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Abstract

The profiling of multiple molecular layers from the same set of cells has recently
become possible. There is thus a growing need for multi-view learning methods able
to jointly analyze these data. We here present Multi-Omics Wasserstein inteGrative
analysls (Mowgli), a novel method for the integration of paired multi-omics data
with any type and number of omics. Of note, Mowgli combines integrative
Nonnegative Matrix Factorization (NMF) and Optimal Transport (OT), enhancing at
the same time the clustering performance and interpretability of integrative NMF.
We apply Mowgli to multiple paired single-cell multi-omics data profiled with 10X
Multiome, CITE-seq and TEA-seq. Our in depth benchmark demonstrates that
Mowgli’s performance is competitive with the state-of-the-art in cell clustering and
superior to the state-of-the-art once considering biological interpretability. Mowgli
is implemented as a Python package seamlessly integrated within the scverse
ecosystem and it is available at http://github.com/cantinilab/mowgli.

Background

Single-cell sequencing technologies, providing a quantitative and unbiased
characterization of cellular heterogeneity, are revolutionizing our understanding of
the immune system, of development and of complex diseases*™. A new frontier in
the single-cell sequencing technologies is represented by multi-omics single-cell
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sequencing, allowing for the simultaneous profiling of multiple molecular readouts
(e.g. transcriptome, chromatin accessibility, surface proteins) from the same cell**2.
Examples of these cutting-edge sequencing technologies are CITE-seq,
simultaneously measuring RNA and surface protein abundance by leveraging
oligonucleotide-conjugated antibodies®>, and 10x Genomics Multiome platform,
quantifying RNA and chromatin accessibility by microdroplet-based isolation of
single nuclei.

Multi-omics single-cell sequencing platforms provide us with complementary
molecular readouts from exactly the same set of cells, called in the following paired
multi-omics data. The joint analysis of such data offers the exciting opportunity to
understand how different molecular facets of a cell collaboratively define the cell’s
function, morphology and state®>. Several multi-view learning methods, jointly
analyzing paired multi-omics data by taking into account their shared and
complementary information, have thus been recently developed*?. These
methods, differently from unpaired integration ones**?*, take advantage of the
known correspondences between cells across modalities. State-of-the-art multi-
view learning methods for single-cell multi-omics integration are based on
integrative Matrix Factorization'***# k-nearest neighbors®™, or variational
autoencoders'®8, Integrative Matrix Factorization (integrative MF) and variational
autoencoders perform dimensionality reduction, jointly embedding the high-
dimensional multi-omics cellular profilings into a shared lower-dimensional latent
space by leveraging common cells/observations'*?®, Integrative MF, due to its linear
nature, defines a latent space with a natural biological interpretation, but it is too
simple to catch complex biological processes'**. On the other hand, non-linear
methods, as variational autoencoders, have shown great potential in clustering
cells, but despite recent works on the subject?*’-%, they inherently lack biological
interpretability. Improving integrative MF methods is thus crucial to striking a
balance between interpretability and performance.

We here propose Multi-Omics Wasserstein inteGrative analLysls (Mowgli

github.com/cantinilab/mowgli), a novel integrative MF method for single-cell multi-
omics data combining integrative Nonnegative Matrix Factorization® (integrative
NMF) with Optimal Transport*® (OT). On one hand, Mowgli employs integrative NMF,
popular in computational biology due to its intuitive representation by parts and
further enhances its interpretability”®. On the other hand, Mowgli enhances the
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clustering performances of integrative MF by taking advantage of OT, which we have
previously shown to better capture similarities between single-cell omics profiles®..

We then extensively benchmark Mowgli with respect to the state-of-the-art in the
integration of several paired multi-omics data profiled with CITE-seq>, 10X Genomics
Multiome and TEA-seq’ platforms. Of note, while we focus on the integration of the
currently available omics data, Mowgli can deal with paired multi-omics datasets
with any type and number of omics, without any statistical assumption on the data.
The performed in-depth comparison shows that Mowgli’s embedding and clustering
quality outperform the state-of-the-art in controlled settings derived from real
multi-omics data and are competitive with the state-of-the-art in more complex real
multi-omics data. Of note, the latter are affected by the lack of an absolute ground-
truth annotation on most real datasets. Finally, Mowgli is shown to improve the
state-of-the-art in terms of biological interpretability through an in-depth biological
analysis of TEA-seq data.

Results

Mowgli: a new tool for paired single-cell multi-omics data integration

We developed Multi-Omics Wasserstein inteGrative anaLysls (Mowgli), a new tool for
paired single-cell multi-omics data integration (github.com/cantinilab/mowgli).

Mowgli is based on integrative Matrix Factorization (integrative MF). Starting from d
omics matrices A®) € Rm»*nwith P € [1...d] sharing the same columns (the cells)
but having different features (e.g. genes, peaks), Mowgli jointly decomposes them
into the product of omic-specific dictionaries H®) € R™»**and a shared embedding
W € RF*"with B < mpand k < n (Figure 1A). As a standard nomenclature, in the
following we will call k the number of latent dimensions, the columns of H (P [oadings
and the rows of W factors®*-2,

In line with state-of-the-art MF methods for multi-omics integration®, the cell
embedding W can be used to visualize and cluster the cells (Figure 1B)**=". The
dictionaries H(P) instead enable biological interpretation via gene set enrichment
analysis®, motif enrichment analysis®*, or by identifying markers among the top
weights (Figure 1C).
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The maininnovation of Mowgli is to perform integrative MF by combining integrative
Non Negative Matrix Factorization (integrative NMF) with Optimal Transport (OT). It
thus solves the optimization problem:

r(n)in OT. (H(p)VV, A(p))—ppE (H(p))—,uE (W) with omics p=1,...,m (1)
H®) W

In computational biology, integrative NMF is usually applied with an Euclidean
reconstruction term between H® 1V and AP) 192224 \We here introduce instead a
reconstruction term based on entropy-regularized Optimal Transport (OT) (see Eql
and Methods), which unlike Euclidean or Kullback-Leibler losses leverages a notion
of similarity between features. This choice is justified by the improved performance
that we have previously observed once using OT to compare single-cell omics
profiles®'. Of note, outside of biology, OT has been already used in the reconstruction
loss of NMF for the factorization of single matrices***? and single tensors*.

In addition, as in Rolet et al.*’, we add to the optimization problem (Eql) two

entropic regularization terms ppE(H®P)) and LE(W) (see Methods). These terms
ensure that the loadings and embeddings are positive distributions and they control
their sparsity (see Methods), a crucial feature to further enhance the known NMF’s
“representation by parts” property®. Pr and # are the coldness parameters of
softmax functions (see Methods) and thus offer a natural way to adjust sparsity. For
instance, as # approaches 0, cells will be assigned to only one factor. As instead #
increases, cells will be a combination of several factors. For all details on the
mathematical formulation of Mowgli see Methods.

Of note, Mowgli is implemented as an open-source Python package seamlessly
integrated into the classical Python single-cell analysis pipeline
(github.com/cantinilab/mowgli). Users can thus take advantage of scverse tools like
Scanpy and Muon for preprocessing and downstream analysis**. In addition,
Mowgli provides a user-friendly visualization of top genes and enriched gene sets,
thus helping biological interpretability.

In the following, we extensively benchmark Mowgli against the state-of-the-art:
Seurat v4*> and MOFA+*, Although several methods exist** 23, we here focused on the
leading methods for paired data integration that could be applied to the multiple
combinations of single-cell omics data here considered. In addition, an integrative
NMF baseline is also considered (see Methods), to further compare Mowgli with the
standard integrative NMF.
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Mowgli’s cell embedding and clustering outperform the state-of-the-art in
controlled settings derived from cell lines data.

We first focused on evaluating Mowgli’s embedding and clustering performance in
controlled settings derived from cell lines data. To represent a panel of realistic
scenarios with different distributions of cells across three groups, we applied
different transformations to a simple dataset composed of three cancer cell lines
profiled with scCATseq (see Figure 2A). The scCATseq dataset provides a joint
profiling of scRNA and scATAC from HCT116, HeLa-S3 and K562 cell lines®. Unlike
simulated data, this solution allows us to avoid making assumptions on the
distribution of the data. Indeed, generating simulated data following a Gaussian
distribution, for instance, would favor methods that approximate single-cell data
with this same distribution.

The four scenarios in our panel represent distinct realistic challenges of multi-omics
integration: (i) Mixed in RNA contains two cell populations that are mixed in scRNA,
but well separated in scATAC; (ii) Mixed in both contains two cell populations mixed
in SCRNA and well separated in scATAC and two cell populations mixed in scATAC
and well separated in scRNA,; (iii) Rare population presents a population with much
fewer cells than the others and (iv) 82% sparse, 90% sparse, and 96% sparse contain
data with increasing percentages of dropouts (82-96%). Scenarios (i) and (ii) test the
ability of methods to take into account the complementarity of different omic data.
Scenario (iii) tests the ability of the methods to recover rare populations. Finally,
scenario (iv) tests the robustness of the methods to dropout noise, while staying in
a realistic range of dropouts for single-cell data. For details on the generation of
these datasets see Methods.

We benchmarked Mowgli, Seurat v4, MOFA+ and integrative NMF based on natural
metrics forembedding and clustering performance: silhouette score, Adjusted Rand
Index (ARI), and purity score (see Methods). In addition, we computed UMAP
visualizations for the different methods and datasets®.

As shown in Figure 2B, overall, Mowgli provides superior performance over the
current state-of-the-art according to all metrics. Indeed, in all datasets except 90%
sparse, Mowgli has a performance greater or equal to that of other methods. In the
90% sparse dataset, integrative NMF has a better silhouette score than Mowgli but
the same ARI and purity score.
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These performances are confirmed by looking qualitatively at the UMAP plots in
Figure 2B. In Mixed in RNA and Mixed in both Seurat v4 confuses populations when
individual omics are not sufficient to identify the three groups. Regarding dropouts,
one of the most challenging features of single-cell data*®, Mowgli shows the highest
resilience with respect to the state-of-the-art. Indeed, while a sparsity of 96% is still
coherent with realistic data*’, MOFA+ and Seurat v4 confuse the three populationsin
the 96% sparse dataset. On the opposite, Mowgli correctly separates the three
groups of cells in 96% sparse.

Mowgli’s cellembeddings and clusterings are competitive with the state-of-the-
art in complex and heterogeneous datasets

We then benchmarked Mowgli, Seurat v4, MOFA+ and integrative NMF based on their
embedding and clustering performance on five paired single-cell multi-omics
datasets (see Figure 3A). Of note, these data have been already largely used to
benchmark single-cell multi-omics integrative methods****. The chosen datasets
span different sequencing technologies, modalities, tissues and sizes: (i) Liu is a
scCAT-seq cell lines dataset by Liu et al.? (ii) PBMC 10X is a 10X Multiome human
PBMC dataset from 10X Genomics (iii) OP Multiome is a 10X Multiome human bone
marrow dataset from Open Problems® (iv) OP CITE is a CITE-seq human bone
marrow dataset from Open Problems* (v) BM CITE is a CITE-seq human bone marrow
dataset from Stuart et al.*>. BM CITE is the larger dataset here considered, with 29,803
cells. Supplementary Table 1 lists the modalities, numbers of cells, and numbers of
cell types for each dataset. For details on data preprocessing, see Methods.

We benchmarked Mowgli, Seurat v4, MOFA+ and integrative NMF based on the same
natural metrics used in the previous section. Since these metrics require a ground-
truth annotation, we used the cell-type annotations available from the original
publications of these data. In Liu the ground-truth annotations are based on the cell
line of origin and thus well-defined. On the contrary, the annotations of the other
datasets were computationally derived, thus biasing the evaluation toward methods
closest to their annotation pipeline. Forinstance, the BM CITE annotation is obtained
by projecting the dataset onto an atlas using Seurat v3®.

As displayed in Figure 3B, Mowgli can handle large single-cell datasets and deliver
embedding and clustering performances competitive with the state-of-the-art,
especially considering the lack of absolute ground-truth annotations on most
datasets here employed.
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In particular, according to the silhouette score, Mowgli outperforms other methods
in Liu, PBMC 10X, and OP CITE. MOFA+ performs best in the other two datasets. In
terms of ARI score across resolutions, Seurat v4 performs best in PBMC 10X, OP
Multiome, and OP CITE. Mowgli and Seurat v4 perform comparably in the BM CITE
dataset. In the Liu dataset, only MOFA+ and Mowgli reach a maximum ARI of 1. Of
note, in Liu, ARIs should be compared only at low resolution, as higher resolutions
lead to overclustering. In terms of purity score, Mowgli outperforms other methods
in the OP CITE dataset, and it is comparable to MOFA+ in the PBMC 10X dataset.
Finally, the purity scores of all methods are comparable in the Liu dataset.

The UMAP plots in Figure 3B give a qualitative intuition of the described
performance. In OP CITE, only integrative NMF and Mowgli correctly separate
subpopulations of B cells (Figure 3B circled). In BM CITE, MAIT T-cells and
subpopulations of CD8+ T-cells (Figure 3B circled) are more neatly separated in
Seurat v4 than in other methods. However, as explained previously, the annotation
pipeline of BM CITE might favor Seurat v4.

Mowgli improves the biological interpretability of the state-of-the-art by
providing cell-type specific factors in TEA-seq data

We benchmarked Mowgli with respect to MOFA+ based on its biological
interpretability (see Figure 4A). Indeed, MOFA+ is the leading single-cell multi-omics
integration tool providing a user-friendly biological interpretability of its latent
dimensions*.

For this benchmark we considered a TEA-seq dataset of human PBMCs,
corresponding to the paired profiling of: scRNA-seq, scATAC-seq, and surface
proteins’. This dataset allows us to test the methods on more than two omic
datasets, thus taking into account more complementary layers of molecular
regulation.

First, MOFA+ and Mowgli were independently applied for the integration of the three
omics constituting the TEA-seq data. As the dataset was not provided with an
annotation of the cells, we separately clustered the embeddings obtained from
Mowgli and MOFA+’s and annotated them based on gene and protein markers (see
Supp Figure 1, see Figure 4B). We identified in this way coarse immune cell types:
CD4 T-cells, CD8 T-cells, B cells, Natural Killer (NK) cells, MAIT T-cells, Monocytes and
Erythroid cells. Of note, the cell type annotations obtained with the two tools agree
at 97%, and match an independent RNA-based annotation obtained through
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Azimuth (see Supp Figure 2). Both methods are thus able to recover the expected
cell-types through clustering of their embeddings.

To then test the biological interpretability of Mowgli and MOFA+, we evaluated the
specificity of the associations between their factors and the identified immune cell
types. The underlying assumption we are making here is that an interpretable
method should provide factors that are not broadly active in all the cells, but
selectively associated to a cell type. Indeed, characterizing a cell type which results
from a combination of many factors is a daunting task. On the contrary, having cell
type-specific factors makes the biological characterization of the associated cell
type straightforward. To evaluate such specificity, for each cell type, we plotted how
the Mowgli and MOFA+ factors are distributed according to their mean weight within
the cell type and their mean weight outside the cell type (Figure 4C). Factors specific
to a cell type should have a high average weight within the cell type and a low
average weight outside the cell type, thus falling in the upper left corner of the plots.
As MOFA+’s factors are not constrained to be positive and their positive and negative
parts could be associated with different biological information, we split each factor
into two parts, as done in MOFA+’s interpretation tools*. In addition, we quantified
the performance of each factor with a specificity score, also reported in bold in
Figure 4C, and defined in the Methods section.

As shown in Figure 4C, while MOFA+ tends to associate multiple factors to the same
cell type, Mowgli frequently defines clear one-to-one associations between factors
and cell types. In addition, the specificity score of such factors is higher in Mowgli
than in MOFA+. This is particularly striking in NK cells, MAIT T-cells, CD8 T-cells and
CD4 T-cells, where MOFA+ seems to aggregate information from many factors
whereas Mowgli is more selective. Of note, as shown in Supp Figure 3, the multiple
factors associated by MOFA+ to the same cell type do not necessarily correspond to
subpopulations of the same cell type.

Mowgli identifies relevant subpopulations of immune cells in TEA-seq data

We finally focused on the biological relevance of the factors identified by Mowgli on
the human PBMC TEA-seq data, described in the previous section. Indeed, while in
the previous section we only considered coarse immune cell types (e.g. B cells, CD4
T-cells, CD8 T-cells), Mowgli could identify multiple factors able to subset such cell
types into relevant subpopulations (Figure 5 A,B; Supp Figure 4). For example,
Mowgli identifies factors splitting the B cell cluster into two subpopulations:
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memory and naive B cells. In the same way, Mowgli detects factors associated to CD8
T-cells subpopulations (naive, central memory and effector memory), monocytes
subclusters (classical and non-classical), dendritic cells subpopulations
(plasmacytoid and conventional) and Natural Killer (NK) subclusters (CD56%™ and
CD5618M), The association of the factors with specific immune subpopulations is
here made based on top ranked genes and proteins in effector memory CD8 T cells,
naive B cells, memory B cells and CD56%™ NK cells. For all other populations the
association with factors is instead based on the correlation of the factors’ weights
with that of known protein markers. Figure 5B displays side-by-side the UMAP plots
showing the similarity between the distribution of the factors’ weights and the
activity of the protein markers of their associated immune subpopulations. The
UMAP visualizations of all marker proteins and all factors are available in Supp
Figure 5.

These same results could not be obtained with MOFA+, due to its lower biological
interpretability observed in the previous section. In MOFA+, factors having similar
patterns of those observed in Mowgli could be obtained for effector memory CD8 T-
cells, memory B cells, non-classical monocytes and CD56%™ NK cells (see Supp Figure
3 and Supp Figure 6). For all other immune subpopulations identified by Mowgli, no
factor having a similar pattern could be obtained in MOFA+. As a consequence,
interpreting with MOFA+ the pathways associated to CD56°&" NK cells, for example,
would require to complexly combine the pathway enrichments obtained from
different factors. On the contrary, the same analysis in Mowgli can be easily realized
by looking at the pathways enriched in the loadings of its 13th factor.

Finally, we looked at the biological information that Mowgli could provide regarding
the identified immune subpopulations. For this part, we focused on the factors
associated with four immune cell subpopulations: effector memory CD8 T-cells
(factor 49), naive B cells (factor 33), memory B cells (factor 44), and CD569™ NK cells
(factor 2). For each of these four factors, we considered their associated loadings in
H(rna) fr(adt) gnd F(atac) and analyzed the top genes in H ("), top proteins in H (adt)
, the gene sets enriched in H("® and the motifs enriched in H(?t2°) to verify the
biological information that could be extracted from the output of Mowgli (see
Methods). Figure 5C displays the results obtained from this analysis.

For effector memory CD8 T-cells (CD8 TEM cells), corresponding to factor 49, Mowgli
could extract two top genes (CRTAM and KLRK1), known to be essential for CD8+ T-
cell-mediated cytotoxicity*'=?, two top proteins (CD45R0O, TCR-a/b) that are a known
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memory T cell marker and a T cell receptor, respectively>*~*. More interestingly, also
several Transcription Factors (TFs) candidate regulators of this subpopulation are
identified, among them EOMES and TBX21 (aka T-bet), known to be important for
CD8 TEM development®>. In addition, five of the top candidate TF regulators (TBR1,
TBX21, TBX4, TBX5 and MGA) target three of the top genes of the same factor (CCL5,
CRTAM, and IL21R), thus suggesting a regulatory program possibly important for CD8
TEM cells.

In naive B cells (factor 33), Mowgli identifies as top genes FCER2 (aka CD23), a low-
affinity receptor for immunoglobulin E (IgE) with an essential role in the
differentiation of B-cells®® and MARCH1, which downregulates the surface
expression of major histocompatibility complex (MHC) class Il molecules®'. In the top
proteins we can single out CD19, CD21, and HLA-DR, well-known markers of B cells®.
In addition, the relative weights of IgD and IgM in factor 33 are coherent with the
repartition already described for naive B-cells®. Finally, among the top TF candidate
regulators of factor 33, Early B-cell Factors (EBF3 and EBF1)*® and NF-kB proteins
(REL and RELA) stand out as regulators of the top genes of the same factor. Of note
these TFs play an essential role in B-cell development, maintenance, and function®.

For memory B cells (factor 44), Mowgli extracts as top genes: IGHA1 and IGKC, part
of immunoglobulin complexes® and JAM3, belonging to the Immunoglobulin
superfamily and already studied in the context of B cell homing and development®*
%, The top proteinsinclude the well-known B cell markers CD19, CD21, and HLA-DR*®,
In addition, as observed before for naive B cells, the relative weights of IgD and IgM
in factor 44 are coherent with the repartition already described for memory B-cells®.
In the top TFs emerging from our motif analysis and targeting the top genes we
finally find RELA, TCF4 and MAX::MYC, known to be involved in the transcriptional
regulation of memory B cell differentiation®.

Finally, in CD569™ NK cells (factor 2), Mowgli detects at top genes: NCAM1 (aka CD56),
the go-to marker for NK cells®®; KLRF1 and KLRD1, genes of the KLR family of
receptors controlling NK cell activity®’; GZMB, involved in NK-cell mediated
cytotoxicity®®; SLAMF7, mediating NK cell activation®. Top proteins include CD56,
the canonical marker of NK cells®®, but its weight is lower than that of CD16, which is
coherent with the expression profile of CD16+CD56%™ NK cells®®. Regarding TF
candidate regulators, we detect EOMES and TBX21 (aka T-bet), which are critical to
NK-cell differentiation’, Maf-F, having a key role in the regulation of NK cell effector
functions by IL-27, and JUNB::FOSB, early activator protein (AP)-1 TFs that regulate

10
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NK-meditated cytotoxicity’>"2 Finally, a strong regulatory program seems to emerge
here with four of the top candidate TF regulators for factor 2 (MGA::EVX1, EOMES,
TBX21, and JDP2) targeting four of the top genes of the same factor (Clorf21,
ILI8RAP, PTGDR and SLAMFT7).

Conclusions

Multiple technologies allowing the multi-omics profiling of the same set of cells are
currently available. We thus need integration methods able to jointly learn from
multiple omics data profiled on the same cells.

In this article we introduced Multi-Omics Wasserstein inteGrative analysls (Mowgli),
an integrative method for paired multi-omics data that enables rich biological
interpretation for any type and number of omics. We then in-depth benchmark
Mowgli’s cell embedding and clustering performance with respect to the state-of-
the-art in controlled settings derived from scCAT-seq profiling of cancer cell lines.
Mowgli outperforms in this benchmark the state-of-the-art showing its high
potential even in challenging conditions. We then considered more complex and
heterogeneous data profiled with CITE-seq and 10x Genomics Multiome
technologies. On these data, Mowgli performed comparably with the state-of-the-
art, with no method clearly outperforming others. Finally, regarding the biological
interpretability, once tested on TEA-seq data, corresponding to paired scRNA,
ScATAC, and surface protein profiling, Mowgli produces biologically meaningful
representations superior to those of the state-of-the-art.

A major limitation affecting this benchmark and all other focused on paired multi-
omics integration corresponds to the lack of a high-quality biological annotation of
the cells. While in some cases Fluorescence-activated cell sorting (FACS) could
represent a clear solution for an independent annotation of the cells, paired multi-
omics data with this type of annotation are lacking in the literature.

Concerning then Mowgli’s limitations and possible future extensions, it would be
interesting to extend Mowgli to deal with batch correction once integrating paired
multi-omics data. Indeed, most recent large scale paired multi-omics data are
profiled in different centers thus creating batch correction issues. In addition,
Mowgli does not contain a straightforward approach to define the number of latent
dimensions. This problem has been however extensively studied in NMF literature
and users can rely on classical tools like the cophenetic coefficient or the elbow
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method. At the same time, Mowgli is fairly robust to changes in the number of latent
dimensions (k) thus suggesting that small changes in k£ will not affect its
performance. Finally, as OT is inherently expensive to compute, Mowgli requires GPU
computations for the larger datasets presented in this article. However, the
availability of GPUs is nowadays a standard in research centers and this will be
further enhanced in the future once larger single-cell datasets will be available.

Methods

Notations

Let us consider n cells, measured across several modalities. Each modality P has "%
mpXn

features (e.g. genes). Let us denote Al € Ry™ the dataset for modality P.

Additionally, we impose each column of A(®)to sumto 1, i.e. be a discrete probability

distribution.

Optimal Transport
Optimal Transport (OT), as defined by Monge*® and Kantorovich™, aims at finding a

coupling P between two probability distributions a and b that minimizes the cost of
transporting one distribution to the other. In the discrete case, the classical OT
distance, also known as the Wasserstein distance, between m-dimensional
histograms @ = (a1,...,am)andb = (b1, .., bm)is defined as

OT(a b min Z Pk gckg 2)

PGH(a b)

I(a,b) = {P ¢ Rmxm such that Z Py = a;, and Z Pyy = bg}
where J

The coupling P € II(a,b) represents how the mass in the discrete probability
distribution a is moved from one bin (e.g. gene) to another one in order to transform
ainto b.

The ground cost € €
for transporting mass from one feature (e.g. gene) to another. Hence, C should be

Rmxm . . . . .
is a pairwise distance matrix that encodes the penalty

chosen in such a way that similar bins (e.g. genes) k and ¢ have a low cost Ck.t. Here,
for a certain omic P, we define C in a data-driven way as the matrix of pairwise
Pearson correlation distances between the features, i.e. the rows in our dataset A®)
.In other words, denoting Ut € R and e € RY two rows in our dataset,
Cre=1- i __ak’w — ’(_L_g>

’ [ — U ll2]lue — Uell2
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where Uk is the mean of the elements of ux and (T ¥) = >_; Ti¥ijs the dot product.
This choice of ground cost gave best results in our previous work?>?,

Due to the high-dimensionality of single-cell data, we use the entropic regularization
of OT, a fast and GPU-enabled approximation of classical OT computed using the
Sinkhorn algorithm™:

Pell(a,b)

I

OT.(a,b)= min Y Py Cre—cE(P) (3)
k0

where the entropy E is defined as Z* * X € R = =3 2k Xhilog X,

If ¢is setto zero, (Eq3) corresponds exactly to classical OT (Eg2). Increasing values

of € correspond to a more diffused coupling P. In previous work, we showed the

entropic regularization of OT to improve similarity inference between single-cell

omics profiles compared to classical notions of distance®.

As explored in®, entropic regularization is expected to control the systematic noise

due to technical dropouts and to the stochasticity of gene expression at the single-

cell level. In addition, more diffused couplings increase the exchange of mass

between features. This enables OT to leverage the relationships between features

(e.g. genes), motivating further its application to single-cell data.

Mowgli
mp Xk
We aim to decompose each matrix A(®) as the product of a matrixH(p) cRL” (the

modality-specific dictionaries) and W e R]—ixn (the embeddings, shared across
modalities). The integer k is the number of dimensions of the latent space and should
be small compared to the number of features. We use the entropic regularization of
OT as a reconstruction loss to compare H® TV to the reference data A®),

In addition, we require the columns of H® TV to sum to 1, i.e. belong to the simplex.
We thus impose that the columns of H®) sum to one, and that the columns of W
sum to one. Following Rolet et al.*?, we use the entropy function E defined
previously, with a value of —oo when columns do not sum to one.

Combining the reconstruction and the entropy terms yields the loss

> DD OT(H Py, af) — p, E(HY) —pE(W) | . (4)

p J
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Note that for the sake of readability, we write OT< for all P, but this loss actually
depends on an omic-specific ground cost C(®), which itself depends on A®) (see Eq3).
The parameters Pp; K control the sparsity of the columns of H® and W. In order to

make these parameters more comparable across omics and datasets, we define

1 1

. d e+ -
Pp Pp and i log k x n'u.

- logm, x k
Default values of Prna = 0.01 padt = 0.01 patac = 0.1 and it = 0.001 yielded best
results across experiments. For Liu and datasets derived from Liu, we run the method

with 5 factors. For other datasets, we choose 50 factors (see Supp Figure 7).

Similarly to Rolet et al.*, we alternate between minimizing (Eq4) on H® and W. One
can show that these smooth minimization problems on H () and W are equivalent
to the following smooth minimization problems on new dual variables G®). These
problems can be solved using standard optimization methods, and the method of
choice is L-BFGS, a limited-memory quasi-Newton method.

e Optimizing H®). We solve the following smooth minimization problem:

min j (OTé(gﬁp),aY’))) — pp(—E)* (=GP'W T /py)

Then, we update the primal variable as follows:

H®) = softmax(—GPWT /p,)

The column-wise softmax is defined as:
exp(Xi ;)

>_i exp(Xi ;)

softmax : X € R™*X" &

e Optimizing W. We solve the following smooth minimization problem:

. w0V g e [ L )T )
min ZOTg(gj ,a) | = du(—E) > HWTGE
p J

Then, we update the primal variable as follows:

W= softmax(—i > HOTE0)

Here, OT* and (—E)* denote the Legendre duals of the OT: and — E functions, and
their smooth closed form expressions are defined in Rolet et al.*. In the
subproblems defined above, the coefficients Prand  parametrize softmax functions,
and hence control the sparsity of distributions. When £r tends to zero, the softmax
behaves like an argmax and the distributions tend to Diracs.
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The code isimplemented in Python and relies on PyTorch™ for matrix operations on
the GPU and on Muon* and Scanpy* to handle single-cell multimodal data.

MOFA+
We compare Mowgli to MOFA+ a variational inference method analogous to sparse

PCA for multi-omic data. We use the R interface MOFA2 with default training
parameters. MOFA+ provides a parameter drop_factor_threshold designed to keep
only informative factors, but we found that in practice it removed important
information. For example, the benchmark in Zuo and Chen*® only kept one factor for
MOFA+, which is not enough to represent cellular heterogeneity in the data. We thus
choose to keep 5 factors for Liu and the datasets derived from Liu, and 30 factors for
the other datasets. These parameters gave the best results overall (see Supp Figure
8).

Seurat v4
We compare Mowgli to Seurat v4'> which uses Weighted Nearest Neighbors to

integrate multi-omics data. We use the R interface Seurat with default parameters.

Integrative NMF
We implemented a baseline NMF-based integration method by concatenating the

features from the different omics and solving the optimization problem with

positivity constraints:
arg min |A— HW]|,.

HERTXk,WERIj_X”
We implemented this approach using the TorchNMF package. As with MOFA+, we
chose the number of factors that gave the best results overall (see Supp Figure 9).

Note that this is almost equivalent to intNMF’® with & = 1, which minimizes instead

Zp ”A(p) o H(p)W”?. However, on the considered datasets, the intNMF package

was too slow to be able to include it in the benchmark.

Data generation
Mixed in RNA. We simulate a dataset where one modality confuses two populations,

while the other can separate them. To do so we replace the RNA profiles of all HCT
cells with RNA profiles of random HelLa cells. ATAC profiles are left untouched.

Mixed in both. We simulate a dataset where the two modalities each confuse two cell
populations, but separate two others. This makes the two omics complementary. To
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do so we replace the RNA profiles of all HCT cells with RNA profiles of random Hela
cells. Then, we replace the ATAC profiles of all K562 cells with ATAC profiles of
random Hela cells.

Sparse. We simulate high dropout noise by randomly replacing 50%, 70% ot 90% of
the values with zeros. Since the data is already sparse, the final sparsity is 82%, 90%
and 96%.

Rare population. We simulate the presence of a rare population by keeping only 10
randomly chosen Hela cells.

Data preprocessing
All preprocessing was performed using the Scanpy** and Muon* Python packages.

RNA preprocessing. Quality control filtering of cells was performed on the proportion
of mitochondrial gene expression, the number of expressed genes, and the total
number of counts (using Muon'’s filter_obs). Quality control filtering of genes was
performed on the number of cells expressing the gene (using Muon’s filter_var).
Cells were normalized to sum to 10,000 (using Scanpy’s normalize_total), then log-
transformed (using Scanpy’s log1p). The top 2,500 most variable genes (1,500 for the
Liu dataset) were selected for downstream analysis (using Scanpy’s
highly_variable_genes with flavor="seurat’).

ATAC preprocessing. Quality control filtering of cells was performed on the number
of open peaks and the total number of counts (using Muon’s filter_obs). Quality
control filtering of peaks was performed on the number of cells where the peak is
open (using Muon’s filter_var). In Liu, TEA, and 10X PBMC, cells were normalized to
sum to 10,000 (using Scanpy’s normalize_total), then log-transformed (using
Scanpy’s loglp). In OP Multiome, cells were normalized using TF-IDF (using Muon’s
tfidf) to follow the preprocessing chosen by its authors. The most variable peaks
were selected for downstream analysis (using Scanpy’s highly_variable_genes with
flavor="seurat'). Due to differences in the data’s distribution across datasets, we
chose to keep 1,500 peaks in Liu, 5,000 peaks in PBMC, and 15,000 peaks in OP
Multiome and TEA.
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ADT preprocessing. Since the number of proteins is small and the data is less noisy
than RNA or ATAC, no quality control or feature selection was performed. The data
was normalized by Center Log Ratio (using Muon’s clr).

Data analysis
Gene Set Enrichment Analysis (GSEA). The gProfiler API"" was used through Scanpy’s

enrich. Custom sources GO:CC, GO:MF, GO:BP, Azimuth, and ImmuneSigDB were
retrieved from the Enrichr website’®. Gene sets enriched with adjusted p-values
under 0.05 (with Bonferroni correction) were selected for further analysis. To make
genes comparable, we normalized rows of the matrix H ("% to 1. The 150 top genes
for every factor were then used as an unordered input to gProfiler.

Motif Enrichment Analysis. Signac™ was used to perform Motif Enrichment Analysis,
using the JASPAR2022 motif database®. To make peaks comparable, we normalized
rows of the matrix H (7t to 1. The 100 top peaks for every factor were used as input
to Signac’s FindMotifs. The union of the top peaks across factors constitutes the
background.

Visualization. To visualize the latent representation of cells in MOFA+, integrative
NMF, and Mowgli’s models, we computed kNN graphs (k = 20) with the euclidean
distance between the cells’ low-dimensional embeddings (using Scanpy’s
neighbors). We used these graphs to compute 2-D UMAP* projections (using
Scanpy’s umap). For Seurat v4, 2-D UMAP projections based on WNN graphs were
performed using Seurat v4’s function RunUMAP.

Clustering. For Mowgli, integrative NMF, and MOFA+, we clustered datasets using the
Leiden algorithm® with varying resolutions (using Scanpy’s leiden). Similarly to
UMAP visualization, the inputs of the Leiden algorithm were the previously
computed kNN graphs. For Seurat v4, Leiden clustering was performed using Seurat
v4’s function FindClusters.

Evaluation metrics

Silhouette score. For each sample, the silhouette width is defined as #(Zb) wherea
is the mean distance of the sample to other samples of the same cluster and the b is
the mean distance of the samples to samples from the nearest cluster. The
silhouette score is the mean of silhouette widths across samples. The silhouette
score varies between -1 and 1. We used Scikit-learn’s implementation
silhouette_score®!.
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kNN purity score. The kNN purity score measures the average proportion of a
sample’s nearest neighbors that share the sample’s cluster annotation. It thus varies
between 0 and 1.

Adjusted Rand Index. The Rand Index defines the similarity between a ground truth
annotation and an experimental clustering. The ARl is then defined as

_ RI-E(RI)
ARI = max(RI)—E(RI)

and varies between -1 and 1, with 0 representing a random clustering. We used
Scikit-learn’s implementation adjusted_rand_score.

Specificity

MOFA+ was applied with 15 factors, which are enough to represent the data (see
Supp Figure 8). Mowgli was applied with 50 factors. In both datasets, a coarse Leiden
clustering was applied (using Scanpy’s leiden with resolution 0.2). In both datasets,
each cluster was assigned a cell type based on the expression of the canonical gene
and protein markers (see Supp Figure 1). To confirm this annotation, Azimuth was
run on the RNA signal of the dataset (using the Azimuth web tool and the PBMC
reference). The agreement of the three independent annotations is confirmed in a
Sankey diagram (see Supp Figure 2). Dendritic cells are absent in our manual
annotations because of the coarseness of the clustering. Likewise, the ADT signal
(see Supp Figure 5) informs us that there is a CD4-CD8- T cell population missed in
all three annotations. For each factor in Mowgli and MOFA+ and each cell type, we
computed (i) the proportion of cells within that cell type with an absolute weight
greater than 1073 (ii) a, the mean weight for cells within that cell type (iii) b, the mean
weight for cells outside of that cell type. For each cell type, we then defined a

specificity score for factori:
a; — b;

specificity; = ———

man CL]‘

The specificity score is thus bounded by 1. See Figure 4C for a visualization of this

information.

Biological interpretation
We added stars in front of biologically interesting elements in Figure 5C. The first

resource we used was the Human Protein Atlas, from which we programmatically
retrieved information about the top proteins and genes. We starred them if they
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were marked as specific to NK cells, Naive B cells, Memory B cells, or Memory CD8 T
cells respectively. In addition, some genes or proteins were starred manually; we
discuss those in the Results and refer to the relevant literature.

We starred gene sets if they matched the considered cell types, e.g. MHC Il protein
complexfor B cells. To reduce the noise in the Immune gene sets, we only considered
gene sets opposing subtypes of the broad cell type considered, e.g.
NAIVE_VS_MEMORY_BCELL_UP.

We starred the TFs if they target one of the top 20 genes. For this, we retrieved TF-
gene links from the Regulatory Circuits database® and considered the Natural Killer
cells, CD19+ B cells, and CD8+ T cells networks.

Availability of data and materials

Package. The Python package  for Mowgli is hosted at
https://github.com/cantinilab/mowgli/ and can be installed easily by running pip

install mowgli.

Reproducibility. Code to reproduce the experiments and figures is available at
https://github.com/cantinilab/mowgli reproducibility/.

Regulatory Circuits. At the time of writing, the Regulatory Circuits website
http://wwl.regulatorycircuits.org/ is down. We recovered the data from the mirror
http://www?2.unil.ch/cbg/regulatorycircuits/FANTOMS5 individual networks.tar .

PBMC. We retrieve a 10X Genomics Multiome (RNA + ATAC) dataset with 9,320 PBMCs.
Datais available at https://www.10xgenomics.com/resources/datasets/pbmc-from-

a-healthy-donor-granulocytes-removed-through-cell-sorting-10-k-1-standard-2-0-0

Liu. We retrieve a scCAT-seq (RNA + ATAC) dataset from Liu et al.® with 206 cells from
three cancer cell lines (HCT116, Hela-S3, K562). Data is available in the
Supplementary Materials of the original publication.

OP-Multiome. We retrieve a Multiome (RNA + ATAC) dataset from the Open Problems
challenge*® and select only the first batch, which contains 6,137 BMMCs. The GEO
accession number is GSE194122 and the data is available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194122 .
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OP-CITE. We retrieve a CITE-seq (RNA + ADT) dataset from the Open Problems
challenge®® and select only the first batch, which contains 4,249 BMMCs. The GEO
accession number is GSE194122 and the data is available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194122 .

BM-CITE. We retrieve a CITE-seq (RNA + ADT) dataset from Stuart et al.> with 29,803
BMMCs. The GEO accession number is GSE128639 and the data is available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128639 .

PBMC TEA-seq. We retrieve a recent TEA-seq (RNA + ATAC + ADT) dataset from
Swanson et al.” with 7,084 PBMCs. The GEO accession number is GSE158013 and the
data is available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158013 .
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Figures legends

Figure 1. (a) Schematic visualization of Mowgli, an NMF-based model with an
Optimal Transport loss; (b) the matrix W of Mowgli can be used for cell clustering
and visualization; (c) The dictionaries H® of Mowgli contain omics-specific weights
for each latent dimension, which can be used for the biological characterization of
the latent dimensions through gene set enrichment or motif enrichment analysis.

Figure 2. (a) Schematic representation of the benchmarking process; (b) The first
three columns of this panel are devoted to silhouette scores, Adjusted Rand Indices
(ARIs), and purity scores for the different methods on six controlled settings derived
from cell lines data. The following four columns provide UMAP visualizations for the
four benchmarked methods (Mowgli, MOFA+, NMF, Seurat v4) on six controlled
settings derived from cell lines data. Different colors in these UMAP plots correspond
to the three groups of cells imposed in the dataset.

Figure 3. (a) Schematic representation of the benchmarking process; (b) The first
three columns of this panel are devoted to silhouette scores, Adjusted Rand Indices
(ARIs), and purity scores for the different methods on five complex paired single-cell
multi-omics data already largely used to benchmark integrative methods. The
following four columns provide UMAP visualizations for the four benchmarked
methods (Mowgli, MOFA+, NMF, Seurat v4) on the same data. Different colorsin these
UMAP plots correspond to the different ground-truth cell type annotations provided
with the data.

Figure 4. (a) Schematic representation of the evaluation process on biological
interpretability; (b) UMAP visualization of Mowgli’s and MOFA+’s embeddings. The
colors correspond to a marker-based cell-type annotation of the cells; (c) average
weights within and outside of a cell type are plotted for each factor of Mowgli (violet)
and MOFA+ (red for the negative part and blue for the positive one). For each cell
type, the best specificity scores are reported in bold.
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Figure 5. (a) UMAP visualization of Mowgli’s embedding with focus on four specific
immune subpopulations (Effector Memory CD8 T-cells, memory B cells, CD569™ NK
cells, naive B cells) for which the UMAP is colored based on factor weights; (b) UMAP
visualization of Mowgli’s embedding colored by factor weight and protein marker
weight for other factors corresponding to specific subpopulations of cells; (c) Top
genes, proteins, gene sets and Transcription Factors (TFs) for the 4 factors visualized
in panel a. Stars denote gene sets and markers pertinent for the immune
subpopulation associated with the factor and TFs targeting the top genes.
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