of nodes followed by Fisher's
r-to-z transformation to improve normality. Then, the FCS values for each brain region was
computed as the sum of the connectivity between a given region and all the other regions. Notably,
we restricted our analysis to correlations above a threshold of r=0.2 to eliminate weak correlations

possibly arising from noise, and the effects of different correlation thresholds on the results were
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validated (Supplement). The whole-brain FCS values were further standardized using z score
normalization (minus the mean and divided by the standard deviation) to ensure comparability across
participants. Finally, combat harmonization was utilized to correct the site effects on the FCS values

[9, 28, 30-32].

Normative modeling for functional connectivity strength

For each brain region, we estimated a normative model of FCS as a function of age and gender by
using Gaussian process regression (GPR) [18] in the HCs (Fig. 1a and Supplement). GPR isa
Bayesi an nonparametric interpolation method that yields coherent measures of predictive confidence
alongside point estimates [33]. In addition to fitting potentially nonlinear predictions of a brain
feature, it can provide regional estimates of the expected variation in the relationship between age
and brain features (normative variance) and estimates of uncertainty in this variance. The estimation
of the normative models was performed using the PCNtoolkit package

(https://github.com/amarquand/PCNtoolkit). To assess the generalizability of the models, we first

estimated the normative models in the HCs under 10-fold cross-validation (Supplement), and overall
standardized mean squared error and mean squared log-loss were used to evaluate the models. Then,
the final normative models were trained on the whole HC dataset for the subsequent MDD deviation

analyses.

Estimating individual FCS deviationsin normative modelsfor MDD patients
For each patient with MDD, the FCS of the brain regions were positioned on the normative
percentile charts from HCs to estimate individual deviation (Fig. 1b). We derived a Z value that

quantifies the deviation from the normative model in each brain region [18]. For agiven MDD
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patient i, the deviation Z value of a brain region j was calculated as follows:

Vij — Vij

2 2
Ojj + Opj

where y;; isthe observed FCSvalue, §;; isthe predictive FCSvalue, o; isthe predictive
uncertainty, and o,; isthe variance learned from the normative distribution n. The Z value provides
astatistical estimate of how much each patient differs from the healthy pattern in each brain region.
Thus, the individual deviation map of each patient was obtained. The influence of patient sites on the
calculation of FCS deviations was assessed in the validation (Supplement). Similarly, the individual
deviation map of each HC participant was estimated by computing the Z value of each brain region
during 10-fold cross-validation.

To further define the individual-level extreme deviations in the FCS of participants, we
thresholded the deviation maps using Z = + 2.6 (corresponding to a p<0.005) as was donein previous
studies [25, 26, 34]. To quantify the overall extent of individual deviations, we calculated the number
of brain regions with extreme deviations, the sum of positive extreme deviations, and the sum of
negative extreme deviations for each participant. Then, to assess the intersubject heterogeneity of the
deviations, we calculated a spatial overlap map by computing the percentage of participants who had
an extreme deviation (Z > 2.6 or Z < -2.6) in each brain region. The between-group differencesin the
mean deviation map and the overall deviation indexes between patients with MDD and HCs were
compared using two-sample t tests. The significance level was corrected for multiple comparisons
using the FDR method (corrected p<0.05). The effect of different thresholds for defining extreme

individual deviations on the results were validated (Supplement).

I dentifying M DD subtypes based on individual FCS deviations
9
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We used a data-driven k-means clustering algorithm to explore MDD subtypes with different
deviation patterns (Fig. 1c). The deviation map of each patient was set as the clustering feature, and
the distance between any two patients was defined as the Euclidean distance between their deviation
maps. The clustering algorithm was performed 10 times with different random initial cluster
centroids to minimize the effect of the initial condition under each clustering number. The number of
clusters was assessed from 2 to 10, and an optimal number of clusters was determined by a
winner-take-all approach across 22 effective indexes using the NbClust package [35] (Supplement).
To examine whether the MDD subtyping results were influenced by specific sites, we repeated the

clustering analysis based on leave-one-site-out validation (Supplement).

Characterizing subtype-related imaging and clinical differences
To investigate the deviation patterns between subtypes, we calculated the mean deviation map of
each subgroup and compared them at the network level (Supplement). The overal deviated levels,
including the number of extremely deviated regions, the sum of positive extreme deviations, and the
sum of negative extreme deviations were compared among subtypes and HCs using one-way
analysis of variance. Post hoc analysis was performed to compare the deviation differences between
every two groups using two-sample t tests. To assess whether the deviated regions became more
consistent after subtyping, we calculated the spatial overlap maps of extreme deviation for each
subtype and compared them with the overlap maps of all patients using two-samplet tests
(Supplement). The significance level was corrected for multiple comparisons using the FDR method
(corrected p<0.05).

Group comparisons of demographic and clinical variables were performed on age, gender,

disease duration, onset age, episode status, medication status, HDRS-17 total score, and HDRS-17
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item scores using two-sample t tests or chi-square tests. Moreover, subtype differencesin the
association between the HDRS-17 total score and the duration/onset age were examined by using a
one-way analysis of covariance (ANCOVA) with the duration/onset age as the predictor, the total
HDRS-17 score as the response, and the subtypes as the grouping variable. The post hoc analysis
was performed by calculating Pearson’s correlation coefficients between the HDRS-17 total score
and the duration/onset age in each subtype. Support vector regression (SVR) was conducted to
examine the prediction ability of deviation values for treatment response (i.e., changes in HDRS
score) in patients. The baseline individual deviation values served as predictive features, and the
model was validated using an embedded 5-fold cross-validation procedure and permutation tests

(Supplement).

Results
Nor mative models of functional connectivity strength
The 10-fold cross-validation in the HCs revealed a high generalizability of the fitting performance of

normative models for FCS, as indicated by overall standardized mean squared error closeto 1 (0.996

+0.013) and mean squared log-loss close to 0 (-0.001+0.007) (Supplementary Fig. 2). For the

normative models established in the whole HCs, we found that the brain regions can be clustered
(Supplement) into two categories according to their age-related FCS change trgjectories in both
female (Fig. 2a) and male groups (Supplementary Fig. 3). Specifically, regions with increased
age-related FCS values were located mostly in the lateral frontoparietal cortices, dorsal anterior
cingulate cortex, medial occipital cortices, sensorimotor areas, and subcortical areas, while those

with decreased FCS were mainly in the precuneus, posterior cingulate cortex, medial prefrontal
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cortex, angular gyrus, insula, and medial temporal areas (Fig. 2a and Supplementary Fig. 3).

Highly heter ogenous individual deviations from nor mative modelsin patientswith MDD
Compared to the HCs, patients with MDD exhibited significantly larger individual FCS deviation
indexes, including the number of extremely deviated regions (t=4.22) and the sum of positive (t=4.11)
and negative (t=-2.77) extreme deviations (Fig. 2b, p<0.05, FDR corrected). Regionally, the patient
group had significantly larger FCS deviations than the HC group, with positive deviations mainly in
the bilateral lateral frontal cortex, precuneus, angular gyrus, and subcortical areas and negative
deviations in the left parahippocampal gyrus, right Rolandic operculum, and middle cingulum gyrus
(Supplementary Fig. 4 and Table 3, p<0.05, FDR corrected). A total of 72.82% (N=836) of the
patients with MDD showed extreme FCS deviations from the normative model in at least one brain
region, including extreme positive deviations in 25.78% (N=296) of patients and extreme negétive
deviations in 66.38% (N=762) of patients (Fig. 2c). From the perspective of brain regions, 99.55%
(N=219) of the nodes showed an extreme FCS deviation in at least one patient, including extreme
positive deviations in 67.73% (N=149) of brain regions and extreme negative deviations in 96.36%
(N=212) of brain regions. The extreme positive deviations in patients with MDD were mostly
located in the prefrontal cortex, precuneus, angular gyrus, and subcortical areas (Fig. 2d. left), and
the extreme negative deviations were widespread over the whole brain, especially in the medial
sensorimotor cortex and the temporal lobe (Fig. 2d. right). However, for any single brain region, the
percentage of patients who deviated extremely from the normative range was remarkably low in
either positive (<2.35%, N=27) or negative (<3.14%, N=36) deviations (Fig. 2d). These findings
suggest that while aterationsin FCS exist in most patients with MDD, the specific brain regions

having out-of-range alterations varied remarkably among individual patients.
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FCSdeviation-based M DD subtypes
The k-means clustering approach identified two MDD subtypes based on individual FCS deviations.
This optimal subcluster number was consistently selected by 11 of 22 effective quality indexes (Fig.
3a). Patients with subtype 1 (37%, N=425) showed a severe deviation with positive deviationsin the
DMN, LIM, and SUB areas and negative deviations in the sensorimotor (SMIN), dorsal attention
(DAN), and ventral attention (VAN) areas (Fig. 3b and Supplementary Table 4, p<0.05, FDR
corrected). However, the deviations observed in patients with subtype 2 (63%, N=723) were
moderate, and the deviation patterns were significantly different, with negative deviationsin the
DMN, LIM, and SUB areas and positive deviationsin the SMIN, DAN, and VAN areas (Fig. 3b and
Supplementary Table 4, p<0.05, FDR corrected). Statistical comparisons showed that the number of
extremely deviated regions, the sum of positive extreme deviations, and the sum of negative extreme
deviations observed in subtype 1 patients were significantly higher than those observed in HCs and
subtype 2 patients, while the number of extremely deviated regions and the sum of negative extreme
deviations observed in subtype 2 patients were significantly lower than those observed in HCs (Fig.
3c and Supplementary Table 5, p<0.05, FDR corrected). From the spatia overlap maps of extreme
deviations, we observed a significantly higher consistency of extremely deviated regions among
patients with the severe-deviation subtype compared to that among all patients (positive: 0.23-4.71%,
t=3.31; negative: 0.23-5.88%, t=3.66; p<0.05, FDR corrected) and a significantly lower consistency
among patients with the moderate-deviation subtype (positive: 0.13-2.49%, t=-3.26; negative:
0.13-1.80%, t=-3.79; p<0.05, FDR corrected) (Fig. 3d).

Regarding demographic and clinical variables, patients with the severe-deviation subtype were

significantly older (t=2.64, p=0.008) and had a higher medicated proportion (y*=6.11, p=0.013) than
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patients with the moderate-deviation subtype (Fig. 4a and Supplementary Table 6). Patients with the
severe-deviation subtype had more severe symptoms in the Suicide item (t=2.02, p=0.044), while
patients with the moderate-deviation subtype exhibited more severe symptoms in the Work and
Activities (t=3.11, p=0.002) and Depressed Mood items (t=2.42, p=0.016) (Fig. 4aand
Supplementary Table 6). Moreover, ANCOVA showed that the correlations between the HDRS-17
score and the onset age were significantly different between the two subtypes (F=4.41, p=0.037)
(Supplementary Table 7-8). The HDRS-17 score was negatively correlated with onset age in patients
with the severe-deviation subtype (r=-0.24, p=0.004) but not in patients with the moderate-deviation
subtype (r=-0.00, p=0.966) (Fig. 4b).

Among the patients who had follow-up treatment outcomes, 16 patients were clustered into the
severe-deviation subtype and the other 27 patients were clustered into the moderate-deviation
subtype. The baseline individual deviation map could significantly predict HDRS score changes after
treatment for patients with the severe-deviation subtype (r=0.47, p=0.019, one-tailed permutation test,
Fig. 4c). The most positively contributive features were located in the DMN (24.1%), FPN (16.1%),
and VAN (15.6%), and the most negatively contributive features were in the VIS (40.5%) (Fig. 4c).
In contrast, the baseline deviation map of the moderate-deviation subtype could not predict their

HDRS score changes (r=-0.14, p=0.785, one-tailed permutation test).

Validation results

Overall, the findings reported above were generally reproducible across different analytical choices.
Under different thresholds in FCS calculation (r=0.15, 0.25), the normative models and patient
deviations were similar to our main results, the overlap rates of the resulting subtype indexes with

the clustered indexes in the main results were >96%, and the subtype differences largely remained
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(Supplementary Fig. 5-6 and Supplement). When different threshold was used to define extreme
deviations (FDR p<0.05), the spatial overlap maps were slightly sparser, but the specific brain
regions affected by MDD still varied markedly among individual patients (Supplementary Fig. 7).
There were no significant site-related effects in the deviation values of al the brain regions (FDR p:
0.183~0.100). The overlap rates of the resulting clustered indexesin the leave-one-site-out validation
with the clustered indexes in the main results were all >92%, and the subtype differences were

largely unchanged (Supplementary Fig. 8 and Table 9).

Discussion

In this study, we uncovered the neurophysiological heterogeneity and subtypes of patients with MDD
through mapping deviations from the normative models of functional connectome, by leveraging the
currently largest R-fMRI dataset in MDD. Our findings reveal a significant intersubject variability in
the spatial distribution of functional connectome abnormalities among MDD patients. Furthermore,
our results highlight not only differences in the spatial distribution of functional connectome
abnormalities but also significant disparities in demographic and clinical characteristics between the
two identified neurobiological subtypes of MDD. Together, our study offers a novel anaytical
framework for subtyping MDD and offers promising implications for future personalized diagnosis

and treatment of this disorder.

Nor mative models of functional connectivity strength
Recently, several studies have estimated the normative model of brain structural features based on
GPR, including cortical thickness, surface area, gray matter volume, white matter volume, and

subcortical volume, and described the linear or nonlinear change trajectories of structures with age
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[23-26]. Compared to the traditional general linear model, the novel framework normative model
does not require assumptions about the change tra ectories and provides a useful tool to characterize
any nonlinear changesin features. Here, based on a large sample dataset, we estimated the normative
model of FCS for each brain region and found increased FCS values against age mostly in the lateral
frontoparietal cortices, dorsal anterior cingulate cortex, medial occipital cortices, sensorimotor areas,
and subcortical areas and decreased FCS mainly in the precuneus, posterior cingulate cortex, medial
prefrontal cortex, angular gyrus, insula, and medial temporal areas. Smilar to our findings, several
previous studies found linear-age-related FCS decreases in the medial prefrontal cortex, precuneus,
insula, and calcarine and linear FCS increases in sensorimotor areas based on the general linear
model [36-38]. The areas of FCS decrease are the prominent hubs of global and local functional
connectivity, and the age-related decrease could underlie the performance decline in working
memory and visual sustained attention, which are the most affected cognitive functions that occur
with aging [39-41]. Conversely, the sensorimotor areas are the least affected by aging [36]. These
age-related changes in our study support the developmental theory which postulates that the first
regions to emerge phylogenetically and ontogenetically are the most resistant to age effects, and the
last ones are the most vulnerable. Notably, in our study, although brain regions had overall increased
or decreased change trajectories, the changes did not aways follow a linear or quadratic change,
which demonstrates the high value of the normative model in characterizing the natural FCS change

trajectories more accurately.

Highly heter ogenous individual deviations from normative modelsin MDD patients
In contrast to the case-control analysis identifying group-averaged alterations for patients, the

normative model allows individual measures of the extent of patients’ deviation from alarge
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reference cohort. Importantly, the model can recognize all sources of variance and reduce overly
optimistic inferences and thus obtain more accurate and patient-specific individual deviations for
patients. Given its great advantage, the normative model has recently been used to characterize the
individual abnormalities and intersubject differences in neuroimaging features in multiple psychiatric
disorders, such as autism [22-24], attention deficit/hyperactivity disorder [25], and schizophrenia
[26]. Here, based on the normative model, our study investigated the individual FCS deviations for
each patient and explored the heterogeneity of FCS deviations among patients. We found positive
FCS deviations mainly in the DMN and SUB areas and negative deviations mainly in the
sensorimotor and lateral temporal cortices. The FCS alterations in these regions have been proven to
be related to the regulation of widespread cognitive, emotional, and executive control functionsin
patients with MDD [6, 42-50]. More importantly, we found that the overlap rates among patientsin
these regions were very low. This huge heterogenous among patients provides an important reference
for the explanation of inconsistent results in prior functional connectome studiesin MDD. For
example, the medial prefrontal cortex showing heterogenous FCS alterations in our study was found
to have both increased and decreased FCS in previous case-control studies [47, 51-53]. Our results
suggest that FCS ateration is an important neuropathological feature of MDD, while the alteration
patterns among patients are largely different and there might be multiple forms of MDD. Also, these
findings reflect the useful application of normative model of functional connectome for identifying

individual abnormities and parsing heterogeneity of MDD.

FCSdeviation-based MDD subtypes
Based on the individual FCS deviation pattern from normative models, we clustered MDD patients

into two subtypes with distinct deviated levels and patterns. The FCS deviationsin the DMN, LIM,
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SUB, SMN, DAN, and VAN exhibited significant differences and opposite alterations between the
two subtypes, and the DMN showed the most. Consistent with the distinct DMN alterations in our
study, several previous studies focusing on the local functional connectivity of the DMN or based on
a small-sample dataset identified the different MDD subtypes with different functional connectivity
patternsin the DMN areas [15, 54]. A transdiagnostic study, based on the whole brain amplitude of
low-frequency fluctuations (ALFF), also clustered MDD patients into two subtypes with distinct
activity patterns similar to our results [55]. Combined with these findings, our results indicate that
the functional connectome and activity of DMN areas are important biomarkers for the
neurophysiological subtyping of MDD. Among patients with MDD, there might be different
disruption directionsin DMN areas, some of them showed over-integration and increased activities
in these areas, while the connectome and activities of these areas of other patients may not enough to
support their normal functions. The different ateration patterns may result from complex genetic and
environmental effects, which need to be further analyzed.

We found that the patients of the severe-deviation subtype showed more severe symptoms in the
Suicide item score on the HDRS-17. Studies have shown that the increased functional connectomes
and activities of the DMN and LIM areas are related to suicide, including the orbitofrontal cortex,
medial prefrontal cortex, cingulate cortex, and striatum [56-59]. The orbitofrontal cortex isinvolved
in learning, prediction, and decision-making for emotional and reward-related behaviors and is
important in the regulation of behavioral impulsivity and response inhibition [60]. The higher FCSin
the orbitofrontal cortex might be related to the increased vulnerability to suicidal behavior. The areas
of the DMN are related to self-referential processing. Increasing evidence suggests that alterationsin
self-referential thinking may be associated with suicidal behavior [61]. When individuals are

involved in regurgitating negative emotions about themselves, suicidal thoughts and behaviors occur
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in response to the individual’s desire to escape from both self-awareness and the associated
unpleasant feelings [59]. On the other hand, the decreased functional connectomes in areas of the
DMN and LIM are considered to be related to anhedonia [62-68], which is defined as diminished
interest or pleasure in response to stimuli that were previously perceived as rewarding during a
premorbid state [63]. Our results provide new evidence that the decreased FCS in the DMN and the
LIM is related to the nonreactive mood and the failure to react to contextual changes in patients with
MDD. More importantly, we found the predictive power of FCS deviation patterns for treatment
effects in the severe-deviation subtype but not found in the other subtype. Studies have found that the
recovery of increased DMN FCS has significant correlations with the treatment response [53], while
decrease DMN FCS was associated with non-response to first-line antidepressants [15]. Together, the
neurophysiological subtypesin our studies illuminated the different mechanisms underlying different
clinical profiles and treatment responses among patients.

Patients with the severe-deviation subtype were older than patients with the moderate-deviation
subtype. Previous studies have found different alteration patterns between patients in different age
stages. Similar to the alteration patterns in our results, studies of |ate-life depression showed
increased FCSin theinferior parietal lobule and parahippocampal gyrus and decreased FCSin the
somatosensory and motor cortices compared to HCs[69]. The alterations in these areas might be
related to the increased negative self-focused thought, impaired visuospatial and episodic memory,
poor sleep quality, and deficitsin physical health and functionsin late-life patients. M oreover,
evidence has shown that brain resilience increases during development and early adulthood and then
decreases during aging [70]. Thus, the ability of the brain to withstand disease may decrease and thus
experience more severe alterations in older patients. Additionally, a significant negative correlation

between the onset age and HDRS-17 score was found only in the severe-deviation subtype. Several
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studies have explored the association between the onset age and HDRS-17 score in patient with
MDD, but the results were inconsistent [71-74]. Our results indicated that these inconsistent
observations may be contributed by different patient subtypes. Notably, in line with our findings, a
study found that the onset age was negatively correlated with the cognitive-behavioral cluster of
HDRS (including Suicide and Guilt item scores) but not with the affective cluster of HDRS
(including Depressed Mood and Work and Activities item scores) [72]. In the severe-deviation
subtype, the early-onset patients may disrupt the normal brain maturation, and thus leading to more
severe symptoms of Suicide item. In the moderate-deviation subtype, the FCS alterations might be
related to the higher symptomsin the Work and Activities and Depressed Mood items, which have

lower effects with onset age.

Limitationsand futuredirections

Severa issues with the current study need to be further addressed. First, our analysis was performed
based on a cross-sectional sample. The age-related change trajectories shown here do not represent
the trajectories of each participant, and they reveal age-specific population-level means and
individual variabilities. Adding longitudinal samples will improve the representativeness of the brain
change curve models. Second, in this study, we compared the subtype differences in clinical
symptoms using HDRS-17 item scores. The patients with MDD also had varied cognitive

impai rments, which were not collected in the current retrospective study. Further analysis combined
with more detailed cognitive performances could help usto better understand the complex
relationship between the neurophysiological basis and the clinical presentations of MDD. Third, all
the patients who were included in the analysis to predict treatment outcomes were responders to

paroxetine, given that patients who had a poor response discontinued the medication or changed their
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treatment plans. Future studies need to include more nonresponders to establish prediction models
for treatment-resistant depression and thus explore the different neuroimaging biomarkers between
patients with different treatment outcomes. Finally, we identified MDD subtypes based on the
heterogenous FCS alteration patterns of patients. An episode of MDD may be caused by numerous
different factors, such as genetic liability, childhood adversity, and life stress [75-77]. Future studies
combined with more genetic and environmental information are needed to investigate the factors that

lead to the different neurophysiological subtypes.
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Fig. 1 Flowchart of data analysis. a Estimation of the normative model of FCS for each brain region
by training Gaussian process regression on the whole HCs dataset (gray dots). The solid line
represents the predicted FCS values from the normative model, and the dashed line indicates the
normative range. Ten-fold cross-validation were performed to assess the generalizability of the
models. b Characterization of the FCS deviation of each brain region for each MDD patient (red dots)
based on the normative model. ¢ Identification of MDD subtypes based on the individual FCS
deviation patterns and characterization of their imaging and clinical differences. GPR, Gaussian
process regression; FCS, functional connectivity strengths; HCs, healthy controls; MDD, major
depressive disorder.

35


https://doi.org/10.1101/2023.02.13.528399
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.13.528399; this version posted February 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a
Normative model of Two categories of age-related FCS change Normative model of
4 postcentral gyrus 4r  posterior cingulate cortex
2 i 2
w e 0
(S a0
[ g
2 - I -2
-4 N
o 20 40 60 80 49 20 40 60 &0
Age ¥ Increased ™ Decreased Age
b ; T
Group differences of the overall deviation indexes
520 c 60 g 0
T 2 " T
o - ol L)
a 15 e H ]
© o 40 % -20
E ¢ =
= 10 = =
o
= & 20 Z -40
[=] 5 — s L33
] o 5]
o E £
E . 3 b 5
E 4 . @ g | W -B0 — .
S MDD HCs MDD HCs MDD HCs
Cc L ) d : =
The distribution of the number of regions Spatial overlap map of extreme deviations
_ 80 per patient with extreme deviations . Positive Negative
= 4 " ‘\
2
E\ 60
o
3
(73]
5 40
@
& == Positive
§ 20 = Negative
& | 4
0 = B = 0
=1 >3 5 =7 >0 11 Percentage (%) Percentage %)
MNumber of Extremely Deviated Regions 0. og 2.35 0_09 3_14

Fig. 2 Normative models established in HCs and individual deviations from normative models in
MDD patients. a The brain map in the middle indicates the two categories of age-related FCS change
trajectories (purple: increased; blue: decreased) in HCs (female). The FCS change trajectories (solid
line) and the normative range (dashed line) of postcentral gyrus and posterior cingulate cortex are
shown on the left and right as examples. Each dot represents the data from one HC. b The
between-group differences of the overall deviation indexes between patients with MDD and HCs.
""p<0.05, FDR corrected. ¢ Bar plots show the distribution of the number of regions per patient with
extremely positive (red) and negative (blue) deviations. d The spatial overlap maps indicate the
percentage of patients who deviated extremely from the normative range for each brain region (l€ft,
extreme positive deviations; right, extreme negative deviations). FCS, functional connectivity
strength; HCs, healthy controls, MDD, magjor depressive disorder.
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Fig. 3 FCSdeviation-based MDD subtypes. a Determination of the optimal number of MDD
subtypes using the NbClust package and the intersubject similarity in the FCS deviation patterns
among patients. b The mean deviation map of each subtype and their system-level differences. ¢ The
group differencesin the overall deviation indexes among MDD subtypes and HCs. d The spatial
overlap map of extreme positive and negative deviations of each subtype. VIS, visual network; SMN,
sensorimotor network; DAN, dorsal attention network; VAN, ventral attention network; LIB, limbic
network; FPN, frontoparietal network; DMN, default mode network; SUB, subcortical regions; HCs,
healthy controls; MDD, major depressive disorder; ~ p<0.05, FDR corrected.
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Fig. 4 Subtype differences in demographic and clinical variables. a Subtype differencesin age,

medi cated proportion, and HDRS-17 item score. *p<0.05. b The correlation between the HDRS-17
total score and the onset age in each subtype. Each dot represents the data from one patient. ¢ The
prediction ability of deviation values for treatment response in patients of the severe-deviation
subtype. The scatter plot presents the correlation between the observed HDRS score change after
treatment and the predicted HDRS score change derived from the SVR. Each dot represents the data
from one patient, and the dashes indicate the 95% prediction error bounds. The summed weightsin
5-fold cross-validation were mapped onto the brain surface. The radar map represents the distribution
of predictive power in different systems (red: positive; blue: negative). HDRS, Hamilton Depression
Rating Scale; SVR, support vector regression; VIS, visual network; SMN, sensorimotor network;
DAN, dorsal attention network; VAN, ventral attention network; L1B, limbic network; FPN,
frontoparietal network; DMN, default mode network; SUB, subcortical regions.
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Tables

Table 1. Demographic and clinical characteristics of the participants.

Center Group Age, mean Gender Duration Episode  Medicate HDRS-17, Ageat Iliness Mean FD,
(SD), yr (M/F) of lllness, (First/Rec d mean (SD) Onset, mean(SD), mean (SD),
mean urrent) (Yes/No) yr mm
(SD), yr
CMU, Patients 27.91(9.70)  39/86 1.65 100/11 49/76 21.44 26.36 (9.93) 0.115 (0.072)
(N=125) (3.17) (8.67)
Shenyang Controls 27.25(8.22) 103/145 0.107 (0.057)
(N=248)
tor /%P 0.69/0.493 3.76/0.052 1.09/0.278
Csu, Patients 36.28 77/100 2.83 N.A. N.A. 23.24 30.97 (8.43) 0.141 (0.073)
(N=177) (10.21) (3.95) (5.91)
Changsha  Controls 32.31(7.96) 62/46 0.134 (0.064)
(N=108)
tor AP 3.45/0.001 5.19/0.023 0.90/0.371
GCMU1, Patients 20.41(8.27) 925 0.65 34/0 0/34 21.85 N.A. 0.094 (0.030)
(N=34) (0.70) (2.25)
Guangzho  Controls 30.09 10/24 0.096 (0.033)
u (N=34) (10.88)
tor /2P -0.29/0.774 0.07/0.787 -0.26/0.797
GCMU2, Patients 20.48(9.91)  25/41 0.76 66/0 0/66 22.30 N.A. 0.089 (0.057)
(N=66) (1.00) (3.57)
Guangzho  Controls 29.33 31/35 0.086 (0.042)
u (N=66) (10.12)
tor AP 0.29/0.774 1.12/0.291 0.29/0.770
KMU, Patients 34.20(9.37) 20/21 113 N.A. N.A. 23.61 N.A. 0.186 (0.083)
(N=41) (1.28) (4.64)
Kunming Controls 39.02 26/20 0.166 (0.065)
(N=46) (12.20)
tor AP -2.05/0.043  0.52/0.470 1.25/0.216
PKU, Patients 31.51(7.86)  44/31 0.52 750 0/75 25.35 30.99 (7.91) 0.175 (0.063)
(N=75) (0.47) 477
Beijing Controls 31.90 (9.01) 42/31 0.185 (0.067)
(N=73)
tor AP -0.29/0.775 0.02/0.889 -0.91/0.362
scu, Patients ~ 35.75 23/25 113 28/19 23/25 22.88 35.17 (12.65) 0.111 (0.067)
(N=48) (12.22) (1.49) (4.25)
Chengdu Controls 34.83 17/24 0.122 (0.072)
(N=41) (17.69)
tor AP 0.29/0.773 0.37/0.542 -0.72/0.473
SWU, Patients 38.74 99/183 4.20 209/49 124/125  20.94 N.A. 0.125 (0.054)
(N=282) (13.65) (5.52) (5.60)
Chonggin ~ Controls 39.65 88/166 0.134 (0.063)
g (N=254)  (15.80)
tor /P -0.72/0.472 0.01/0.911 -1.68/0.094
YMU, Patients 57.05 63/42 121 N.A. 79/26 11.23 43.08 (15.30) 0.139 (0.082)
(N=105) (16.21) (1.54) (6.46)
Taipei Controls ~ 51.12 69/40 0.128 (0.058)
(N=109)  (11.70)
tor AP 3.06/0.003 0.25/0.619 1.18/0.240
77U, Patients 18.40 (5.54) 97/98 1.29 N.A. 0/195 22.43 N.A. 0.100 (0.045)
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(N=195) (1.48) (5.70)
Zhengzho  Controls 2243 (449)  47/53 0.088 (0.039)
u (N=100)

tor P -6.29/<0.001  0.20/0.655 2.16/0.032
All data Patients 33.83 475/673 2.10 512/79 2771622 2131 32.74(12.37) 0.125 (0.067)

(N=1148)  (14.97) (3.60) (6.77)

Controls ~ 33.96 466/613 0.123 (0.063)

(N=1079) (13.87)

tor AP -0.21/0.832 0.75/0.387 0.80/0.423

Note: The GCMU1 and GCMU2 datasets were collected using the same scanner at one site with
different scan parameters.

Abbreviations. SD, standard deviation; M, mae; F, female; HDRS, Hamilton Depression Rating
Scae;, FD, framewise displacement; CMU, China Medical University; CSU, Central South
University; GCMU, Guangzhou University of Chinese Medicing; KMU, Kunming Medical
University; PKU, Peking University; SCU, Sichuan University; SWU, Southwest University; YMU,
National Yang-Ming University; ZZU, Zhengzhou University; N.A., not available.
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