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22 Abstract

23 Investigating the impact of gut microbiome on human health is a rapidly growing area of research. A 

24 significant limiting factor in the progress in this field is the lack of consistency between study results, 

25 which hampers the correct biological interpretation of findings. One of the reasons is variation of the 

26 applied bioinformatics analysis pipelines. This study aimed to compare five frequently used 

27 bioinformatics pipelines (NG-Tax 1.0, NG-Tax 2.0, QIIME, QIIME2 and mothur) for the analysis of 16S 

28 rRNA marker gene sequencing data and determine whether and how the analytical methods affect the 

29 downstream statistical analysis results. Based on publicly available case-control analysis of ADHD and 

30 two mock communities, we show that the choice of bioinformatic pipeline does not only impact the 

31 analysis of 16S rRNA gene sequencing data but consequently also the downstream association results. 

32 The differences were observed in obtained number of ASVs/OTUs (range: 1,958 - 20,140), number of 

33 unclassified ASVs/OTUs (range: 210 - 8,092) or number of genera (range: 176 - 343). Also, the case 

34 versus control comparison resulted in different results across the pipelines. Based on our results we 

35 recommend: i) QIIME1 and mothur when interested in rare and/or low-abundant taxa, ii) NG-Tax1 or 

36 NG-Tax2 when favouring stringent artefact filtering, iii) QIIME2 for a balance between two 

37 abovementioned points, and iv) to use at least two pipelines to assess robustness of the results. This 

38 work illustrates the strengths and limitations of frequently used microbial bioinformatics pipelines in 

39 the context of biological conclusions of case-control comparisons. With this, we hope to contribute to 

40 �best practice� approaches for microbiome analysis, promoting methodological consistency and 

41 replication of microbial findings.

42 Keywords: bioinformatics, 16S rRNA gene, microbiome, mothur, QIIME, NG-Tax, comparison
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43 Author Summary

44 Studies increasingly demonstrate the relevance of gut microbiota in understanding human health and 

45 disease. However, the lack of consistency between study results is a significant limiting factor of 

46 progress in this field. The reasons for this include variation in study design, sample size, bacterial DNA 

47 extraction and sequencing method, bioinformatics analysis pipeline and statistical analysis 

48 methodology. This paper focuses on the variation generated by bioinformatics pipelines. A choice of a 

49 bioinformatic pipeline can influence the assessment of microbial diversity. However, it is unclear to 

50 what extent and how the results and conclusion of a case-control study can be influenced. Therefore, 

51 we compared the results of a case-control study across different pipelines (applying default settings) 

52 while using the same dataset. Our results indicate a lack of consistency across the pipelines. We show 

53 that the choice of bioinformatic pipeline not only affects the analysis results of 16S rRNA gene 

54 sequencing data from the gut microbiome, but also the associated conclusions for the case-control 

55 study. This means different conclusions would be drawn from the same data analysed with different 

56 bioinformatic pipeline. 
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57 1. Introduction

58 Investigations of the role of the human gut microbiota have attracted much attention in the last 15 

59 years [1]. Specifically, results of studies of the 16S rRNA marker gene (16S) have been crucial in 

60 understanding the role the gut microbiota play in multiple common diseases, such as irritable bowel 

61 syndrome [2], autism [3], depression [4] or attention deficit hyperactivity disorder (ADHD) [5]. 

62 Although a few papers suggested best practice for microbiome analysis [6, 7], still there is a broad 

63 choice in microbiome methods. This affects the consistency across the studies. So far, 16S rRNA gene 

64 sequencing is one of the most commonly used method to study bacterial phylogeny and genus/species 

65 classification [8]. 16S rRNA gene sequencing is used as a tool to identify multiple bacterial taxa and 

66 assist with differentiating between closely related bacteria. 

67 The classification of microbial taxonomy using the 16S rRNA gene is influenced by several factors, 

68 ranging from study design, sample size, the choice of variable region of 16S rRNA gene to sequence 

69 [9], collection and storage procedure, wet lab approaches, such as DNA extraction [10], sequencing 

70 technique and bioinformatic pipeline settings, such as frequency filters, and the taxonomic 

71 classification database [11]. Bioinformatics pipelines differ in approaches, such as quality control and 

72 filtering of the sequenced data (i.e., chimera detection, filtering sequences, denoising), Operational 

73 Taxonomic Units (OTUs) clustering algorithms or Amplicon Sequence Variant (ASV), and statistical 

74 analysis (when a statistical analysis step is included in the pipeline). All these choices may result in 

75 differences in the (observed) distribution of taxonomic groups, significantly affecting the putative 

76 relationships between the gut microbiota and disease outcomes. This limits the precision of biological 

77 and statistical conclusions, resulting in a lack of consistency between studies [5, 8, 9, 12]. 

78 In this paper, we focused on comparing bioinformatics pipelines, as their contribution to biological 

79 conclusions of microbiome studies is not sufficiently quantified. So far, studies investigating 

80 differences between bioinformatics pipelines have focused on general characteristics of the 

81 OTUs/ASVs/reads, such as richness, diversity and microbial compositional profiles, rather than on the 
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82 biological conclusions that could be drawn from analyzing these characteristics [6, 13, 14]. Recently, 

83 Ducarmon et al. (2020) showed that the NG-Tax 1.0 [15] and QIIME2 [16] bioinformatics pipelines 

84 performed equally well in terms of microbial diversity and compositional profiles for 24 samples across 

85 eight types of biological specimens from human niches [13]. Poncheewin et al. (2020) compared NG-

86 Tax 2.0 with QIIME2 using 14 mock community samples [17]. Precision of NG-Tax 2.0 (0.95) was 

87 significantly higher compared to QIIME2 (0.58). Prodan et al. (2020) used a large dataset of 2,170 

88 samples and one mock community of 16S rRNA data to compare QIIME-uclust [18], mothur [19], 

89 USEARCH-UPARSE [20], DADA2 [21], QIIME2-Deblur [16, 22] and USEARCH-UNOISE3 [23] pipelines, 

90 and concluded that �DADA2 is the best choice for studies requiring the highest possible biological 

91 resolution (e.g. studies focused on differentiating closely related strains)� [6]. López-García et al. (2018) 

92 showed that when the SILVA reference database was used in combination with QIIME [24] or mothur 

93 [19] pipelines, richness and composition of 18 samples were highly similar [14]. However, beta-

94 diversity clustered by pipelines, which they attributed to differences in less abundant bacteria. While 

95 this was not tested by López-García et al., this description hints at the possibility of different biological 

96 conclusions depending on a choice of pipeline. Only one study, Allali et al. (2017), investigated whether 

97 the same biological conclusion was reached when using different pipelines based on 14 chicken cecum 

98 16S rRNA samples across three different treatment groups. They tested different settings of QIIME1, 

99 UPARSE and DADA2 and concluded that, despite differences in diversity and abundance, they could 

100 discriminate samples by treatment, leading to similar biological conclusions [25]. This conclusion was 

101 limited to beta-diversity (global microbiome community differences), not including a comparison of 

102 individual genera. As they reported differences in relative abundances of specific genera between 

103 pipelines, their data suggests that different pipelines could result in different lists of genera being 

104 significantly associated with a treatment. 

105 While the existing comparisons have been essential for the field, they fall short in contributing highly-

106 needed conclusions on how the choice of bioinformatic pipeline affects downstream statistical 

107 comparisons of microbial composition of groups (for example, humans with and without a disease). 
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108 Such comparisons are also vital for the growth and stability of the field [12]. Moreover, frequently used 

109 pipelines, NG-Tax1, NG-Tax2, QIIME1, QIIME2 and mothur, have not yet been compared using the 

110 same dataset. Based on these gaps and limitations in the state of the art of the field, we aimed to 

111 determine the differences in taxonomic output between these five pipelines and how such differences 

112 affect downstream statistical analyses and interpretation of the observed results.  We used the V4 16S 

113 rRNA gene sequencing data of a human case-control study of attention-deficit/hyperactivity disorder 

114 (ADHD) as well as two mock communities. We would like to highlight that our aim is not to draw 

115 biological conclusions from these analyses (for this we refer to [26]), but rather highlight differences 

116 brought in by the choice of bioinformatic pipeline.

117 2. Materials and Methods

118 2.1. Dataset

119 The material and methods and the results sections are divided into two parts: (i) results based on 

120 clinical samples (NeuroIMAGE dataset [26]) and (ii) results based on mock communities (MC), which 

121 allow us to better interpret the results based on the clinical samples. 

122 2.1.1. NeuroIMAGE dataset

123 We used the clinical and microbial information from a group of samples belonging to a case-control 

124 sample (case, n=42; control, n=50) reported in the NeuroIMAGE study [26]. For an exhaustive 

125 description of the sample, inclusion criteria, ADHD analysis methods, diagnostic procedures, and study 

126 design used in this study, see Szopinska-Tokov et al., 2021 [26], of which this study is an extension.

127 2.1.2. Mock communities

128 In addition to the case-control dataset, we analyzed eight samples based on two defined Mock 

129 Communities (MCs; MC3, n=4; MC4, n=4), of which one (MC4) included taxa with very low abundances 

130 (0.1%, 0.01% and 0.001%). Both MCs included the same 36 genera, but in different distributions. The 

131 laboratory processing and evaluation of the observed MC composition was done exactly the same as 
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132 for the clinical samples [26]. The laboratory processing and evaluation of the expected microbial 

133 communities� composition was carried out as described previously [15]. In short, the bacteria were 

134 grown as pure cultures and their DNA was then mixed in specific amounts for each community (the 

135 process was carried at the Laboratory of Microbiology, Wageningen University, The Netherlands). The 

136 bacterial composition of the MCs was determined with HiSeq2000, and for each bacterium used in the 

137 MCs, the full length 16S gene was sequenced with Sanger sequencing to confirm their identity. 

138 2.2.Bioinformatics pipelines and their evaluation

139 We investigated five different pipelines: both versions of the NG-Tax pipeline (NG-Tax v.1.0 [15] and 

140 v.2.0 [17], here named NG-Tax1 and NG-Tax2), adapted QIIME (v.1.8.0; here called QIIME1) [18], 

141 QIIME2-DADA2 (v.2019.7.0; here called QIIME2) [16], and mothur (v.1.43.0) [19]. NG-Tax1, NG-Tax2 

142 and QIIME2 are ASV-based methods, whereas QIIME1 and mothur are OTU-based methods. 

143 The bioinformatic pipeline evaluation involved two steps: (i) bioinformatical processing and (ii) 

144 statistical testing, involving data analysis and quantification (Figure 1). 
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145

146 Figure 1. Overview of the bioinformatical and statistical steps used in this study. Top panel: Raw sequencing data (paired-

147 end fastq file) was pre-processed; Reads were put in the same orientation. Subsequently, read pairs with perfectly matching 

148 (forward and reverse) barcodes and a maximum of one nucleotide mismatch for each (forward and reverse) primer were 

149 included in further steps. This was used as input for all pipelines (see Methods section). This resulted in the OTU/ASV tables 

150 (one for each pipeline) which were then subjected to pre-processing. Bottom panel: all statistical tests were carried out 

151 separately for each pipeline, except for beta-diversity where OTU/ASV tables were merged to directly compare the taxonomy 

152 tables between the pipelines. Prior to comparative analysis the prevalence cut-off was applied (for more details see 

153 Discussion section). For details for each step please see the main text. 

154 2.2.1. Bioinformatical processing

155 Before applying the pipelines, we applied an in-house script to make sure that the input was the same 

156 for all the pipelines. First, we had to deal with the mixed orientation of the sequences. This means that 

157 forward and reverse files contained both forward and reverse sequences. NG-Tax 1 and NG-Tax 2 deal 

158 with this as a part of the default settings, but this is not so straightforward for other pipelines. Second, 

159 not every pipeline can deal or deals in the same way with dual barcodes. Third, different primer 

160 settings are applied by each pipeline. In order to eliminate pipeline bias related to primer and barcode 

161 mismatch, we applied the same settings for all the pipelines. The output of the in-house script resulted 

162 in fixed orientation of the sequences having perfectly matching forward and reverse barcodes with 

163 only one nucleotide mismatch allowed for each (forward and reverse) primer. This was used as an 
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164 input for all the pipelines. Furthermore, we used the default setting of the pipelines, except for 

165 taxonomic database where we used SILVA (v.132) database for all pipelines, changing the default 

166 option for NG-Tax1 and QIIME1. We used the Galaxy platform to run NG-Tax1 and NG-Tax2 

167 (http://wurssb.gitlab.io/ngtax/galaxy.html). QIIME1 was run according to the in-house (NIZO, Ede, The 

168 Netherlands) protocol as described previously [10]. For QIIME2, we followed the �Moving Pictures� 

169 tutorial (https://docs.qiime2.org/2019.4/tutorials/moving-pictures/), and for mothur the �MiSeq SOP� 

170 (https://mothur.org/wiki/miseq_sop/).

171 2.2.2. Statistical testing 

172 2.2.2.1. NeuroIMAGE dataset

173 2.2.2.1.1. Pre-processing

174 Taxonomical names were formatted across the pipelines, e.g., D_0_Bacteria was changed into Bacteria 

175 in order to align the format of taxonomic names across the pipelines. The original sample contained a 

176 subthreshold-ADHD group [26], which was removed in the current analysis. Furthermore, we 

177 determined a threshold of total read counts based on rarefaction plots (data not shown), in order to 

178 exclude samples with small number of total reads while keeping the maximum number of samples (as 

179 explained in the �Moving pictures� QIIME2 tutorial [28]). Thus, samples below 1000 total reads were 

180 not included in further analysis; this resulted in removal of two samples across all pipelines, which had 

181 on average 11 (range: 4-21) and 255 (range: 150-341) total read counts across the pipelines. The final 

182 dataset included 40 cases and 50 controls.

183 2.2.2.1.2. OTU/ASV/reads table characteristics

184 As a first part of the analysis, we compared the results of the pipelines in terms of characteristics and 

185 distribution of reads, OTUs/ASVs, singletons (a single sequence), unclassified reads, and taxa. The 

186 analyses were focused on the genus level, since this is the level at which most (clinical) studies focus 

187 to identify an association with a disease/disorder status. This is due to the fact that analysis based on 

188 16S rRNA gene hypervariable region(s) limits the taxonomic resolution to family- or genus-level [29]. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.13.528280doi: bioRxiv preprint 

about:blank
about:blank
about:blank
https://doi.org/10.1101/2023.02.13.528280
http://creativecommons.org/licenses/by/4.0/


10

189 We visualized overlapping genera between the pipelines using a Venn Diagram. In order to see how 

190 the percentage of overlapping genera changed based on different filtering thresholds, we compared 

191 the gut microbiome composition of: A) all the genera, B) genera after applying a 10% prevalence cut-

192 off, C) genera with relative abundance >0.1%, and D) genera with relative abundance <0.1%.

193 2.2.2.1.3. Beta-diversity 

194 While beta diversity analysis is typically performed at the level of OTU/ASV, we did it at the genus level 

195 in order to be able to compare the microbial composition (relative abundance; Bray-Curtis dissimilarity 

196 metric) and structure (presence/absence; Jaccard similarity index) [30] across different bioinformatics 

197 pipelines. The statistical significance of this comparison was determined using Permutational 

198 Multivariate Analysis of Variance (PERMANOVA) using the R package �adonis� for all pipelines; as a post 

199 hoc analysis, we performed pairwise analysis between all pipelines [31]. The results were visualized by 

200 unconstrained (Principal Coordinate Analysis, PCoA) and constrained (Canonical Analysis of Principal 

201 coordinates, CAP) ordination methods [32] by applying following formula: ordinate(ps.merged.rel, 

202 "CAP", "bray", ~ Pipeline). Additionally, we computed Tukey Honest Significant Differences (TukeyHSD; 

203 calculated based on betadisper using the R package �vegan� [31, 33, 34]) to expand the PCoA analysis 

204 and to investigate intra-sample variation in a pairwise comparison manner.

205 2.2.2.1.4. Comparative analysis at the genus level

206 In order to obtain a more detailed overview of microbiome composition differences, we compared the 

207 pipelines (i) in terms of the relative abundance of the ten most abundant genera (in order to maximize 

208 our ability to find differences between the groups) and (ii) between cases and controls. At this stage, 

209 we filtered out unclassified genera and applied a prevalence cut-off of 10% (at the genus level), 

210 meaning that only genera present in >10% of the total number of samples were kept, in order to keep 

211 the most informative data for the downstream statistical analysis [26]. Next, given the zero-inflated 

212 nature of the data, a non-parametric (rank-based) test (Mann-Whitney U) was applied to evaluate 

213 significant differences in relative abundances of bacterial genera between cases and controls. As we 
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214 aimed to evaluate the effects of the different pipelines rather than scale and significance of the 

215 differences between them, this method seemed appropriate (see [12] for an extensive comparison of 

216 abundance testing methods).

217 In analysing the consistency pattern of the case-control association results across pipelines, we 

218 assigned a bioinformatics pipelines P-value Consistency Score (PCS, ranging from zero to five) to score 

219 the number of pipelines showing statistically significant differences between groups per each genus 

220 (P<0.05 unadjusted). A PCS=5 meant that all pipelines found significant differences (P<0.05 

221 unadjusted) between cases and controls for a particular taxonomic group. Additionally, we calculated 

222 a genus relative abundances case/control ratio (called Fold-Change, FC) and compared it (as an effect 

223 measure) between the pipelines. The FC was calculated by using the foldchange() function from the 

224 �gtools� package (v.3.8.1) [35]. FC was computed as follows: case/control if case>control, and as -

225 control/case otherwise. Furthermore, we tested the correlation between the PCS and the average 

226 relative abundance (RA; per genus for all the pipelines) and average percentage of zeros of each genus 

227 based on all pipelines. 

228 All analyses were performed in RStudio (v.1.2.5033; R v.3.6.3) [36] using �phyloseq� (v.1.28.0) [37], 

229 �microbiome� (v.1.6.0) [38], and �vegan� R packages [34], visualized by using �ggplot2� [39] (v.3.3.0), 

230 �VennDiagram� [40] (v.1.6.20), �ggpubr� [41] (v.0.2.4), and �heatmaply� [42] (v.1.1.0) R packages; 

231 statistical analyses where performed by using the �stats� R package (v.3.6.3) [39].

232 2.2.2.2. Mock communities

233 The main focus of the MC analysis was to compare observed to expected MC composition in order to 

234 further evaluate the reliability and comparability of the pipelines. First, we compared the number of 

235 genera observed to the expected MC composition. Second, beta-diversity was analysed as described 

236 above. Third, we calculated Spearman's rho statistic via �stats� R package (v.3.6.3) [39] to (i) compare 

237 the observed to the expected MC composition (relative abundance), and to (ii) compare the pipelines 

238 against each other. In this way, we could identify the strength of correlation between the pipelines, 
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239 and identify strength of correlation between the pipelines and the expected MC composition. The 

240 results were visualized by a heatmap using the �heatmaply� (v.1.1.0) R package [42] to identify any 

241 inconsistencies across the pipelines.

242 3. Results

243 3.1.NeuroIMAGE dataset

244 3.1.1. OTU/ASV/reads table characteristics

245 Table 1 shows the characteristics and distribution of OTUs/ASVs/reads per bioinformatic pipeline for 

246 the complete study (N=90). We observed a high degree of variation across the pipelines for all the 

247 variables. The total number of reads varied across the pipelines with QIIME1 showing the highest and 

248 QIIME2 the lowest number of reads (percentage difference = 38.2%). Moreover, QIIME1 and mothur 

249 showed the highest number of OTUs/ASVs, NG-Tax1 and NG-Tax2 showed the lowest (relative 

250 difference ranging from 77.9% to 164.6%). Mothur showed the highest number of singletons (69.2% 

251 of the total OTUs), but these only accounted for 0.67% of the total reads; these singletons did not 

252 influence significantly the total relative abundance (when singletons were removed, the relative 

253 abundance of other taxa was not influenced, data not shown). Furthermore, mothur and QIIME1 

254 detected the biggest percentage of unclassified OTUs/ASVs (46.1% and 40.2%, respectively, at the 

255 genus level), QIIME2 the lowest (4.7%). 

256 Table 1. Summary of OTU/ASV characteristics between bioinformatics pipelines.

NG-Tax1 NG-Tax2 QIIME1 QIIME2 mothur

Total number of final 

reads
1,414,916 1,357,891 1,692,581 1,149,886 1,390,041

Median of final reads 

per sample (IQR)

14,619 

(7,648-20,997)

13,925

(7,411-19,998)

17,315

(8,783-25,819)

11,519

(5,385-17,515)

14,200

(7,173-20,742)

Total number of 

identified OTUs/ASVs
1,958 1,958 20,140 4,458 13,392

Number of singletons 

(% of total number of 

OTUs/ASVs)

0 0 1,291 (6.41) 3 (0.07) 9,269 (69.21)

Number of singletons 

(% of total number of 

OTUs/ASVs) before 

pre-processing step

0 0 0 7 (0.14) 10,206 (69.50)
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Number of 

unclassified reads at 

the genus level (% of 

total reads)

202,165 (14.3) 193,698 (14.3) 427,601 (25.3) 23,091 (2.0) 23,404 (1.7)

Number of 

unclassified 

OTUs/ASVs at the 

genus level (% of total 

number of 

OTUs/ASVs)

321 (16.4) 321 (16.4) 8,092 (40.2) 210 (4.7) 6,170 (46.1)

Number of genera 177 176 312 254 343

Number of genera 

remaining after using 

a prevalence cut-off 

of 10% (% of total 

genera)

74 (41.8) 74 (42.1) 145 (46.5) 115 (45.3) 142 (41.4)

Number of genera 

below 0.1% relative 

abundance (% of total 

genera)

115 (65) 115 (65.3) 243 (77.8) 186 (73.2) 275 (80.2)

Number of phyla 10 10 13 14 15

257 IQR = interquartile range

258 Important to mention, the number of singletons for QIIME1 was the effect of pre-processing (removal of the subthreshold 

259 group and samples having > 1000 reads). As a default setting, all the pipelines, except QIIME2 and mothur, remove 

260 singletons (see Number of singletons (% of total number of OTUs/ASVs) before pre-processing step).

261 Of the genera detected by NG-Tax1, NG-Tax2, QIIME1, QIIME2 and mothur, only 40% overlapped 

262 between all pipelines (Figure 2A). After applying the 10% prevalence cut-off to preserve the most 

263 informative data for the downstream statistical analysis, 41.4% to 46.5% of the genera remained (Table 

264 1). The prevalence cut-off did not improve the percentage of overlapping genera (Figure 2B), indicating 

265 that more prevalent genera are not necessarily shared across the results from the different pipelines. 

266 The relative abundance threshold did improve the percentage of overlapping genera; genera above 

267 0.1% were more commonly shared across pipelines (70%) than genera below 0.1% (20%) (Figure 2C,D). 
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268

269 Figure 2. Venn diagram showing overlap between genera produced by five different bioinformatics pipelines. A) represents 

270 the overlap of genera based on raw data (based on 413 genera across pipelines), B) represents the overlap of genera after a 

271 10% prevalence cut-off across samples (based on 171 genera across pipelines), C) overlap of genera with relative abundance 

272 >0.1% (N=80, genera across pipelines), and D) overlap of genera with relative abundance <0.1% (N=357 genera across 

273 pipelines).

274 3.1.2. Beta-diversity

275 Unconstrained PCoA plots based on the Bray-Curtis measure revealed that samples clustered based 

276 on the sample ID rather than the bioinformatics pipelines (Figure 3A). However, the constrained 

277 ordination method, CAP analysis, indicated relevant differences between the pipelines in terms of 

278 microbial composition (Bray-Curtis index) at the genus level (Figure 3B). The CAP analyses captured 

279 the variation in community structure in the first two components (CAP 1 and CAP 2) accounting for 
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280 11.1% of the total variance (Figure 3B). The same results were observed in terms of microbiome 

281 structure using Jaccard�s similarity index (Figure S1). PERMANOVA analysis supported the results by 

282 revealing that microbial composition (Bray-Curtis: R2=13.9%, p<0.001) and structure (Jaccard: R2=9.5%, 

283 p<0.001) differed significantly between the pipelines and, as expected, more variability was explained 

284 by the same sample ID (Bray-Curtis: R2=89.5%; p<0.001 and Jaccard: R2=82.8%; p<0.001). Additionally, 

285 we performed a pairwise comparison of group means dispersions (TukeyHSD). The analysis confirmed 

286 that the intra-sample variation is quite similar across the pipelines, except for QIIME1 (Figure 3C). 

287 The CAP analysis also showed that NG-Tax1 and NG-Tax2 clustered together, and QIIME2 clustered 

288 with mothur (Figure 3C,D). We investigated these results in more detail, by running PERMANOVA 

289 again, this time only with NG-Tax1 and NG-Tax2 or with QIIME2 and mothur, to investigate how 

290 statistically different these clusters were. The results indicated statistically significant differences 

291 between the pipelines, however, with very small percentages of explained variation (NG-Tax1/NG-tax2 

292 R2=0.016%, p<0.001; QIIME2/mothur R2=0.9%, p<0.001; the results of pairwise PERMANOVA analyses 

293 for other combinations can be found in Supplementary Table S1).
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Figure 3. Results for the Bray-Curtis dissimilarity metric. A) Principal Coordinates Analysis (PCoA) plots with the percentage explained variance by the principal coordinates. B) 

Canonical Analysis of Principal coordinates (CAP) ordination plot of structure in microbial communities associated with bioinformatics pipelines. C) TukeyHSD, a pairwise comparison 

of group mean dispersions revealed that the intra-sample variation was quite similar across pipelines, with QIIME1 forming the exception. 

https://doi.org/10.1101/2023.02.13.528280
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295 3.1.3. Comparative analysis of individual genera

296 We also compared the distribution of the ten most abundant genera found by each pipeline (Figure 4). 

297 These genera were not identical across the pipelines: across the five pipelines, 16 unique genera were 

298 observed. The RA values for all of the 16 unique genera were statistically significantly different 

299 between pipelines (Friedman test, Bonferroni-adjusted p-values <0.001). The descriptive statistics of 

300 this data can be found in Supplementary Table S2.

301

302 Figure 4. Bacterial genera profile. Top 10 most abundant bacterial genera per pipeline resulted in a total of 16 unique genera. 

303 We excluded unclassified genera, since they represent a group of genera rather a single genus. 

304 3.1.4. Taxonomic differences between cases and controls across pipelines 

305 We carried out univariate testing of the relative abundance of individual genera between ADHD cases 

306 (N=40) and controls (N=50) in order to investigate if the downstream statistical conclusions were 

307 consistent across the pipelines. In total, 10 genera showed nominally significant differences (p< 0.05) 
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308 between cases and controls in at least one pipeline (Table 2), but these differences were not consistent 

309 across all pipelines. Based on the P-value consistency score (PCS), only one of the 10 genera showed 

310 total agreement in terms of PCS (PCS=5), none showed high agreement (PCS=4), three genera showed 

311 moderate agreement (PCS=3), and two genera showed partial agreement (PCS=2). The rest of the 

312 genera (N=4) showed no agreement (PCS=1) (Table 2). The descriptive statistics of the 10 genera can 

313 be found in the Supplementary Table S3.

314 In order to determine the effect of the differences in genus abundance on the case-control comparison 

315 between the pipelines, we compared Fold Change (FC) based on genera relative abundance (Table 2). 

316 Three observations stand out. First, the FC differs between the pipelines. For example, for 

317 Clostridiales_vadinBB60_group_uncultured_bacterium, QIIME1 resulted in a case/control ratio of 1.19, 

318 whereas QIIME2 resulted in a ratio of 2.97. Second, for both versions of QIIME, the FC of Coprococcus_2 

319 was in the opposite direction compared to the other three pipelines. Third, in some cases (e.g., 

320 Prevotella_9, Ruminococcus_1), the FC was almost the same between the pipelines, but still only one 

321 pipeline indicated nominal significance. 

322 In general, some genera were missing in some pipelines, and there were differences in effect size or 

323 even in direction between pipelines for genera that were nominally significant different between cases 

324 and controls. The non-parametric rank test indicated that genera present in all pipelines (N=6) differed 

325 statistically in their relative abundance among the pipelines (Friedman test, Bonferroni-adjusted p-

326 values <0.002, Supplementary Table S3). 

327 Testing the correlation between PCS and two measures of frequency, relative abundance and the 

328 percentage of zeros, we found the correlation coefficient between PCS and relative abundance to be 

329 rPCS-RA=0.58 and the one between PCS and percentage of zeros to be rPCS-%0=-0.24 (Figure S2A,B). Both 

330 correlations were non-significant (p>0.05), however, suggesting that the consistency across the 

331 pipelines was independent of bacterial relative abundance and the observed percentage of zeros. The 
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332 lack of significance should be treated with caution, as it could be a result of the low number of features 

333 included in the analysis (n=10 genera).
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334 Table 2. The table represent a fold change (case/control ratio), p-value consistency score (PCS), and percentage of zeros for genera which were nominally significant (p<0.05) different 

335 between cases and controls by at least one pipeline. Values highlighted in red indicate nominal significance (p<0.05). A negative value indicates that the cases� mean is lower than the controls� 

336 mean. 

Genera NG-Tax1 NG-Tax2 QIIME1 QIIME2 mothur PCS % of zeros

Fold Change

Coprococcus_2 1.09 1.12 -1.24 -1.06 1.05 5 40

Prevotella_9 -1.83 -1.81 -2.02 -1.76 -1.87 3 35

Ruminococcus_1 -1.51 -1.50 -1.49 -1.49 -1.55 3 8

Eubacterium_eligens_group -1.61 -1.48 -1.58 -1.92 -1.65 3 62

Tyzzerella_3 1.02 -1.02 NA 1.88 1.77 2 74

Howardella NA NA 4.45 4.88 NA 2 82

Eubacterium_ventriosum_group -2.32 -2.34 -1.93 -2.31 -2.02 1 17

Fusicatenibacter -1.66 -1.69 1.10 1.24 1.03 1 47

Clostridiales_vadinBB60_group_uncultured_bacterium NA NA 1.19 2.97 NA 1 74

Lachnospiraceae_UCG_004 NA NA -1.56 NA -1.13 1 49
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339 3.2.Mock communities

340 3.2.1. Genus richness

341 Mothur identified the highest and NG-Tax1 and NG-Tax2 the lowest number of genera in both MCs. 

342 NG-Tax1 (NMC3=31, NMC4=25), NG-Tax2 (NMC3=31, NMC4=25) and QIIME2 (NMC3=39, NMC4=36) approached 

343 the expected genus richness (NMC3=36, NMC4=36) closer than QIIME1 (NMC3=64, NMC4=67) and mothur 

344 (NMC3=84, NMC4=101) (Table S4). 

345 3.2.2. Beta-diversity

346 We also compared the observed and expected beta-diversity (at genus level) in the MCs. PCoA plots 

347 based on Bray-Curtis and Jaccard measures revealed that samples clustered based on the pipelines 

348 (Figure 5). 90% (for MC3) and 98% (for MC4) of total microbial composition variance (Bray-Curtis, 

349 pMC3<0.001 and pMC4<0.001) and 87% (in case of MC3) and 97% (in case of MC4) of total microbial 

350 structure variance was explained by pipelines (Jaccard, pMC3<0.001 and pMC4<0.001). 
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351

352 Figure 5. PCoA of MC composition was affected by the choice of bioinformatics pipelines. Results of the Bray-Curtis 

353 dissimilarity metric and Jaccard similarity index based on MC3 are shown in panel A and B, respectively, and based on MC4 

354 are shown in C and D, respectively. S1 = Sample 1. 

355

356 3.2.3. Correlation analysis

357 The correlation of observed and expected MC relative abundance (based on N=36 genera) showed that 

358 QIIME2 had the highest correlation coefficient (rMC3=0.70, rMC4=0.76), followed by mothur (rMC3=0.67, 

359 rMC4=0.65), QIIME1 (rMC3=0.61, rMC4=0.64), NG-Tax1 (rMC3=0.56, RMC4=0.61) and NG-Tax2 (rMC3=0.56, 

360 rMC4=0.61) (Figure S3 A,B).

361 3.2.4. Comparative analysis of individual genera

362 Comparison of individual genera showed inconsistencies across pipelines for both MCs (Figure S4, S5). 

363 For example, NG-Tax1 and NG-Tax2 did not detect Enterobacter and Dorea, while QIIME2 did not 
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364 detect Serratia, mothur did not detect Klebsiella, while QIIME1 did not detect Anaerostipes from either 

365 MCs. All pipelines failed to classify Salmonella. Some pipelines under/overrepresented certain genera; 

366 for example, QIIME1 overrepresented Enterobacter and Pseudomonas; NG-Tax1 and NG-Tax2 

367 overrepresented Klebsiella. As expected, NG-Tax1 and NG-Tax2 did not detect genera below 0.1% 

368 abundance included in MC4 (due to the abundance cut-off setting) (Figure S5), whereases QIIME2 did 

369 not detect genera below 0.01%. 

370 4. Discussion

371 Summary

372 In this study, we compared five frequently used bioinformatics pipelines for the processing of 16S rRNA 

373 gene amplicon sequencing data, NG-Tax1, NG-Tax2, QIIME1, QIIME2 and mothur, to determine 

374 whether and in which way the analytical methods of each of these pipelines affect the downstream 

375 statistical analysis results. For this purpose, we used a clinical (case-control) dataset as well as two 

376 mock communities. Based on the clinical sample, we found that NG-Tax1 and NG-Tax2 were strikingly 

377 similar in terms of the number of reads/OTUs/ASVs, number of singletons, number of unclassified 

378 reads/OTUs/ASVs at the genus level, and number of phyla and genera. This abundance table 

379 characteristics were reflected in the results of the beta-diversity analysis, where NG-Tax1 and NG-Tax2 

380 clustered together based on the genera relative abundance. In both versions of NG-Tax, the same 

381 genera were indicated as nominally significantly different, and the FC was almost the same. While 

382 output of both NG-Tax versions largely overlapped, output varied greatly compared to the other 

383 pipelines (QIIME 1, QIIME2, mothur) in terms of, amongst others, the number of singletons, number 

384 of unclassified reads/OTUs/ASVs at the genus level and number of genera. Consequently, we showed 

385 that only 40% of genera overlap between all the pipelines. The percentage increased to 70% when 

386 applying a 10% prevalence cut-off, thereby only comparing genera with RA > 0.1%. The beta-diversity 

387 results indicated that, although the samples cluster better according to sample ID than bioinformatics 

388 pipelines, all pipelines detected different patterns of microbial composition (Bray-Curtis) and structure 
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389 (Jaccard), where QIIME1 diverged the most from the other pipelines. In terms of taxonomy, the most 

390 abundant genera across the pipelines differed significantly between the pipelines. More importantly, 

391 the conclusions of the case-control comparison varied; out of 10 unique genera showing a case-control 

392 difference, only one overlapped between all 5 pipelines. Pipelines differed not only in the number of 

393 genera showing a case-control difference, but also in the magnitude and even direction of this effect. 

394 Overall, the results indicate a clear lack of consistency across the pipelines. 

395 Based on the MCs, we found that QIIME1 and mothur overestimated genus richness, where NG-Tax1, 

396 NG-Tax2 and QIIME2 approached the expected genus richness. Beta-diversity analyses indicated that 

397 the pipelines differed in representing expected microbial composition and structure, with NG-Tax1 and 

398 NG-Tax2 clustering together. Furthermore, correlation analysis between observed and expected MC 

399 indicated that, of all pipelines, QIIME2 came closest to the expected microbiome composition. 

400 Comparative analysis of individual genera showed that the average relative abundance of specific taxa 

401 varied depending on the bioinformatic pipeline. Overall, MC-based results confirmed that the output 

402 of pipelines differed in terms of microbiome composition and structure. These results show how the 

403 choice of bioinformatic pipeline not only impacts the analysis of 16S rRNA gene sequencing data but 

404 also the downstream association results. 

405 Pipeline characteristics

406 QIIME1 yielded different results compared to its successor QIIME2 and the other pipelines, mainly 

407 regarding the highest number of total and median reads per sample, (unclassified) OTUs and 

408 prevalence-filtered genera. Since January 2018, QIIME1 is not supported anymore by developers and 

409 has been replaced by QIIME2. This suggests that if data processed using QIIME1 would be reanalysed 

410 with QIIME2 or another pipeline, it would yield different results. Furthermore, we observed that 

411 QIIME1 yielded the highest number of unique taxa [6, 25]. MC-based results suggested that QIIME1 

412 (and mothur) overrepresented bacterial richness. Thus, in agreement with Prodan et al. (2020), our 

413 advice is that for biological conclusions based on alpha-diversity, QIIME1 users should switch to 
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414 another pipeline or at least confirm their results with another pipeline [6]. For users interested in low 

415 frequency taxa, our study showed that QIIME1 and mothur are most appropriate, as they detected 

416 more low abundant genera (abundance <0.01%) compared to QIIME2, NG-Tax1 and NG-Tax2 (with 

417 NG-Tax being stricter than QIIME2); however, researchers should take into account that this comes at 

418 the costs of having a higher number of spurious taxa. 

419 There is dispute in the research community regarding the matter of keeping or removing singletons, 

420 and on the best method to remove them. By default, mothur and QIIME2 keep the singletons (69.5% 

421 of total OTU/ASVs compared to 0.14% in QIIME2). Both pipelines have different ways of dealing with 

422 singletons [19, 21], where mothur yielded highest percentage of singletons. Many of these reads might 

423 be noise [43]. Indeed, based on the MCs, we saw that singletons might explain a large number (65% in 

424 case of MC3, 40% in case of MC4) of spurious genera (data not shown). However, effects on relative 

425 abundance were limited, since singletons accounted for only 0.64% of total reads (for the NeuroIMAGE 

426 dataset). Based on these results, we suggest to remove singletons even with the pipelines that suggest 

427 keeping them. In addition to the effects on the structure (presence/absence of genera), very low 

428 frequency values pose a great challenge for statistical analysis. This is especially relevant if data are 

429 analysed at the OTU/ASV level.

430 This is the first time the output (relative abundance table) of the five pipelines is used together to 

431 detect case-control differences and evaluate their consistency and stability in a common statistical 

432 framework. Other researchers compared some of these pipelines, and findings partly overlap with 

433 ours. For instance, Ducarmon et al. (2020) compared NG-Tax1 and QIIME2 and concluded that the 

434 pipelines showed different results in terms of richness [13]. In concordance with our study, NG-Tax1 

435 accurately retrieved richness at the genus level. However, QIIME2 overestimated genus-based 

436 richness, whereas in our paper it approached the expected richness in MCs. Furthermore, we observed 

437 that the choice of pipeline influenced the analyses of bacterial composition and structure, whereas in 

438 the analysis reported by Ducarmon et al. (2020), diversity and compositional profiles were comparable. 
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439 With regard to the MCs, in Ducarmon et al. (2020), QIIME2 failed to classify Salmonella, and NG-Tax1 

440 detected Salmonella, whereas in our study, none of the pipelines detected this genus. This could be 

441 due to the difference in the expected RA. In our case, it was 1.2% for MC3 and 2.5% for MC4. For 

442 Ducarmon et al. (2020), it was approximately 9%. When looking closer at QIIME2 performance, 

443 Almeida et al. (2018) suggested QIIME2 as an optimal pipeline for 16S rRNA gene profiling based on 

444 the lowest distance between the expected and observed sample compositions based on synthetic, 

445 simulated datasets, and based on the best recall and precision [44]. We observed similar results, where 

446 correlations between expected and observed MC composition where highest for QIIME2. In addition 

447 to that, according to Prodan et al. (2020), DADA2 (we used QIIME2 with the DADA2 option as a 

448 denoising algorithm) offered the best sensitivity, detecting all 22 true ASVs present in their MC [6]. 

449 Moreover, our results agree with those of Allali et al. (2017), where DADA2 resulted in lower numbers 

450 of ASVs when compared to the number of OTUs of QIIME1 [25] and mothur (this paper); however, this 

451 was not seen when comparing QIIME2 to NG-Tax1 and NG-Tax2, suggesting that NG-Tax is even more 

452 strict then QIIME2 in terms of quality control settings (e.g., abundance threshold). Altogether, based 

453 on our results and existing comparisons, QIIME2 (or DADA2) is a highly recommended pipeline for 

454 microbiome research.

455 Studies investigating differences between bioinformatics pipelines have so far focussed on general 

456 characteristics of the OTUs/ASVs/reads such as richness, diversity and microbial compositional profiles 

457 rather than the biological conclusions to be drawn from comparing these characteristics e.g., between 

458 clinically relevant groups [6, 13, 14]. One study investigating if the same biological conclusions could 

459 be reached using different pipelines was Allali et al. (2017), based on data from chicken cecum 

460 microbiome (vaccinated, prebiotic treated, control group). They tested different settings of QIIME1, 

461 UPARSE and DADA2 and concluded that they could discriminate samples by treatment, despite 

462 differences in diversity and abundance, leading to similar biological conclusions [25]. Allali et al. (2017) 

463 based their conclusion on beta-diversity rather than a comparative analysis of individual genera (as 

464 presented in the current paper). However, they reported differences in RA of specific genera between 
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465 pipelines, suggesting that also in their data different pipelines resulted in different lists of genera 

466 discriminating between treatments. In our study, MC analysis helped to interpret clinical data. The 

467 results (e.g., beta-diversity) showed that the MC-based analysis does not necessarily reflect the real 

468 dataset as the complexity of a real microbiota sample is much larger. This underlines the importance 

469 of deciding which pipeline best serves the analysis of your dataset based on how this pipeline performs 

470 on real data as well as MCs. 

471 Limitations and open questions

472 Our results should be viewed in the context of some limitations. Our study was limited by a small 

473 sample size (N=90), but taking into consideration that this is a crossover study the sample size should 

474 be sufficient to detect the differences in the output produced by each of the pipelines and how these 

475 differences affect the downstream statistical analysis. Nevertheless, since microbiome data is 

476 notoriously diverse and sensitive to protocol and technical variations [45, 46], the effect of datasets 

477 with different designs should be investigated. Another limitation of this study was the use of nominal 

478 (and standard) statistical significance cut-off (p<0.05) as a measure of statistical difference. 

479 Considering the number of tested genera, several false positives could be expected. Although a 

480 corrected p-value is considered a better measure of success, the case-control study may not contain 

481 large enough differences or enough statistical power to properly classify the differences between 

482 groups as statistically significant. Given the aim of this paper, establishing the true (biological) 

483 difference between groups is not evaluated and comes second to the difference in observed effects 

484 brought in by the choice of the bioinformatic pipeline, which is why nominal significance was sufficient 

485 to select multiple taxa (showing different RA and p-values across pipelines) and evaluate the effect on 

486 analysis. Lastly, the number of ASVs/OTUs varied considerably between pipelines, which can result in 

487 differences in FC magnitude, as seen for example in case-control ratio differences between QIIME1 

488 and QIIME2 on the Clostridiales vadin genus group. A different direction of FC could be driven by a 

489 differential effect of filtering/denoising steps per group, potentially driven by a larger number of 
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490 sequencing artefacts in either of them. Future research should focus on more technical aspects of 

491 bioinformatics pipelines comparisons, to identify what exactly drives such differences.

492 5. Conclusion 

493 Our results indicate that a choice of bioinformatic pipeline has not only an impact on the analysis of 

494 16S rRNA gene sequencing data but also the case-control comparison results. This means that the 

495 choice of pipeline can influence the list of significantly different genera between study groups. Thus, 

496 we underscore a significant limiting factor in current microbiome research: the lack of consistency 

497 between study results and how this limits their comparability and the validity of conclusions to be 

498 drawn from them.  

499 Based on our results we recommend i) using QIIME1 and Mothur to researchers that are interested in 

500 rare and/or low-abundant taxa, ii) using NG-Tax1 or NG-Tax2 when favouring strict artefact filtering, 

501 iii) using QIIME2 when looking for a balance between the two abovementioned points, and iv) using at 

502 least two pipelines to assess the stability of results. 

503 We would like to point out that the field still needs to develop �best practice� for microbiome analysis 

504 and apply it consensually across studies, before we can have a deeper understanding of the gut 

505 microbiota�s contribution to human health and disease. With our current work, we hope to contribute 

506 to the gut microbiota research field and make other researchers aware of the strengths and limitations 

507 of their choice of bioinformatic pipeline in terms of influencing the results of case-control studies with 

508 16S rRNA marker gene sequencing data.
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530 Supplementary Figures:

531 Figure S1. Results of Jaccard similarity index. A) Principal Coordinates Analysis (PCoA) plots with the 

532 percentage explained variance by the principal coordinates. B) Canonical Analysis of Principal 

533 coordinates (CAP) ordination plot reveals structure in microbial communities associated with 

534 bioinformatics pipelines. C) TukeyHSD, a pairwise comparison of group mean dispersions, revealed 

535 that the intra-sample variation is quite similar across pipelines, except for QIIME1.
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536 Figure S2. Scatter plot representing a correlation of the PCS with the relative abundance (A) and 

537 prevalence (B) based on the 10 genera showing nominally significant differences (p< 0.05) between 

538 cases and controls in at least one pipeline (Table 2).

539 Figure S3. Correlation matrix of Spearman correlation coefficient values between observed mock 

540 community (OBS MC) composition as a result of five different bioinformatics pipelines (NG-Tax1, NG-

541 Tax2, QIIME1, QIIME2 and mothur) and corresponding expected mock composition (EXP MC), Mock_3 

542 (A) and Mock_4 (B). The results are based on genera only present in EXP MCs. The observed values 

543 represent statistically significant correlations (P<0.05).

544 Figure S4. Interactive heatmap of the expected (EXP) and observed (OBS) MC3 based on all genera 

545 (N=36) present in EXP MC. The rows of the matrix are ordered to highlight patterns by using default 

546 settings.

547 Figure S5. Interactive heatmap of the expected (EXP) and observed (OBS) MC4 based on all genera 

548 present (N=36) in EXP MC. The rows of the matrix are ordered to highlight patterns by using default 

549 settings.

550

551 Supplementary Tables:

552 Table S1. Results of pairwise PERMANOVA.

553 Table S2. Descriptive statistics of 16 most abundant genera.

554 Table S3. Descriptive statistics of 10 genera shown in Table 2.

555 Table S4. Number of genera based on observed and expected (EXP) MC.

556

557 References

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.13.528280doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528280
http://creativecommons.org/licenses/by/4.0/


31

558 1. Cryan JF, O�Riordan KJ, Cowan CSM, Sandhu K V, Bastiaanssen TFS, Boehme M, et al. The 

559 Microbiota-Gut-Brain Axis. Physiol Rev. 2019;99:1877�2013. doi:10.1152/physrev.00018.2018.

560 2. Saffouri GB, Shields-Cutler RR, Chen J, Yang Y, Lekatz HR, Hale VL, et al. Small intestinal microbial 

561 dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun. 

562 2019;10:2012. doi:10.1038/s41467-019-09964-7.

563 3. Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, et al. Reduced incidence of 

564 Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One. 

565 2013;8:e68322. doi:10.1371/journal.pone.0068322.

566 4. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, et al. The neuroactive potential 

567 of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4:623�32. 

568 doi:10.1038/s41564-018-0337-x.

569 5. Dam SA, Mostert JC, Szopinska-Tokov JW, Bloemendaal M, Amato M, Arias-Vasquez A. The Role of 

570 the Gut-Brain Axis in Attention-Deficit/Hyperactivity Disorder. Gastroenterol Clin North Am. 

571 2019;48:407�31. doi:10.1016/j.gtc.2019.05.001.

572 6. Prodan A, Tremaroli V, Brolin H, Zwinderman AH, Nieuwdorp M, Levin E. Comparing bioinformatics 

573 pipelines for microbial 16S rRNA amplicon sequencing. PLoS One. 2020;15:e0227434. 

574 doi:10.1371/journal.pone.0227434.

575 7. Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best practices for 

576 analysing microbiomes. Nat Rev Microbiol. 2018;16:410�22.

577 8. Xia Y, Sun J, Chen D-G. Bioinformatic Analysis of Microbiome Data. In: Statistical Analysis of 

578 Microbiome Data with R. 2018. p. 5�11.

579 9. Rintala A, Pietila S, Munukka E, Eerola E, Pursiheimo JP, Laiho A, et al. Gut Microbiota Analysis 

580 Results Are Highly Dependent on the 16S rRNA Gene Target Region, Whereas the Impact of DNA 

581 Extraction Is Minor. J Biomol Tech. 2017;28:19�30. doi:10.7171/jbt.17-2801-003.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.13.528280doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528280
http://creativecommons.org/licenses/by/4.0/


32

582 10. Szopinska JW, Gresse R, van der Marel S, Boekhorst J, Lukovac S, van Swam I, et al. Reliability of a 

583 participant-friendly fecal collection method for microbiome analyses: a step towards large sample 

584 size investigation. BMC Microbiol. 2018;18:110. doi:10.1186/s12866-018-1249-x.

585 11. Balvociute M, Huson DH. SILVA, RDP, Greengenes, NCBI and OTT - how do these taxonomies 

586 compare? BMC Genomics. 2017;18 Suppl 2:114. doi:10.1186/s12864-017-3501-4.

587 12. Nearing JT, Douglas GM, Hayes MG, MacDonald J, Desai DK, Allward N, et al. Microbiome 

588 differential abundance methods produce different results across 38 datasets. Nat Commun. 

589 2022;13:342. doi:10.1038/s41467-022-28034-z.

590 13. Ducarmon QR, Hornung BVH, Geelen AR, Kuijper EJ, Zwittink RD. Toward Standards in Clinical 

591 Microbiota Studies: Comparison of Three DNA Extraction Methods and Two Bioinformatics pipelines. 

592 mSystems. 2020;5. doi:10.1128/mSystems.00547-19.

593 14. Lopez-Garcia A, Pineda-Quiroga C, Atxaerandio R, Perez A, Hernandez I, Garcia-Rodriguez A, et al. 

594 Comparison of Mothur and QIIME for the Analysis of Rumen Microbiota Composition Based on 16S 

595 rRNA Amplicon Sequences. Front Microbiol. 2018;9:3010. doi:10.3389/fmicb.2018.03010.

596 15. Ramiro-Garcia J, Hermes GDA, Giatsis C, Sipkema D, Zoetendal EG, Schaap PJ, et al. NG-Tax, a 

597 highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. 

598 F1000Res. 2016;5:1791. doi:10.12688/f1000research.9227.2.

599 16. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, 

600 interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 

601 2019;37:852�7. doi:10.1038/s41587-019-0209-9.

602 17. Poncheewin W, Hermes GDA, van Dam JCJ, Koehorst JJ, Smidt H, Schaap PJ. NG-Tax 2.0: A 

603 Semantic Framework for High-Throughput Amplicon Analysis. Front Genet. 2019;10:1366. 

604 doi:10.3389/fgene.2019.01366.

605 18. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.13.528280doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528280
http://creativecommons.org/licenses/by/4.0/


33

606 analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335�6. 

607 doi:10.1038/nmeth.f.303.

608 19. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: 

609 open-source, platform-independent, community-supported software for describing and comparing 

610 microbial communities. Appl Env Microbiol. 2009;75:7537�41. doi:10.1128/AEM.01541-09.

611 20. Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 

612 2013;10:996�8. doi:10.1038/nmeth.2604.

613 21. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution 

614 sample inference from Illumina amplicon data. Nat Methods. 2016;13:581�3. 

615 doi:10.1038/nmeth.3869.

616 22. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, et al. Deblur Rapidly 

617 Resolves Single-Nucleotide Community Sequence Patterns. mSystems. 2017;2. 

618 doi:10.1128/mSystems.00191-16.

619 23. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 

620 2010;26:2460�1. doi:10.1093/bioinformatics/btq461.

621 24. Pittayanon R, Lau JT, Leontiadis GI, Tse F, Yuan Y, Surette M, et al. Differences in Gut Microbiota 

622 in Patients With vs Without Inflammatory Bowel Diseases: A Systematic Review. Gastroenterology. 

623 2020;158:930-946 e1. doi:10.1053/j.gastro.2019.11.294.

624 25. Allali I, Arnold JW, Roach J, Cadenas MB, Butz N, Hassan HM, et al. A comparison of sequencing 

625 platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC 

626 Microbiol. 2017;17:194. doi:10.1186/s12866-017-1101-8.

627 26. Szopinska-Tokov J, Dam S, Naaijen J, Konstanti P, Rommelse N, Belzer C, et al. Correction: 

628 Szopinska-Tokov et al. Investigating the Gut Microbiota Composition of Individuals with Attention-

629 Deficit/Hyperactivity Disorder and Association with Symptoms. Microorganisms 2020, 8, 406. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.13.528280doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528280
http://creativecommons.org/licenses/by/4.0/


34

630 Microorganisms . 2021;9.

631 27. von Rhein D, Mennes M, van Ewijk H, Groenman AP, Zwiers MP, Oosterlaan J, et al. The 

632 NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI study in children with 

633 attention-deficit/hyperactivity disorder. Design and descriptives. Eur Child Adolesc Psychiatry. 

634 2015;24:265�81. doi:10.1007/s00787-014-0573-4.

635 28. QIIME2docs. �Moving Pictures� tutorial. 2019. https://docs.qiime2.org/2019.4/tutorials/moving-

636 pictures/.

637 29. Earl JP, Adappa ND, Krol J, Bhat AS, Balashov S, Ehrlich RL, et al. Species-level bacterial 

638 community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-

639 length 16S rRNA genes 06 Biological Sciences 0604 Genetics 06 Biological Sciences 0605 

640 Microbiology. Microbiome. 2018;6:1�26. doi:10.1186/s40168-018-0569-2.

641 30. Xia Y, Sun J, Chen D-G. Community Diversity Measures and Calculations. In: Statistical Analysis of 

642 Microbiome Data with R. 2018. p. 180�9.

643 31. Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 

644 2001;26:32�46. doi:10.1111/j.1442-9993.2001.01070.pp.x.

645 32. Xia Y, Sun J, Chen D-G. Exploratory Analysis of Microbiome Data and Beyond. In: Statistical 

646 Analysis of Microbiome Data with R. 2018. p. 208�48.

647 33. Anderson MJ, Ellingsen KE, McArdle BH. Multivariate dispersion as a measure of beta diversity. 

648 Ecol Lett. 2006;9:683�93.

649 34. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community 

650 Ecology Package. 2019. doi:10.4135/9781412971874.n145.

651 35. Warnes G, Bolker B, Lumley T. gtools: Various R Programming Tools. 2018. https://cran.r-

652 project.org/package=gtools.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.13.528280doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528280
http://creativecommons.org/licenses/by/4.0/


35

653 36. RStudio Team. RStudio: integrated development environment for R. RStudio, Inc, Boston, MA. 

654 2019.

655 37. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics 

656 of microbiome census data. PLoS One. 2013;8:e61217. doi:10.1371/journal.pone.0061217.

657 38. Lahti L, Shetty S. microbiome R package.

658 39. R Core Team (2020). R A language and environment for statistical computing. Vienna, Austria. 

659 http://www.r-project.org/index.html. Accessed 14 Jul 2020.

660 40. Chen H, Boutros PC. VennDiagram: A package for the generation of highly-customizable Venn and 

661 Euler diagrams in R. BMC Bioinformatics. 2011;12:35. doi:10.1186/1471-2105-12-35.

662 41. Kassambara A. ggpubr: �ggplot2� Based Publication Ready Plots. R package version 0.2.4. 2019. 

663 https://cran.r-project.org/package=ggpubr.

664 42. Galili T, O�Callaghan A, Sidi J, Sievert C. heatmaply: an R package for creating interactive cluster 

665 heatmaps for online publishing. Bioinformatics. 2017;34:1600�2. doi:10.1093/bioinformatics/btx657.

666 43. Edgar RC. Singletons. http://drive5.com/usearch/manual/singletons.html. Accessed 14 Jul 2020.

667 44. Almeida A, Mitchell AL, Tarkowska A, Finn RD. Benchmarking taxonomic assignments based on 

668 16S rRNA gene profiling of the microbiota from commonly sampled environments. Gigascience. 

669 2018;7. doi:10.1093/gigascience/giy054.

670 45. Lozupone CA, Stombaugh J, Gonzalez A, Ackermann G, Wendel D, Vázquez-Baeza Y, et al. Meta-

671 analyses of studies of the human microbiota. Genome Res. 2013;23:1704�14. 

672 doi:10.1101/gr.151803.112.

673 46. Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. 

674 Genome Biol. 2010;11:220. doi:10.1186/gb-2010-11-12-220.

675

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.13.528280doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528280
http://creativecommons.org/licenses/by/4.0/

