

1 **Nomadic ungulate movements under threat: Declining mobility of Mongolian
2 gazelles in the Eastern Steppe.**

3 Philipp Mendgen^{1,2*}, Nandintsetseg Dejid², Kirk Olson³, Bayarbaatar Buuveibaatar³, Justin M.
4 Calabrese^{4,5,6}, Buyanaa Chimeddorj⁷, Munkhnast Dalannast^{7,8}, William F. Fagan⁶, Peter Leimgruber⁹,
5 Thomas Müller^{1,2}

6 ¹ Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für
7 Naturforschung, Senckenberganlage 25, 60325 Frankfurt, Germany

8 ² Department of Biological Sciences, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt,
9 Germany

10 ³ Wildlife Conservation Society, Mongolia Program, Ulaanbaatar 14200, Mongolia

11 ⁴ CASUS - Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-
12 Rossendorf e.V. (HZDR), Untermarkt 20, 02826 Görlitz, Germany

13 ⁵ Department of Ecological Modelling, Helmholtz Centre for Environmental Research-UFZ,
14 Permoserstrasse 15, 04318 Leipzig, Germany

15 ⁶ Department of Biology, University of Maryland, College Park, MD, USA

16 ⁷ World Wide Fund for Nature, Mongolia Program Office, Ulaanbaatar 14200, Mongolia

17 ⁸ Department of Biology, Mongolian National University of Education, 14191 Ulaanbaatar, Mongolia

18 ⁹ Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park,
19 1500 Remount Road, Front Royal, VA 22630, USA.

20 ***Corresponding author:** Philipp Mendgen, philipp.mendgen@googlemail.com

21 **Keywords:** Animal movement, GPS tracking, semipermeable barriers, traffic, ungulate.

22 **Abstract**

23 Increasing habitat fragmentation and disturbance threaten long distance movements of ungulates.

24 While the effects of impermeable barriers on ungulate migrations have been well researched,
25 quantitative evidence for gradual and long-term changes of mobility in response to anthropogenic
26 disturbance remains relatively rare.

27 We investigated changes in movement behavior of Mongolian gazelle *Procapra gutturosa*, a
28 nomadic ungulate species native to the Mongolian steppe. Using GPS tracking data collected from
29 62 gazelle individuals between 2007 and 2021, we quantified 16-day displacement distances for
30 each individual as a metric for long-distance movements. We used generalized linear mixed
31 models, generalized additive models and additive quantile mixed models to assess how
32 anthropogenic and environmental factors affected gazelle movement behavior.

33 Long distance 16-day movements decreased significantly by up to 36 %, from 142 km in 2007 to
34 92 km in 2021. Changes in gazelle mobility were affected by the increasing number of vehicles in
35 Mongolia, but could not be explained by concurrent changes in other environmental factors like
36 temperature, precipitation or vegetation greenness that often drive ungulate migration behavior.
37 Moreover, we found that gazelle movement decreased close to roads, and that gazelles stayed
38 further away from roads during the snow-free season, when vehicular traffic likely is most intense.

39 Conserving landscape permeability is essential for maintaining populations of highly mobile
40 species. Our study provides evidence for a gradual decline in gazelle mobility over fifteen years as
41 a response to increasing anthropogenic impact. To date, the transportation infrastructure
42 permeating the Eastern Steppe does not pose physical barriers, yet our findings suggest that
43 increasing traffic volume may create semipermeable barriers to gazelle movement. As human
44 activity is increasing throughout the Eastern Steppe, interactions between ungulates and vehicle
45 traffic need to be closely monitored in order to identify, localize, and mitigate semipermeable
46 barrier effects before landscape permeability is severely altered.

47 Introduction

48 The movements of land mammals are diminishing worldwide due to anthropogenic disturbances that
49 change animal behavior (Tucker et al., 2018). This effect is apparent across many taxa, influencing
50 species directly and cascading through ecosystems as critical services provided by animal movements
51 (e.g., seed dispersal) decline (Løvschal et al., 2017; Lundberg & Moberg, 2003). Among the world's
52 mammal species, ungulates are particularly affected due to their widespread reliance on long-distance-
53 movement such as seasonal migrations, which enable them to access vital resources (Fynn &
54 Bonyongo, 2011; Merkle et al., 2016) and to escape from unfavorable environmental conditions
55 (Folstad et al., 1991; Monteith et al., 2011). Consequentially, far-ranging ungulate species, such as
56 wildebeest (*Connochaetes taurinus*), bison (*Bison bison*), or saiga antelope (*Saiga tatarica*) have
57 become increasingly threatened due to the development of anthropogenic barriers, habitat loss, and
58 overhunting (Berger, 2004; Bolger et al., 2008). Mobility constraints caused by impermeable barriers
59 are perhaps the most direct threat to long distance ungulate mobility (Harris et al., 2009; Sawyer et
60 al., 2013). Where long distance movements are no longer possible, the abundance of migratory
61 ungulate species often declines drastically, as has been observed in the past (Harris et al., 2009) and
62 predicted for the future (Fryxell et al., 2004; Holdo et al., 2011). Even barriers that are not completely
63 impermeable have the potential to change movement behaviors, thereby reducing the benefits of
64 migration (Aikens et al., 2022; Sawyer et al., 2013). For such barriers, the degree of permeability may
65 vary depending on the level of human activity, and mobility may become severely impeded once
66 certain disturbance thresholds are crossed (Sawyer et al., 2020).

67 Longitudinal studies documenting the continuous and long-term decline of long-range movements are
68 rare. Much of the existing research on reductions of ungulate mobility through anthropogenic barriers
69 focused on changes in population abundance (Harris et al., 2009), spatial comparisons of mobility
70 between affected and unaffected populations (Lendrum et al., 2012) or relied on modelling (Holdo et
71 al., 2011). Some attempts at longitudinal studies have leveraged multi-year GPS data to investigate

72 effects of impermeable barriers (Ito et al., 2013), avoidance of disturbed areas (Sawyer et al., 2020) or
73 increased migration speed when moving though disturbed area (Sawyer et al., 2013).

74 We studied the effect of anthropogenic disturbance on the mobility of nomadic Mongolian gazelle
75 *Procapra gutturosa* over the course of 15 years. Mongolian gazelles (hereafter gazelles) are far-ranging
76 nomadic ungulates that primarily occur in the Gobi-Steppe ecosystem of Mongolia (Clark et al., 2006).
77 They are iconic for their vast aggregations and long distance movements in what is considered the
78 largest intact temperate steppe ecosystem worldwide (Batsaikhan et al., 2014). Previous research
79 shows that individual gazelle are capable of roaming through up to 23,000 km² per year, forming
80 lifetime ranges of more than 100,000 km² (Nandintsetseg et al., 2019). This high mobility is crucial for
81 the survival of gazelle, as areas of high-quality grasses and forbs occur dynamically in space and time
82 (Mueller et al., 2008). As a result, the movements of gazelle appear to be highly irregular and
83 unpredictable, with no strong fidelity to particular calving or winter ranges, no consistent migratory
84 routes, and huge temporary aggregations of individuals in times of resource scarcity (Olson et al., 2009,
85 2010).

86 Mongolia is currently experiencing dramatic socioeconomic transformations and rapid economic
87 growth as it is exploiting previously untapped, rich mineral and fossil fuel deposits (Batsaikhan et al.,
88 2014; Reading et al., 2006). These societal shifts are accompanied by the expansion of linear
89 infrastructure networks throughout the steppe (Batsaikhan et al., 2014). Our study focuses on gazelles
90 moving in Eastern Steppe within the Dornod and Sukhbaatar provinces, which represent an important
91 stronghold of the species' population. Here, road infrastructure is comprised of unfenced paved and
92 dirt roads that do not pose much of a physical barrier to ungulate movement, but create extended
93 corridors of degraded vegetation and human disturbance (Keshkamat et al., 2013). However,
94 motorized traffic in the region has been steadily increasing (National Center for Road Transport, 2022).
95 In such an environment, road infrastructure may be semi-permeable to ungulate movement, and
96 barrier effects may increase with increasing human activity (Jacobson et al., 2016; Sawyer et al., 2013).

97 Our aim was to investigate whether the mobility of gazelle in the Eastern Steppe had changed over the
98 last 1.5 decades, and if so, whether such change could be attributed to anthropogenic disturbance.

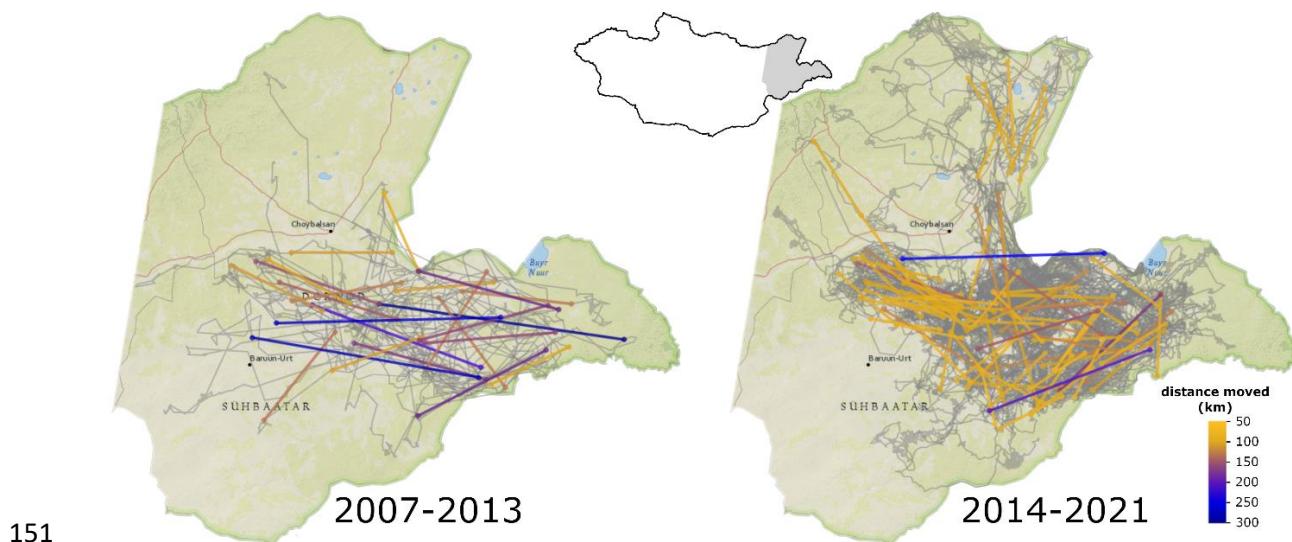
99 We analyzed changes in gazelle displacement distances over 15 years. We assessed displacement over
100 long timescales (average 16-day displacement and the 90% quantile of 16-day displacement) as human
101 disturbance may alter movement tortuosity rather than speed (Tucker et al., 2018), and encounter
102 effects could be cumulative (Eftestøl et al., 2021). To identify potential drivers of longitudinal changes
103 in gazelle movement, we assessed whether changes in vehicle numbers in Mongolia (a proxy for traffic)
104 affected gazelle mobility, while accounting for the effect of environmental drivers such as
105 temperature, precipitation, snow cover, and vegetation greenness, which have been shown to greatly
106 influence ungulate migration (Holdo et al., 2009; Laforge et al., 2021; Mason et al., 2014; Merkle et al.,
107 2016). We could not directly test for effects of traffic volume and road development since longitudinal
108 data on traffic and road construction in the Eastern Steppe were not available. We hypothesized that
109 increases in traffic and road construction change landscape permeability in the Eastern Steppe,
110 thereby reducing long-distance mobility of gazelles. Because traffic is generally lower in winter and
111 gazelle may be more tolerant of anthropogenic structures during this season (Ito et al., 2013), we also
112 hypothesized that long-term mobility declines are more apparent in summer. To corroborate effects
113 of road infrastructure on gazelle mobility, we tested whether gazelle displacement distances
114 decreased near roads using static spatial data of those features. We also tested whether gazelle
115 approached roads closer in winter than in summer, and whether this might be more apparent in gazelle
116 that stayed generally closer to human disturbance compared to gazelle that stayed farther away
117 overall.

118

119 **Methods**

120 **Movement data of gazelle**

121 We compiled existing GPS movement data originating from capture and collaring efforts between 2007
122 and 2021. All captures followed the standard protocols approved by the Ministry of Environment and
123 Green Development in Mongolia (see details in D. Nandintsetseg et al., 2019; Olson et al., 2014). This
124 data set included tracking data of 62 gazelle individuals with varying fix rates (see appendix A1 for
125 details). Across these fix rates, the best feasible interval for the joint analysis of gazelle displacements
126 (the straight-line distances between observations) over long timescales was 16-day intervals. We
127 performed all analyses using R (R Core Team, 2021).


128 **Environmental and human disturbance data**

129 We obtained environmental covariates from the Land Processes Distributed Active Archive Center
130 (LPDAAC), extracting monthly temperature, snow cover, and normalized difference vegetation index
131 (NDVI) data for the years 2007 - 2021, obtained at 0.05-degree resolution by Terra MODIS (Didan,
132 2015; Hall & Riggs, 2015; Wan et al., 2015). From the Climate Hazards Group InfraRed Precipitation
133 with Station data (CHIRPS) data archive (Funk et al., 2014), we acquired monthly precipitation data for
134 the same time periods, also at 0.05-degree resolution.

135 We acquired yearly data on the number of registered vehicles in Mongolia between 2012 and 2021
136 (National Center for Road Transport, 2022). Data on registered vehicles in 2007-2011 were not
137 available, however we obtained data on the number of imported vehicles during that time and used
138 them to calculate the number of vehicles in Mongolia in that period (assuming that imported vehicles
139 were registered in the year of import, and that no vehicles were produced in Mongolia). To measure
140 the proximity of gazelles to road infrastructure we accessed road maps from the Administration of
141 Land Affairs, Geodesy, and Cartography of Mongolia (ALAGaC, Agency of Land Administration and
142 Management Geodesy and Cartography Mongolia, 2022) and from OpenStreetMap (OpenStreetMap

143 Contributors, 2022). These spatial data provide a snapshot of the current distribution of disturbances
144 throughout the steppe.

145 For each displacement step, we calculated mean temperature, precipitation, snow cover and NDVI, as
146 well as the mean distance to the nearest road. We also recorded the year, month, and coordinates of
147 the first position in each step, as well as the unique identifier for each individual gazelle. We classified
148 each step into a snow-free season (April – October) or winter season (November – March). To assess
149 long distance displacements, we determined whether any step belonged to the 10% of longest steps
150 moved during each season per year, over all gazelles.

152 **Figure 1: Gazelle long-distance displacements in summer as straight line 16-day distances, on top of**
153 **actual gazelle movement paths (in grey). The background depicts the Dornod and Sukhbaatar**
154 **provinces of Mongolia. This map was created via the R package leaflet, background tiles © Esri –**
155 **National Geographic, Esri, DeLorme, NAVTEQ, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO,**
156 **NOAA, iPC.**

157 **Assessing longitudinal effects on displacement**

158 We assessed the effect of year on gazelle displacement by building linear mixed models for the winter
159 and snow-free seasons, using displacement distance as the response variable and year as the only
160 predictor. To determine whether long distance movement was especially affected, we repeated the

161 analysis using only the longest 10% of displacement steps. To assess potential anthropogenic drivers,
162 i.e., the effect of increasing human activity while correcting for potential environmental changes, we
163 built a second set of linear mixed models using the number of vehicles (in hundred thousand),
164 temperature (in °C), NDVI, precipitation (in mm), and snow cover (in %) as predictors. Models for the
165 snow-free season did not incorporate snow cover. All models included a random intercept for gazelle
166 individual to account for interindividual differences.

167 We computed Cullen and Frey graphs via the `fitdistrplus` package (Delignette-Muller & Dutang,
168 2015) to identify suitable transformations of the response variables, after which we cube-root
169 transformed displacement in all models. We tested whether including a quadratic term of NDVI
170 improved the predictive power of the model as measured by Akaike's Information criterion (AIC;
171 Akaike, 1974), as gazelles might prefer intermediate values of NDVI (Mueller et al., 2008). Subsequently
172 we added a quadratic term for NDVI in all models that incorporated NDVI. We tested for correlation
173 between predictor variables by calculating pairwise Pearson correlation coefficients. Temperature and
174 snow cover were always highly correlated ($p > |0.6|$), so we included one of these parameters at a
175 time and calculated the AIC to determine the parameter with the highest predictive power, and
176 consequently kept temperature in the model while discarding snow cover (see appendix A2).

177 We assessed model assumptions using the `DHARMa` package (Hartig, 2021) (see appendix A3). In the
178 presence of influential outliers or heteroscedasticity, we refitted the respective models as robust linear
179 mixed effect models using the `rlmer` function in the `robustlmm` package (Koller, 2016). Because `rlmer`
180 does not compute p-values, we used the t-statistics of the “robust” `rlmer` model together with the
181 Satterthwaite degrees of freedom of the “normal” `lmer` model to determine significance (see e.g.
182 Geniole et al., 2019; Gómez et al., 2022). We tested for the presence of spatial autocorrelation (SAC)
183 in the model residuals using the test for Moran's I in the `ape` package (Paradis & Schliep, 2019). In
184 case we detected significant SAC, we employed Moran's eigenvector maps following Bauman et al.
185 (2018) to reduce SAC (see appendix A4). We calculated the partial R^2 attributed to each model
186 covariate using the `partR2` package (Stoffel et al., 2021) and computed back-transformed predicted

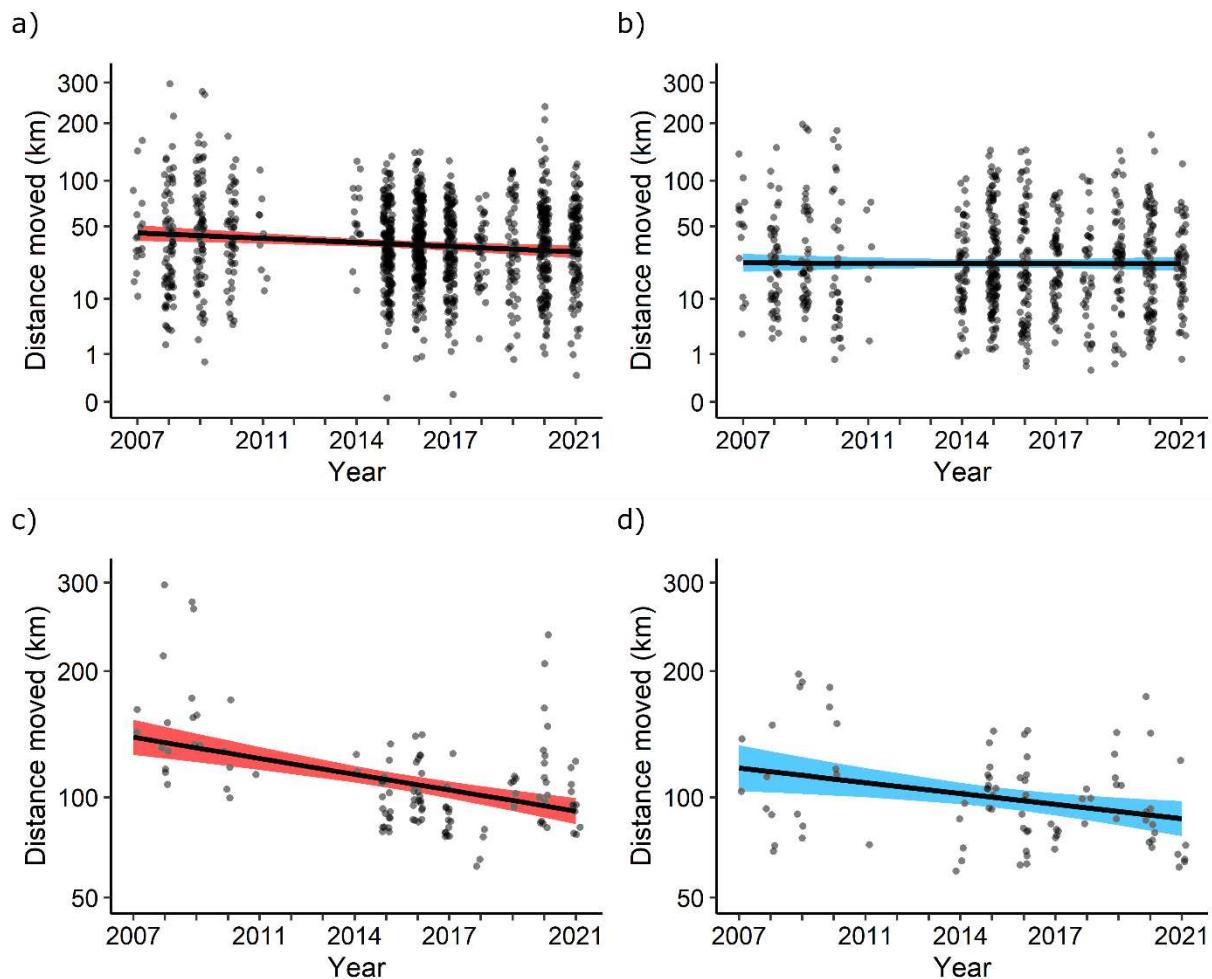
187 marginal means with 0.95 confidence intervals for each predictor using the `ggeffects` package
188 (Lüdecke, 2018) and the `emmeans` package (Lenth, 2021). Finally, we refitted all models without using
189 variable transformations, robust models or autocorrelation corrections to ensure that significant
190 trends did not arise as artifacts of those additions (see appendix A5).

191 **Assessing the effect of anthropogenic disturbance on displacement**

192 We modelled the effect of proximity to roads on average 16-day gazelle displacement via generalized
193 additive models, using the `mgcv` package (Wood, 2011). We employed a Gaussian Location-Scale
194 Model via the “gaulss” family to achieve unbiased p-values in the presence of heteroscedasticity. As in
195 the previous analyses, we cube-root transformed the response to achieve normally distributed
196 residuals. Predictors included thin plate regression splines of the mean and standard deviation of the
197 distance to the nearest road as well as random intercepts for gazelle individuals and years. We
198 assessed spatial dependence in the model residuals as described previously and accounted for it by
199 including a smoothed interaction term of the spatial coordinates at the start of each displacement
200 step. We also tested whether an interaction between distance to road and season improved model fit
201 using AIC (see appendix A6). Additionally, we \log_{10} -transformed the distance to roads as we were most
202 interested to model potential effects close to the source of disturbance. Because roads might often be
203 located close to other sources of human disturbance, we excluded displacement steps during which
204 gazelles were observed within 10 km of a settlement, railway or oil extraction site from this analysis
205 (353 of 1903 data points), using railway maps digitized from google earth imagery (Google Earth, 2022)
206 and spatial data on the location of settlements and oil wells from ALAGaC (Agency of Land
207 Administration and Management Geodesy and Cartography, 2022) and the environmental department
208 of Dornod province (Department for Environment of Dornod Aimag, 2015).

209 **Assessing seasonal effects of disturbance**

210 To test the effect of season on the proximity of gazelles to roads, we calculated the average distance
211 of each gazelle to the nearest road during both the snow-free and winter season of each year. We


212 tested the effect of season and year on the 0.1, 0.25, 0.5, 0.75 and 0.90 quantile of distances to roads
213 in an additive quantile mixed model framework using the `aqmm` package (Geraci, 2019), including a
214 random intercept to account for differences between individuals. Additive quantile mixed models
215 produce robust results in the presence of non-normally distributed or heteroscedastic errors (Geraci,
216 2019; Yirga et al., 2021).

217

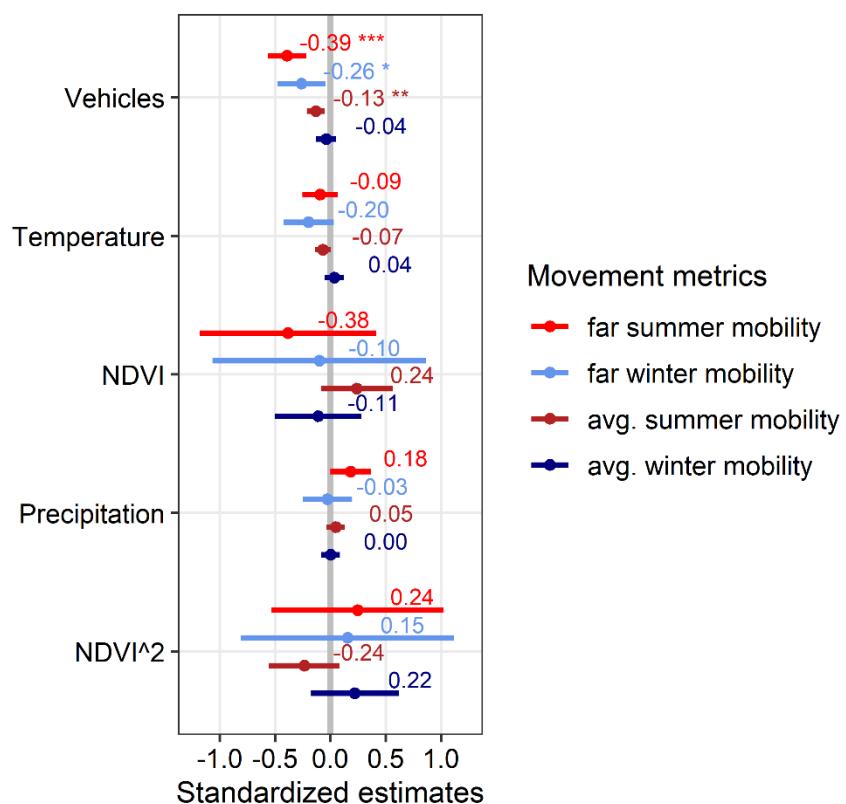
218 **Results**

219 **Longitudinal effects on gazelle displacement**

220 Over the 15-year study period, we detected a significant decrease in average gazelle movements at
221 16-day intervals during the snow-free season ($\beta = -0.028$, $t = -3.025$, $p = 0.004$), but not during winter
222 ($\beta = -0.001$, $t = -0.132$, $p = 0.895$). During the snow-free season, the estimated marginal mean of 16-
223 day displacement decreased from 44.4 km [0.95 ci: 38.6; 51.1] in 2007 to 31.3 km [27.3; 35.3] in 2021,
224 constituting a decline by 29.5 % (13.1 km) over 15 years (Figure 2a). When including only the longest
225 10% of gazelle movements per year, we detected significant longitudinal decreases during both the
226 snow-free ($\beta = -0.050$, $t = -5.602$, $p < 0.001$) and winter seasons ($\beta = -0.034$, $t = -2.889$, $p = 0.006$). In
227 the snow-free period, the estimated marginal means of 16-day long distance displacement decreased
228 from 142.2 km [128.8; 155.7] in 2007 to 91.7 km [84.6; 99.9] in 2021, constituting a decrease by 35.5
229 % (50.5 km) over 15 years (Figure 2c). In winter, the estimated marginal means of 16-day long distance
230 displacement decreased from 119.1 km [103.8; 135.8] in 2007 to 87.5 km [77.9; 98.0] in 2021,
231 decreasing by 26.5 % (31.6 km) (Figure 2d).

232

233 **Figure 2: Effect of year on average and long-distance gazelle displacements.** The predicted marginal
234 means of the effect of year on the back-transformed average (a, b) and long-distance (c, d) 16-day
235 displacements during the snow-free (a, c) and winter seasons (b, d) are depicted with 95% confidence
236 bands. Average displacements decreased strongly over time during the snow-free season, while long-
237 distance displacements decreased strongly during both seasons.

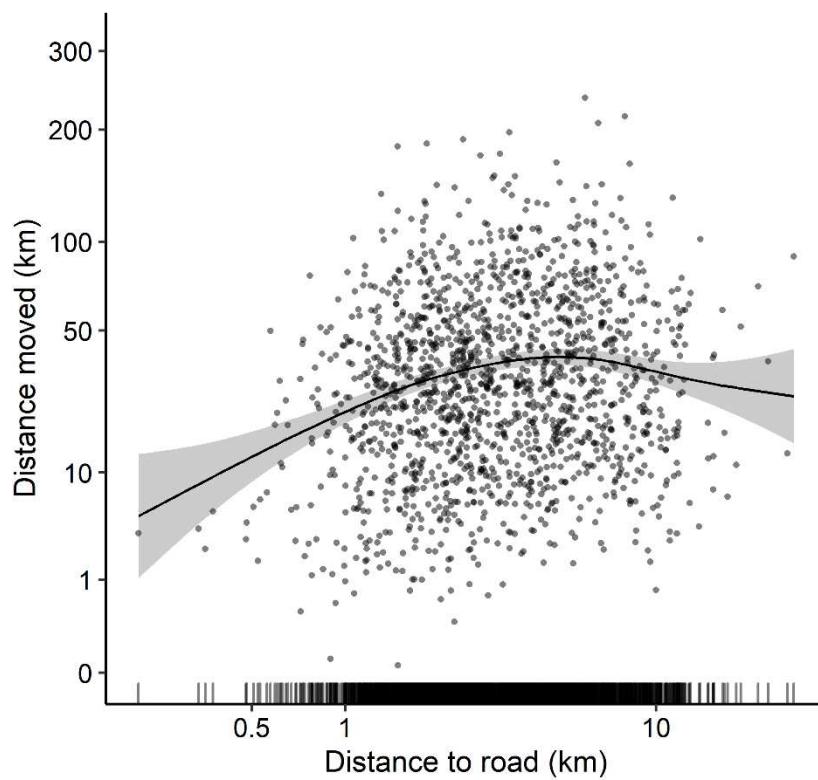

238 **Potential drivers of declines in mobility**

239 The increasing number of vehicles in Mongolia negatively affected average gazelle mobility in the
240 snow-free season ($\beta = -0.050$, $t = -3.254$, $p = 0.002$), and long-distance mobility of gazelles in both the
241 snow-free ($\beta = -0.078$, $t = -4.461$, $p < 0.001$) and winter season ($\beta = -0.049$, $t = -2.358$, $p = 0.024$), while
242 accounting for concurrent changes in environmental factors and inter-individual differences. Only
243 average winter mobility was not significantly affected by number of vehicles (Figure 3). During the

244 study period, the number of vehicles in Mongolia increased by 373.6 %, from 301,195 vehicles in 2007
245 to 1,125,385 vehicles in 2021. Concurrently, the estimated marginal means of average gazelle mobility
246 decreased from 45.9 km [39.7; 52.7] to 31.9 km [27.5; 36.3] during the snow-free season, constituting
247 a decrease of 14.0 km (30.6 %). For long-distance mobility, the estimated marginal means decreased
248 from 136.6 km [120.6; 154.0] to 91.1 km [82.9; 100.5] during the snow-free season, constituting a
249 decrease of 45.5 km (33.3 %); and from 113.4 km [98.6; 129.6] to 86.9 km [76.8; 98.0] during winter,
250 constituting a decrease of 26.4 km (23.3 %). Temperature, NDVI, and precipitation did not significantly
251 affect gazelle displacement in any model (Figure 3). The snow-free model explained 4.6 % of the
252 variation in average gazelle displacement, with 1.2 % attributed to the vehicle effect. For long-distance
253 mobility, the snow-free model explained 25.8 % of the variation in average gazelle displacement, with
254 16.8 % attributed to the vehicle effect; whereas the winter model explained 13.7 %, with 7.4 %
255 attributed to the vehicle effect. See appendix A5 for model summary tables.

256

257

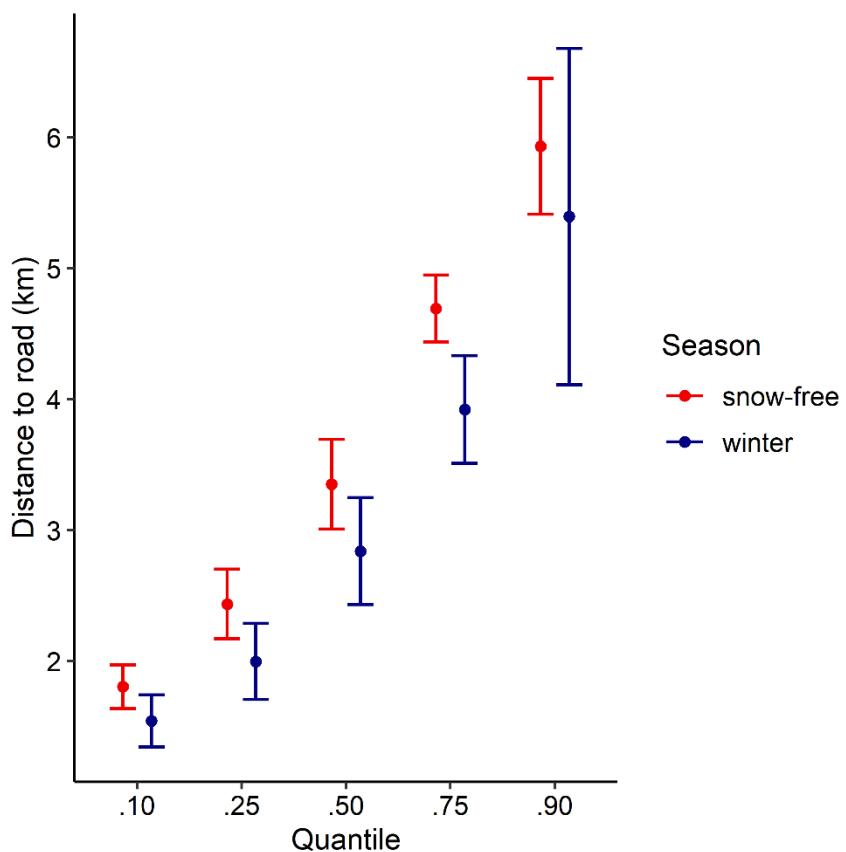

258

259 **Figure 3: Standardized estimates of potential drivers of gazelle mobility for all constructed models.**

260 Vehicle number significantly affected gazelle mobility in all models except for average winter mobility,
261 while no other predictor affected mobility. Standardized effect sizes were higher during the snow free
262 season and for long-distance movement, compared to the winter season and average movement.

263 Effects of road infrastructure on movement

264 The average distance to the nearest road significantly affected gazelle displacement (edf = 3.676,
265 Chi.sq = 73.291, p < 0.001), while controlling for differences between individuals and years. Gazelle
266 movements decreased in close proximity to roads, averaging 43.6 km [32.7; 58.1] at 10 km from the
267 nearest road, but only 27.1 km [20.9; 35.1] while on average 1 km from it (Figure 4). The model
268 explained 15.8 % of the residual deviance (10.6 % when excluding distance to road). There was no
269 support for an interaction between distance to road and season. See appendix A5 for model summary
270 tables.


271

272 **Figure 4: GAM response curve of the effect of distance to roads on 16-day displacement distances.**

273 Axis values are back-transformed to kilometers. Displacement distances decreased close to roads but
274 stayed relatively constant once gazelles were several kilometers away from it.

275 **Seasonal differences of disturbance effects**

276 Season significantly affected the 0.1, 0.25, 0.5 and 0.75 quantile of gazelle distances to roads. In winter,
277 the estimated median distance to roads was 512.2 m (SE = 207.9, $t = -2.463$, $p = 0.016$) closer than the
278 snow-free estimate of 3352 m, constituting a decrease of 15.3 % (Figure 5). The estimated 0.1 quantile
279 of distances decreased by 261.4 m (SE = 101.2, t value = -2.584, $p = 0.011$) compared to the snow-free
280 estimate of 1805.4 m (14.5 %), while the estimated 0.25 quantile of distances decreased by 438.6 m
281 (SE = 148.2, t value = -2.960, $p = 0.004$) compared to the snow-free estimate of 2436.4 m (18 %). The
282 0.75 quantile of distances decreased by 770.7 m (SE = 210, t value = -3.670, $p < 0.001$) compared to
283 the snow-free estimate of 4683 m (16.4 %). Year did not affect distances to roads in any quantile. See
284 appendix A5 for model summary tables.

285

286 **Figure 5: Seasonal differences in the distance of gazelles to the nearest road for multiple quantiles,**
287 with 95% confidence intervals. Most gazelles moved significantly closer to roads in winter, only gazelles
288 that stayed very far from such disturbances did not.

289

290 **Discussion**

291 We identified a decline of up to 13.1 km (29.5%) in the average and up to 50.5 km (35.5%) in the long-
292 range movement behavior of gazelle covering a period of 15 years in a context of increasing
293 anthropogenic disturbance. Decreases in gazelle mobility were correlated with the increasing number
294 of vehicles and the presence of roads. Declines were more pronounced during the snow-free period,
295 and gazelles displayed an increased avoidance of roads during that time. Our findings suggest that
296 gazelle mobility in the Eastern Steppe decreased in response to human disturbance, potentially due to
297 increases in road development and traffic.

298 Our study may be among the first to quantify gradual declines in ungulate movement distances over
299 time. Decreases in ungulate migration have frequently been observed following the construction of
300 anthropogenic barriers, which have affected migration propensity and migration routes in many
301 ungulate populations, often culminating in the complete cessation of migratory behavior (Harris et al.,
302 2009; Xu et al., 2021). Past research has collated quantitative evidence for the loss of ranges (Holdo et
303 al., 2011; Said et al., 2016), routes (Berger, 2004) and abundances of migratory ungulate populations
304 in response to anthropogenic development (Bolger et al., 2008; Holdo et al., 2011; Said et al., 2016).
305 Previous research has also compared current and historic records of ungulate migration distances
306 (Harris et al. 2009) and found that mammal movements decreased in areas of high human footprint
307 using a space-for-time approach (Tucker et al. 2018). However, long-term individual-based data sets
308 remain scarce but are urgently needed to determine how anthropogenic effects change ungulate
309 behavior over time (Kauffman et al., 2021; Xu et al., 2021). Gradual effects of anthropogenic barriers
310 have been observed in migratory mule deer (*Odocoileus hemionus*) where the increasing intensity and
311 size of energy development caused detours in migration routes and affected migration timing (Aikens
312 et al., 2022; Sawyer et al., 2013, 2017).

313

314 **Traffic and transportation infrastructure may affect gazelle mobility**

315 Gazelles in our study may have responded to increases in traffic volume creating a disturbance barrier,
316 rather than to a physical barrier created by roads. Contrary to many European or North American study
317 systems, roads in the Eastern Steppe usually are dirt roads that likely do not pose impermeable physical
318 barriers (Keshkamat et al., 2013; Yang et al., 2018). In addition, vehicle traffic has been observed to
319 induce road avoidance behaviors in a wide range of species through disturbance cues such as noise or
320 movement (Fahrig & Rytwinski, 2009; Jaeger et al., 2005), creating semi-permeable barriers whose
321 effect could be mediated by the level of disturbance (Alexander et al., 2005; Sawyer et al., 2013). Such
322 effects have also been observed near unpaved roads with low traffic volumes (D'Amico et al., 2016).
323 Ungulate species known to avoid roads specifically due to vehicle traffic include red deer (*Cervus*
324 *elaphus*) and wild boar (*Sus scrofa*) (Gagnon et al., 2007; Thurfjell et al., 2015), while others like
325 pronghorn and Tibetan antelope (*Pantholops hodgsonii*) displayed increased vigilance behavior at high
326 levels of traffic, suggesting they perceived cars as a threat (Gavin & Komers, 2007; Lian et al., 2011).
327 Vehicle avoidance in gazelle may be exacerbated by the frequent use of cars and motorcycles for
328 hunting. The plain landscape of the steppe makes wildlife easily accessible by vehicle, and both legal
329 and illegal hunting frequently occur (Olson et al., 2014). During soviet times, gazelles were
330 commercially hunted in large numbers, sometimes using trucks and automatic weapons (Lhagvasuren
331 & Milner-Gulland, 1997). We observed gazelles to be shy to cars, initiating flight responses if a single
332 car passed by them at several hundred meters distance and low speed (pers. comm. N. Dejid), although
333 in some other regions to the south-west outside our study area gazelles may already show signs of
334 habituation to cars where traffic volumes are high but hunting is less frequent (pers. comm. K. Olson).
335 Hunting also affected road interactions in moose, increasing road avoidance during hunting season
336 and in individuals that experience high hunting pressure (Paton et al., 2017). Road effects are known
337 to be more severe for far-moving species because they encounter linear features frequently (Fahrig &
338 Rytwinski, 2009; Jakes et al., 2018), which may also explain why our proxy for traffic explained much
339 more variation in long-distance movement than in average movement.

340 **Seasonal differences in gazelle reactions to anthropogenic disturbance**

341 We observed that declines in average and long-distance mobility were less strong in winter than during
342 the rest of the year, while gazelles also stayed closer to roads in winter. This reduced avoidance of
343 anthropogenic infrastructure during winter is consistent with findings of Kaczensky et al. (2006) and
344 Ito et al. (2013), who reported that both gazelle and Asiatic Wild Ass (*Equus hemionus*) moved closer
345 to anthropogenic barriers during that time. If the observed reductions in gazelle mobility are caused
346 by traffic, the decreased human activity during the harsh Mongolian winter could explain why
347 reductions of gazelle mobility were less pronounced during that time. Alternatively, the need to escape
348 inhospitable environmental conditions such as snowstorms, deep snow cover, or lack of forage could
349 have temporarily outweighed the avoidance of anthropogenic features in gazelle during winter. In
350 other ungulates, pronghorn and mule deer avoided anthropogenic disturbance in winter, but tolerance
351 for anthropogenic disturbance increased during migration; i.e. when there was a need to move
352 through disturbed area (Sandoval Lambert et al., 2022).

353 **Consequences of decreasing mobility for nomadic ungulates**

354 Decreased locomotion capacity can have drastic consequences for population levels of ungulates
355 (Harris et al., 2009), causing events of high mortality in many migratory populations due to lacking
356 access to vital resources (Williamson et al., 1988). Nomadic ungulate populations, such as gazelle, may
357 be more resilient to anthropogenic impacts than migratory populations due to their high plasticity in
358 route and sites use, yet they are also difficult to protect due to their far-ranging movements
359 (Nandintsetseg et al., 2019), and many nomadic species are in decline (Runge et al., 2014). Nomadism
360 represents an adaptation to environments where resource availability is low and highly variable in
361 space and time. The survival of nomadic populations may depend on their ability to access dynamically
362 changing resources by displaying long-range movement throughout the year (Mueller et al., 2008).
363 Hence, constraining their ability to move far could greatly impact the abundances of nomadic
364 populations. In Mongolia, the construction of the Trans-Mongolian railway in the 1950s was followed
365 by drastic population declines of gazelles to the west of the railway when their habitat was bisected

366 (Lhagvasuren & Milner-Gulland, 1997). Similarly, the winter mortality of spatially confined Przewalski
367 horses (*Equus ferus przewalskii*) was observed to be higher than in more mobile Asiatic wild ass
368 (Kaczensky et al., 2011). Population densities of Thompson's gazelle (*Eudorcas thomsonii*) in Kenya,
369 another ungulate considered to be nomadic (Fryxell et al., 2004), decreased following the construction
370 of fences, although decreases in migratory wildebeest and impala in the same area were more
371 dramatic (Said et al., 2016). Partially nomadic pronghorn in North America displayed behavioral
372 avoidance close to wind turbines and reduced habitat use near roads, albeit without immediate
373 negative effects (Milligan et al., 2021).

374 **Alternative explanations for the decrease in mobility**

375 Many ungulate species adjust their mobility patterns in response to environmental conditions,
376 especially forage availability (Bartlam-Brooks et al., 2013; Merkle et al., 2016), and migration distances
377 often decrease with increasing NDVI (Teitelbaum et al., 2015). Nomadic ungulates exhibit high mobility
378 driven by the scattered and irregular occurrence of resources (Dejid et al., 2019; Mueller et al., 2008),
379 and a decrease in mobility could indicate changes in the overall pattern of forage in space and time.
380 Vegetation greenness in the Eastern Steppe has increased during the last decades (Meng et al., 2020),
381 and a recent climate risk assessment of Mongolia reported that both temperatures and precipitation
382 are predicted to increase under most emission scenarios (World Bank Group & Asian Development
383 Bank, 2021), potentially increasing vegetation productivity, and hence forage availability. In this
384 scenario, the need for continual long-distance mobility could be partially alleviated. Although we found
385 no effect of local NDVI on gazelle displacement, we cannot completely rule out that improving forage
386 conditions might have contributed to the observed decrease in mobility.

387 **Conservation implications for gazelle in the Eastern Steppe**

388 Maintaining large-scale landscape permeability is critical to conserving wide-ranging ungulates such as
389 gazelle (Nandintsetseg et al., 2019). However, impermeable fences along the Trans-Mongolian
390 Railroad and the Mongolian-Chinese border are already impacting gazelle (Ito et al., 2013;

391 Nandintsetseg et al., 2019), and the proposed construction of additional railroads throughout the
392 Eastern Steppe will likely exacerbate this issue (Batsaikhan et al., 2014). Our findings add an additional
393 perspective to this already concerning outlook: landscape permeability in the Eastern Steppe may be
394 further impacted by increasing traffic intensity, creating semi-permeable barriers to movement. Such
395 barriers have been associated with population declines e.g. in migratory mule deer (Sawyer et al.,
396 2017). Currently, we lack the data to assess whether the decline of gazelle mobility has impacted
397 gazelle population sizes in the Eastern Steppe, as assessments of gazelle abundance have been
398 infrequent and vary in methods and range, with the last published survey likely preceding the onset of
399 potential traffic effects (Olson et al., 2005). Traffic volumes in the sparsely populated Eastern Steppes
400 likely are still far from the level observed in other systems. The decrease in gazelle mobility estimated
401 by our models is relatively low compared to the findings of Tucker et al. (2018), who reported that
402 mammal movements decreased by factor 2-3 in areas of high human footprint. Yet, even if no drastic
403 effects are visible to date, the impact of semi-permeable barriers might change drastically once certain
404 permeability thresholds are reached (Sawyer et al., 2013). The number of registered vehicles in the
405 Eastern Steppe is already consistently increasing (National Center for Road Transport, 2022),
406 suggesting that both traffic and traffic-mediated barrier effects may only grow in intensity.

407 In its vision for long-term development, the Government of Mongolia has declared to create the
408 transportation infrastructure necessary for an export-oriented economy, and to connect all its
409 settlements with roads until 2050 (State Great Hural, 2020). However, this ambitious goal conflicts
410 with the country's vision to protect biodiversity and maintain ecosystem services. It also comes at the
411 risk of losing the country's great herds of nomadic ungulates, which not only provide benefits for
412 regional ecotourism and subsistence hunting, but also serve as a symbol for a vast and undisturbed
413 ecosystem whose people themselves are deeply rooted in their nomadic traditions. To conserve
414 Mongolia's wide-ranging ungulates, it will be crucial for future infrastructure development policies and
415 land use plans to address the issue of decreasing landscape permeability. We suggest that proposed
416 land-use monitoring efforts already part of the Vision 2050 need to be extended to explicitly

417 encompass the proposed and ongoing road construction projects. To implement scientifically sound
418 policies on environmental protection, long-term assessments of gazelle mobility and abundance need
419 to be continued and supplemented with regular surveys on traffic volumes in core gazelle habitat. This
420 will enable conservationists to look past the high interannual and interindividual variability of
421 movement patterns, pre-emptively identify critical thresholds in landscape permeability and react to
422 barrier effects long before mobility has declined to the point that populations are severely affected.
423 Improving our understanding of how gazelle behaviors are affected by traffic will be crucial to develop
424 mitigation measures for declining permeability. Potentially, barrier effects posed by roads could be
425 alleviated by decreasing the risk perception of vehicles, for instance by prohibiting the use of vehicles
426 for hunting purposes.

427 **Conclusion**

428 Our study raises concerns on how increasing anthropogenic disturbance threatens large-scale ungulate
429 mobility across the world's largest mostly-intact grassland, and provides new insights on how nomadic
430 ungulates are affected by semi-permeable barriers. The Mongolian Eastern Steppe is widely known as
431 a land without fences, allowing grand accumulations of ungulates to roam freely through a largely
432 undisturbed ecosystem. However, we documented gradual declines in gazelle mobility in the Eastern
433 Steppe, potentially due to increases in vehicle traffic throughout the steppe and related disturbances
434 such as degraded vegetation around dirt roads. While the effects of this declining mobility on gazelle
435 populations are currently unknown, they may foreshadow significant declines in abundance as traffic
436 and road infrastructure continue to expand and landscape connectivity decreases. Further research
437 will be essential to pinpoint critical thresholds in barrier permeability, and to forecast when these
438 thresholds will be reached.

439

440 **Acknowledgements**

441 This research was funded by the German Federal Ministry of Education and Research (BMBF), grant
442 number 01LC1820A. J.M.C. and W.F.F. were supported by NSF IIBR 1915347. This work was partially
443 funded by the Center of Advanced Systems Understanding (CASUS) which is financed by Germany's
444 Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and
445 Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament.

446

447 **References:**

448 Agency of Land Administration and Management Geodesy and Cartography. (2022). *Geoportal of the*
449 *Agency of Land Administration and Management, Geodesy and Cartography [Online, accessed*
450 *01.11.2022]*. egazar.gov.mn

451 Aikens, E. O., Wyckoff, T. B., Sawyer, H., & Kauffman, M. J. (2022). Industrial energy development
452 decouples ungulate migration from the green wave. *Nature Ecology & Evolution*, 6(11), 1733–
453 1741. <https://doi.org/10.1038/s41559-022-01887-9>

454 Akaike, H. (1974). A new look at the statistical model identification. *IEEE Transactions on Automatic*
455 *Control*, 19(6), 716–723. <https://doi.org/10.1109/TAC.1974.1100705>

456 Alexander, S. M., Waters, N. M., & Paquet, P. C. (2005). Traffic volume and highway permeability for
457 a mammalian community in the Canadian Rocky Mountains. *The Canadian Geographer / Le*
458 *Géographe Canadien*, 49(4), 321–331. <https://doi.org/https://doi.org/10.1111/j.0008-3658.2005.00099.x>

460 Bartlam-Brooks, H. L. A., Beck, P. S. A., Bohrer, G., & Harris, S. (2013). In search of greener pastures:
461 Using satellite images to predict the effects of environmental change on zebra migration.
462 *Journal of Geophysical Research: Biogeosciences*, 118(4), 1427–1437.
463 <https://doi.org/https://doi.org/10.1002/jgrg.20096>

464 Batsaikhan, N., Buuveibaatar, B., Chimed, B., Enkhtuya, O., Galbadrakh, D., Oyunsaikhan, G.,
465 Badamjav, L., Nandintsetseg, D., Berger, J., Calabrese, J., Edwards, A., Fagan, W., Fuller, T.,
466 Heiner, M., Ito, T., Kaczensky, P., Leimgruber, P., Lushchekina, A., Milner-Gulland, E., & Whitten,
467 T. (2014). Conserving the World's Finest Grassland Amidst Ambitious National Development.
468 *Conservation Biology*, 28(6), 1736–1739. <https://doi.org/https://doi.org/10.1111/cobi.12297>

469 Bauman, D., Drouet, T., Dray, S., & Vleminckx, J. (2018). Disentangling good from bad practices in the
470 selection of spatial or phylogenetic eigenvectors. *Ecography*, 41(10), 1638–1649.

471 <https://doi.org/10.1111/ecog.03380>

472 Berger, J. (2004). The Last Mile: How to Sustain Long-Distance Migration in Mammals. *Conservation*
473 *Biology*, 18(2), 320–331. <https://doi.org/10.1111/j.1523-1739.2004.00548.x>

474 Bolger, D. T., Newmark, W. D., Morrison, T. A., & Doak, D. F. (2008). The need for integrative
475 approaches to understand and conserve migratory ungulates. *Ecology Letters*, 11(1), 63–77.
476 <https://doi.org/10.1111/j.1461-0248.2007.01109.x>

477 Clark, E., Munkhbat, J., Dulamtseren, S., Baillie, J., King, S., Samiya, R., & Stubbe, M. (2006). *Summary*
478 *Conservation Action Plans for Mongolian Mammals*. Zoological Society of London.

479 D'Amico, M., Périquet, S., Román, J., & Revilla, E. (2016). Road avoidance responses determine the
480 impact of heterogeneous road networks at a regional scale. *Journal of Applied Ecology*, 53(1),
481 181–190. <https://doi.org/https://doi.org/10.1111/1365-2664.12572>

482 Dejid, N., Bracis, C., Leimgruber, P., Kaczensky, P., Buuveibaatar, B., Lkhagvasuren, B., Chimeddorj, B.,
483 Enkhtuvshin, S., Horning, N., Ito, T. Y., Olson, K. A., Payne, J., Walzer, C., Shinoda, M., Stabach, J.,
484 Songer, M., & Mueller, T. (2019). Variability in nomadism: environmental gradients modulate
485 the movement behaviors of dryland ungulates. *Ecosphere*, 10(11), e02924.
486 <https://doi.org/10.1002/ecs2.2924>

487 Delignette-Muller, M. L., & Dutang, C. (2015). fitdistrplus: An R package for fitting distributions.
488 *Journal of Statistical Software*, 64(4), 1–34. <https://doi.org/10.18637/jss.v064.i04>

489 Department for Environment of Dornod Aimag. (2015). *Oil well locations in Dornod province,*
490 *Mongolia [Data set, accessed 08.04.2022]*.

491 Didan, K. (2015). *MOD13C2 MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg CMG V006*
492 *[Data set, accessed 25.01.2022]*. NASA EOSDIS Land Processes DAAC.
493 <https://doi.org/https://doi.org/10.5067/MODIS/MOD13C2.006>

494 Eftestøl, S., Tsegaye, D., Flydal, K., & Colman, J. E. (2021). Cumulative effects of infrastructure and

495 human disturbance: a case study with reindeer. *Landscape Ecology*, 36(9), 2673–2689.

496 <https://doi.org/10.1007/s10980-021-01263-1>

497 Fahrig, L., & Rytwinski, T. (2009). Effects of Roads on Animal Abundance. *Ecology and Society*, 14(1),
498 21. <http://www.jstor.org/stable/26268057>

499 Folstad, I., Nilssen, A., Halvorsen, O., & Andersen, J. (1991). Parasite avoidance: The cause of post-
500 calving migrations in Rangifer? *Canadian Journal of Zoology*, 69(9), 2423–2429.

501 <https://doi.org/10.1139/z91-340>

502 Fryxell, J. M., Wilmshurst, J. F., & Sinclair, A. R. E. (2004). Predictive models of movement by
503 Serengeti grazers. *Ecology*, 85(9), 2429–2435. <https://doi.org/10.1890/04-0147>

504 Funk, C. C., Peterson, P. J., Landsfeld, M. F., Pedreros, D. H., Verdin, J. P., Rowland, J. D., Romero, B.
505 E., Husak, G. J., Michaelsen, J. C., & Verdin, A. P. (2014). A quasi-global precipitation time series
506 for drought monitoring [Data set, accessed 25.01.2022]. *U.S. Geological Survey Data Series*, 832,
507 4p. <https://doi.org/10.3133/ds832>

508 Fynn, R. W. S., & Bonyongo, M. C. (2011). Functional conservation areas and the future of Africa's
509 wildlife. *African Journal of Ecology*, 49(2), 175–188.

510 <https://doi.org/https://doi.org/10.1111/j.1365-2028.2010.01245.x>

511 Gagnon, J. W., Theimer, T. A. D. C., Boe, S., Dodd, N. L., & Schweinsburg, R. E. (2007). Traffic volume
512 alters elk distribution and highway crossings in Arizona. *The Journal of Wildlife Management*,
513 71(7), 2318–2323. <https://doi.org/https://doi.org/10.2193/2006-224>

514 Geniole, S. N., Proietti, V., Bird, B. M., Ortiz, T. L., Bonin, P. L., Goldfarb, B., Watson, N. V., & Carré, J.
515 M. (2019). Testosterone reduces the threat premium in competitive resource division.
516 *Proceedings of the Royal Society B: Biological Sciences*, 286(1903), 20190720.

517 <https://doi.org/10.1098/rspb.2019.0720>

518 Geraci, M. (2019). Additive quantile regression for clustered data with an application to children's

519 physical activity. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 68(4),
520 1071–1089. <https://doi.org/10.1111/rssc.12333>

521 Gómez, Y., Berezowski, J., Jorge, Y. A., Gebhardt-Henrich, S. G., Vögeli, S., Stratmann, A., Toscano, M.
522 J., & Voelkl, B. (2022). Similarity in temporal movement patterns in laying hens increases with
523 time and social association. *Animals*, 12(5), 555. <https://doi.org/10.3390/ani12050555>

524 Google Earth. (2022). *Google earth imagery* [Online, accessed 26.01.2022]. <https://earth.google.com>

525 Hall, D. K., & Riggs, G. A. (2015). *MOD10C1 MODIS/Terra snow cover Monthly L3 Global 0.05Deg
526 CMG, V006* [Data set, accessed 25.01.2022]. NASA National Snow and Ice Data Center
527 Distributed Active Archive Center, Boulder, Colorado, USA.
528 <https://doi.org/https://doi.org/10.5067/MODIS/MOD10CM.006>

529 Harris, G., Thirgood, S., Hopcraft, J. G. C., Crome, J., & Berger, J. (2009). Global decline in
530 aggregated migrations of large terrestrial mammals. *Endangered Species Research*, 7(1), 55–76.
531 <https://doi.org/10.3354/esr00173>

532 Hartig, F. (2021). *DHARMA: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression
533 Models* (R package version 0.4.0.). <https://cran.r-project.org/package=DHARMA>

534 Holdo, R. M., Fryxell, J. M., Sinclair, A. R. E., Dobson, A., & Holt, R. D. (2011). Predicted Impact of
535 Barriers to Migration on the Serengeti Wildebeest Population. *PLOS ONE*, 6(1), e16370.
536 <https://doi.org/10.1371/journal.pone.0016370>

537 Holdo, R. M., Holt, R. D., & Fryxell, J. M. (2009). Opposing Rainfall and Plant Nutritional Gradients
538 Best Explain the Wildebeest Migration in the Serengeti. *The American Naturalist*, 173(4), 431–
539 445. <https://doi.org/10.1086/597229>

540 Ito, T. Y., Lhagvasuren, B., Tsunekawa, A., Shinoda, M., Takatsuki, S., Buuveibaatar, B., & Chimeddorj,
541 B. (2013). Fragmentation of the habitat of wild ungulates by anthropogenic barriers in
542 Mongolia. *PLOS ONE*, 8(2), e56995. <https://doi.org/10.1371/journal.pone.0056995>

543 Jacobson, S. L., Bliss-Ketchum, L. L., de Rivera, C. E., & Smith, W. P. (2016). A behavior-based
544 framework for assessing barrier effects to wildlife from vehicle traffic volume. *Ecosphere*, 7(4),
545 e01345. <https://doi.org/https://doi.org/10.1002/ecs2.1345>

546 Jakes, A. F., Jones, P. F., Paige, L. C., Seidler, R. G., & Huijser, M. P. (2018). A fence runs through it: A
547 call for greater attention to the influence of fences on wildlife and ecosystems. *Biological
548 Conservation*, 227, 310–318. <https://doi.org/https://doi.org/10.1016/j.biocon.2018.09.026>

549 Kaczensky, P., Ganbataar, O., Altansukh, N., Enkhsaikhan, N., Stauffer, C., & Walzer, C. (2011). The
550 danger of having all your eggs in one basket—Winter crash of the re-introduced Przewalski's
551 Horses in the Mongolian Gobi. *PLOS ONE*, 6(12), e28057.
552 <https://doi.org/10.1371/journal.pone.0028057>

553 Kaczensky, P., Sheehy, D., Johnson, D. E., Walzer, C., Davaa, L., & Sheehy, C. (2006). Room to roam?
554 The threat to khulan (Wild Ass) from human intrusion. In *Mongolia Discussion Papers*. World
555 Bank Group. <http://documents.worldbank.org/curated/en/559701468060257075/Mongolia->
556 Room-to-roam-the-threat-to-Khulan-wild-ass-from-human-intrusion

557 Kauffman, M. J., Aikens, E. O., Esmaeili, S., Kaczensky, P., Middleton, A., Monteith, K. L., Morrison, T.
558 A., Mueller, T., Sawyer, H., & Goheen, J. R. (2021). Causes, Consequences, and Conservation of
559 Ungulate Migration. *Annual Review of Ecology, Evolution, and Systematics*, 52(1), 453–478.
560 <https://doi.org/10.1146/annurev-ecolsys-012021-011516>

561 Keshkamat, S. S., Tsendlbazar, N. E., Zuidgeest, M. H. P., Shiirev-Adiya, S., van der Veen, A., & van
562 Maarseveen, M. F. A. M. (2013). Understanding transportation-caused rangeland damage in
563 Mongolia. *Journal of Environmental Management*, 114, 433–444.
564 <https://doi.org/10.1016/j.jenvman.2012.10.043>

565 Koller, M. (2016). robustlmm : An R Package for Robust Estimation of Linear Mixed-Effects Models.
566 *Journal of Statistical Software*, 75(6), 1–24. <https://doi.org/10.18637/jss.v075.i06>

567 Laforge, M. P., Bonar, M., & Vander Wal, E. (2021). Tracking snowmelt to jump the green wave:

568 phenological drivers of migration in a northern ungulate. *Ecology*, 102(3), e03268.

569 <https://doi.org/https://doi.org/10.1002/ecy.3268>

570 Lendrum, P. E., Anderson Jr., C. R., Long, R. A., Kie, J. G., & Bowyer, R. T. (2012). Habitat selection by

571 mule deer during migration: effects of landscape structure and natural-gas development.

572 *Ecosphere*, 3(9), art82. <https://doi.org/https://doi.org/10.1890/ES12-00165.1>

573 Lenth, R. V. (2021). *emmeans: Estimated Marginal Means, aka Least-Squares Means* (1.6.3).

574 <https://cran.r-project.org/package=emmeans>

575 Lhagvasuren, B., & Milner-Gulland, E. J. (1997). The status and management of the Mongolian gazelle

576 *Procapra gutturosa* population. *Oryx*, 31(2), 127–134. <https://doi.org/10.1046/j.1365->

577 3008.1997.d01-6.x

578 Løvschal, M., Bøcher, P. K., Pilgaard, J., Amoke, I., Odingo, A., Thuo, A., & Svenning, J.-C. (2017).

579 Fencing bodes a rapid collapse of the unique Greater Mara ecosystem. *Scientific Reports*, 7(1),

580 41450. <https://doi.org/10.1038/srep41450>

581 Lüdecke, D. (2018). *ggeffects: Tidy Data Frames of Marginal Effects from Regression Models*. *Journal*

582 *of Open Source Software*, 3(26), 772. <https://doi.org/https://doi.org/10.21105/joss.00772>

583 Lundberg, J., & Moberg, F. (2003). Mobile Link Organisms and Ecosystem Functioning: Implications

584 for Ecosystem Resilience and Management. *Ecosystems*, 6(1), 87–98.

585 <https://doi.org/10.1007/s10021-002-0150-4>

586 Mason, T. H. E., Stephens, P. A., Apollonio, M., & Willis, S. G. (2014). Predicting potential responses to

587 future climate in an alpine ungulate: interspecific interactions exceed climate effects. *Global*

588 *Change Biology*, 20(12), 3872–3882. <https://doi.org/https://doi.org/10.1111/gcb.12641>

589 Meng, X., Gao, X., Li, S., & Lei, J. (2020). Spatial and Temporal Characteristics of Vegetation NDVI

590 Changes and the Driving Forces in Mongolia during 1982–2015. *Remote Sensing*, 12(4), 603.

591 <https://doi.org/10.3390/rs12040603>

592 Merkle, J. A., Monteith, K. L., Aikens, E. O., Hayes, M. M., Hersey, K. R., Middleton, A. D., Oates, B. A.,
593 Sawyer, H., Scurlock, B. M., & Kauffman, M. J. (2016). Large herbivores surf waves of green-up
594 during spring. *Proceedings of the Royal Society B: Biological Sciences*, 283(1833), 20160456.
595 <https://doi.org/10.1098/rspb.2016.0456>

596 Milligan, M. C., Johnston, A. N., Beck, J. L., Smith, K. T., Taylor, K. L., Hall, E., Knox, L., Cufaude, T.,
597 Wallace, C., Chong, G., & Kauffman, M. J. (2021). Variable effects of wind-energy development
598 on seasonal habitat selection of pronghorn. *Ecosphere*, 12(12), e03850.
599 <https://doi.org/https://doi.org/10.1002/ecs2.3850>

600 Monteith, K. L., Bleich, V. C., Stephenson, T. R., Pierce, B. M., Conner, M. M., Klaver, R. W., & Bowyer,
601 R. T. (2011). Timing of seasonal migration in mule deer: effects of climate, plant phenology, and
602 life-history characteristics. *Ecosphere*, 2(4), art47.
603 <https://doi.org/https://doi.org/10.1890/ES10-00096.1>

604 Mueller, T., Olson, K. A., Fuller, T. K., Schaller, G. B., Murray, M. G., & Leimgruber, P. (2008). In search
605 of forage: predicting dynamic habitats of Mongolian gazelles using satellite-based estimates of
606 vegetation productivity. *Journal of Applied Ecology*, 45(2), 649–658.
607 <https://doi.org/https://doi.org/10.1111/j.1365-2664.2007.01371.x>

608 Nandintsetseg, D., Bracis, C., Olson, K. A., Böhning-Gaese, K., Calabrese, J. M., Chimeddorj, B., Fagan,
609 W. F., Fleming, C. H., Heiner, M., Kaczensky, P., Leimgruber, P., Munkhnast, D., Stratmann, T., &
610 Mueller, T. (2019). Challenges in the conservation of wide-ranging nomadic species. *Journal of
611 Applied Ecology*, 56(8), 1916–1926. <https://doi.org/https://doi.org/10.1111/1365-2664.13380>

612 National Center for Road Transport. (2022). *Number of registered vehicles, by type, by region, aimag,
613 yearly, version 1.0.0 [Data set, accessed 23.09.2022]*. Mongolian Statistical Information Service.
614 http://1212.mn/tables.aspx?TBL_ID=DT_NSO_1200_013V3

615 Olson, K. A., Fuller, T. K., Schaller, G. B., Odonkhuu, D., & Murray, M. G. (2005). Estimating the
616 population density of Mongolian gazelles *Procapra gutturosa* by driving long-distance transects.

617 *Oryx*, 39(2), 164–169. <https://doi.org/10.1017/S0030605305000402>

618 Olson, K. A., Fuller, T., Mueller, T., Murray, M., Nicolson, C., Odonkhuu, D., Bolortsetseg, S., &

619 Schaller, G. (2010). Annual movements of Mongolian gazelles: Nomads in the Eastern Steppe.

620 *Journal of Arid Environments*, 74, 1435–1442. <https://doi.org/10.1016/j.jaridenv.2010.05.022>

621 Olson, K. A., Larsen, E. A., Mueller, T., Leimgruber, P., Fuller, T. K., Schaller, G. B., & Fagan, W. F.

622 (2014). Survival probabilities of adult Mongolian gazelles. *The Journal of Wildlife Management*,

623 78(1), 35–41. [https://doi.org/https://doi.org/10.1002/jwmg.640](https://doi.org/10.1002/jwmg.640)

624 Olson, K. A., Mueller, T., Bolortsetseg, S., Leimgruber, P., Fagan, W. F., & Fuller, T. K. (2009). A mega-

625 herd of more than 200,000 Mongolian gazelles *Procapra gutturosa*: a consequence of habitat

626 quality. *Oryx*, 43(1), 149. <https://doi.org/10.1017/S0030605307002293>

627 OpenStreetMap Contributors. (2022). *Road data retrieved from https://planet.openstreetmap.org/*

628 [Online, accessed 01.11.2022].

629 Paradis, E., & Schliep, K. (2019). Ape 5.0: an environment for modern phylogenetics and evolutionary

630 analyses in R. *Bioinformatics*, 35(3), 526–528. <https://doi.org/10.1093/bioinformatics/bty633>

631 Paton, D. G., Ciuti, S., Quinn, M., & Boyce, M. S. (2017). Hunting exacerbates the response to human

632 disturbance in large herbivores while migrating through a road network. *Ecosphere*, 8(6),

633 e01841. [https://doi.org/https://doi.org/10.1002/ecs2.1841](https://doi.org/10.1002/ecs2.1841)

634 R Core Team. (2021). *R: A language and environment for statistical computing*. R Foundation for

635 Statistical Computing. <https://www.r-project.org/>

636 Reading, R. P., Bedunah, D. J., & Amgalanbaatar, S. (2006). Conserving biodiversity on Mongolian

637 Rangelands: Implications for protected area development and pastoral uses. In D. J. Bedunah, E.

638 Durant McArthur, & M. Fernandez-Gimenez (Eds.), *Rangelands of Central Asia: Proceedings of*

639 *the Conference on Transformations, Issues, and Future Challenges* (pp. 1–17). U.S. Department

640 of Agriculture, Forest Service, Rocky Mountain Research Station.

641 Runge, C. A., Martin, T. G., Possingham, H. P., Willis, S. G., & Fuller, R. A. (2014). Conserving mobile
642 species. *Frontiers in Ecology and the Environment*, 12(7), 395–402.
643 <https://doi.org/https://doi.org/10.1890/130237>

644 Said, M. Y., Ongutu, J. O., Kifugo, S. C., Makui, O., Reid, R. S., & de Leeuw, J. (2016). Effects of extreme
645 land fragmentation on wildlife and livestock population abundance and distribution. *Journal for
646 Nature Conservation*, 34, 151–164. <https://doi.org/https://doi.org/10.1016/j.jnc.2016.10.005>

647 Sandoval Lambert, M., Sawyer, H., & Merkle, J. A. (2022). Responses to natural gas development
648 differ by season for two migratory ungulates. *Ecological Applications*, 32(7), e2652.
649 <https://doi.org/10.1002/eap.2652>

650 Sawyer, H., Kauffman, M. J., Middleton, A. D., Morrison, T. A., Nielson, R. M., & Wyckoff, T. B. (2013).
651 A framework for understanding semi-permeable barrier effects on migratory ungulates. *Journal
652 of Applied Ecology*, 50(1), 68–78. <https://doi.org/10.1111/1365-2664.12013>

653 Sawyer, H., Korfanta, N. M., Nielson, R. M., Monteith, K. L., & Strickland, D. (2017). Mule deer and
654 energy development—Long-term trends of habituation and abundance. *Global Change Biology*,
655 23(11), 4521–4529. <https://doi.org/https://doi.org/10.1111/gcb.13711>

656 Sawyer, H., Lambert, M. S., & Merkle, J. A. (2020). Migratory disturbance thresholds with Mule Deer
657 and energy development. *The Journal of Wildlife Management*, 84(5), 930–937.
658 <https://doi.org/https://doi.org/10.1002/jwmg.21847>

659 State Great Hural. (2020). “*Vision-2050*” Long-term development policy of Mongolia (p. 47).
660 https://cabinet.gov.mn/wp-content/uploads/2050_VISION_LONG-TERM-DEVELOPMENT-
661 POLICY.pdf

662 Stoffel, M. A., Nakagawa, S., & Schielzeth, H. (2021). partR2 : partitioning R 2 in generalized linear
663 mixed models. *PeerJ*, 9, e11414. <https://doi.org/10.7717/peerj.11414>

664 Teitelbaum, C. S., Fagan, W. F., Fleming, C. H., Dressler, G., Calabrese, J. M., Leimgruber, P., &

665 Mueller, T. (2015). How far to go? Determinants of migration distance in land mammals.

666 *Ecology Letters*, 18(6), 545–552. <https://doi.org/https://doi.org/10.1111/ele.12435>

667 Thurfjell, H., Spong, G., Olsson, M., & Ericsson, G. (2015). Avoidance of high traffic levels results in

668 lower risk of wild boar-vehicle accidents. *Landscape and Urban Planning*, 133, 98–104.

669 <https://doi.org/10.1016/j.landurbplan.2014.09.015>

670 Tucker, M. A., Böhning-Gaese, K., Fagan, W. F., Fryxell, J. M., Van Moorter, B., Alberts, S. C., Ali, A. H.,

671 Allen, A. M., Attias, N., Avgar, T., Bartlam-Brooks, H., Bayarbaatar, B., Belant, J. L., Bertassoni,

672 A., Beyer, D., Bidner, L., van Beest, F. M., Blake, S., Blaum, N., ... Mueller, T. (2018). Moving in

673 the Anthropocene: Global reductions in terrestrial mammalian movements. *Science*, 359(6374),

674 466–469. <https://doi.org/10.1126/science.aam9712>

675 Wan, Z., Hook, S., & Hulley, G. (2015). *MOD11C3 MODIS/Terra land surface temperature/emissivity*

676 *monthly L3 global 0.05Deg CMG V006* [Data set, accessed 25.01.2022]. NASA EOSDIS Land

677 Processes DAAC. <https://doi.org/10.5067/MODIS/MOD11C3.006>

678 Williamson, D., Williamson, J., & Ngwamotsoko, K. T. (1988). Wildebeest migration in the Kalahari.

679 *African Journal of Ecology*, 26(4), 269–280. <https://doi.org/10.1111/j.1365-2028.1988.tb00979.x>

681 Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of

682 semiparametric generalized linear models. *Journal of the Royal Statistical Society. Series B: Statistical Methodology*, 73(1), 3–36. <https://doi.org/10.1111/j.1467-9868.2010.00749.x>

684 World Bank Group, & Asian Development Bank. (2021). *Climate Risk Country Profile: Mongolia*.

685 <https://openknowledge.worldbank.org/handle/10986/36375>

686 Xu, W., Barker, K., Shawler, A., Van Scyoc, A., Smith, J. A., Mueller, T., Sawyer, H., Andreozzi, C.,

687 Bidder, O. R., Karandikar, H., Mumme, S., Templin, E., & Middleton, A. D. (2021). The plasticity

688 of ungulate migration in a changing world. *Ecology*, 102(4), e03293.

689 <https://doi.org/https://doi.org/10.1002/ecy.3293>

690 Yang, Z., Zhu, Q., Zhan, W., Xu, Y., Zhu, E., Gao, Y., Li, S., Zheng, Q., Zhu, D., He, Y., Peng, C., & Chen,
691 H. (2018). The linkage between vegetation and soil nutrients and their variation under different
692 grazing intensities in an alpine meadow on the eastern Qinghai-Tibetan Plateau. *Ecological
693 Engineering*, 110, 128–136. <https://doi.org/10.1016/j.ecoleng.2017.11.001>

694 Yirga, A. A., Melesse, S. F., Mwambi, H. G., & Ayele, D. G. (2021). Additive quantile mixed effects
695 modelling with application to longitudinal CD4 count data. *Scientific Reports*, 11(1), 17945.
696 <https://doi.org/10.1038/s41598-021-97114-9>

697