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Abstract 13 

Phylogenetic comparative methods allow biologists to make inferences about the 14 

evolutionary history of phenotypes. These methods are increasingly used to study the 15 

evolution of gene expression. However, it is unknown whether the distributional 16 

assumptions of phylogenetic models designed for quantitative phenotypic traits are 17 

realistic for expression data (i.e., how well do the models actually perform?); and the 18 

reliability of conclusions of phylogenetic comparative studies of gene expression may 19 

depend on whether the data is well-described by the chosen model. To evaluate this, we 20 

first fit several phylogenetic models of trait evolution to 9 previously published 21 

comparative expression datasets, comprising a total of 54,774 genes with 155,679 unique 22 

gene-tissue combinations. Using a previously developed approach, we then assessed how 23 

well the best model of the set described the data in an absolute (not just relative) sense. 24 

First, we find that Ornstein-Uhlenbeck models were the preferred model for 59.8% of 25 

gene-tissue combinations. Second, we find that for 39% of gene-tissue combinations, the 26 

best fit model was found to perform poorly by at least one of the test statistics we 27 

examined. Third, we find that when simple models do not perform well, this appears to 28 

be typically a consequence of failing to fully account for heterogeneity in the rate of the 29 

evolution of gene expression across lineages. We advocate that assessment of model 30 

performance should become a routine component of phylogenetic comparative 31 

expression studies; doing so can improve the reliability of inferences and inspire the 32 

development of novel models.   33 

 34 
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Introduction 35 

While DNA holds the genetic information required for life to work, other elements are 36 

largely required for cells to function. These functional elements are responsible for the 37 

molecular processes that eventually lead to phenotypes (Kellis et al. 2014). The most 38 

prominently studied of these elements is gene expression. There is a long tradition of 39 

thinking about gene expression evolution in a comparative context (King & Wilson 1975), 40 

yet it is only recently that it has been feasible to gather transcriptomic data for multiple 41 

species in a standardized way – this has opened new avenues for investigating the 42 

evolutionary processes responsible for generating diversity (Hill et al. 2021; Price et al. 43 

2022) of changes in gene expression.  44 

Identifying interspecies differences in gene expression can pinpoint which sets of 45 

genes are responsible for differences between organisms. For example, Chen et al. 2021 46 

recently investigated the expression of the ACE2 receptor across species and cell types to 47 

identify susceptibility of different mammals to SARS-CoV-2, where species with higher 48 

expression of this receptor in respiratory cells were deemed to be at a higher risk (Chen 49 

et al. 2021). Many such studies have used the approach of directly comparing gene 50 

expression levels between orthologs to understand an array of topics, such as the function 51 

of epigenetic modifications (Cain et al. 2011), the connection between DNA and 52 

methylation (Hernando-Herraez et al. 2015), and the evolution of enhancer regions 53 

(Villar et al. 2015).  The studies mentioned above (in addition to many others in the field) 54 

use pairwise comparisons in which all gene expression values from all species are 55 

compared to one another. Essentially, this assumes that gene expression values from 56 

different species all represent independent measurements (Dunn et al. 2018). However, 57 
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due to their shared evolutionary history, more closely related species will resemble each 58 

other in many ways and some of these shared (and, in many cases, unmeasured) 59 

attributes will influence how focal variables (here, gene expression and some attribute of 60 

interest) are associated with one another (Felsenstein 1985; Uyeda et al. 2018). While this 61 

challenge has been widely recognized across the biological sciences, many comparative 62 

gene expression studies still do multi-species comparisons with sequential pairwise 63 

comparisons, which a recent study demonstrated could be highly misleading (Dunn et al. 64 

2018).  65 

In addition to controlling for unobserved (and phylogenetically structured) 66 

confounding variables, phylogenetic comparative methods (PCMs; for recent reviews of 67 

these methods see Pennell & Harmon 2013; Garamszegi 2014; and Harmon 2019) are 68 

increasingly being used to characterize the evolutionary dynamics of gene expression over 69 

time, for example, by looking for the signature of selection in the distribution of gene 70 

expression values at the tips (Dunn et al. 2013; Price et al. 2022; Brawand et al. 2011; 71 

Barua & Mikheyvey 2020; Rohlfs et al. 2014; Rohlfs & Nielsen 2015; Bedford & Hartl 72 

2009). And accordingly, there have been a number of recent methodological 73 

developments, including computational platforms for simulating (Bastide et al. 2022) and 74 

analyzing (Bertram et al. 2022) phylogenetic comparative gene expression datasets. 75 

While this work is tremendously exciting, it is important to note that the reliability of the 76 

inferences from phylogenetic comparative methods hinge upon the performance of the 77 

phylogenetic model that is fit to the data (Garland et al. 1992; Price 1997; Boettiger et al. 78 

2012; Pennell et al. 2015; Brown & Thomson 2018; Uyeda et al. 2021). There is a long 79 

tradition of using PCMs for modeling the evolution of morphological and ecological 80 
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phenotypes but as comparative, multi-species gene expression datasets are starting to 81 

become more available the performance of the models in this new context is not well 82 

understood. And there are reasons to think that results from applying phylogenetic 83 

models to well-studied morphological phenotypes might not apply to gene expression 84 

data. First, evolutionary models of continuous traits were derived under the assumptions 85 

of quantitative genetics, where phenotypes are controlled by a large (effectively infinite) 86 

number of loci (Lande 1976; Turelli 1988; Felsenstein 1988; Lynch 1990; Hansen & 87 

Martins 1996; Pennell & Harmon 2013). We might expect the expression level of a given 88 

gene to behave less like an idealized polygenic trait owing to the outsized importance of 89 

the cis-regulatory region in determining the expression level (Dhar et al. 2021; Matharu 90 

& Ahituv 2020; Fuso et al. 2020; Romero et al. 2012). On the other hand, searches for 91 

eQTLs have turned up a large number of candidate loci potentially involved in the 92 

regulation of some genes (Rockman & Kruglyak 2006; GTEx Consortium 2020). 93 

Theoretical work has demonstrated that differences in the genetic architecture of traits 94 

influence the distribution of phenotypes among species (Schraiber & Landis 2015). 95 

Second, unlike traits such as height or mass, where the meaning of a measurement is 96 

straightforward, this is not the case for gene expression (Diaz et al. 2022); the number of 97 

mRNA transcripts is often normalized relative to the number of cells/transcripts/etc 98 

(Wagner et al. 2012). And it is not obvious how well different normalization measures 99 

match the distributional assumptions of phylogenetic models of trait evolution. And 100 

indeed, there is some empirical evidence to suspect that the assumptions of the 101 

independent contrasts method used by Dunn et al. 2018 in their reanalysis of pairwise 102 

comparisons were themselves problematic (Begum & Robinson-Rechavi 2021).  103 
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In a recent study, Chen et al. 2019 evaluated the fit of a set of alternative models to 104 

gene expression data. This set of models included Brownian motion (BM) (Felsenstein 105 

1973) and varieties of the Ornstein-Uhlenbeck process (OU) (Hansen 1997; Butler & King 106 

2004). Under BM a phenotypic trait with population mean � is expected to change over 107 

time period � according to a random walk such that: 108 

�� 	= 	��� 109 

where dW is a stochastic process drawn from a normal distribution with variance � and 110 

mean of 0, which is scaled by the parameter �, such that �2 is defined as the evolutionary 111 

rate of the BM process. Over time, the variance between replicate lineages (i.e., two 112 

lineages that share a common ancestor and subsequently had independent evolutionary 113 

trajectories)  of the phenotypic trait is expected to increase linearly such that: 114 

 ���(�) 	= 	�2� 115 

The covariance between replicate lineages is proportional to the amount of shared 116 

evolutionary history. The OU process is an extension of the BM model where the mean 117 

change in phenotype over some period � is: 118 

�� 	= 	2�(� 	2 �) 	+ 	��� 119 

where S is some pressure parameter keeping the trait value towards some optimal trait 120 

value » with the same random walk �d� from BM contributing stochastic 121 

divergence. Chen et al. 2019 assessed the utility of phylogenetic models by comparing the 122 

relative fit of an alternative set of models. For this, they used the Akaike Information 123 

Criterion (AIC) (Akaike 1974). Comparing models with AIC is intended to find the model 124 

in a set that most closely approximates the generating model (Burnham & Anderson 125 

2004) balancing accuracy with the additional prediction error that comes with adding 126 
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free parameters. Alternative measures, such as likelihood ratio tests, BIC (Adkison et al. 127 

1996), Bayes Factors (Kass & Raftery 1995), etc. differ in their details but are used for the 128 

same purpose. 129 

However, model selection does not, however, indicate whether any of the 130 

compared models performs well (i.e., is adequate), in the sense that the distributional 131 

assumptions of the fitted model is consistent with the actual data. This is essential because 132 

even the best of a set of models may not adequately describe the structure of variation in 133 

the data and conclusions based on an inadequate model may not be reliable. Absolute 134 

model performance is typically assessed (when it is) with either parametric bootstrapping 135 

(Efron & Tibshirani 1993) when model parameters are estimated using maximum 136 

likelihood, or posterior predictive simulations (Rubin 1984; Gelman et al. 1996) when 137 

parameters are estimated using Bayesian inference. Essentially both parametric 138 

bootstrapping and posterior predictive simulations involve simulating new datasets given 139 

the model and fitted parameter values and assessing whether the observed data resembles 140 

the simulated datasets. If it does, then the model is considered to perform well for the 141 

observed dataset (for an overview of methods for assessing the performance of models in 142 

the context of evolutionary biology, see Brown & Thomson 2018)  143 

Pennell et al. (2015) developed an approach, implemented in the R package 144 

Arbutus,  designed to perform parametric bootstrapping or posterior predictive 145 

simulations for phylogenetic models of continuous trait evolution. In brief, the procedure 146 

is as follows: 1) a model of trait evolution is fit to a dataset; 2) the branch lengths of the 147 

original tree used in the analysis are “rescaled” such that if the model was a perfect fit to 148 

the data, the phylogenetic independent contrasts (PICs; Felsenstein 1985) computed on 149 
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the tree would be independent and identically distributed and a standard normal 150 

distribution (i.e., ~����(0,1))); 3) the actual distribution of the contrasts are compared 151 

to the expected distribution using a variety of summary statistics. Each of these summary 152 

statistics measures deviations in the expected distribution of contrasts in unique ways 153 

(Pennell et al. 2015). C.var is the coefficient of variation of the absolute value of the PICs 154 

and is a measure of how well a model accounts for rate heterogeneity across a 155 

phylogeny.  D.cdf is the D statistic from the Kolmolgorov-Smirnov test and measures 156 

deviations from the assumptions of normality for the contrasts such as in the case of rapid 157 

bursts of phenotypic character change. S.asr is the slope of a linear model between the 158 

absolute value of the contrasts and the inferred ancestral state of the nearest node to 159 

detect if magnitude of a trait is related to its evolutionary rate. S.hgt is the “node height 160 

test”, which has been previously used to detect early bursts of phenotypic trait evolution 161 

such as in the case of an adaptive radiation (Freckleton & Harvey 2006; Slater & Pennell 162 

2014). S.var is the slope of a linear regression between the absolute value of the contrasts 163 

against the expected variances of said contrasts and can be used to detect if the 164 

phylogenetic tree used in the fitted model has errors in the branch lengths. 4) If the 165 

observed summary statistic falls in either tail of the distribution of simulated summary 166 

statistics (e.g., P<0.05), the model can be considered inadequate. 167 

Here we assess the performance of commonly used phylogenetic models of 168 

evolution for gene expression datasets from previously published studies that leveraged 169 

phylogenetic models across a variety of tissues, genes, and species. In addition to 170 

documenting the cases where these models fail to account for variation in comparative 171 

gene expression data, this study will be useful for identifying the reasons underlying this 172 
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failure – and hopefully aid in the development of novel classes of phylogenetic models 173 

better suited to this type of data. We will focus on three core models, but also consider 174 

elaborations of these models later in the paper. These three core models are the 175 

aforementioned BM, OU, as well as Early Burst (EB) (Blomberg et al. 2003; Harmon et 176 

al. 2010). EB has not, to our knowledge, been applied to gene expression data but we 177 

included it because it makes a different set of distributional assumptions, such that it is a 178 

useful point of comparison. The EB process, often thought to characterize adaptive 179 

radiations (Schluter 2000; Harmon et al. 2010), is essentially the opposite of an OU 180 

model (Uyeda et al. 2015); the OU model leads to changes to the phenotypic variance 181 

being concentrated at the tips of the phylogeny whereas EB concentrates the variance near 182 

the root. Mathematically, the EB model is described by an exponential decrease in the 183 

rate of evolution through time where some trait mean � is determined by: 184 

��(�) 	= 	�(�)�� 185 

such that the diffusion (evolutionary rate) �2 as a function of time (�) is  186 

�2(�) 	= �
0

2�!"  187 

where r is a positive parameter controlling the decrease in evolutionary rate. 188 

 189 

Results 190 

We aimed to explore model performance across a variety of different studies, including a 191 

range of taxa, tissues, and genes. To focus on relevant studies, we prioritized studies 192 

according to three criteria: first, that the originating study made use of at least one of the 193 

evolutionary models being assessed in this analysis and second, where the gene 194 

expression data and phylogenetic tree used in the study were readily available. The 195 
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studies gathered in this process range in both number of genes and species analyzed as 196 

well as taxa included and tissues sampled (Table 1). Additionally, these studies made a 197 

variety of different claims regarding evolution of gene expression. For example, one study 198 

tested for the coevolution of proteins in fungi (Cope et al. 2020); another evaluated the 199 

ortholog conjecture by studying evolutionary rates following gene duplication 200 

(Kryuchkova-Mostacci & Robinson-Rechavi 2016). Rather than reevaluate the findings of 201 

any of the individual studies included in this analysis (Table 1), here we aim to find broad 202 

patterns in how well the distributional assumptions of widely used phylogenetic models 203 

conform to comparative gene expression data sets. By employing a wide range of studies, 204 

we hope to gain an understanding of how well these models perform in a plethora of 205 

different contexts. 206 

 207 

Normalization has little effect on model adequacy 208 

The data sets included in this analysis were normalized heterogeneously, with some count 209 

data being normalized as RPKM while others were normalized into TPM values. To ensure 210 

that the normalization method did not affect model adequacy, we re-analyzed genes from 211 

the CAVE FISH data set (Table 1). This data set was chosen because the authors provided 212 

raw RNA-Seq read counts for all the genes as well as reference transcriptomes. We found 213 

that model adequacy was nearly identical for both normalizations methods 214 

(Supplementary Figure 1).  215 

 216 

 217 

 218 

 219 
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Citation 
Sequencin
g Platform 

N. Genes N. Taxa 
Taxa 
Included 

Organs 
Study 
Designation 

Fukushima & Pollock 
2020 

Multiple 1,377 21 
Ensembl 
vertebrate 
species 

Brain, 
Heart, 
Kidney, 
Liver, 
Ovary, 
Testis 

AMALGAM 

Stern & Crandall 
2018 

NextSeq 500 3560 14 
Cave 
dwelling 
fish 

Eye CAVE FISH 

El Taher et al. 2021 
Illumina 
HiSeq 2500 

32,596 73 Cichlids 

Brain,  
Gill,  
Liver, 
Testis, 
Ovary,  
LPJ 

CICHLIDS 

Tobler et al. 2021 
Illumina 
HiSeq 2500 

16,740 20 
Poecillidae 
fish 

Gill SULFIDE 

Cope et al. 2020 Multiple 3,556 18 Fungus NA FUNGI 

Catalán et al. 2019 
Illumina 
HiSeq 2500 

2,393 5 
Heliconius 
butterflies 

Brain HELICONIUS 

Kryuchkova-
Mostacci & 
Robinson-Rechavi 
2016 

Multiple 8,333 9 
Terrestrial 
animals 

Varies KMRR 

Brawand et al. 2011 
Illumina 
Genome 
Analyser IIx 

5,320 10 
Primates 
and 
outgroups 

Brain, 
Cerebellum
,Heart, 
Kidney, 
Liver, 
Testis 

MAMMALS 

Barua & Mikheyev 
2020 

Multiple 11 52 
Venomous 
snakes 

Venom 
glands 

VENOM 

 220 

Table 1 Datasets included in this analysis. Data has to be making use of one of the evolutionary 221 

models, provide a phylogenetic tree, and have readily available gene expression data to be used in this 222 

analysis.  223 
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 224 

Figure 1 Workflow for determining relative and absolute fit of phylogenetic character 225 

models for gene expression data. Data for each gene in a data set is analyzed by first fitting tested 226 

PCMs and then testing the best fit model for model adequacy using Arbutus. For data sets with available 227 

local gene trees, each gene is paired with its corresponding phylogenetic relationship.   228 
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OU models are the best supported model for the majority of genes 229 

There are two levels of fit we considered for phylogenetic modeling: relative fit, – i.e., of 230 

the possible models for this set of data, which describes it the best — and absolute fit, –231 

i.e., is the model describing the data well? For each of the studies listed in Table 1, we 232 

performed a series of analyses that can be summarized along those two tiers. First, we 233 

assessed the relative support for each of the three models on each of the genes in the data 234 

set to determine which of the three models best describes the evolution of that gene’s 235 

expression (Figure 1) (See Methods for details). The best fit model for a gene was 236 

determined to be the model that minimized AIC. Second, we used Arbutus to measure the 237 

performance of the best-fit model for that gene’s data (Figure 1). If multiple tissue types 238 

were included, model fit and performance was determined for each tissue type.  239 

  240 
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 241 

Figure 2 Relative (A) and absolute (B) fit of evolutionary models to the 9 gene expression 242 

data sets. Vertical black lines represent the significance cutoff of 0.05, with an expectation of 5% of genes 243 

being inadequate by chance. 59.8% of genes conform to the OU process. In terms of  absolute performance, 244 

for 53% of genes the best fit model was adequate across all five test statistics. Model failures were primarily 245 

prevalent in C.var and S.asr.  246 

 247 
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Consistent with the work of Chen et al. (2019), we found that the OU model, 248 

commonly interpreted as an analog for stabilizing selection, was the best fit model for 249 

59.8% of gene/tissue combinations, with noticeable exceptions in HELICONIUS and 250 

SULFIDE where the BM model was the best fit model for 66.5% and 63.8% of genes 251 

respectively (Figure 2). Notably, the HELICONIUS phylogeny is the smallest included in 252 

this study (Table 1) and we have low power to support more complex models.  In a 253 

minority of cases (<15%), model failures were detected by the D.cdf, S.hgt, and S.var test 254 

statistics, with some notable exceptions in the KMRR data set (poor performance was 255 

detected for 21.1% of genes with S.var) and the CICHLIDS data set (poor performance 256 

was detected for 18.6% of genes with D.cdf). Starkly, every data set in this analysis except 257 

for FUNGI and HELICONIUS showed high concentrations of P-values below 0.05 for 258 

C.var, S.asr, or both (Figure 2). This is most extreme for the VENOM data set, where for 259 

every single, the model performed poorly in these aspects (Figure 2). 260 

 261 

Models perform better when fit to species tree  262 

Models fit to the KMRR data set showed poor performance across the board (Figure 2). 263 

One major difference between this study and data sets where the models also performed 264 

poorly (i.e., FUNGI, HELICONIUS, and AMALGAM), is the type of phylogenetic tree 265 

used. Unlike the other studies which each provided the species phylogeny they used for 266 

analysis, Kryuchkova-Mostacci & Robinson-Rechavi (2016) instead provided and used 267 

gene family phylogenies for each of the genes studied. Comparative analyses of 268 

“conventional” phenotypic traits, such as morphology, are typically conducted by using 269 

the species tree. However, if the genes underlying the phenotype are in regions of the 270 
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genome that have different evolutionary histories than the species tree, estimates of 271 

phenotypic evolution may be biased. This is true of highly polygenic traits (Mendes et al. 272 

2018; Hibbins et al. 2022) but appears especially problematic for traits that are underlain 273 

by a few genes (Hahn & Nakhleh 2016). So if the evolutionary models we used actually 274 

described evolution quite well, we would expect to see better model performance when 275 

using gene trees constructed from the regions of the genome that determine the 276 

expression of a particular gene. (On the other hand, phylogenetic error, particularly in the 277 

branch length estimation, may be particularly acute when estimating trees from small 278 

regions, which may introduce an additional set of problems.) Unfortunately, we do not 279 

know the loci responsible for variation in gene expression for most of the genes so a 280 

reasonable approximation would be to use the gene tree of the expressed gene itself as 281 

this should be closely linked to the promoter region, whose evolution will likely be 282 

important for the evolution of gene expression (Haberle & Stark 2018; Vaishnav et al. 283 

2022).  284 

Investigating this question comprehensively is beyond the scope of this paper as 285 

we do not have access to the original genomic sequence data for all of our datasets. But 286 

we did explore this by examining the FUNGI dataset using both the species tree and local 287 

gene trees for all the sampled genes (see Methods for how these trees were constructed). 288 

Substituting gene family phylogenies for the species phylogeny reduced the model 289 

performance as measured for all test statistics except for D.cdf . Two test statistics of note 290 

here would be S.var and S.hgt. The S.var statistic will indicate a model is inadequate 291 

when there are issues in branch length for the phylogeny used. The number of NA values 292 

for S.hgt was much higher when using species phylogenies, which could indicate low 293 
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phylogenetic signal (see Münkemüller et al. 2012 for discussion of the measurement and 294 

interpretation of phylogenetic signal) when using this type of phylogenetic tree (Figure 295 

3). This was confirmed to be the case with Blomberg’s K test (Blomberg et al. 2003), where 296 

it shows lower K values for genes with NA values in S.hgt and thus, lower phylogenetic 297 

signal (Supplementary Figure 2). This higher incidence of NA values arises from the 298 

model fitting process. The summary statistic S.hgt is the slope of the relationship between 299 

the size of the contrasts and the height at which they occur. If an OU model is fit and the 300 

S parameter is very large, this essentially means that there is no phylogenetic signal. And 301 

in this case, the branch lengths leading to the tips of this transformed "unit tree" (see 302 

Pennell et al. 2015 for full mathematical details), will be very long. This means that there 303 

will be very little variance in node heights on the transformed trees and it will be therefore 304 

impossible to robustly estimate a slope; as such these cases are reported as NAs and 305 

excluded from subsequent analysis.  306 
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  307 

Figure 3 Analysis of generated local gene phylogenies. Test statistic P-values for best-fit models fit 308 

with the local gene phylogenies against those fit with the species phylogeny. Models showed poorer 309 

performance when they were fit to the gene trees versus the species trees, as measured by the summary 310 

statistics  C.var, S.asr, S.hgt, and S.var.   311 

 312 

  313 

  314 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.09.527893doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.09.527893
http://creativecommons.org/licenses/by/4.0/


 

19 

 

Taken all together, it seems that for many genes, gene expression has higher phylogenetic 315 

signal when models are fit to the local gene trees but overall, models have better 316 

performance when they are fit to the species tree, primarily owing to the local trees have 317 

a higher frequency of violations detected by the S.var summary statistic, which we expect 318 

to be violated when there is a lot of branch length error (Pennell et al. 2015).  319 

 320 

Discussion 321 

In this study, we showed that model adequacy should be considered when applying PCMs 322 

to gene expression data to strengthen evolutionary inferences. The OU model is one of 323 

the most widely applied to make inferences about gene expression data (Bedford & Hartl 324 

2009, Chen et al. 2019, Price et al. 2022). In this analysis we have shown that the a) OU 325 

is, by and large, the best of the 3 candidate models we tested (OU fits 59% of genes the 326 

best) and performs well for a majority (53%) of the gene/tissue combinations tested. This 327 

is an encouraging result as it lends further support to many of the conclusions that have 328 

been drawn from OU model fits to comparative gene expression datasets.  329 

Similarly, to the angiosperm phenotypic data analyzed in Pennell et al. 2015, when 330 

the OU model performed poorly, deviations from the model expectations were primarily 331 

detected by C.var, S.asr, and S.var; which may be caused by statistical issues rather than 332 

biological processes. Thus, the OU model may simply be adequate primarily because it is 333 

the most flexible of the models tested in terms of phylogenetic and gene expression error 334 

(Pennell et al. 2015). In other words, we cannot determine from this analysis if OU is a 335 

good model because gene expression evolution is largely driven by stabilizing selection or 336 

due to the model’s ability to “sop up” excess biological noise (Price et al. 2022; Cooper et 337 
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al. 2016). In order to more accurately sift biologically relevant evolutionary claims from 338 

statistical artifacts, there are two straightforward (non-mutually exclusive) paths forward.  339 

First, a number of recent analyses, including some of original publications from 340 

which our datasets were derived, used multi-rate or multi-optimum variants of the OU 341 

process (e.g., Chen et al. 2019, Tobler et al. 2021, Catalán et al. 2019, Brawand et al. 2011, 342 

Stern & Crandall 2018, Fukushima & Pollock 2020). This is important as a previous 343 

analysis by Chira and Thomas (2016) of morphological phenotypes found that failure to 344 

when the generating process was a multi-rate evolutionary model, fitting single-rate 345 

models to the data (as we have done here) would lead to poor model performance, as 346 

detected by the same summary statistics with which violations were commonly detected 347 

in our data – and that including multi-rate processes often led to better relative fit 348 

compared to single rate models and better model performance on absolute terms. While 349 

the Arbutus approach can be applied to a wide class of continuous trait models (see 350 

Pennell et al. 2015 for details), including both multi-rate and multi-optimum OU models, 351 

it was not clear how to apply this in a coherent and consistent way across the datasets and 352 

so we were unable to evaluate this here. This is because a key aspect of fitting multi-rate 353 

and multi-optimum models is deciding on the evolutionary regimes (i.e., the pattern of 354 

rate variation across lineages). In macroevolution, it is typical to either assign rate 355 

regimes to match a pre-specified biological hypothesis (O’Meara et al. 2006; Beaulieu et 356 

al. 2012) or to estimate the regimes alongside the parameters (Eastman et al. 2011, 357 

Thomas et al. 2012, Uyeda & Harmon 2014, Khabbazian et al. 2016). The former cannot 358 

be done in a standardized way across all of our datasets (the biological hypotheses are all 359 

distinct) and the latter is challenging to do when the number of lineages is relatively small 360 
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(as is the case for our datasets). (It may be possible to combine data from different genes 361 

or tissues to estimate the evolutionary regimes (Bertram et al. 2022), but investigating 362 

this is beyond the scope of the present manuscript.) 363 

Second, if one has multiple measurements for a given taxa (which unfortunately 364 

we did not for many of the datasets included here), one could use the Expression Variance 365 

Evolution model (Rohlfs et al. 2014, Rohlfs and Nielsen 2015) to jointly model the 366 

macroevolutionary dynamics and the processes that generate biological error within 367 

species. Given the limitations in many of the datasets, we were unable to do this. (The 368 

best we could do was to estimate a standard error for the estimates of the mean expression 369 

[see Methods for details] and include this as a fixed parameter when we fit the 370 

phylogenetic models.)  371 

Another factor we thought might influence model performance was the type of 372 

phylogeny used in the study. Gene trees and species trees may have different topologies 373 

and different branch lengths and comparative analyses may show different results 374 

depending on the tree that is used (Hahn & Nakhleh 2016). Here we have shown that 375 

fitting models to the species tree rather than the gene tree (of the gene whose expression 376 

we are measuring) improves the performance of the phylogenetic models. Using local 377 

gene phylogenies increased model violations primarily as detected by S.var, indicating 378 

issues with branch lengths in gene level trees. This suggests that while gene phylogenies 379 

more accurately describe the relationship between the orthologs in a comparative gene 380 

expression study, the branch lengths of gene level phylogenies may be too error-prone to 381 

come to accurate conclusions. Indeed, Begum and Robinson-Rechavi (2021) found that 382 

biased and incorrect phylogenies can lead to erroneous conclusions. In lieu of this, we 383 
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suggest that species phylogenetic trees should be used in PCMs until high accuracy gene 384 

trees are available. Furthermore, if gene expression at a focal gene is influenced by many 385 

different genes (i.e., trans-regulatory effects), it no longer makes conceptual sense to use 386 

the local gene tree. 387 

An additional factor that will likely affect model performance is the size of the 388 

dataset (in terms of numbers of taxa). As gene expression data is still relatively expensive 389 

to collect (i.e., compared to many morphological traits), the size of many phylogenetic 390 

comparative studies of gene expression is relatively modest by modern 391 

macroevolutionary standards. As more and more taxa are included, the greater the 392 

chances that there will be substantial heterogeneity in the evolutionary process. It will 393 

also be the case that as datasets get larger, there will be more evidence to detect deviations 394 

from the assumptions of a model. Unfortunately, when assessing model performance it is 395 

rather difficult to disentangle these two factors and whether the distinction matters or not 396 

will depend on the research question (Pennell et al. 2015). Thus, we suspect that the 397 

reasonably good performance of relatively simple models may be due, at least in part, to 398 

the modestly sized datasets that we analyzed. 399 

 400 

Conclusion  401 

In this paper, we have conducted the first evaluation of absolute performance (in contrast 402 

to the relative fit) of phylogenetic models applied to gene expression data. The results are 403 

mixed. In a majority (61%) of the 155,679 gene-tissue combinations we analyzed, the best 404 

of the relatively simple models performed well. On the other hand, there were plenty of 405 

cases where we detected that the assumptions of phylogenetic models were severely 406 
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different from reality. We did not try to replicate the exact methodology of the studies we 407 

pulled data from; naturally, these are all asking different questions and have nuanced 408 

context and approaches and it was therefore impossible to do a formal meta-analyses. 409 

Nonetheless, for cases where there were substantial misalignment between model and 410 

data, it would certainly be worth revisiting whether any specific biological conclusion 411 

hinged on the parameters estimated from these models – if, for instance, an OU model is 412 

used to detect stabilizing selection but an OU model performs poorly for a specific dataset 413 

of interest, this would imply that the inference of stabilizing selection (or not) may be 414 

misleading (Pennell et al. 2015, Price et al. 2022). A secondary aim of our paper is to 415 

promote the evaluation of model performance as a critical part of any data analysis 416 

pipeline (Brown &Thomson 2018). The tool we used here, Arbutus, can be adapted to 417 

evaluate performance for a wide array of phylogenetic models for continuous traits 418 

(Pennell et al. 2015). Assessing the absolute performance of a phylogenetic model in a 419 

comparative gene expression study can provide more confidence in the results of the 420 

analyses (if the models used broadly perform well) or suggest new models that should be 421 

considered (if they do not). We, like many others, are excited by the fact that comparative 422 

gene expression studies are becoming increasingly phylogenetic – there are many exciting 423 

evolutionary questions that we may finally be able to address (Price et al. 2022). We hope 424 

this contributions aids in this work but helping researchers ensure that their inferences 425 

regarding these questions are on a sure footing.  426 
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Methods 427 

Analysis of Model Fit 428 

We log-transformed normalized gene expression values for all data sets (see below for 429 

details on normalization) before we evaluated model fit and adequacy to facilitate cross-430 

species comparisons. For every gene-tissue combination, we used the ‘fitContinuous()’ 431 

function in geiger (Pennell et al. 2014) to fit BM, OU, and EB to the comparative gene 432 

expression dataset. When a species tip was missing data for a gene, that tip was excised 433 

before performing fitting and adequacy measurement. If data sets included multiple 434 

samples per species, the mean expression was used and an error term equivalent to the 435 

standard error of the gene expression data for that species was used for that gene. Relative 436 

model fit was assessed on a per-gene basis, with each gene being assigned one model with 437 

the best fit; i.e., the model with the lowest AIC score as calculated by the model-fitting 438 

process. We then plotted best-fit models using the ggplot R package (Wickham 2016). 439 

Model adequacy was calculated using best-fit model parameters calculated in the previous 440 

step using the Arbutus R package (Pennell et al. 2015).  441 

 442 

Evaluating the effect of standardization 443 

To measure the effect of normalization type on model adequacy, we compared model 444 

adequacy between RPKM and TPM values for the CAVE FISH data set (Table 1). We 445 

quality trimmed these reads using Trimmomatic (Bolger et al. 2014) and performed 446 

alignment and quantification using the Trinity pipeline (Grabherr et al. 2011), producing 447 

both RPKM and TPM values for all genes included. To compare adequacy we then 448 

performed adequacy analysis as explained above for both normalization methods.  449 
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 450 

Local Gene Phylogeny Construction 451 

We generated gene family phylogenies for the Cope et al. 2020 data set using protein 452 

sequences downloaded from the Ensembl database (Howe et al. 2021) via the biomaRt 453 

package (Durinck et al. 2022). We then aligned downloaded sequences using MAFFT 454 

(Katoh & Standley 2013) and assembled them into phylogenetic trees using FastTree 455 

(Price et al. 2010), which uses a minimum evolution model to build trees. We fit 456 

chronograms to gene trees to make them ultrametric using penalized likelihood as 457 

implemented in the ape package with the chronos function (Paradis & Schliep 2019). We 458 

implemented this in a single Snakemake (Mölder et al. 2021) pipeline.  459 

 460 

Testing for Phylogenetic Signal 461 

Phylogenetic signal was compared for genes with NA values in the S.hgt metric against 462 

genes with real numerical values using the phytools R package (Revell 2012). Results were 463 

plotted for both the K-statistic (Blomberg et al. 2003). 464 

 465 

Data and Code Availability 466 

All R scripts, pipelines, and data used in this analysis can be found in or redirected from 467 

the following GitHub repository: https://github.com/fieldima/adequacy_of_PCMs.  468 

 469 
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Supplementary Figures 

 

Supplementary Figure 1 Proportion of inadequate genes for RPKM (left) and TPM (right) 

normalized reads. Raw reads from the CAVE FISH data set were normalized into RPKM and TPM 

values and then the best fit model was analyzed for model adequacy via ARBUTUS. The proportion of 

genes with zero, one, or two inadequacies was nearly identical between both modes of normalization.  
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Supplementary Figure 2 Blomberg’s K statistic for genes with NA values (left) and non-NA 

values (right) in the S.hgt test statistic. NA genes have a lower K statistic on average than non-NA 

genes. NA genes have lower phylogenetic signal. 
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