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Abstract

Development of efficient cell factories that can compete with traditional chemical production processes is
complex and generally driven by case-specific strategies, based on the product and microbial host of
interest. Despite major advancements in the field of metabolic modelling in recent years, prediction of
genetic modifications for increased production remains challenging. Here we present a computational
pipeline that leverages the concept of protein limitations in metabolism for prediction of optimal
combinations of gene engineering targets for enhanced chemical bioproduction. We used our pipeline for
prediction of engineering targets for 102 different chemicals using Saccharomyces cerevisiae as a host.
Furthermore, we identified sets of gene targets predicted for groups of multiple chemicals, suggesting the

possibility of rational model-driven design of platform strains for diversified chemical production.

One sentence summary:
Novel strain design algorithm ecFactory on top of enzyme-constrained models provides unprecedented

chances for rational strain design and development.
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Introduction

The accelerated rise of metabolic engineering, the rewiring of cells metabolism for enhanced production of
metabolites!, and synthetic biology, the assemble of novel synthetic biological components and their
integration into cells?, has enabled the development of microbial strains with increased production
capabilities of chemicals from renewable feedstocks. These engineered microbes, also known as microbial
cell factories (MCF), have been generated for production of multiple specialized compounds, such as
pharmaceuticals®*, biofuels>®, food additives’® and platform chemicals’. Most of these cases have relied
on use of the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae as platform cell factories.
Despite success in development of many processes, complete development of MCFs usually takes several
years of research and costs USD50M, on average, in order to bring a proof-of-concept strain forward for

commercial production'.

As metabolism is a complex and highly interconnected network, the time and resource intensive process of
MCEF development can be alleviated by the use of genome-scale metabolic models (GEMs) together with
computational algorithms, aiming to find non-intuitive gene engineering targets for enhanced production!!.
Several methods for MCF design have been developed in past years and used to drive metabolic engineering

1213 and lactate' in E. coli, and drug precursors in S. cerevisiae

projects such as production of lycopene
cells'>. However, the most widely used methods for MCF design (MOMA'®, FSEOF'?, optKnock'” and
optForce'®) tend to predict extensive lists of gene target candidates, and modelers often find themselves in
need of imposing custom criteria to delimit the number of candidate gene targets to be tested, in order to
reduce the amount of experimental work. Additionally, state-of-the-art GEMs tend to overpredict metabolic
capabilities of cells due to the lack of kinetic and regulatory information in their formulation, hindering
their applicability for further quantitative evaluation and comparison of predicted metabolic engineering
strategies. Kinetic models have also been used for the development of strain design algorithms, such as k-

OptForce!”, however, the limited size of this kind of models impedes prediction of metabolic gene targets

in a genome-scale®.

Here we present a computational method (ecFactory) for prediction of optimal metabolic engineering
strategies, that circumvents the problem of arbitrary selection of the number of gene candidates by
leveraging the vast amount of enzymatic capacity data, together with the improved phenotype prediction
capabilities, of enzyme-constrained metabolic models (ecModels, generated by the GECKO toolbox)*!. The
performance of ecFactory was systematically tested and evaluated by comparing the predictions with
experimental data for multiple study cases. Using this method we identified gene targets for increased

production of 102 different chemicals in S. cerevisiae, enabling identification of gene targets common to
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multiple groups of products, suggesting the opportunity for development of platform strains that can be
used for diverse chemical production. Moreover, our analysis quantitative estimation of enzyme- and
substrate- limitations for production of the 102 studied chemical products. To enable wider utilization of
these results by the community, we established a web-based resource for accessible query and visualization
of the gene target predictions in the context of Metabolic Atlas, and we expect this resource to facilitate

significant advancements in development of yeast MCFs through metabolic engineering.

Results and discussion

Modelling production of 102 chemical products in yeast

A list of 102 industrially relevant natural products, whose metabolic production pathways are known and
reported in the literature, was collected. Products were grouped into 10 different families according to their
chemical characteristics: amino acids (26), terpenes (22), organic acids (15), aromatic compounds (9), fatty
acids and lipids (9), alcohols (8), alkaloids (6), flavonoids (5), bioamines (2) and stillbenoids (1). From
these, 50 products were found to be native metabolites in S. cerevisiae, whilst 52 products were identified
as heterologous, according to an enzyme-constrained metabolic model for yeast (ecYeastGEM v8.3.4)%!. A
summary of the chemical classification of products is shown in Fig. 1A and supp. table S1. Production
pathways were reconstructed for all these heterologous products and incorporated into ecYeastGEM, taking
energy and redox requirements as well as reported kinetic data into account (see Materials and Methods).

All of the 53 reconstructed heterologous pathways are described in supp. table S2.

In silico assessment of production capabilities for 102 chemicals in yeast using metabolic modeling

with enzyme constraints

The production capabilities of S. cerevisiae were quantitatively explored, using both YeastGEM and
ecYeastGEM, by computing optimal production yields for all of the 102 studied chemicals, constrained by
low and high glucose consumption regimes (1 mmol/gDw h; and 10 mmol/gDw h) and biomass production
rates spanning the range between zero and a maximum attainable value, using flux balance analysis (FBA)

simulations??.

As FBA relies on optimality principles, usually assuming maximization of cellular growth as a cellular
objective®, there is a trade-off between biomass formation and accumulation or secretion of products of

interest. Yeast has evolved the ability to switch to mixed respiro-fermentative metabolic regimes when


https://doi.org/10.1101/2023.01.31.526512
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.31.526512; this version posted February 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

nutrients are available in excess, favoring enzymatic efficiency over biomass yield on substrate®*?’. As
ecModels account for a limited enzymatic machinery in cells, different production capabilities are predicted
when changing from low to high glucose uptake rate, in contrast to classic GEMs, that solely rely on
stoichiometric constraints. This additional constraint results in a different production phase-plane as
illustrated by Fig. 1B, i.e., instead of the standard linear trade-off between product formation and biomass
formation there will be a regime where the product formation is limited by the protein constraint.
Furthermore, the phase-plane becomes dependent on the glucose-uptake rate, such that at high glucose
consumption the ecModel predicts a protein-limited regime of production, yielding lower production levels
and biomass formation per unit of glucose. Protein limitations may also arise at low glucose consumption
levels, for cases in which the production pathways for the chemical of interest involve inefficient enzymes
(low specific activity). This introduces enzymatically unfeasible regions in the production space of a cell,
indicated by the grey region in Fig. 1B. A typically protein-constrained production landscape with a region
of difference between YeastGEM and ecYeastGEM predictions in the low glucose regime is shown for the
alkaloid choline in Fig. 1C. In contrast, a production landscape solely governed by stoichiometric
constraints at low glucose levels is shown in Fig. 1D for the polyamine putrescine. Additional examples of

yield plots for chemicals belonging to all studied families can be found in Fig. S1.

Highly protein-constrained products were found by identifying those chemicals whose maximum
production level demands the totality of the available enzyme mass in the model, at low levels of glucose
consumption. In total, 40 out of the 53 analyzed heterologous products were found to be highly protein-
constrained, in comparison to production of native metabolites, for which just 5 products were classified as
part of the same group (Fig. S2A). Furthermore, strong protein limitations arise often for groups of
heterologous chemicals derived from a native pathway with high enzymatic demands, such as terpenes and
flavonoids, derived from the mevalonate pathway. On the other hand, few strongly protein-limited products
were found amongst families connected to native biosynthetic processes, such as amino acids, organic acids
and diverse alcohols (Fig. S2B). Protein constrained models offer the possibility of computing optimal costs
of chemical production both in terms of substrate and required protein mass. Minimal protein and substrate
mass costs per unit mass of product were computed for each of the 102 products (see Materials and
Methods for further details), as has been previously suggested by other computational work®®, Fig. 1E
shows that a positive correlation between these two production costs exists, allowing the identification of
slightly and highly constrained groups of products, with an overrepresentation of native products (amino
acids, organic acids and some alcohols) in the former group, and heterologous chemicals (terpenes,
flavonoids and some aromatic compounds) in the latter. This plot shows that for heterologous products, it

is usually necessary to invest on improving enzyme properties, i.e., increase their catalytic efficiency,
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whereas for native products it is predominantly stoichiometric constraints that should be considered for
minimizing costs. Moreover, it was found that slightly constrained products tend to be lighter, in terms of
molecular weight, than those in the highly constrained group. This is also suggested by substrate costs, as
larger organic molecules require more carbon to be formed, notwithstanding, this also suggests that a
heavier enzymatic burden is needed for assembly of large molecules, as it is likely that additional, and less

efficient, enzymatic steps are involved in their synthesis.

The effect of increasing enzyme catalytic efficiency for improving production levels was explored with
FBA simulations with ecYeastGEM at different activity levels of rate-limiting enzymes. For highly protein-
constrained products, such as the alkaloid psilocybin, a monotonic linear decrease of the substrate cost is
observed when decreasing the total production protein cost by enhancing the activity of the heterologous
tryptamine 4-monooxygenase (PODPA7). Fig. S3A shows that when the PODPA7 catalytic efficiency is
increased by 100-fold, the total oxygen consumption is predicted to increase by 75%, which suggests that
reducing the protein burden of the psilocybin biosynthetic pathway releases protein mass that can be used
by the cell to meet its energy demands by an increased respiratory rate. Overall, this metabolic rewiring
shifts the psilocybin production space in a direction of higher product yields (Fig. S3B). However, the
product yield is still low indicating that other enzymes in the pathway may have to be improved to further
increase yield. A similar behavior was obtained for the case of valencene, a moderately protein-constrained
terpenoid, by increasing activity levels of the sole heterologous limiting enzyme, terpene synthase
(84SC87), from 1 to a 100-fold. A positive correlation was also observed between substrate and protein
costs for this product (Fig. S3C), however, lower slopes in the production cost space were obtained for
higher activity values of S4SC87. Fig. S3D illustrates that increased activity of this limiting enzyme reduces
the enzymatically unfeasible region of the valencene production space, bringing its optimal production line

closer to the stoichiometrically constrained limit (blue and dark red lines).

In sum, model predictions indicate that heavily protein-constrained biosynthetic pathways could result in
the increase of protein and substrate costs of production. This kind of pathways require resources from the
limited cellular enzymatic machinery, hence, the substrate-efficient respiratory pathway for energy
production is compromised in favor of substrate-inefficient fermentative pathways, which reduces the

protein burden necessary for sustaining cellular energy levels.

An integrative constraint-based method for prediction of metabolic engineering strategies
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The flux scanning with enforced objective function algorithm (FSEOF)!? has been extensively used for
identification of metabolic engineering targets in yeast, due to its implicit consideration of the tradeoff
between biomass and metabolite production. It is of particular interest to explore this method in the context
of ecModels as variable energetic and biosynthetic requirements may induce a complete change of the
cellular behavior. Therefore, engineering strategies that minimize the substrate and protein costs for optimal
bio production can be predicted, furthermore, predictions have boosted heme accumulation in yeast cells
by 70-fold”®. In order to ensure predictive robustness and minimizing the number of false positives among
predictions, we revised and systematized this approach and developed ecFactory, a multi-step constrained-
based method for prediction of engineering gene targets for enhanced biochemical production, based on the
principles of FSEOF and on the ability of ecModels to compute enzyme demands for biochemical reaction,
providing systematic criteria to predict an optimal minimal set of modifications for increasing production

of target metabolites.

In summary, ecFactory consists of three basic steps: 1) prediction of gene expression scores, indicating
intensity and directionality of genetic modifications; 2) discard gene targets encoding for unfavorable
enzymes (redundant, low efficiency) and; 3) Obtention of a minimal combination of modifications required
for driving cells from optimal biomass formation to a metabolic production regime. The overall objective
of this method is to obtain a reduced list of gene targets, focusing on the optimal strategies for enhanced
production by taking enzyme allocation and connectivity into account. All the constituent steps of the
ecFactory method are illustrated in Fig. 2 and explained in detail in the Materials and Methods section of

the Supplementary Materials.

Furthermore, the classification of targets according to the characteristics of their respective enzymes
(illustrated by Fig. S4), facilitates a deeper understanding of the predicted optimal metabolic engineering
strategies. The list of 12 gene targets for 2-phenylethanol (Table S4) suggests that, in order to increase
production of this chemical, enzymes that are optimal for providing the necessary metabolic precursors and
cofactors are predicted as targets for overexpression. Knock-down and knock-out targets aim to direct the
metabolic flux towards optimal production while reducing the formation of biomass precursors in excess

(glycerolipids in this case).

Enzyme constraints enable identification of optimal combinations of genetic modifications for 102

chemicals in yeast
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The ecFactory method was used to predict gene targets for enhanced production of each of the 102
chemicals. The method proved to be effective at returning predictions for all cases, while reducing the
number of candidate gene targets at each of its sequential steps. The distributions of the predicted number
of gene targets per product (shown in Fig. 3A) shows the major contribution of classifying targets according
to their enzymatic characteristics (step 2) at reducing the number of predicted OEs, KDs and KOs. On
average the first step of the method (FSEOF), running on ecYeastGEM, predicted 85 gene targets per
product (28 OEs, 42 KDs and15 KOs), the number of targets is then reduced by the following steps by 73%,
as only optimal candidates are returned by the ecFactory algorithm (7 OEs, 9 KDs and 5 KDs per product,
on average). Notably, predictions reveal that increasing production of protein-limited and heterologous
chemicals require significantly more genetic modifications, compared to substrate-limited and native
products (p-values = 1.16x107 and 2.3x107, respectively, under a one-sided two-sample Kolmogorov-
Smirnov test) as shown in Fig. S5. These differences are caused by the large number of gene knock-downs
and knock-outs that are required to change the energy production strategy from cellular respiration to a
fermentative metabolism, so that the limited cellular enzyme capacity can be optimally allocated to the final
production reaction steps, which tend to be inefficient for these kinds of products. A more detailed

presentation of results, by chemical family, method steps, and target types, is available in supp. table S3.

Overall, 150 endogenous genes in yeast are predicted as OE target for at least one of the modeled products;
88 different genes are predicted as KD targets and 129 as KO targets. More than 50% of the targets predicted
for OE, KD and KO are specific to one or two of the 102 products (Fig.3B, Fig. S6A and Fig. S6C).
Nonetheless, small sets of genes are predicted as targets for a high number of products (promiscuous
targets), spanning almost all chemical classifications in this study. Genes encoding for reaction steps in the
pentose-phosphate pathway and pyruvate metabolism, together with PFK2 in the glycolysis pathway, are
predicted as the most common OE targets across products; the most common KD and KO gene targets
encode for enzymes in the TCA cycle, oxidative phosphorylation and synthesis of biomass precursors
(steroids, glycerolipids, nucleotides and amino acids), as shown in Fig. 3C, Fig. S6B and Fig. S6D,
suggesting a global strategy of redirecting carbon flux into heterologous pathways and alternative energy

production mechanisms.
In silico predictions capture successful metabolic engineering strategies in yeast
It was found that 7 out of the 12 predicted gene targets to increase 2-phenylethanol have been previously

engineered in S. cerevisiae, Yarrowia lipolytica and Kluyveromyces marxianus strains with enhanced 2-

phenylethanol production levels**>* (Table S4), indicating that ecFactory predictions can be capable of
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capture targets proposed by rational engineering approaches. As another example of experimentally
validated predictions, the case of spermine is of particular interest. In this case, the ecFactory method was
able to capture 9 of the implemented targets (MAT, ODC, SPE2, SPDS, MEU1 APT2 and PRS for OE;
FMS1 and CAR2 for KO) in a successfully engineered strain for spermidine production, an immediate
precursor of spermine™®. It was also found that the experimental implementation of a heterologous cytosolic

ornithine cycle was resembled by a general predicted overexpression of its native mitochondrial version.

These particular results suggest that the method is able to capture the underlying logic of highly complex
rational engineering approaches that require the coordination of multiple sectors of metabolism, as shown
by Fig. S7. Overall, the predicted gene modifications aim to increase spermine biosynthesis by
overexpression of the whole ornithine cycle, a direct precursor, together with the Yang cycle and some
steps in the pentose phosphate pathway (PPP) in order to increase S-adenosyl-L-methionine, another
important precursor of polyamines. Interestingly, when focusing on the final predictions for this product
(targets in step 3), just 5 of the 8 aforementioned genes were classified as optimal targets for spermine
production (SPDS, ARG8 andARGS5,6 OEs, together with FMS1 and CAR2 KO). This suggests that,
according to enzyme capacity and metabolic connectivity, it is possible to reduce complex rational
metabolic engineering strategies, to fewer modifications on crucial reaction steps in pathways that need to

be rewired and coordinated, one of the purposes for which this method was designed.

In order to validate the quality of the ecFactory predictions, we searched the literature for independent
experimental studies in S. cerevisiae that have been successful at increasing production levels of chemicals
included in our list. Gene modifications validated for diverse chemicals were found to be predicted as
optimal gene targets by ecFactory, shown in Table 1. Interestingly, several of these targets are common to
multiple products. In total, 28 predicted different gene targets were found as experimentally validated across
22 products, which are also part of different chemical classes. The most repeated genes among these targets
correspond to overexpression in the ergosterol, mevalonate, shikimate and polyamine biosynthesis

pathways.

Table 1.- Predicted gene targets with experimental validation.

Product Chemical class Validated overexpressions Validated KD/KOs

amorphadiene™ terpene HMG1,ERG8,ERG12,MVD1,ERG20

artemisinic acid’ terpene HMG1
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B-amyrin terpene ERGY9,ERG20,ERG20,ERG9,HMG1,
ERGS,ERGI13,ERG12,MVDI1

B-ionone* terpene BTSI

Cinnamoyl-tropine’’ alkaloid SPEI

cis,cis-muconate®® organic acid SPE1 ZWF1

a-farnesene® terpene HMG1,ERG20

geraniol* terpene HMGI

glutathione*! amino acid GSHI

Hydroxy-mandelic aromatic ARO1

acid®

malate®? organic acid MDH2

mandelic acid*? aromatic AROI

miltiradiene** terpene BTS1

nootkatone® terpene ERG20,HMG1

ornithine*¢ amino acid GDHI

2-phenylethanol3%-32 alcohol ARO2,PHA2,ARO10,ARO1,ARO4,
ARO7,ZWF1

pyruvate*’ organic acid PDC5,PDC6

2,3 R-R-butanediol*® alcohol PDCI

santalene® terpene HMG1,ERG20

spermine’? bioamine GDH1,SPE2,SPE3,MEU1 FMS1,CAR2

squalene® terpene HMG1,ERG20,ERGY,ERGS8,ERG12,
MVD1

valencene™ terpene HMG1,ERG8,ERG12,ERG20,MVDI

These similarities at the gene and pathway level among predictions for different chemical products, suggest
the existence of metabolic engineering strategies capable of providing the necessary precursors for
increasing production of groups of chemicals. This kind of strategies have been sought in experimental
metabolic engineering, following rational approaches, and have proved to be successful for the development
of platform yeast strains for production of different groups of molecules such as opioids* and other
alkaloids®?, polyketides™ and terpenes**>*. Furthermore, cumulative combination of individual genetic
modifications in a production strain is needed for achieving meaningful flux towards the desired chemical?,
therefore, it is desirable to identify multiple gene targets, encompassing multiple metabolic pathways, that

constitute the chassis for robust and diversified chemical production.
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Gene targets common to all products in a given chemical family were sought for all cases in this study. The
only chemical family with common predicted targets was found to be flavonoids, with 9 KDs (ADO1,
ATP19, IDP1, LPD1, MAE1, MDH2 MET6, PPA2 and SAH1) and 7 KOS (CAR2, FAA, FAA4, FDHI,
RNR1, RNR3 and RNR4). This combination of targets reveals an engineering strategy that decreases the
TCA cycle and respiratory fluxes, the amount of carbon going towards acetyl-CoA and posterior fatty acid
synthesis, synthesis of amino acids derived from 2-oxoglutarate and nucleotides biosynthesis. Altogether,
this shows an optimal way of allocating carbon flux and the limited enzymatic machinery of yeast for the
biosynthetic pathways producing catechin, genistein, kaempferol, naringenin and quercetin. Nevertheless,
the impact of these modifications on other biological processes, such as regulatory networks, is not

accounted for in the metabolic model and should be further assessed.

Model-driven design of platform strains for diverse chemical production

As highly promiscuous gene targets, for all kind of modifications, were found to be predicted for products
present in most of the studied chemical families, other sets of targets common to groups of multiple products
may exist among the ecFactory predictions. In order to systematize the analysis of gene target profiles
across products, the 102 lists of targets were represented as mathematical vectors (see Materials and
Methods section of the Supplementary Materials and Figure 4A for further details). Highly similar gene
expression vectors were identified using the t-distributed stochastic neighbor embedding method (t-SNE),
which is suited for visualization and identification of clusters in high dimensional datasets®. Two-
dimensional representation of t-SNE results facilitated identification of 8 different clusters of target vectors,
representing different groups of products. Product clusters are shown in Figure 4B. Notably, gene targets

common to all products in a group were found for all clusters (Table 2).

Table 2.- Shared gene targets within each cluster of products.

Shared KO Shared KD Shared OE
Cluster Chemical Products targets targets targets
betaxanthin, caffeic acid, vanillin -
glucoside, B-ionone, glycyrrhetinic RNRI, RNR4, SAHI, ARG5,6,
. . . RNR3, CAR2. MET6, LPDI1,
acid, miltiradiene, lycopene,
1 FAA4, FAAL, ADO1, MAEI1, NA
taxadien-0-yl acetate, FDH1 ARG7. MDH?2
protopanaxadiol, genistein, ARGS, ATP19
quercetin, catechin, kaempferol,
patchoulol, oleanolate, lupeol
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B-carotene, cinnamoyltropine, ARA, RNRI, RNR4, IDP1, ARGS,6,
DHA, EPA, astaxanthin, psilocybin, RNR3, CAR2. LPDI, MAEIL,
2 docosanol FAA4, FAAL, MDHI1, ARG7, NA
FDH1 PPA2, MDH2,
ARGS, ATP19
ergosterol, squalene, santalene, PDBI, PDAI,
3 farnesene, amorphadiene, limonene, NA LPP1 PDX1, ERG12,
geraniol, artemisinic acid ERGS, LATI,
MVDI1
4 Itaconic acid, glutamine, proline, NA LPP1 PDBI, PDAI,
putrescine, spermine PDX1, LATI
5 valencene, nootkatone, linalool, - NA ARGS3,6, ARGS ERG12, ERGS,
amyrin MVD1
tryptophan, adipic acid, cis-
6 muconate, hydroxymandelic acid MAEl LPP1 ARO4
ARO4, AROL,
7 phenylalanine, 2-phenylethanol, MAEI LPPI ARO2, SOL3,
mandelic acid, cinnamate GNDI, ZWF1,
PHA2, ARO7
CDC19, BPL1,
LPP1, ARGS,6, SOL3, GNDI1,
8 Free-fatty acids, oleate, palmitoleate NA MAEL, CAR2, PDCI, ACS2,
ARGS8 PPA2, ZWFI1,
ACC1, ALD6

In general, these clusters are composed by products that belong to different chemical families, with the
exception of cluster 3 and 5, composed mostly by terpenes, and cluster 8, formed just by lipid compounds.
Mapping product origin (native or heterologous) and protein limitations information into the clustering
results showed that, clusters 1 and 2 are composed by heterologous and highly protein-constrained products
belonging to different compound classes; terpenes whose production is constrained by substrate availability
tend to group together, in cluster 3; and most native products, despite their protein limitations, do not fall
into the identified clusters. Altogether, this shows that metabolic engineering strategies for the different
product clusters are defined by gene modifications that are related with redirecting flux and energy from
central metabolism to the final specific heterologous pathways. This suggests that shared molecular
characteristics between products (i.e., chemical classification of products) might not be the most decisive
aspect when designing genetic modification strategies for enhanced production of multiple chemicals

(platform or chassis strains).
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In order to understand the particular metabolic rewiring required by each platform strain designed with the
aid of the cluster analysis, turnover rates were calculated for the 12 main precursor metabolites in central
carbon metabolism (D-glucose-6-phopshate, D-fructose-6-phosphate, ribose-5-phosphate, erythrose-4-
phosphate, glyceraldehyde-3-phosphate, 3-phosphoglycerate, phosphoenolpyruvate, pyruvate, acetyl-CoA,
2-oxoglutarate, succinyl-CoA and oxaloacetate)'' using FBA simulations for different scenarios, optimal
biomass formation and optimal production of each of the studied chemicals. Fold-changes were then
computed for each of the precursor turnover rates, by comparing the optimal production flux distributions
to their optimal biomass formation counterpart, for all 102 production scenarios. In this way fold-changes
higher than one indicate that, for increased production, the overall flux towards a precursor should be
upregulated, in comparison to a wild-type metabolic state, while fold-changes lower than one imply that
the flux towards a precursor needs to be down-regulated (see Materials and Methods section in the

Supplementary Materials).

Figure 4C shows that significant upregulation of flux towards erythrose-4-phosphate (E4P) and pyruvate,
moderate upregulation of phosphoenolpyruvate (PEP), a drastic decrease in ribose-5-phosphate (R5P) and
a-ketoglutarate (AKG) turnover rates and, a moderate down-regulation of the flux towards oxaloacetate
(0XO0), acetyl-CoA and succinyl-CoA should be combined to achieve optimal production levels of the
products in clusters 1 and 2. Additionally, it can be seen that fluxes towards precursors located downstream
from pyruvate (TCA cycle intermediates and acetyl-CoA) are needed to be downregulated for products in
these clusters. This can be explained by a lower demand of building blocks, due to the decrease of biomass
formation rate in a production scenario. Moreover, as all products in these clusters were found to be protein-
limited, a predicted coordinated down-regulation of the lower section of central carbon metabolism suggests
that forcing a fermentative regime, in which most of the energy is produced by glycolysis to minimize the
protein burden induced by cellular respiration, thus, leaving room for expression of inefficient heterologous

enzymes, offers the optimal conditions (metabolic mode) for production of these chemicals.

For the case of products in cluster 3, predictions indicate that a metabolic rewiring that induces significant
upregulation of RSP, E4P and pyruvate production, and intense down-regulation of the flux towards and o-
ketoglutarate is needed to improve production of these terpene compounds (Figure 4D), suggesting that an
increased supply of NADPH (produced in the first steps of the pentose phosphate pathway, preceding
ribose-5-phosphate) is needed for these products. The gene target profiles for the bioamines putrescine and
spermine were found to cluster together with their precursor amino acids proline and glutamate, as well as

itaconic acid (cluster 4). Figure S7A shows that genetic modifications common to all products in this cluster
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cause only moderate changes in the turnover rate of central carbon metabolism precursors, mostly for those
in lower glycolysis, indicating that the optimal production mode for these products does not differ
significantly from a wild-type optimal growing metabolic strategy. A strong requirement for increased flux
towards E4P was found to be common to all terpenes, despite the protein limitations involved in their

production pathways, as shown by Figures 4C, 4D and S7B.

Production of native and heterologous products derived from the shikimate pathway, those in clusters 6 and
7, were found to require an increase of flux towards the immediate precursors E4P and PEP, together with
enhanced NADPH supply, provided by an increased flux to RSP, and a reduction of the metabolic turnover
of precursors located downstream of PEP, in order to maximize carbon conversion (Figure S7C). Finally,
significant increase of acetyl-CoA turnover, together with a moderate upregulation of the pentose-
phosphate pathway for increased NADPH flux, was found to be the optimal reprogramming strategy for
production of free fatty acids, oleate and palmitoleate (Figure S7D), resembling previous successful work

in yeast cells®®.

The set of common target predictions for a given cluster of products provides a modulated gene expression
program capable of rewiring central carbon metabolism for increased production of key precursor
metabolites. Implementation of these predictions in yeast cells can be used to drive the development of
platform strains, specialized in providing the production scaffold for multiple chemicals. Platform strains
can then be transformed into product-specific ones by introducing the necessary heterologous genetic
components. This platform-based procedure will potentially reduce the resources and efforts involved in

the development of next-generation cell factories.

Web-based resources for exploration of metabolic engineering targets in S. cerevisiae

Predicted gene targets for increased production of the chemicals in this study were incorporated into
metabolic atlas for visualization in a metabolic network context. Figure 5 shows the gene modifications
for improved patchoulol production in the central carbon metabolism of yeast as an example, where genes
indicated for OE, KD and KO can be found. Furthermore, metabolic maps for other pathways, even in
secondary and intermediate metabolism, are also available. Visualization options for the 102 products can

be found at: www.dev.metabolicatlass.org. Additionally, in order to facilitate the utilization of the

ecFactory method, interactive tutorials for prediction of engineering targets for 2-phenylethanol and heme
production in yeast are available as MATLAB live scripts at:

https://github.com/SysBioChalmers/ecFactory/tree/main/tutorials.
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Conclusions

Here we demonstrated that, by accounting for enzyme limitations, the use of metabolic models for
quantitative prediction in metabolic engineering can be extended and improved. Enzyme-constrained
models enabled assessment of the impact of enzyme capacity on the total protein and substrate costs of
chemical production in cell factories, and reduction of the number of gene engineering targets for
increased production predicted by stoichiometric constraint-based methods to a minimal optimal set of
modifications. The model ecYeastGEM was used to predict gene engineering targets for enhanced
production of 102 chemical products with yeast cells, including native and heterologous biochemicals
with distinct chemical characteristics. Predictions showed to resemble complex engineering strategies that
involve coordinated modulation and coordination of multiple pathways. Notably, supportive experimental

evidence was found in the literature to verify the gene target predictions in 22 of the studied chemicals.

Sets of gene targets common across products were identified for 8 different groups of chemicals, inferred
with a clustering algorithm. Flux balance analysis simulations indicate that, these core genetic
modifications represent the expression tunning profiles, needed to rewire the central carbon metabolism
of yeast towards increased production of the main metabolic precursors required by groups of valuable
chemicals. By visualizing the 8 different rewiring schemes we learned that clustering of products
according to their gene target predictions obeys to combinations of these three basic factors: 1) protein
burden induced by the specific production pathways and its impact on energy production; 2) the
metabolic precursor that provides the main carbon flux for final product formation; 3) products that
require increased NADPH flux levels. Thus, the presented approach suggests the advantages of using of
enzyme-constrained models for design and understanding of platform strains optimized for diverse
chemical production. Nonetheless, expanding the scope and number of chemicals and host organisms for
this kind of large-scale studies might help to unveil additional core principles for rationally engineering of

metabolism.
We envision that the tools and methodology developed in this study will contribute to accelerate
development of robust and efficient microbial strains both for specialized and also versatile production of

valuable chemicals, promoting the conversion from petrol a bio-based economy.
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Figure 1.- Exploration of chemical production in yeast using enzyme-constrained metabolic
modeling. A) Chemical classification of 102 chemicals for in silico prediction. Numbers within
parenthesis indicate number of native products in the different families, those outside the
parenthesis indicate the total number of products in the family. B) Production landscape
predicted by a metabolic model with and without enzyme constraints at low and high glucose
uptake levels. C) Production yield plot for the highly protein-constrained product choline. D)
Production yield plot for the substrate-limited putrescine. E) Predicted substrate and protein cost
of chemical production in yeast. Product origin, chemical classification and molecular weights
are indicated by the characteristics of the 102 markers.
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Figure 3.- Prediction of gene engineering targets for increased production of 102 chemicals in
yeast. A) Distribution of the number of gene targets per product predicted at different steps in the
ecFactory pipeline. Levell, FSEOF-based prediction; Level2, filtering by enzyme characteristics;
Level3, obtention of minimal set of targets for optimal production. B) Distribution of product
specificity of gene targets across 102 chemicals. C) Representation of the presence of the top 10
most common predicted overexpression targets across products and families.
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Figure 4.- Model-driven design of platform strains for diverse chemical production. A)
representation of gene targets for optimal production as mathematical vectors. B) Identification of
clusters of products with similarities in their predicted engineering targets using t-SNE. Chemical
families are indicated as AA, amino acids; Alc, alcohols; Alk, alkaloids; Aro, aromatics; Bio,
bioamines; FAL, fatty acids and lipids; fla, flavonoids; oAc, organic acids; stb, stillbenoids; ter,
terpenes. C) FBA predicts cluster-specific metabolic rewiring strategies. Fold-change in turnover
rate of the main metabolic precursors, compared to wild-type, necessary for optimal production of
the products in clusters 1, 2 and 3.
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Figure 5.- Map of S. cerevisiae’s central carbon metabolism from metabolic atlas. Gene targets
for increased production of the terpene patchoulol are shown in red, for overexpressions; yellow
for down-regulated targets; and gene for predicted gene deletions.
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