10

11

12

13

14

15

16

17

18

19

20

21

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.13.528280; this version posted February 14, 2023. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

1

A comparison of bioinformatics pipelines for compositional analysis of the

human gut microbiome

Joanna Szopinska-Tokov'?, Mirjam Bloemendaal »2, Jos Boekhorst3*, Gerben DA Hermes®, Thomas HA

Ederveen®, Priscilla Vlaming?, Jan K Buitelaar’, Barbara Franke?2, Alejandro Arias-Vasquez'2"

! Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain,
Cognition and Behaviour, Nijmegen, The Netherlands

2 Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain,
Cognition and Behaviour, Nijmegen, The Netherlands

3 NIZO Food Research BV, Ede, The Netherlands

4 Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University &
Research, Wageningen, The Netherlands

> Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands

6 Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences,
Radboud University Medical Center, Nijmegen, The Netherlands

’Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for
Brain, Cognition and Behaviour & Karakter Child and Adolescent Psychiatry University Centre,

Nijmegen, The Netherlands

*Correspondence:

Alejandro Arias Vasquez

Email: Alejandro.AriasVasquez@radboudumc.nl (AAV)



about:blank
https://doi.org/10.1101/2023.02.13.528280
http://creativecommons.org/licenses/by/4.0/

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.13.528280; this version posted February 14, 2023. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

2

Abstract

Investigating the impact of gut microbiome on human health is a rapidly growing area of research. A
significant limiting factor in the progress in this field is the lack of consistency between study results,
which hampers the correct biological interpretation of findings. One of the reasons is variation of the
applied bioinformatics analysis pipelines. This study aimed to compare five frequently used
bioinformatics pipelines (NG-Tax 1.0, NG-Tax 2.0, QIIME, QIIME2 and mothur) for the analysis of 16S
rRNA marker gene sequencing data and determine whether and how the analytical methods affect the
downstream statistical analysis results. Based on publicly available case-control analysis of ADHD and
two mock communities, we show that the choice of bioinformatic pipeline does not only impact the
analysis of 16S rRNA gene sequencing data but consequently also the downstream association results.
The differences were observed in obtained number of ASVs/OTUs (range: 1,958 - 20,140), number of
unclassified ASVs/OTUs (range: 210 - 8,092) or number of genera (range: 176 - 343). Also, the case
versus control comparison resulted in different results across the pipelines. Based on our results we
recommend: i) QIIME1 and mothur when interested in rare and/or low-abundant taxa, ii) NG-Tax1 or
NG-Tax2 when favouring stringent artefact filtering, iii) QIIME2 for a balance between two
abovementioned points, and iv) to use at least two pipelines to assess robustness of the results. This
work illustrates the strengths and limitations of frequently used microbial bioinformatics pipelines in
the context of biological conclusions of case-control comparisons. With this, we hope to contribute to
“best practice” approaches for microbiome analysis, promoting methodological consistency and

replication of microbial findings.

Keywords: bioinformatics, 16S rRNA gene, microbiome, mothur, QIIME, NG-Tax, comparison
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Author Summary

Studies increasingly demonstrate the relevance of gut microbiota in understanding human health and
disease. However, the lack of consistency between study results is a significant limiting factor of
progress in this field. The reasons for this include variation in study design, sample size, bacterial DNA
extraction and sequencing method, bioinformatics analysis pipeline and statistical analysis
methodology. This paper focuses on the variation generated by bioinformatics pipelines. A choice of a
bioinformatic pipeline can influence the assessment of microbial diversity. However, it is unclear to
what extent and how the results and conclusion of a case-control study can be influenced. Therefore,
we compared the results of a case-control study across different pipelines (applying default settings)
while using the same dataset. Our results indicate a lack of consistency across the pipelines. We show
that the choice of bioinformatic pipeline not only affects the analysis results of 16S rRNA gene
sequencing data from the gut microbiome, but also the associated conclusions for the case-control
study. This means different conclusions would be drawn from the same data analysed with different

bioinformatic pipeline.
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1. Introduction

Investigations of the role of the human gut microbiota have attracted much attention in the last 15
years [1]. Specifically, results of studies of the 16S rRNA marker gene (16S) have been crucial in
understanding the role the gut microbiota play in multiple common diseases, such as irritable bowel
syndrome [2], autism [3], depression [4] or attention deficit hyperactivity disorder (ADHD) [5].
Although a few papers suggested best practice for microbiome analysis [6, 7], still there is a broad
choice in microbiome methods. This affects the consistency across the studies. So far, 16S rRNA gene
sequencing is one of the most commonly used method to study bacterial phylogeny and genus/species
classification [8]. 16S rRNA gene sequencing is used as a tool to identify multiple bacterial taxa and

assist with differentiating between closely related bacteria.

The classification of microbial taxonomy using the 16S rRNA gene is influenced by several factors,
ranging from study design, sample size, the choice of variable region of 16S rRNA gene to sequence
[9], collection and storage procedure, wet lab approaches, such as DNA extraction [10], sequencing
technique and bioinformatic pipeline settings, such as frequency filters, and the taxonomic
classification database [11]. Bioinformatics pipelines differ in approaches, such as quality control and
filtering of the sequenced data (i.e., chimera detection, filtering sequences, denoising), Operational
Taxonomic Units (OTUs) clustering algorithms or Amplicon Sequence Variant (ASV), and statistical
analysis (when a statistical analysis step is included in the pipeline). All these choices may result in
differences in the (observed) distribution of taxonomic groups, significantly affecting the putative
relationships between the gut microbiota and disease outcomes. This limits the precision of biological

and statistical conclusions, resulting in a lack of consistency between studies [5, 8, 9, 12].

In this paper, we focused on comparing bioinformatics pipelines, as their contribution to biological
conclusions of microbiome studies is not sufficiently quantified. So far, studies investigating
differences between bioinformatics pipelines have focused on general characteristics of the

OTUs/ASVs/reads, such as richness, diversity and microbial compositional profiles, rather than on the
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82 biological conclusions that could be drawn from analyzing these characteristics [6, 13, 14]. Recently,
83 Ducarmon et al. (2020) showed that the NG-Tax 1.0 [15] and QIIME2 [16] bioinformatics pipelines
84  performed equally well in terms of microbial diversity and compositional profiles for 24 samples across
85  eight types of biological specimens from human niches [13]. Poncheewin et al. (2020) compared NG-
86  Tax 2.0 with QIIME2 using 14 mock community samples [17]. Precision of NG-Tax 2.0 (0.95) was
87  significantly higher compared to QIIME2 (0.58). Prodan et al. (2020) used a large dataset of 2,170
88 samples and one mock community of 16S rRNA data to compare QIIME-uclust [18], mothur [19],
89 USEARCH-UPARSE [20], DADA2 [21], QIIME2-Deblur [16, 22] and USEARCH-UNOISE3 [23] pipelines,
90 and concluded that “DADA?2 is the best choice for studies requiring the highest possible biological
91 resolution (e.g. studies focused on differentiating closely related strains)” [6]. Lopez-Garcia et al. (2018)
92 showed that when the SILVA reference database was used in combination with QIIME [24] or mothur
93 [19] pipelines, richness and composition of 18 samples were highly similar [14]. However, beta-
94  diversity clustered by pipelines, which they attributed to differences in less abundant bacteria. While
95 this was not tested by Ldpez-Garcia et al., this description hints at the possibility of different biological
96  conclusions depending on a choice of pipeline. Only one study, Allali et al. (2017), investigated whether
97  the same biological conclusion was reached when using different pipelines based on 14 chicken cecum
98 16S rRNA samples across three different treatment groups. They tested different settings of QIIME1,
99 UPARSE and DADAZ2 and concluded that, despite differences in diversity and abundance, they could
100  discriminate samples by treatment, leading to similar biological conclusions [25]. This conclusion was
101 limited to beta-diversity (global microbiome community differences), not including a comparison of
102 individual genera. As they reported differences in relative abundances of specific genera between
103 pipelines, their data suggests that different pipelines could result in different lists of genera being

104  significantly associated with a treatment.

105 While the existing comparisons have been essential for the field, they fall short in contributing highly-
106 needed conclusions on how the choice of bioinformatic pipeline affects downstream statistical

107  comparisons of microbial composition of groups (for example, humans with and without a disease).
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108 Such comparisons are also vital for the growth and stability of the field [12]. Moreover, frequently used
109 pipelines, NG-Tax1, NG-Tax2, QIIME1, QIIME2 and mothur, have not yet been compared using the
110  same dataset. Based on these gaps and limitations in the state of the art of the field, we aimed to
111  determine the differences in taxonomic output between these five pipelines and how such differences
112  affect downstream statistical analyses and interpretation of the observed results. We used the V4 16S
113 rRNA gene sequencing data of a human case-control study of attention-deficit/hyperactivity disorder
114  (ADHD) as well as two mock communities. We would like to highlight that our aim is not to draw
115 biological conclusions from these analyses (for this we refer to [26]), but rather highlight differences

116 brought in by the choice of bioinformatic pipeline.

117 2. Materials and Methods

118 2.1. Dataset

119  The material and methods and the results sections are divided into two parts: (i) results based on
120  clinical samples (NeurolMAGE dataset [26]) and (ii) results based on mock communities (MC), which

121 allow us to better interpret the results based on the clinical samples.

122 2.1.1. NeurolMAGE dataset

123 We used the clinical and microbial information from a group of samples belonging to a case-control
124  sample (case, n=42; control, n=50) reported in the NeurolMAGE study [26]. For an exhaustive
125  description of the sample, inclusion criteria, ADHD analysis methods, diagnostic procedures, and study

126  design used in this study, see Szopinska-Tokov et al., 2021 [26], of which this study is an extension.

127 2.1.2. Mock communities

128 In addition to the case-control dataset, we analyzed eight samples based on two defined Mock
129 Communities (MCs; MC3, n=4; MC4, n=4), of which one (MC4) included taxa with very low abundances
130 (0.1%, 0.01% and 0.001%). Both MCs included the same 36 genera, but in different distributions. The

131 laboratory processing and evaluation of the observed MC composition was done exactly the same as
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132  for the clinical samples [26]. The laboratory processing and evaluation of the expected microbial
133 communities’ composition was carried out as described previously [15]. In short, the bacteria were
134  grown as pure cultures and their DNA was then mixed in specific amounts for each community (the
135 process was carried at the Laboratory of Microbiology, Wageningen University, The Netherlands). The
136 bacterial composition of the MCs was determined with HiSeq2000, and for each bacterium used in the

137 MCs, the full length 16S gene was sequenced with Sanger sequencing to confirm their identity.

138  2.2.Bioinformatics pipelines and their evaluation

139  We investigated five different pipelines: both versions of the NG-Tax pipeline (NG-Tax v.1.0 [15] and
140  v.2.0 [17], here named NG-Tax1l and NG-Tax2), adapted QIIME (v.1.8.0; here called QIIME1) [18],
141 QIIME2-DADA?2 (v.2019.7.0; here called QIIME2) [16], and mothur (v.1.43.0) [19]. NG-Tax1, NG-Tax2

142 and QIIME2 are ASV-based methods, whereas QIIME1 and mothur are OTU-based methods.

143  The bioinformatic pipeline evaluation involved two steps: (i) bioinformatical processing and (ii)

144  statistical testing, involving data analysis and quantification (Figure 1).
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E (fixing mix-orientation; perfectly matched barcodes and 1 error primer)
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E NG-Tax1 NG-Tax2 QIIME1 QIIME2 Mothur
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o
OTU/ASV table
for each pipeline
Pre-processing
3 |
£
3 Beta-diversity using Bray-Curtis/Jaccard
b (PCoA, CAP, Adonis)
2
2 |
J
® Prevalence cut-off (0.1)
Comparative analysis of individual genera (cases vs. controls)
(Mann Whitney U test)
145
146 Figure 1. Overview of the bioinformatical and statistical steps used in this study. Top panel: Raw sequencing data (paired-
147 end fastq file) was pre-processed; Reads were put in the same orientation. Subsequently, read pairs with perfectly matching
148 (forward and reverse) barcodes and a maximum of one nucleotide mismatch for each (forward and reverse) primer were
149 included in further steps. This was used as input for all pipelines (see Methods section). This resulted in the OTU/ASV tables
150 (one for each pipeline) which were then subjected to pre-processing. Bottom panel: all statistical tests were carried out
151 separately for each pipeline, except for beta-diversity where OTU/ASV tables were merged to directly compare the taxonomy
152 tables between the pipelines. Prior to comparative analysis the prevalence cut-off was applied (for more details see
153 Discussion section). For details for each step please see the main text.

154  2.2.1. Bioinformatical processing

155 Before applying the pipelines, we applied an in-house script to make sure that the input was the same
156  for all the pipelines. First, we had to deal with the mixed orientation of the sequences. This means that
157  forward and reverse files contained both forward and reverse sequences. NG-Tax 1 and NG-Tax 2 deal
158  with this as a part of the default settings, but this is not so straightforward for other pipelines. Second,
159 not every pipeline can deal or deals in the same way with dual barcodes. Third, different primer
160  settings are applied by each pipeline. In order to eliminate pipeline bias related to primer and barcode
161 mismatch, we applied the same settings for all the pipelines. The output of the in-house script resulted
162 in fixed orientation of the sequences having perfectly matching forward and reverse barcodes with

163  only one nucleotide mismatch allowed for each (forward and reverse) primer. This was used as an
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164  input for all the pipelines. Furthermore, we used the default setting of the pipelines, except for
165  taxonomic database where we used SILVA (v.132) database for all pipelines, changing the default
166  option for NG-Taxl and QIIME1l. We used the Galaxy platform to run NG-Taxl and NG-Tax2

167 (http://wurssb.gitlab.io/ngtax/galaxy.html). QIIME1 was run according to the in-house (NIZO, Ede, The

168 Netherlands) protocol as described previously [10]. For QIIME2, we followed the “Moving Pictures”

169  tutorial (https://docs.qgiime2.org/2019.4/tutorials/moving-pictures/), and for mothur the “MiSeq SOP”

170 (https://mothur.org/wiki/miseq sop/).

171  2.2.2. Statistical testing
172 2.2.2.1. NeurolMAGE dataset

173 2.2.2.1.1. Pre-processing

174  Taxonomical names were formatted across the pipelines, e.g., D_0_Bacteria was changed into Bacteria
175  in order to align the format of taxonomic names across the pipelines. The original sample contained a
176  subthreshold-ADHD group [26], which was removed in the current analysis. Furthermore, we
177 determined a threshold of total read counts based on rarefaction plots (data not shown), in order to
178 exclude samples with small number of total reads while keeping the maximum number of samples (as
179 explained in the ‘Moving pictures’ QIIME2 tutorial [28]). Thus, samples below 1000 total reads were
180 not included in further analysis; this resulted in removal of two samples across all pipelines, which had
181  onaverage 11 (range: 4-21) and 255 (range: 150-341) total read counts across the pipelines. The final

182 dataset included 40 cases and 50 controls.

183  2.2.2.1.2. OTU/ASV/reads table characteristics

184  As afirst part of the analysis, we compared the results of the pipelines in terms of characteristics and
185 distribution of reads, OTUs/ASVs, singletons (a single sequence), unclassified reads, and taxa. The
186 analyses were focused on the genus level, since this is the level at which most (clinical) studies focus
187  to identify an association with a disease/disorder status. This is due to the fact that analysis based on

188 16S rRNA gene hypervariable region(s) limits the taxonomic resolution to family- or genus-level [29].
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189 We visualized overlapping genera between the pipelines using a Venn Diagram. In order to see how
190 the percentage of overlapping genera changed based on different filtering thresholds, we compared
191  the gut microbiome composition of: A) all the genera, B) genera after applying a 10% prevalence cut-

192 off, C) genera with relative abundance >0.1%, and D) genera with relative abundance <0.1%.

193  2.2.2.1.3. Beta-diversity

194  While beta diversity analysis is typically performed at the level of OTU/ASV, we did it at the genus level
195 in order to be able to compare the microbial composition (relative abundance; Bray-Curtis dissimilarity
196 metric) and structure (presence/absence; Jaccard similarity index) [30] across different bioinformatics
197 pipelines. The statistical significance of this comparison was determined using Permutational
198 Multivariate Analysis of Variance (PERMANOVA) using the R package ‘adonis’ for all pipelines; as a post
199 hoc analysis, we performed pairwise analysis between all pipelines [31]. The results were visualized by
200  unconstrained (Principal Coordinate Analysis, PCoA) and constrained (Canonical Analysis of Principal
201  coordinates, CAP) ordination methods [32] by applying following formula: ordinate(ps.merged.rel,
202 "CAP", "bray", ~ Pipeline). Additionally, we computed Tukey Honest Significant Differences (TukeyHSD;
203 calculated based on betadisper using the R package ‘vegan’ [31, 33, 34]) to expand the PCoA analysis

204 and to investigate intra-sample variation in a pairwise comparison manner.

205 2.2.2.1.4. Comparative analysis at the genus level

206 In order to obtain a more detailed overview of microbiome composition differences, we compared the
207 pipelines (i) in terms of the relative abundance of the ten most abundant genera (in order to maximize
208 our ability to find differences between the groups) and (ii) between cases and controls. At this stage,
209  we filtered out unclassified genera and applied a prevalence cut-off of 10% (at the genus level),
210 meaning that only genera present in >10% of the total number of samples were kept, in order to keep
211 the most informative data for the downstream statistical analysis [26]. Next, given the zero-inflated
212 nature of the data, a non-parametric (rank-based) test (Mann-Whitney U) was applied to evaluate

213 significant differences in relative abundances of bacterial genera between cases and controls. As we
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214  aimed to evaluate the effects of the different pipelines rather than scale and significance of the
215  differences between them, this method seemed appropriate (see [12] for an extensive comparison of

216  abundance testing methods).

217 In analysing the consistency pattern of the case-control association results across pipelines, we
218  assigned a bioinformatics pipelines P-value Consistency Score (PCS, ranging from zero to five) to score
219  the number of pipelines showing statistically significant differences between groups per each genus
220  (P<0.05 unadjusted). A PCS=5 meant that all pipelines found significant differences (P<0.05
221  unadjusted) between cases and controls for a particular taxonomic group. Additionally, we calculated
222 agenus relative abundances case/control ratio (called Fold-Change, FC) and compared it (as an effect
223 measure) between the pipelines. The FC was calculated by using the foldchange() function from the
224 “gtools” package (v.3.8.1) [35]. FC was computed as follows: case/control if case>control, and as -
225 control/case otherwise. Furthermore, we tested the correlation between the PCS and the average
226 relative abundance (RA; per genus for all the pipelines) and average percentage of zeros of each genus

227 based on all pipelines.

228  All analyses were performed in RStudio (v.1.2.5033; R v.3.6.3) [36] using “phyloseq” (v.1.28.0) [37],
229  “microbiome” (v.1.6.0) [38], and “vegan” R packages [34], visualized by using “ggplot2” [39] (v.3.3.0),
230  “VennDiagram” [40] (v.1.6.20), “ggpubr” [41] (v.0.2.4), and “heatmaply” [42] (v.1.1.0) R packages;

231  statistical analyses where performed by using the “stats” R package (v.3.6.3) [39].

232 2.2.2.2. Mock communities

233 The main focus of the MC analysis was to compare observed to expected MC composition in order to
234 further evaluate the reliability and comparability of the pipelines. First, we compared the number of
235  genera observed to the expected MC composition. Second, beta-diversity was analysed as described
236  above. Third, we calculated Spearman's rho statistic via “stats” R package (v.3.6.3) [39] to (i) compare
237  the observed to the expected MC composition (relative abundance), and to (ii) compare the pipelines

238 against each other. In this way, we could identify the strength of correlation between the pipelines,
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and identify strength of correlation between the pipelines and the expected MC composition. The
results were visualized by a heatmap using the “heatmaply” (v.1.1.0) R package [42] to identify any

inconsistencies across the pipelines.

3. Results
3.1.NeurolMAGE dataset

3.1.1. OTU/ASV/reads table characteristics

Table 1 shows the characteristics and distribution of OTUs/ASVs/reads per bioinformatic pipeline for
the complete study (N=90). We observed a high degree of variation across the pipelines for all the
variables. The total number of reads varied across the pipelines with QIIME1 showing the highest and
QIIME2 the lowest number of reads (percentage difference = 38.2%). Moreover, QIIME1 and mothur
showed the highest number of OTUs/ASVs, NG-Taxl and NG-Tax2 showed the lowest (relative
difference ranging from 77.9% to 164.6%). Mothur showed the highest number of singletons (69.2%
of the total OTUs), but these only accounted for 0.67% of the total reads; these singletons did not
influence significantly the total relative abundance (when singletons were removed, the relative
abundance of other taxa was not influenced, data not shown). Furthermore, mothur and QIIME1
detected the biggest percentage of unclassified OTUs/ASVs (46.1% and 40.2%, respectively, at the

genus level), QIIME2 the lowest (4.7%).

Table 1. Summary of OTU/ASV characteristics between bioinformatics pipelines.

NG-Tax1 NG-Tax2 QIIME1 QIIME2 mothur
I:;:L”“mber of final 1,414,916 1,357,891 1,692,581 1,149,886 1,390,041
Median of final reads 14,619 13,925 17,315 11,519 14,200

per sample (IQR)

(7,648-20,997)

(7,411-19,998)

(8,783-25,819)

(5,385-17,515)

(7,173-20,742)

Total number of

identified OTUs/ASVs 1,958 1,958 20,140 4,458 13,392
Number of singletons

(% of total number of 0 0 1,291 (6.41) 3(0.07) 9,269 (69.21)
OTUs/ASVs)

Number of singletons

[

(% of total number of 0 0 0 7(0.14) 10,206 (69.50)

OTUs/ASVs) before
pre-processing step
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Number of
unclassified reads at
the genus level (% of
total reads)

Number of
unclassified
OTUs/ASVs at the
genus level (% of total
number of
OTUs/ASVs)

202,165 (14.3) 193,698 (14.3) | 427,601 (25.3) 23,091 (2.0) 23,404 (1.7)

321(16.4) 321(16.4) 8,092 (40.2) 210 (4.7) 6,170 (46.1)

Number of genera 177 176 312 254 343

Number of genera
remaining after using
a prevalence cut-off 74 (41.8) 74 (42.1) 145 (46.5) 115 (45.3) 142 (41.4)
of 10% (% of total
genera)

Number of genera
below 0.1% relative
abundance (% of total
genera)

115 (65) 115 (65.3) 243 (77.8) 186 (73.2) 275 (80.2)

Number of phyla 10 10 13 14 15

IQR = interquartile range

Important to mention, the number of singletons for QIIME1 was the effect of pre-processing (removal of the subthreshold
group and samples having > 1000 reads). As a default setting, all the pipelines, except QIIME2 and mothur, remove
singletons (see Number of singletons (% of total number of OTUs/ASVs) before pre-processing step).

Of the genera detected by NG-Tax1, NG-Tax2, QIIME1, QIIME2 and mothur, only 40% overlapped
between all pipelines (Figure 2A). After applying the 10% prevalence cut-off to preserve the most
informative data for the downstream statistical analysis, 41.4% to 46.5% of the genera remained (Table
1). The prevalence cut-off did not improve the percentage of overlapping genera (Figure 2B), indicating
that more prevalent genera are not necessarily shared across the results from the different pipelines.
The relative abundance threshold did improve the percentage of overlapping genera; genera above

0.1% were more commonly shared across pipelines (70%) than genera below 0.1% (20%) (Figure 2C,D).
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268
269 Figure 2. Venn diagram showing overlap between genera produced by five different bioinformatics pipelines. A) represents
270 the overlap of genera based on raw data (based on 413 genera across pipelines), B) represents the overlap of genera after a

271 10% prevalence cut-off across samples (based on 171 genera across pipelines), C) overlap of genera with relative abundance
272 >0.1% (N=80, genera across pipelines), and D) overlap of genera with relative abundance <0.1% (N=357 genera across
273 pipelines).

274  3.1.2. Beta-diversity

275 Unconstrained PCoA plots based on the Bray-Curtis measure revealed that samples clustered based
276  on the sample ID rather than the bioinformatics pipelines (Figure 3A). However, the constrained
277  ordination method, CAP analysis, indicated relevant differences between the pipelines in terms of
278  microbial composition (Bray-Curtis index) at the genus level (Figure 3B). The CAP analyses captured

279  the variation in community structure in the first two components (CAP 1 and CAP 2) accounting for
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280 11.1% of the total variance (Figure 3B). The same results were observed in terms of microbiome
281 structure using Jaccard’s similarity index (Figure S1). PERMANOVA analysis supported the results by
282 revealing that microbial composition (Bray-Curtis: R2=13.9%, p<0.001) and structure (Jaccard: R?=9.5%,
283 p<0.001) differed significantly between the pipelines and, as expected, more variability was explained
284 by the same sample ID (Bray-Curtis: R?=89.5%; p<0.001 and Jaccard: R?>=82.8%; p<0.001). Additionally,
285  we performed a pairwise comparison of group means dispersions (TukeyHSD). The analysis confirmed

286  that the intra-sample variation is quite similar across the pipelines, except for QIIME1 (Figure 3C).

287  The CAP analysis also showed that NG-Tax1 and NG-Tax2 clustered together, and QIIME2 clustered
288  with mothur (Figure 3C,D). We investigated these results in more detail, by running PERMANOVA
289 again, this time only with NG-Tax1l and NG-Tax2 or with QIIME2 and mothur, to investigate how
290  statistically different these clusters were. The results indicated statistically significant differences
291 between the pipelines, however, with very small percentages of explained variation (NG-Tax1/NG-tax2
292  R?=0.016%, p<0.001; QIIME2/mothur R?=0.9%, p<0.001; the results of pairwise PERMANOVA analyses

293 for other combinations can be found in Supplementary Table S1).
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Figure 3. Results for the Bray-Curtis dissimilarity metric. A) Principal Coordinates Analysis (PCoA) plots with the percentage explained variance by the principal coordinates. B)
Canonical Analysis of Principal coordinates (CAP) ordination plot of structure in microbial communities associated with bioinformatics pipelines. C) TukeyHSD, a pairwise comparison

of group mean dispersions revealed that the intra-sample variation was quite similar across pipelines, with QIIME1 forming the exception.
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3.1.3. Comparative analysis of individual genera

We also compared the distribution of the ten most abundant genera found by each pipeline (Figure 4).
These genera were not identical across the pipelines: across the five pipelines, 16 unique genera were
observed. The RA values for all of the 16 unique genera were statistically significantly different
between pipelines (Friedman test, Bonferroni-adjusted p-values <0.001). The descriptive statistics of

this data can be found in Supplementary Table S2.

60.l II

NG-Tax1 NG-Tax2 QIIME1 QIME2  Mothur

. Agathobacter

. Anaerostipes

Bacteroides

40+

Bifidobacterium

Blautia

Dialister
Eubacterium_coprostanoligenes_group
Eubacterium_hallii_group
Faecalibacterium
Peptostreptococcaceae_uncultured

I I Subdoligranulum

relative abundance (%)

20+

Prevotella_9
Romboutsia
Ruminococcus_1
Ruminococcus 2
Streptococcus

Figure 4. Bacterial genera profile. Top 10 most abundant bacterial genera per pipeline resulted in a total of 16 unique genera.
We excluded unclassified genera, since they represent a group of genera rather a single genus.

3.1.4. Taxonomic differences between cases and controls across pipelines

We carried out univariate testing of the relative abundance of individual genera between ADHD cases
(N=40) and controls (N=50) in order to investigate if the downstream statistical conclusions were

consistent across the pipelines. In total, 10 genera showed nominally significant differences (p< 0.05)
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308 between cases and controls in at least one pipeline (Table 2), but these differences were not consistent
309  across all pipelines. Based on the P-value consistency score (PCS), only one of the 10 genera showed
310  total agreement in terms of PCS (PCS=5), none showed high agreement (PCS=4), three genera showed
311 moderate agreement (PCS=3), and two genera showed partial agreement (PCS=2). The rest of the
312  genera (N=4) showed no agreement (PCS=1) (Table 2). The descriptive statistics of the 10 genera can

313 be found in the Supplementary Table S3.

314  Inorderto determine the effect of the differences in genus abundance on the case-control comparison
315 between the pipelines, we compared Fold Change (FC) based on genera relative abundance (Table 2).
316  Three observations stand out. First, the FC differs between the pipelines. For example, for
317 Clostridiales_vadinBB60_group_uncultured_bacterium, QIIME1 resulted in a case/control ratio of 1.19,
318 whereas QIIME2 resulted in a ratio of 2.97. Second, for both versions of QIIME, the FC of Coprococcus 2
319 was in the opposite direction compared to the other three pipelines. Third, in some cases (e.g.,
320 Prevotella_9, Ruminococcus_1), the FC was almost the same between the pipelines, but still only one

321 pipeline indicated nominal significance.

322 In general, some genera were missing in some pipelines, and there were differences in effect size or
323 even in direction between pipelines for genera that were nominally significant different between cases
324  and controls. The non-parametric rank test indicated that genera present in all pipelines (N=6) differed
325  statistically in their relative abundance among the pipelines (Friedman test, Bonferroni-adjusted p-

326  values <0.002, Supplementary Table S3).

327  Testing the correlation between PCS and two measures of frequency, relative abundance and the
328  percentage of zeros, we found the correlation coefficient between PCS and relative abundance to be
329 recs.ra=0.58 and the one between PCS and percentage of zeros to be rpcs.s0=-0.24 (Figure S2A,B). Both
330 correlations were non-significant (p>0.05), however, suggesting that the consistency across the

331  pipelines was independent of bacterial relative abundance and the observed percentage of zeros. The
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332 lack of significance should be treated with caution, as it could be a result of the low number of features

333 included in the analysis (n=10 genera).
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334 Table 2. The table represent a fold change (case/control ratio), p-value consistency score (PCS), and percentage of zeros for genera which were nominally significant (p<0.05) different
335 between cases and controls by at least one pipeline. Values highlighted in red indicate nominal significance (p<0.05). A negative value indicates that the cases’ mean is lower than the controls’
336 mean.
Genera NG-Taxl NG-Tax2 QIIME1 QIIME2  mothur PCS % of zeros
Fold Change

Coprococcus_2 1.09 1.12 -1.24 -1.06 1.05 5 40

Prevotella_9 -1.83 -1.81 -2.02 -1.76 -1.87 3 35

Ruminococcus_1 -1.51 -1.50 -1.49 -1.49 -1.55 3 8

Eubacterium_eligens_group -1.61 -1.48 -1.58 -1.92 -1.65 3 62

Tyzzerella_3 1.02 -1.02 NA 1.88 1.77 2 74

Howardella NA NA 4.45 4.88 NA 2 82

Eubacterium_ventriosum_group -2.32 -2.34 -1.93 -2.31 -2.02 1 17

Fusicatenibacter -1.66 -1.69 1.10 1.24 1.03 1 47

Clostridiales_vadinBB60_group_uncultured_bacterium NA NA 1.19 2.97 NA 1 74

Lachnospiraceae_ UCG_004 NA NA -1.56 NA -1.13 1 49
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3.2. Mock communities

3.2.1. Genus richness

Mothur identified the highest and NG-Tax1 and NG-Tax2 the lowest number of genera in both MCs.
NG-Tax1 (NMC3=31, NMc4:25), NG-Tax2 (NMC3:311 NMC4:25) and Q”MEZ (NMC3:391 NMC4:36) approached
the expected genus richness (Nycz=36, Nyca=36) closer than QIIME1 (Nyc3=64, Nyca=67) and mothur

(NMcg=84, NMC4=101) (Table 54)

3.2.2. Beta-diversity

We also compared the observed and expected beta-diversity (at genus level) in the MCs. PCoA plots
based on Bray-Curtis and Jaccard measures revealed that samples clustered based on the pipelines
(Figure 5). 90% (for MC3) and 98% (for MC4) of total microbial composition variance (Bray-Curtis,
Pmc3<0.001 and pycs<0.001) and 87% (in case of MC3) and 97% (in case of MC4) of total microbial

structure variance was explained by pipelines (Jaccard, pmcz<0.001 and pyc2<0.001).
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Figure 5. PCoA of MC composition was affected by the choice of bioinformatics pipelines. Results of the Bray-Curtis
dissimilarity metric and Jaccard similarity index based on MC3 are shown in panel A and B, respectively, and based on MC4
are shown in C and D, respectively. S1 = Sample 1.

3.2.3. Correlation analysis

The correlation of observed and expected MC relative abundance (based on N=36 genera) showed that
QIIME2 had the highest correlation coefficient (ryc3=0.70, rycs=0.76), followed by mothur (ryc;=0.67,

rmc4:O.65), Q”ME]. (rMcg:O.Gl, rMc4:0.64), NG-Tax1 (rMc3:0.56, RMc4:O.61) and NG-Tax2 (rMc3:0.56,

rmca=0.61) (Figure S3 A,B).
3.2.4. Comparative analysis of individual genera

Comparison of individual genera showed inconsistencies across pipelines for both MCs (Figure S4, S5).

For example, NG-Tax1 and NG-Tax2 did not detect Enterobacter and Dorea, while QIIME2 did not
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364 detect Serratia, mothur did not detect Klebsiella, while QIIME1 did not detect Anaerostipes from either
365 MCs. All pipelines failed to classify Salmonella. Some pipelines under/overrepresented certain genera;
366 for example, QIIME1 overrepresented Enterobacter and Pseudomonas; NG-Taxl and NG-Tax2
367  overrepresented Klebsiella. As expected, NG-Taxl and NG-Tax2 did not detect genera below 0.1%
368 abundance included in MC4 (due to the abundance cut-off setting) (Figure S5), whereases QIIME2 did

369 not detect genera below 0.01%.

370 4. Discussion

371 Summary

372 In this study, we compared five frequently used bioinformatics pipelines for the processing of 16S rRNA
373 gene amplicon sequencing data, NG-Tax1, NG-Tax2, QIIME1, QIIME2 and mothur, to determine
374  whether and in which way the analytical methods of each of these pipelines affect the downstream
375  statistical analysis results. For this purpose, we used a clinical (case-control) dataset as well as two
376 mock communities. Based on the clinical sample, we found that NG-Tax1 and NG-Tax2 were strikingly
377  similar in terms of the number of reads/OTUs/ASVs, number of singletons, number of unclassified
378 reads/OTUs/ASVs at the genus level, and number of phyla and genera. This abundance table
379 characteristics were reflected in the results of the beta-diversity analysis, where NG-Tax1 and NG-Tax2
380 clustered together based on the genera relative abundance. In both versions of NG-Tax, the same
381 genera were indicated as nominally significantly different, and the FC was almost the same. While
382 output of both NG-Tax versions largely overlapped, output varied greatly compared to the other
383 pipelines (QIIME 1, QIIME2, mothur) in terms of, amongst others, the number of singletons, number
384  of unclassified reads/OTUs/ASVs at the genus level and number of genera. Consequently, we showed
385  that only 40% of genera overlap between all the pipelines. The percentage increased to 70% when
386  applying a 10% prevalence cut-off, thereby only comparing genera with RA > 0.1%. The beta-diversity
387 results indicated that, although the samples cluster better according to sample ID than bioinformatics

388 pipelines, all pipelines detected different patterns of microbial composition (Bray-Curtis) and structure
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389 (Jaccard), where QIIME1 diverged the most from the other pipelines. In terms of taxonomy, the most
390 abundant genera across the pipelines differed significantly between the pipelines. More importantly,
391 the conclusions of the case-control comparison varied; out of 10 unique genera showing a case-control
392  difference, only one overlapped between all 5 pipelines. Pipelines differed not only in the number of
393  genera showing a case-control difference, but also in the magnitude and even direction of this effect.

394  Overall, the results indicate a clear lack of consistency across the pipelines.

395 Based on the MCs, we found that QIIME1 and mothur overestimated genus richness, where NG-Tax1,
396 NG-Tax2 and QIIME2 approached the expected genus richness. Beta-diversity analyses indicated that
397  the pipelines differed in representing expected microbial composition and structure, with NG-Tax1 and
398 NG-Tax2 clustering together. Furthermore, correlation analysis between observed and expected MC
399 indicated that, of all pipelines, QIIME2 came closest to the expected microbiome composition.
400 Comparative analysis of individual genera showed that the average relative abundance of specific taxa
401  varied depending on the bioinformatic pipeline. Overall, MC-based results confirmed that the output
402 of pipelines differed in terms of microbiome composition and structure. These results show how the
403 choice of bioinformatic pipeline not only impacts the analysis of 16S rRNA gene sequencing data but

404 also the downstream association results.

405 Pipeline characteristics

406  QIIMEL1 yielded different results compared to its successor QIIME2 and the other pipelines, mainly
407 regarding the highest number of total and median reads per sample, (unclassified) OTUs and
408 prevalence-filtered genera. Since January 2018, QIIME1 is not supported anymore by developers and
409 has been replaced by QIIME2. This suggests that if data processed using QIIME1 would be reanalysed
410  with QIIME2 or another pipeline, it would yield different results. Furthermore, we observed that
411  QIIME1 yielded the highest number of unique taxa [6, 25]. MC-based results suggested that QIIME1
412 (and mothur) overrepresented bacterial richness. Thus, in agreement with Prodan et al. (2020), our

413  advice is that for biological conclusions based on alpha-diversity, QIIME1 users should switch to
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414  another pipeline or at least confirm their results with another pipeline [6]. For users interested in low
415  frequency taxa, our study showed that QIIME1 and mothur are most appropriate, as they detected
416 more low abundant genera (abundance <0.01%) compared to QIIME2, NG-Tax1 and NG-Tax2 (with
417 NG-Tax being stricter than QIIME2); however, researchers should take into account that this comes at

418  the costs of having a higher number of spurious taxa.

419  There is dispute in the research community regarding the matter of keeping or removing singletons,
420  and on the best method to remove them. By default, mothur and QIIME2 keep the singletons (69.5%
421  of total OTU/ASVs compared to 0.14% in QIIME2). Both pipelines have different ways of dealing with
422  singletons [19, 21], where mothur yielded highest percentage of singletons. Many of these reads might
423 be noise [43]. Indeed, based on the MCs, we saw that singletons might explain a large number (65% in
424  case of MC3, 40% in case of MC4) of spurious genera (data not shown). However, effects on relative
425 abundance were limited, since singletons accounted for only 0.64% of total reads (for the NeurolIMAGE
426 dataset). Based on these results, we suggest to remove singletons even with the pipelines that suggest
427 keeping them. In addition to the effects on the structure (presence/absence of genera), very low
428  frequency values pose a great challenge for statistical analysis. This is especially relevant if data are

429 analysed at the OTU/ASV level.

430 This is the first time the output (relative abundance table) of the five pipelines is used together to
431 detect case-control differences and evaluate their consistency and stability in a common statistical
432  framework. Other researchers compared some of these pipelines, and findings partly overlap with
433 ours. For instance, Ducarmon et al. (2020) compared NG-Tax1 and QIIME2 and concluded that the
434  pipelines showed different results in terms of richness [13]. In concordance with our study, NG-Tax1
435  accurately retrieved richness at the genus level. However, QIIME2 overestimated genus-based
436 richness, whereas in our paper it approached the expected richness in MCs. Furthermore, we observed
437  that the choice of pipeline influenced the analyses of bacterial composition and structure, whereas in

438  theanalysis reported by Ducarmon et al. (2020), diversity and compositional profiles were comparable.
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439  With regard to the MCs, in Ducarmon et al. (2020), QIIME2 failed to classify Salmonella, and NG-Tax1
440  detected Salmonella, whereas in our study, none of the pipelines detected this genus. This could be
441 due to the difference in the expected RA. In our case, it was 1.2% for MC3 and 2.5% for MCA4. For
442 Ducarmon et al. (2020), it was approximately 9%. When looking closer at QIIME2 performance,
443  Almeida et al. (2018) suggested QIIME2 as an optimal pipeline for 16S rRNA gene profiling based on
444  the lowest distance between the expected and observed sample compositions based on synthetic,
445 simulated datasets, and based on the best recall and precision [44]. We observed similar results, where
446 correlations between expected and observed MC composition where highest for QIIME2. In addition
447  to that, according to Prodan et al. (2020), DADA2 (we used QIIME2 with the DADA2 option as a
448 denoising algorithm) offered the best sensitivity, detecting all 22 true ASVs present in their MC [6].
449 Moreover, our results agree with those of Allali et al. (2017), where DADA2 resulted in lower numbers
450  of ASVs when compared to the number of OTUs of QIIME1 [25] and mothur (this paper); however, this
451 was not seen when comparing QIIME2 to NG-Tax1 and NG-Tax2, suggesting that NG-Tax is even more
452  strict then QIIME2 in terms of quality control settings (e.g., abundance threshold). Altogether, based
453  on our results and existing comparisons, QIIME2 (or DADA?2) is a highly recommended pipeline for

454 microbiome research.

455  Studies investigating differences between bioinformatics pipelines have so far focussed on general
456 characteristics of the OTUs/ASVs/reads such as richness, diversity and microbial compositional profiles
457 rather than the biological conclusions to be drawn from comparing these characteristics e.g., between
458 clinically relevant groups [6, 13, 14]. One study investigating if the same biological conclusions could
459 be reached using different pipelines was Allali et al. (2017), based on data from chicken cecum
460 microbiome (vaccinated, prebiotic treated, control group). They tested different settings of QIIME1,
461 UPARSE and DADA2 and concluded that they could discriminate samples by treatment, despite
462 differences in diversity and abundance, leading to similar biological conclusions [25]. Allali et al. (2017)
463 based their conclusion on beta-diversity rather than a comparative analysis of individual genera (as

464  presented in the current paper). However, they reported differences in RA of specific genera between
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465 pipelines, suggesting that also in their data different pipelines resulted in different lists of genera
466 discriminating between treatments. In our study, MC analysis helped to interpret clinical data. The
467 results (e.g., beta-diversity) showed that the MC-based analysis does not necessarily reflect the real
468  dataset as the complexity of a real microbiota sample is much larger. This underlines the importance
469  of deciding which pipeline best serves the analysis of your dataset based on how this pipeline performs

470 on real data as well as MCs.

471 Limitations and open questions

472 Our results should be viewed in the context of some limitations. Our study was limited by a small
473  sample size (N=90), but taking into consideration that this is a crossover study the sample size should
474  be sufficient to detect the differences in the output produced by each of the pipelines and how these
475 differences affect the downstream statistical analysis. Nevertheless, since microbiome data is
476 notoriously diverse and sensitive to protocol and technical variations [45, 46], the effect of datasets
477  with different designs should be investigated. Another limitation of this study was the use of nominal
478  (and standard) statistical significance cut-off (p<0.05) as a measure of statistical difference.
479 Considering the number of tested genera, several false positives could be expected. Although a
480  corrected p-value is considered a better measure of success, the case-control study may not contain
481 large enough differences or enough statistical power to properly classify the differences between
482  groups as statistically significant. Given the aim of this paper, establishing the true (biological)
483  difference between groups is not evaluated and comes second to the difference in observed effects
484  broughtin by the choice of the bioinformatic pipeline, which is why nominal significance was sufficient
485  to select multiple taxa (showing different RA and p-values across pipelines) and evaluate the effect on
486  analysis. Lastly, the number of ASVs/OTUs varied considerably between pipelines, which can result in
487  differences in FC magnitude, as seen for example in case-control ratio differences between QIIME1
488 and QIIME2 on the Clostridiales vadin genus group. A different direction of FC could be driven by a

489 differential effect of filtering/denoising steps per group, potentially driven by a larger number of
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490 sequencing artefacts in either of them. Future research should focus on more technical aspects of

491 bioinformatics pipelines comparisons, to identify what exactly drives such differences.

492 5. Conclusion

493 Our results indicate that a choice of bioinformatic pipeline has not only an impact on the analysis of
494 16S rRNA gene sequencing data but also the case-control comparison results. This means that the
495 choice of pipeline can influence the list of significantly different genera between study groups. Thus,
496  we underscore a significant limiting factor in current microbiome research: the lack of consistency
497 between study results and how this limits their comparability and the validity of conclusions to be

498 drawn from them.

499 Based on our results we recommend i) using QIIME1 and Mothur to researchers that are interested in
500 rare and/or low-abundant taxa, ii) using NG-Tax1 or NG-Tax2 when favouring strict artefact filtering,
501 iii) using QIIME2 when looking for a balance between the two abovementioned points, and iv) using at

502 least two pipelines to assess the stability of results.

503 We would like to point out that the field still needs to develop “best practice” for microbiome analysis
504  and apply it consensually across studies, before we can have a deeper understanding of the gut
505 microbiota’s contribution to human health and disease. With our current work, we hope to contribute
506  tothe gut microbiota research field and make other researchers aware of the strengths and limitations
507  of their choice of bioinformatic pipeline in terms of influencing the results of case-control studies with

508 16S rRNA marker gene sequencing data.
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530 Supplementary Figures:

531  Figure S1. Results of Jaccard similarity index. A) Principal Coordinates Analysis (PCoA) plots with the
532 percentage explained variance by the principal coordinates. B) Canonical Analysis of Principal
533 coordinates (CAP) ordination plot reveals structure in microbial communities associated with
534  bioinformatics pipelines. C) TukeyHSD, a pairwise comparison of group mean dispersions, revealed

535  that the intra-sample variation is quite similar across pipelines, except for QIIME1.
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536 Figure S2. Scatter plot representing a correlation of the PCS with the relative abundance (A) and
537 prevalence (B) based on the 10 genera showing nominally significant differences (p< 0.05) between

538  cases and controls in at least one pipeline (Table 2).

539 Figure S3. Correlation matrix of Spearman correlation coefficient values between observed mock
540  community (OBS MC) composition as a result of five different bioinformatics pipelines (NG-Tax1, NG-
541  Tax2, QIIME1, QIIME2 and mothur) and corresponding expected mock composition (EXP MC), Mock_3
542  (A) and Mock_4 (B). The results are based on genera only present in EXP MCs. The observed values

543 represent statistically significant correlations (P<0.05).

544  Figure S4. Interactive heatmap of the expected (EXP) and observed (OBS) MC3 based on all genera
545  (N=36) present in EXP MC. The rows of the matrix are ordered to highlight patterns by using default

546 settings.

547  Figure S5. Interactive heatmap of the expected (EXP) and observed (OBS) MC4 based on all genera
548 present (N=36) in EXP MC. The rows of the matrix are ordered to highlight patterns by using default

549 settings.

550

551  Supplementary Tables:

552  Table S1. Results of pairwise PERMANOVA.

553  Table S2. Descriptive statistics of 16 most abundant genera.

554  Table S3. Descriptive statistics of 10 genera shown in Table 2.

555  Table S4. Number of genera based on observed and expected (EXP) MC.
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