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Abstract

Phylogenetic comparative methods allow biologists to make inferences about the
evolutionary history of phenotypes. These methods are increasingly used to study the
evolution of gene expression. However, it is unknown whether the distributional
assumptions of phylogenetic models designed for quantitative phenotypic traits are
realistic for expression data (i.e., how well do the models actually perform?); and the
reliability of conclusions of phylogenetic comparative studies of gene expression may
depend on whether the data is well-described by the chosen model. To evaluate this, we
first fit several phylogenetic models of trait evolution to 9 previously published
comparative expression datasets, comprising a total of 54,774 genes with 155,679 unique
gene-tissue combinations. Using a previously developed approach, we then assessed how
well the best model of the set described the data in an absolute (not just relative) sense.
First, we find that Ornstein-Uhlenbeck models were the preferred model for 59.8% of
gene-tissue combinations. Second, we find that for 39% of gene-tissue combinations, the
best fit model was found to perform poorly by at least one of the test statistics we
examined. Third, we find that when simple models do not perform well, this appears to
be typically a consequence of failing to fully account for heterogeneity in the rate of the
evolution of gene expression across lineages. We advocate that assessment of model
performance should become a routine component of phylogenetic comparative
expression studies; doing so can improve the reliability of inferences and inspire the

development of novel models.
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Introduction

While DNA holds the genetic information required for life to work, other elements are
largely required for cells to function. These functional elements are responsible for the
molecular processes that eventually lead to phenotypes (Kellis et al. 2014). The most
prominently studied of these elements is gene expression. There is a long tradition of
thinking about gene expression evolution in a comparative context (King & Wilson 1975),
yet it is only recently that it has been feasible to gather transcriptomic data for multiple
species in a standardized way — this has opened new avenues for investigating the
evolutionary processes responsible for generating diversity (Hill et al. 2021; Price et al.
2022) of changes in gene expression.

Identifying interspecies differences in gene expression can pinpoint which sets of
genes are responsible for differences between organisms. For example, Chen et al. 2021
recently investigated the expression of the ACE2 receptor across species and cell types to
identify susceptibility of different mammals to SARS-CoV-2, where species with higher
expression of this receptor in respiratory cells were deemed to be at a higher risk (Chen
et al. 2021). Many such studies have used the approach of directly comparing gene
expression levels between orthologs to understand an array of topics, such as the function
of epigenetic modifications (Cain et al. 2011), the connection between DNA and
methylation (Hernando-Herraez et al. 2015), and the evolution of enhancer regions
(Villar et al. 2015). The studies mentioned above (in addition to many others in the field)
use pairwise comparisons in which all gene expression values from all species are
compared to one another. Essentially, this assumes that gene expression values from

different species all represent independent measurements (Dunn et al. 2018). However,
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due to their shared evolutionary history, more closely related species will resemble each
other in many ways and some of these shared (and, in many cases, unmeasured)
attributes will influence how focal variables (here, gene expression and some attribute of
interest) are associated with one another (Felsenstein 1985; Uyeda et al. 2018). While this
challenge has been widely recognized across the biological sciences, many comparative
gene expression studies still do multi-species comparisons with sequential pairwise
comparisons, which a recent study demonstrated could be highly misleading (Dunn et al.
2018).

In addition to controlling for unobserved (and phylogenetically structured)
confounding variables, phylogenetic comparative methods (PCMs; for recent reviews of
these methods see Pennell & Harmon 2013; Garamszegi 2014; and Harmon 2019) are
increasingly being used to characterize the evolutionary dynamics of gene expression over
time, for example, by looking for the signature of selection in the distribution of gene
expression values at the tips (Dunn et al. 2013; Price et al. 2022; Brawand et al. 2011;
Barua & Mikheyvey 2020; Rohlfs et al. 2014; Rohlfs & Nielsen 2015; Bedford & Hartl
2009). And accordingly, there have been a number of recent methodological
developments, including computational platforms for simulating (Bastide et al. 2022) and
analyzing (Bertram et al. 2022) phylogenetic comparative gene expression datasets.
While this work is tremendously exciting, it is important to note that the reliability of the
inferences from phylogenetic comparative methods hinge upon the performance of the
phylogenetic model that is fit to the data (Garland et al. 1992; Price 1997; Boettiger et al.
2012; Pennell et al. 2015; Brown & Thomson 2018; Uyeda et al. 2021). There is a long

tradition of using PCMs for modeling the evolution of morphological and ecological
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81  phenotypes but as comparative, multi-species gene expression datasets are starting to
82  become more available the performance of the models in this new context is not well
83 understood. And there are reasons to think that results from applying phylogenetic
84  models to well-studied morphological phenotypes might not apply to gene expression
85  data. First, evolutionary models of continuous traits were derived under the assumptions
86  of quantitative genetics, where phenotypes are controlled by a large (effectively infinite)
87 number of loci (Lande 1976; Turelli 1988; Felsenstein 1988; Lynch 1990; Hansen &
88  Martins 1996; Pennell & Harmon 2013). We might expect the expression level of a given
89  gene to behave less like an idealized polygenic trait owing to the outsized importance of
90 the cis-regulatory region in determining the expression level (Dhar et al. 2021; Matharu
91 & Ahituv 2020; Fuso et al. 2020; Romero et al. 2012). On the other hand, searches for
92 eQTLs have turned up a large number of candidate loci potentially involved in the
93 regulation of some genes (Rockman & Kruglyak 2006; GTEx Consortium 2020).
94  Theoretical work has demonstrated that differences in the genetic architecture of traits
95 influence the distribution of phenotypes among species (Schraiber & Landis 2015).
96  Second, unlike traits such as height or mass, where the meaning of a measurement is
97  straightforward, this is not the case for gene expression (Diaz et al. 2022); the number of
98 mRNA transcripts is often normalized relative to the number of cells/transcripts/etc
99  (Wagner et al. 2012). And it is not obvious how well different normalization measures
100  match the distributional assumptions of phylogenetic models of trait evolution. And
101  indeed, there is some empirical evidence to suspect that the assumptions of the
102  independent contrasts method used by Dunn et al. 2018 in their reanalysis of pairwise

103  comparisons were themselves problematic (Begum & Robinson-Rechavi 2021).
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104 In a recent study, Chen et al. 2019 evaluated the fit of a set of alternative models to
105  gene expression data. This set of models included Brownian motion (BM) (Felsenstein
106  1973) and varieties of the Ornstein-Uhlenbeck process (OU) (Hansen 1997; Butler & King
107  2004). Under BM a phenotypic trait with population mean z is expected to change over
108  time period t according to a random walk such that:

109 Az = odW

110  where dW is a stochastic process drawn from a normal distribution with variance t and
111 mean of 0, which is scaled by the parameter o, such that ¢2 is defined as the evolutionary
112 rate of the BM process. Over time, the variance between replicate lineages (i.e., two
113 lineages that share a common ancestor and subsequently had independent evolutionary
114  trajectories) of the phenotypic trait is expected to increase linearly such that:

115 Var(z) = o°t

116 The covariance between replicate lineages is proportional to the amount of shared
117  evolutionary history. The OU process is an extension of the BM model where the mean
118  change in phenotype over some period t is:

119 Az = —a(z —0) + odW

120  where a is some pressure parameter keeping the trait value towards some optimal trait
121  value 0 with the same random walk odW from BM contributing stochastic
122 divergence. Chen et al. 2019 assessed the utility of phylogenetic models by comparing the
123 relative fit of an alternative set of models. For this, they used the Akaike Information
124 Criterion (AIC) (Akaike 1974). Comparing models with AIC is intended to find the model
125 in a set that most closely approximates the generating model (Burnham & Anderson

126  2004) balancing accuracy with the additional prediction error that comes with adding
6
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127  free parameters. Alternative measures, such as likelihood ratio tests, BIC (Adkison et al.
128  1996), Bayes Factors (Kass & Raftery 1995), etc. differ in their details but are used for the
129  same purpose.

130 However, model selection does not, however, indicate whether any of the
131  compared models performs well (i.e., is adequate), in the sense that the distributional
132 assumptions of the fitted model is consistent with the actual data. This is essential because
133 even the best of a set of models may not adequately describe the structure of variation in
134 the data and conclusions based on an inadequate model may not be reliable. Absolute
135 model performance is typically assessed (when it is) with either parametric bootstrapping
136 (Efron & Tibshirani 1993) when model parameters are estimated using maximum
137  likelihood, or posterior predictive simulations (Rubin 1984; Gelman et al. 1996) when
138  parameters are estimated using Bayesian inference. Essentially both parametric
139  bootstrapping and posterior predictive simulations involve simulating new datasets given
140  the model and fitted parameter values and assessing whether the observed data resembles
141  the simulated datasets. If it does, then the model is considered to perform well for the
142 observed dataset (for an overview of methods for assessing the performance of models in
143 the context of evolutionary biology, see Brown & Thomson 2018)

144 Pennell et al. (2015) developed an approach, implemented in the R package
145  Arbutus, designed to perform parametric bootstrapping or posterior predictive
146  simulations for phylogenetic models of continuous trait evolution. In brief, the procedure
147  is as follows: 1) a model of trait evolution is fit to a dataset; 2) the branch lengths of the
148  original tree used in the analysis are “rescaled” such that if the model was a perfect fit to

149  the data, the phylogenetic independent contrasts (PICs; Felsenstein 1985) computed on

7
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150  the tree would be independent and identically distributed and a standard normal
151  distribution (i.e., ~Norm(0,1))); 3) the actual distribution of the contrasts are compared
152 to the expected distribution using a variety of summary statistics. Each of these summary
153  statistics measures deviations in the expected distribution of contrasts in unique ways
154  (Pennell et al. 2015). C.var is the coefficient of variation of the absolute value of the PICs
155 and is a measure of how well a model accounts for rate heterogeneity across a
156  phylogeny. D.cdf is the D statistic from the Kolmolgorov-Smirnov test and measures
157  deviations from the assumptions of normality for the contrasts such as in the case of rapid
158  bursts of phenotypic character change. S.asr is the slope of a linear model between the
159  absolute value of the contrasts and the inferred ancestral state of the nearest node to
160  detect if magnitude of a trait is related to its evolutionary rate. S.hgt is the “node height
161  test”, which has been previously used to detect early bursts of phenotypic trait evolution
162  such as in the case of an adaptive radiation (Freckleton & Harvey 2006; Slater & Pennell
163  2014). S.var is the slope of a linear regression between the absolute value of the contrasts
164  against the expected variances of said contrasts and can be used to detect if the
165 phylogenetic tree used in the fitted model has errors in the branch lengths. 4) If the
166  observed summary statistic falls in either tail of the distribution of simulated summary
167  statistics (e.g., P<0.05), the model can be considered inadequate.

168 Here we assess the performance of commonly used phylogenetic models of
169  evolution for gene expression datasets from previously published studies that leveraged
170  phylogenetic models across a variety of tissues, genes, and species. In addition to
171  documenting the cases where these models fail to account for variation in comparative

172 gene expression data, this study will be useful for identifying the reasons underlying this

8
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173  failure — and hopefully aid in the development of novel classes of phylogenetic models
174  better suited to this type of data. We will focus on three core models, but also consider
175  elaborations of these models later in the paper. These three core models are the
176  aforementioned BM, OU, as well as Early Burst (EB) (Blomberg et al. 2003; Harmon et
177  al. 2010). EB has not, to our knowledge, been applied to gene expression data but we
178  included it because it makes a different set of distributional assumptions, such that it is a
179  useful point of comparison. The EB process, often thought to characterize adaptive
180  radiations (Schluter 2000; Harmon et al. 2010), is essentially the opposite of an OU
181 model (Uyeda et al. 2015); the OU model leads to changes to the phenotypic variance
182  being concentrated at the tips of the phylogeny whereas EB concentrates the variance near
183  the root. Mathematically, the EB model is described by an exponential decrease in the
184  rate of evolution through time where some trait mean z is determined by:

185 Az(t) = o(t)dW

186  such that the diffusion (evolutionary rate) o2 as a function of time (t) is

187 o2(t) = aze™

188  where r is a positive parameter controlling the decrease in evolutionary rate.

189
190 Results

191  We aimed to explore model performance across a variety of different studies, including a
192 range of taxa, tissues, and genes. To focus on relevant studies, we prioritized studies
193  according to three criteria: first, that the originating study made use of at least one of the
194  evolutionary models being assessed in this analysis and second, where the gene

195 expression data and phylogenetic tree used in the study were readily available. The
9
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196  studies gathered in this process range in both number of genes and species analyzed as
197  well as taxa included and tissues sampled (Table 1). Additionally, these studies made a
198  variety of different claims regarding evolution of gene expression. For example, one study
199 tested for the coevolution of proteins in fungi (Cope et al. 2020); another evaluated the
200 ortholog conjecture by studying evolutionary rates following gene duplication
201  (Kryuchkova-Mostacci & Robinson-Rechavi 2016). Rather than reevaluate the findings of
202  any of the individual studies included in this analysis (Table 1), here we aim to find broad
203  patterns in how well the distributional assumptions of widely used phylogenetic models
204  conform to comparative gene expression data sets. By employing a wide range of studies,
205 we hope to gain an understanding of how well these models perform in a plethora of
206  different contexts.

207

208 Normalization has little effect on model adequacy

209 The data sets included in this analysis were normalized heterogeneously, with some count
210  data being normalized as RPKM while others were normalized into TPM values. To ensure
211  that the normalization method did not affect model adequacy, we re-analyzed genes from
212 the CAVE FISH data set (Table 1). This data set was chosen because the authors provided
213  raw RNA-Seq read counts for all the genes as well as reference transcriptomes. We found
214 that model adequacy was nearly identical for both normalizations methods
215  (Supplementary Figure 1).

216
217
218

219
10
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Fukushima & Pollock Ensembl %%a;;,
Multiple 1,377 21 vertebrate 1aney, AMALGAM
2020 . Liver,
species 0
vary,
Testis
Cave
Stern &  Crandall NextSeq 500 3560 14 dwelling Eye CAVE FISH
2018 &
ish
Brain,
Gill,
Illumina - Liver,
El Taher et al. 2021 HiSeq 2500 32,596 73 Cichlids Testis, CICHLIDS
Ovary,
LPJ
Illumina Poecillidae .
Tobler et al. 2021 HiSeq 2500 16,740 20 fish Gill SULFIDE
Cope et al. 2020 Multiple 3,556 18 Fungus NA FUNGI
, Illumina Heliconius .
Catalén et al. 2019 i 2,393 5 butterflies Brain HELICONIUS
Kryuchkova-
Mostacci & . Terrestrial .
Robinson-Rechavi Multiple 8,333 9 animals Varies KMRR
2016
Brain,
Illumina Primates (i(lezgl;fllum
Brawand et al. 2011 Genome 5,320 10 and ,Kl dne ’ MAMMALS
Analyser IIx outgroups . Y,
iver,
Testis
Barua & Mikheyev Multiple 1 52 Venomous Venom VENOM

2020 snakes glands

220

221  Table 1 Datasets included in this analysis. Data has to be making use of one of the evolutionary
222 models, provide a phylogenetic tree, and have readily available gene expression data to be used in this

223 analysis.
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Absolute fit
(Arbutus)

224 Relative fit

225  Figure 1 Workflow for determining relative and absolute fit of phylogenetic character
226  models for gene expression data. Data for each gene in a data set is analyzed by first fitting tested
227  PCMs and then testing the best fit model for model adequacy using Arbutus. For data sets with available

228  local gene trees, each gene is paired with its corresponding phylogenetic relationship.
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OU models are the best supported model for the majority of genes

There are two levels of fit we considered for phylogenetic modeling: relative fit, — i.e., of
the possible models for this set of data, which describes it the best — and absolute fit, —
i.e., is the model describing the data well? For each of the studies listed in Table 1, we
performed a series of analyses that can be summarized along those two tiers. First, we
assessed the relative support for each of the three models on each of the genes in the data
set to determine which of the three models best describes the evolution of that gene’s
expression (Figure 1) (See Methods for details). The best fit model for a gene was
determined to be the model that minimized AIC. Second, we used Arbutus to measure the
performance of the best-fit model for that gene’s data (Figure 1). If multiple tissue types

were included, model fit and performance was determined for each tissue type.
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242  Figure 2 Relative (A) and absolute (B) fit of evolutionary models to the 9 gene expression
243 data sets. Vertical black lines represent the significance cutoff of 0.05, with an expectation of 5% of genes
244 being inadequate by chance. 59.8% of genes conform to the OU process. In terms of absolute performance,
245  for 53% of genes the best fit model was adequate across all five test statistics. Model failures were primarily
246  prevalent in C.var and S.asr.
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248 Consistent with the work of Chen et al. (2019), we found that the OU model,
249  commonly interpreted as an analog for stabilizing selection, was the best fit model for
250 59.8% of gene/tissue combinations, with noticeable exceptions in HELICONIUS and
251 SULFIDE where the BM model was the best fit model for 66.5% and 63.8% of genes
252  respectively (Figure 2). Notably, the HELICONIUS phylogeny is the smallest included in
253  this study (Table 1) and we have low power to support more complex models. In a
254  minority of cases (<15%), model failures were detected by the D.cdf, S.hgt, and S.var test
255  statistics, with some notable exceptions in the KMRR data set (poor performance was
256  detected for 21.1% of genes with S.var) and the CICHLIDS data set (poor performance
257  was detected for 18.6% of genes with D.cdf). Starkly, every data set in this analysis except
258  for FUNGI and HELICONIUS showed high concentrations of P-values below 0.05 for
259  C.var, S.asr, or both (Figure 2). This is most extreme for the VENOM data set, where for
260  every single, the model performed poorly in these aspects (Figure 2).

261
262 Models perform better when fit to species tree
263  Models fit to the KMRR data set showed poor performance across the board (Figure 2).

264  One major difference between this study and data sets where the models also performed
265 poorly (i.e., FUNGI, HELICONIUS, and AMALGAM), is the type of phylogenetic tree
266  used. Unlike the other studies which each provided the species phylogeny they used for
267 analysis, Kryuchkova-Mostacci & Robinson-Rechavi (2016) instead provided and used
268 gene family phylogenies for each of the genes studied. Comparative analyses of
269  “conventional” phenotypic traits, such as morphology, are typically conducted by using

270  the species tree. However, if the genes underlying the phenotype are in regions of the
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271 genome that have different evolutionary histories than the species tree, estimates of
272  phenotypic evolution may be biased. This is true of highly polygenic traits (Mendes et al.
273  2018; Hibbins et al. 2022) but appears especially problematic for traits that are underlain
274 by a few genes (Hahn & Nakhleh 2016). So if the evolutionary models we used actually
275  described evolution quite well, we would expect to see better model performance when
276  using gene trees constructed from the regions of the genome that determine the
277  expression of a particular gene. (On the other hand, phylogenetic error, particularly in the
278  branch length estimation, may be particularly acute when estimating trees from small
279  regions, which may introduce an additional set of problems.) Unfortunately, we do not
280  know the loci responsible for variation in gene expression for most of the genes so a
281 reasonable approximation would be to use the gene tree of the expressed gene itself as
282  this should be closely linked to the promoter region, whose evolution will likely be
283  important for the evolution of gene expression (Haberle & Stark 2018; Vaishnav et al.

284  2022).

285 Investigating this question comprehensively is beyond the scope of this paper as
286  we do not have access to the original genomic sequence data for all of our datasets. But
287  we did explore this by examining the FUNGI dataset using both the species tree and local
288  gene trees for all the sampled genes (see Methods for how these trees were constructed).
289  Substituting gene family phylogenies for the species phylogeny reduced the model
290  performance as measured for all test statistics except for D.cdf . Two test statistics of note
291  here would be S.var and S.hgt. The S.var statistic will indicate a model is inadequate
292  when there are issues in branch length for the phylogeny used. The number of NA values

293  for S.hgt was much higher when using species phylogenies, which could indicate low
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294  phylogenetic signal (see Miinkemdiller et al. 2012 for discussion of the measurement and
295 interpretation of phylogenetic signal) when using this type of phylogenetic tree (Figure
296  3).This was confirmed to be the case with Blomberg’s K test (Blomberg et al. 2003), where
297 it shows lower K values for genes with NA values in S.hgt and thus, lower phylogenetic
298  signal (Supplementary Figure 2). This higher incidence of NA values arises from the
299  model fitting process. The summary statistic S.hgt is the slope of the relationship between
300 the size of the contrasts and the height at which they occur. If an OU model is fit and the
301 aparameter is very large, this essentially means that there is no phylogenetic signal. And
302 in this case, the branch lengths leading to the tips of this transformed "unit tree" (see
303  Pennell et al. 2015 for full mathematical details), will be very long. This means that there
304  will be very little variance in node heights on the transformed trees and it will be therefore
305 impossible to robustly estimate a slope; as such these cases are reported as NAs and

306 excluded from subsequent analysis.
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307

308  Figure 3 Analysis of generated local gene phylogenies. Test statistic P-values for best-fit models fit
309  with the local gene phylogenies against those fit with the species phylogeny. Models showed poorer
310  performance when they were fit to the gene trees versus the species trees, as measured by the summary
311  statistics C.var, S.asr, S.hgt, and S.var.

312

313

314
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315 Taken all together, it seems that for many genes, gene expression has higher phylogenetic
316 signal when models are fit to the local gene trees but overall, models have better
317 performance when they are fit to the species tree, primarily owing to the local trees have
318 ahigher frequency of violations detected by the S.var summary statistic, which we expect

319 to be violated when there is a lot of branch length error (Pennell et al. 2015).

320

321 Discussion

322 Inthis study, we showed that model adequacy should be considered when applying PCMs
323  to gene expression data to strengthen evolutionary inferences. The OU model is one of
324  the most widely applied to make inferences about gene expression data (Bedford & Hartl
325 2009, Chen et al. 2019, Price et al. 2022). In this analysis we have shown that the a) OU
326 is, by and large, the best of the 3 candidate models we tested (OU fits 50% of genes the
327  best) and performs well for a majority (53%) of the gene/tissue combinations tested. This
328 is an encouraging result as it lends further support to many of the conclusions that have
329  been drawn from OU model fits to comparative gene expression datasets.

330 Similarly, to the angiosperm phenotypic data analyzed in Pennell et al. 2015, when
331 the OU model performed poorly, deviations from the model expectations were primarily
332  detected by C.var, S.asr, and S.var; which may be caused by statistical issues rather than
333  biological processes. Thus, the OU model may simply be adequate primarily because it is
334  the most flexible of the models tested in terms of phylogenetic and gene expression error
335 (Pennell et al. 2015). In other words, we cannot determine from this analysis if OU is a
336  good model because gene expression evolution is largely driven by stabilizing selection or

337  due to the model’s ability to “sop up” excess biological noise (Price et al. 2022; Cooper et
19
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338 al. 2016). In order to more accurately sift biologically relevant evolutionary claims from
339 statistical artifacts, there are two straightforward (non-mutually exclusive) paths forward.
340 First, a number of recent analyses, including some of original publications from
341  which our datasets were derived, used multi-rate or multi-optimum variants of the OU
342  process (e.g., Chen et al. 2019, Tobler et al. 2021, Catalan et al. 2019, Brawand et al. 2011,
343  Stern & Crandall 2018, Fukushima & Pollock 2020). This is important as a previous
344  analysis by Chira and Thomas (2016) of morphological phenotypes found that failure to
345 when the generating process was a multi-rate evolutionary model, fitting single-rate
346  models to the data (as we have done here) would lead to poor model performance, as
347  detected by the same summary statistics with which violations were commonly detected
348 in our data — and that including multi-rate processes often led to better relative fit
349  compared to single rate models and better model performance on absolute terms. While
350 the Arbutus approach can be applied to a wide class of continuous trait models (see
351  Pennell et al. 2015 for details), including both multi-rate and multi-optimum OU models,
352 it was not clear how to apply this in a coherent and consistent way across the datasets and
353  so we were unable to evaluate this here. This is because a key aspect of fitting multi-rate
354  and multi-optimum models is deciding on the evolutionary regimes (i.e., the pattern of
355 rate variation across lineages). In macroevolution, it is typical to either assign rate
356 regimes to match a pre-specified biological hypothesis (O’Meara et al. 2006; Beaulieu et
357 al. 2012) or to estimate the regimes alongside the parameters (Eastman et al. 2011,
358 Thomas et al. 2012, Uyeda & Harmon 2014, Khabbazian et al. 2016). The former cannot
359 be done in a standardized way across all of our datasets (the biological hypotheses are all

360 distinct) and the latter is challenging to do when the number of lineages is relatively small
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361 (asis the case for our datasets). (It may be possible to combine data from different genes
362  or tissues to estimate the evolutionary regimes (Bertram et al. 2022), but investigating
363 this is beyond the scope of the present manuscript.)

364 Second, if one has multiple measurements for a given taxa (which unfortunately
365 we did not for many of the datasets included here), one could use the Expression Variance
366  Evolution model (Rohlfs et al. 2014, Rohlfs and Nielsen 2015) to jointly model the
367 macroevolutionary dynamics and the processes that generate biological error within
368  species. Given the limitations in many of the datasets, we were unable to do this. (The
369  best we could do was to estimate a standard error for the estimates of the mean expression
370  [see Methods for details] and include this as a fixed parameter when we fit the
371  phylogenetic models.)

372 Another factor we thought might influence model performance was the type of
373  phylogeny used in the study. Gene trees and species trees may have different topologies
374 and different branch lengths and comparative analyses may show different results
375 depending on the tree that is used (Hahn & Nakhleh 2016). Here we have shown that
376  fitting models to the species tree rather than the gene tree (of the gene whose expression
377 we are measuring) improves the performance of the phylogenetic models. Using local
378  gene phylogenies increased model violations primarily as detected by S.var, indicating
379  issues with branch lengths in gene level trees. This suggests that while gene phylogenies
380 more accurately describe the relationship between the orthologs in a comparative gene
381 expression study, the branch lengths of gene level phylogenies may be too error-prone to
382  come to accurate conclusions. Indeed, Begum and Robinson-Rechavi (2021) found that

383 biased and incorrect phylogenies can lead to erroneous conclusions. In lieu of this, we
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384  suggest that species phylogenetic trees should be used in PCMs until high accuracy gene
385 trees are available. Furthermore, if gene expression at a focal gene is influenced by many
386 different genes (i.e., trans-regulatory effects), it no longer makes conceptual sense to use
387 thelocal gene tree.

388 An additional factor that will likely affect model performance is the size of the
389 dataset (in terms of numbers of taxa). As gene expression data is still relatively expensive
390 to collect (i.e., compared to many morphological traits), the size of many phylogenetic
391 comparative studies of gene expression is relatively modest by modern
392  macroevolutionary standards. As more and more taxa are included, the greater the
393  chances that there will be substantial heterogeneity in the evolutionary process. It will
394  alsobe the case that as datasets get larger, there will be more evidence to detect deviations
395  from the assumptions of a model. Unfortunately, when assessing model performance it is
396 rather difficult to disentangle these two factors and whether the distinction matters or not
397  will depend on the research question (Pennell et al. 2015). Thus, we suspect that the
398 reasonably good performance of relatively simple models may be due, at least in part, to
399 the modestly sized datasets that we analyzed.

400
401 Conclusion

402  Inthis paper, we have conducted the first evaluation of absolute performance (in contrast
403  to the relative fit) of phylogenetic models applied to gene expression data. The results are
404  mixed. In a majority (61%) of the 155,679 gene-tissue combinations we analyzed, the best
405  of the relatively simple models performed well. On the other hand, there were plenty of

406 cases where we detected that the assumptions of phylogenetic models were severely
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407  different from reality. We did not try to replicate the exact methodology of the studies we
408 pulled data from; naturally, these are all asking different questions and have nuanced
409 context and approaches and it was therefore impossible to do a formal meta-analyses.
410  Nonetheless, for cases where there were substantial misalignment between model and
411 data, it would certainly be worth revisiting whether any specific biological conclusion
412  hinged on the parameters estimated from these models — if, for instance, an OU model is
413  used to detect stabilizing selection but an OU model performs poorly for a specific dataset
414  of interest, this would imply that the inference of stabilizing selection (or not) may be
415 misleading (Pennell et al. 2015, Price et al. 2022). A secondary aim of our paper is to
416  promote the evaluation of model performance as a critical part of any data analysis
417  pipeline (Brown &Thomson 2018). The tool we used here, Arbutus, can be adapted to
418  evaluate performance for a wide array of phylogenetic models for continuous traits
419  (Pennell et al. 2015). Assessing the absolute performance of a phylogenetic model in a
420 comparative gene expression study can provide more confidence in the results of the
421 analyses (if the models used broadly perform well) or suggest new models that should be
422  considered (if they do not). We, like many others, are excited by the fact that comparative
423  gene expression studies are becoming increasingly phylogenetic — there are many exciting
424  evolutionary questions that we may finally be able to address (Price et al. 2022). We hope
425  this contributions aids in this work but helping researchers ensure that their inferences

426 regarding these questions are on a sure footing.
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427 Methods

428  Analysis of Model Fit

429  We log-transformed normalized gene expression values for all data sets (see below for
430  details on normalization) before we evaluated model fit and adequacy to facilitate cross-
431  species comparisons. For every gene-tissue combination, we used the ‘fitContinuous()’
432  function in geiger (Pennell et al. 2014) to fit BM, OU, and EB to the comparative gene
433  expression dataset. When a species tip was missing data for a gene, that tip was excised
434  before performing fitting and adequacy measurement. If data sets included multiple
435  samples per species, the mean expression was used and an error term equivalent to the
436  standard error of the gene expression data for that species was used for that gene. Relative
437  model fit was assessed on a per-gene basis, with each gene being assigned one model with
438  the best fit; i.e., the model with the lowest AIC score as calculated by the model-fitting
439  process. We then plotted best-fit models using the ggplot R package (Wickham 2016).
440  Model adequacy was calculated using best-fit model parameters calculated in the previous
441  step using the Arbutus R package (Pennell et al. 2015).

442

443  Evaluating the effect of standardization

444  To measure the effect of normalization type on model adequacy, we compared model
445  adequacy between RPKM and TPM values for the CAVE FISH data set (Table 1). We
446  quality trimmed these reads using Trimmomatic (Bolger et al. 2014) and performed
447  alignment and quantification using the Trinity pipeline (Grabherr et al. 2011), producing
448  both RPKM and TPM values for all genes included. To compare adequacy we then

449  performed adequacy analysis as explained above for both normalization methods.
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450

451 Local Gene Phylogeny Construction

452  We generated gene family phylogenies for the Cope et al. 2020 data set using protein
453  sequences downloaded from the Ensembl database (Howe et al. 2021) via the biomaRt
454  package (Durinck et al. 2022). We then aligned downloaded sequences using MAFFT
455  (Katoh & Standley 2013) and assembled them into phylogenetic trees using FastTree
456  (Price et al. 2010), which uses a minimum evolution model to build trees. We fit
457  chronograms to gene trees to make them ultrametric using penalized likelihood as
458  implemented in the ape package with the chronos function (Paradis & Schliep 2019). We
459  implemented this in a single Snakemake (Molder et al. 2021) pipeline.

460

461 Testing for Phylogenetic Signal

462  Phylogenetic signal was compared for genes with NA values in the S.hgt metric against
463  genes with real numerical values using the phytools R package (Revell 2012). Results were
464  plotted for both the K-statistic (Blomberg et al. 2003).

465

466 Data and Code Availability

467  All R scripts, pipelines, and data used in this analysis can be found in or redirected from
468 the following GitHub repository: https://github.com/fieldima/adequacy of PCMs.
469
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Supplementary Figure 1 Proportion of inadequate genes for RPKM (left) and TPM (right)
normalized reads. Raw reads from the CAVE FISH data set were normalized into RPKM and TPM
values and then the best fit model was analyzed for model adequacy via ARBUTUS. The proportion of

genes with zero, one, or two inadequacies was nearly identical between both modes of normalization.
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Supplementary Figure 2 Blomberg’s K statistic for genes with NA values (left) and non-NA

values (right) in the S.hgt test statistic. NA genes have a lower K statistic on average than non-NA

genes. NA genes have lower phylogenetic signal.
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