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Abstract  

Development of efficient cell factories that can compete with traditional chemical production processes is 

complex and generally driven by case-specific strategies, based on the product and microbial host of 

interest. Despite major advancements in the field of metabolic modelling in recent years, prediction of 

genetic modifications for increased production remains challenging. Here we present a computational 

pipeline that leverages the concept of protein limitations in metabolism for prediction of optimal 

combinations of gene engineering targets for enhanced chemical bioproduction. We used our pipeline for 

prediction of engineering targets for 102 different chemicals using Saccharomyces cerevisiae as a host. 

Furthermore, we identified sets of gene targets predicted for groups of multiple chemicals, suggesting the 

possibility of rational model-driven design of platform strains for diversified chemical production. 

 

One sentence summary:  

Novel strain design algorithm ecFactory on top of enzyme-constrained models provides unprecedented 

chances for rational strain design and development. 
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Introduction 

The accelerated rise of metabolic engineering, the rewiring of cells metabolism for enhanced production of 

metabolites1, and synthetic biology, the assemble of novel synthetic biological components and their 

integration into cells2, has enabled the development of microbial strains with increased production 

capabilities of chemicals from renewable feedstocks. These engineered microbes, also known as microbial 

cell factories (MCF), have been generated for production of multiple specialized compounds, such as 

pharmaceuticals3,4, biofuels5,6, food additives7,8  and platform chemicals9. Most of these cases have relied 

on use of the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae as platform cell factories. 

Despite success in development of many processes, complete development of MCFs usually takes several 

years of research and costs USD50M, on average, in order to bring a proof-of-concept strain forward for 

commercial production10.  

 

As metabolism is a complex and highly interconnected network, the time and resource intensive process of 

MCF development can be alleviated by the use of genome-scale metabolic models (GEMs) together with 

computational algorithms, aiming to find non-intuitive gene engineering targets for enhanced production11. 

Several methods for MCF design have been developed in past years and used to drive metabolic engineering 

projects such as production of lycopene12,13 and lactate14 in E. coli, and drug precursors in S. cerevisiae 

cells15. However, the most widely used methods for MCF design (MOMA16, FSEOF12, optKnock17 and 

optForce18) tend to predict extensive lists of gene target candidates, and modelers often find themselves in 

need of imposing custom criteria to delimit the number of candidate gene targets to be tested, in order to 

reduce the amount of experimental work. Additionally, state-of-the-art GEMs tend to overpredict metabolic 

capabilities of cells due to the lack of kinetic and regulatory information in their formulation, hindering 

their applicability for further quantitative evaluation and comparison of predicted metabolic engineering 

strategies. Kinetic models have also been used for the development of strain design algorithms, such as k-

OptForce19, however, the limited size of this kind of models impedes prediction of metabolic gene targets 

in a genome-scale20. 

 

Here we present a computational method (ecFactory) for prediction of optimal metabolic engineering 

strategies, that circumvents the problem of arbitrary selection of the number of gene candidates by 

leveraging the vast amount of enzymatic capacity data, together with the improved phenotype prediction 

capabilities, of enzyme-constrained metabolic models (ecModels, generated by the GECKO toolbox)21. The 

performance of ecFactory was systematically tested and evaluated by comparing the predictions with 

experimental data for multiple study cases. Using this method we identified gene targets for increased 

production of 102 different chemicals in S. cerevisiae, enabling identification of gene targets common to 
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multiple groups of products, suggesting the opportunity for development of platform strains that can be 

used for diverse chemical production. Moreover, our analysis quantitative estimation of enzyme- and 

substrate- limitations for production of the 102 studied chemical products. To enable wider utilization of 

these results by the community, we established a web-based resource for accessible query and visualization 

of the gene target predictions in the context of Metabolic Atlas, and we expect this resource to facilitate 

significant advancements in development of yeast MCFs through metabolic engineering. 

 

Results and discussion 

 

Modelling production of 102 chemical products in yeast 

 

A list of 102 industrially relevant natural products, whose metabolic production pathways are known and 

reported in the literature, was collected. Products were grouped into 10 different families according to their 

chemical characteristics: amino acids (26), terpenes (22), organic acids (15), aromatic compounds (9), fatty 

acids and lipids (9), alcohols (8), alkaloids (6), flavonoids (5), bioamines (2) and stillbenoids (1). From 

these, 50 products were found to be native metabolites in S. cerevisiae, whilst 52 products were identified 

as heterologous, according to an enzyme-constrained metabolic model for yeast (ecYeastGEM v8.3.4)21. A 

summary of the chemical classification of products is shown in Fig. 1A and supp. table S1. Production 

pathways were reconstructed for all these heterologous products and incorporated into ecYeastGEM, taking 

energy and redox requirements as well as reported kinetic data into account (see Materials and Methods). 

All of the 53 reconstructed heterologous pathways are described in supp. table S2. 

 

In silico assessment of production capabilities for 102 chemicals in yeast using metabolic modeling 

with enzyme constraints 

 

The production capabilities of S. cerevisiae were quantitatively explored, using both YeastGEM and 

ecYeastGEM, by computing optimal production yields for all of the 102 studied chemicals, constrained by 

low and high glucose consumption regimes (1 mmol/gDw h; and 10 mmol/gDw h) and biomass production 

rates spanning the range between zero and a maximum attainable value, using flux balance analysis (FBA) 

simulations22. 

 

As FBA relies on optimality principles, usually assuming maximization of cellular growth as a cellular 

objective23, there is a trade-off between biomass formation and accumulation or secretion of products of 

interest. Yeast has evolved the ability to switch to mixed respiro-fermentative metabolic regimes when 
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nutrients are available in excess, favoring enzymatic efficiency over biomass yield on substrate24–27. As 

ecModels account for a limited enzymatic machinery in cells, different production capabilities are predicted 

when changing from low to high glucose uptake rate, in contrast to classic GEMs, that solely rely on 

stoichiometric constraints. This additional constraint results in a different production phase-plane as 

illustrated by Fig. 1B, i.e., instead of the standard linear trade-off between product formation and biomass 

formation there will be a regime where the product formation is limited by the protein constraint. 

Furthermore, the phase-plane becomes dependent on the glucose-uptake rate, such that at high glucose 

consumption the ecModel predicts a protein-limited regime of production, yielding lower production levels 

and biomass formation per unit of glucose. Protein limitations may also arise at low glucose consumption 

levels, for cases in which the production pathways for the chemical of interest involve inefficient enzymes 

(low specific activity). This introduces enzymatically unfeasible regions in the production space of a cell, 

indicated by the grey region in Fig. 1B. A typically protein-constrained production landscape with a region 

of difference between YeastGEM and ecYeastGEM predictions in the low glucose regime is shown for the 

alkaloid choline in Fig. 1C. In contrast, a production landscape solely governed by stoichiometric 

constraints at low glucose levels is shown in Fig. 1D for the polyamine putrescine. Additional examples of 

yield plots for chemicals belonging to all studied families can be found in Fig. S1.  

 

Highly protein-constrained products were found by identifying those chemicals whose maximum 

production level demands the totality of the available enzyme mass in the model, at low levels of glucose 

consumption. In total, 40 out of the 53 analyzed heterologous products were found to be highly protein-

constrained, in comparison to production of native metabolites, for which just 5 products were classified as 

part of the same group (Fig. S2A). Furthermore, strong protein limitations arise often for groups of 

heterologous chemicals derived from a native pathway with high enzymatic demands, such as terpenes and 

flavonoids, derived from the mevalonate pathway. On the other hand, few strongly protein-limited products 

were found amongst families connected to native biosynthetic processes, such as amino acids, organic acids 

and diverse alcohols (Fig. S2B). Protein constrained models offer the possibility of computing optimal costs 

of chemical production both in terms of substrate and required protein mass. Minimal protein and substrate 

mass costs per unit mass of product were computed for each of the 102 products (see Materials and 

Methods for further details), as has been previously suggested by other computational work28. Fig. 1E 

shows that a positive correlation between these two production costs exists, allowing the identification of 

slightly and highly constrained groups of products, with an overrepresentation of native products (amino 

acids, organic acids and some alcohols) in the former group, and heterologous chemicals (terpenes, 

flavonoids and some aromatic compounds) in the latter. This plot shows that for heterologous products, it 

is usually necessary to invest on improving enzyme properties, i.e., increase their catalytic efficiency, 
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whereas for native products it is predominantly stoichiometric constraints that should be considered for 

minimizing costs. Moreover, it was found that slightly constrained products tend to be lighter, in terms of 

molecular weight, than those in the highly constrained group. This is also suggested by substrate costs, as 

larger organic molecules require more carbon to be formed, notwithstanding, this also suggests that a 

heavier enzymatic burden is needed for assembly of large molecules, as it is likely that additional, and less 

efficient, enzymatic steps are involved in their synthesis. 

 

The effect of increasing enzyme catalytic efficiency for improving production levels was explored with 

FBA simulations with ecYeastGEM at different activity levels of rate-limiting enzymes. For highly protein-

constrained products, such as the alkaloid psilocybin, a monotonic linear decrease of the substrate cost is 

observed when decreasing the total production protein cost by enhancing the activity of the heterologous 

tryptamine 4-monooxygenase (P0DPA7). Fig. S3A shows that when the P0DPA7 catalytic efficiency is 

increased by 100-fold, the total oxygen consumption is predicted to increase by 75%, which suggests that 

reducing the protein burden of the psilocybin biosynthetic pathway releases protein mass that can be used 

by the cell to meet its energy demands by an increased respiratory rate. Overall, this metabolic rewiring 

shifts the psilocybin production space in a direction of higher product yields (Fig. S3B). However, the 

product yield is still low indicating that other enzymes in the pathway may have to be improved to further 

increase yield. A similar behavior was obtained for the case of valencene, a moderately protein-constrained 

terpenoid, by increasing activity levels of the sole heterologous limiting enzyme, terpene synthase 

(S4SC87), from 1 to a 100-fold. A positive correlation was also observed between substrate and protein 

costs for this product (Fig. S3C), however, lower slopes in the production cost space were obtained for 

higher activity values of S4SC87. Fig. S3D illustrates that increased activity of this limiting enzyme reduces 

the enzymatically unfeasible region of the valencene production space, bringing its optimal production line 

closer to the stoichiometrically constrained limit (blue and dark red lines).  

 

In sum, model predictions indicate that heavily protein-constrained biosynthetic pathways could result in 

the increase of protein and substrate costs of production. This kind of pathways require resources from the 

limited cellular enzymatic machinery, hence, the substrate-efficient respiratory pathway for energy 

production is compromised in favor of substrate-inefficient fermentative pathways, which reduces the 

protein burden necessary for sustaining cellular energy levels. 

 

An integrative constraint-based method for prediction of metabolic engineering strategies 
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The flux scanning with enforced objective function algorithm (FSEOF)12 has been extensively used for 

identification of metabolic engineering targets in yeast, due to its implicit consideration of the tradeoff 

between biomass and metabolite production. It is of particular interest to explore this method in the context 

of ecModels as variable energetic and biosynthetic requirements may induce a complete change of the 

cellular behavior. Therefore, engineering strategies that minimize the substrate and protein costs for optimal 

bio production can be predicted, furthermore, predictions have boosted heme accumulation in yeast cells 

by 70-fold29. In order to ensure predictive robustness and minimizing the number of false positives among 

predictions, we revised and systematized this approach and developed ecFactory, a multi-step constrained-

based method for prediction of engineering gene targets for enhanced biochemical production, based on the 

principles of FSEOF and on the ability of ecModels to compute enzyme demands for biochemical reaction, 

providing systematic criteria to predict an optimal minimal set of modifications for increasing production 

of target metabolites. 

 

In summary, ecFactory consists of three basic steps: 1) prediction of gene expression scores, indicating 

intensity and directionality of genetic modifications; 2) discard gene targets encoding for unfavorable 

enzymes (redundant, low efficiency) and; 3) Obtention of a minimal combination of modifications required 

for driving cells from optimal biomass formation to a metabolic production regime. The overall objective 

of this method is to obtain a reduced list of gene targets, focusing on the optimal strategies for enhanced 

production by taking enzyme allocation and connectivity into account. All the constituent steps of the 

ecFactory method are illustrated in Fig. 2 and explained in detail in the Materials and Methods section of 

the Supplementary Materials.  

 

Furthermore, the classification of targets according to the characteristics of their respective enzymes 

(illustrated by Fig. S4), facilitates a deeper understanding of the predicted optimal metabolic engineering 

strategies. The list of 12 gene targets for 2-phenylethanol (Table S4) suggests that, in order to increase 

production of this chemical, enzymes that are optimal for providing the necessary metabolic precursors and 

cofactors are predicted as targets for overexpression. Knock-down and knock-out targets aim to direct the 

metabolic flux towards optimal production while reducing the formation of biomass precursors in excess 

(glycerolipids in this case). 

 

Enzyme constraints enable identification of optimal combinations of genetic modifications for 102 

chemicals in yeast 
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The ecFactory method was used to predict gene targets for enhanced production of each of the 102 

chemicals. The method proved to be effective at returning predictions for all cases, while reducing the 

number of candidate gene targets at each of its sequential steps. The distributions of the predicted number 

of gene targets per product (shown in Fig. 3A) shows the major contribution of classifying targets according 

to their enzymatic characteristics (step 2) at reducing the number of predicted OEs, KDs and KOs. On 

average the first step of the method (FSEOF), running on ecYeastGEM, predicted 85 gene targets per 

product (28 OEs, 42 KDs and15 KOs), the number of targets is then reduced by the following steps by 73%, 

as only optimal candidates are returned by the ecFactory algorithm (7 OEs, 9 KDs and 5 KDs per product, 

on average). Notably, predictions reveal that increasing production of protein-limited and heterologous 

chemicals require significantly more genetic modifications, compared to substrate-limited and native 

products (p-values = 1.16x10-5 and 2.3x10-3, respectively, under a one-sided two-sample Kolmogorov-

Smirnov test) as shown in Fig. S5. These differences are caused by the large number of gene knock-downs 

and knock-outs that are required to change the energy production strategy from cellular respiration to a 

fermentative metabolism, so that the limited cellular enzyme capacity can be optimally allocated to the final 

production reaction steps, which tend to be inefficient for these kinds of products. A more detailed 

presentation of results, by chemical family, method steps, and target types, is available in supp. table S3. 

 

Overall, 150 endogenous genes in yeast are predicted as OE target for at least one of the modeled products; 

88 different genes are predicted as KD targets and 129 as KO targets. More than 50% of the targets predicted 

for OE, KD and KO are specific to one or two of the 102 products (Fig.3B, Fig. S6A and Fig. S6C).  

Nonetheless, small sets of genes are predicted as targets for a high number of products (promiscuous 

targets), spanning almost all chemical classifications in this study. Genes encoding for reaction steps in the 

pentose-phosphate pathway and pyruvate metabolism, together with PFK2 in the glycolysis pathway, are 

predicted as the most common OE targets across products; the most common KD and KO gene targets 

encode for enzymes in the TCA cycle, oxidative phosphorylation and synthesis of biomass precursors 

(steroids, glycerolipids, nucleotides and amino acids), as shown in Fig. 3C, Fig. S6B and Fig. S6D, 

suggesting a global strategy of redirecting carbon flux into heterologous pathways and alternative energy 

production mechanisms. 

 

In silico predictions capture successful metabolic engineering strategies in yeast  

 

It was found that 7 out of the 12 predicted gene targets to increase 2-phenylethanol have been previously 

engineered in S. cerevisiae, Yarrowia lipolytica and Kluyveromyces marxianus strains with enhanced 2-

phenylethanol production levels30–32 (Table S4), indicating that ecFactory predictions can be capable of 
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capture targets proposed by rational engineering approaches. As another example of experimentally 

validated predictions, the case of spermine is of particular interest. In this case, the ecFactory method was 

able to capture 9 of the implemented targets (MAT, ODC, SPE2, SPDS, MEU1 APT2 and PRS for OE; 

FMS1 and CAR2 for KO) in a successfully engineered strain for spermidine production, an immediate 

precursor of spermine33. It was also found that the experimental implementation of a heterologous cytosolic 

ornithine cycle was resembled by a general predicted overexpression of its native mitochondrial version.  

 

These particular results suggest that the method is able to capture the underlying logic of highly complex 

rational engineering approaches that require the coordination of multiple sectors of metabolism, as shown 

by Fig. S7. Overall, the predicted gene modifications aim to increase spermine biosynthesis by 

overexpression of the whole ornithine cycle, a direct precursor, together with the Yang cycle and some 

steps in the pentose phosphate pathway (PPP) in order to increase S-adenosyl-L-methionine, another 

important precursor of polyamines. Interestingly, when focusing on the final predictions for this product 

(targets in step 3), just 5 of the 8 aforementioned genes were classified as optimal targets for spermine 

production (SPDS, ARG8 andARG5,6 OEs, together with FMS1 and CAR2 KO). This suggests that, 

according to enzyme capacity and metabolic connectivity, it is possible to reduce complex rational 

metabolic engineering strategies, to fewer modifications on crucial reaction steps in pathways that need to 

be rewired and coordinated, one of the purposes for which this method was designed. 

 

In order to validate the quality of the ecFactory predictions, we searched the literature for independent 

experimental studies in S. cerevisiae that have been successful at increasing production levels of chemicals 

included in our list. Gene modifications validated for diverse chemicals were found to be predicted as 

optimal gene targets by ecFactory, shown in Table 1. Interestingly, several of these targets are common to 

multiple products. In total, 28 predicted different gene targets were found as experimentally validated across 

22 products, which are also part of different chemical classes. The most repeated genes among these targets 

correspond to overexpression in the ergosterol, mevalonate, shikimate and polyamine biosynthesis 

pathways.  

 

Table 1.- Predicted gene targets with experimental validation. 

Product Chemical class Validated overexpressions Validated KD/KOs 

amorphadiene34 terpene HMG1,ERG8,ERG12,MVD1,ERG20 
 

artemisinic acid3 terpene HMG1 
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β-amyrin35 terpene ERG9,ERG20,ERG20,ERG9,HMG1,

ERG8,ERG13,ERG12,MVD1 

 

β-ionone36 terpene BTS1 
 

Cinnamoyl-tropine37 alkaloid SPE1 
 

cis,cis-muconate38 organic acid SPE1 ZWF1 

α-farnesene39 terpene HMG1,ERG20 
 

geraniol40 terpene HMG1 
 

glutathione41 amino acid GSH1 
 

Hydroxy-mandelic 

acid42 

aromatic ARO1 
 

malate43 organic acid MDH2 
 

mandelic acid42 aromatic ARO1 
 

miltiradiene44 terpene BTS1 
 

nootkatone45 terpene ERG20,HMG1 
 

ornithine46 amino acid GDH1 
 

2-phenylethanol30–32 alcohol ARO2,PHA2,ARO10,ARO1,ARO4,

ARO7,ZWF1 

 

pyruvate47 organic acid 
 

PDC5,PDC6 

2,3 R-R-butanediol48 alcohol PDC1 
 

santalene39 terpene HMG1,ERG20 
 

spermine33 bioamine GDH1,SPE2,SPE3,MEU1 FMS1,CAR2 

squalene49 terpene HMG1,ERG20,ERG9,ERG8,ERG12,

MVD1 

 

valencene50 terpene HMG1,ERG8,ERG12,ERG20,MVD1 
 

 

These similarities at the gene and pathway level among predictions for different chemical products, suggest 

the existence of metabolic engineering strategies capable of providing the necessary precursors for 

increasing production of groups of chemicals. This kind of strategies have been sought in experimental 

metabolic engineering, following rational approaches, and have proved to be successful for the development 

of platform yeast strains  for production of different groups of molecules such as opioids4 and other 

alkaloids51,52, polyketides53 and terpenes39,54. Furthermore, cumulative combination of individual genetic 

modifications in a production strain is needed for achieving meaningful flux towards the desired chemical29, 

therefore, it is desirable to identify multiple gene targets, encompassing multiple metabolic pathways, that 

constitute the chassis for robust and diversified chemical production.  
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Gene targets common to all products in a given chemical family were sought for all cases in this study. The 

only chemical family with common predicted targets was found to be flavonoids, with 9 KDs (ADO1, 

ATP19, IDP1, LPD1, MAE1, MDH2 MET6, PPA2 and SAH1) and 7 KOS (CAR2, FAA, FAA4, FDH1, 

RNR1, RNR3 and RNR4). This combination of targets reveals an engineering strategy that decreases the 

TCA cycle and respiratory fluxes, the amount of carbon going towards acetyl-CoA and posterior fatty acid 

synthesis, synthesis of amino acids derived from 2-oxoglutarate and nucleotides biosynthesis. Altogether, 

this shows an optimal way of allocating carbon flux and the limited enzymatic machinery of yeast for the 

biosynthetic pathways producing catechin, genistein, kaempferol, naringenin and quercetin. Nevertheless, 

the impact of these modifications on other biological processes, such as regulatory networks, is not 

accounted for in the metabolic model and should be further assessed. 

 

Model-driven design of platform strains for diverse chemical production 

As highly promiscuous gene targets, for all kind of modifications, were found to be predicted for products 

present in most of the studied chemical families, other sets of targets common to groups of multiple products 

may exist among the ecFactory predictions. In order to systematize the analysis of gene target profiles 

across products, the 102 lists of targets were represented as mathematical vectors (see Materials and 

Methods section of the Supplementary Materials and Figure 4A for further details). Highly similar gene 

expression vectors were identified using the t-distributed stochastic neighbor embedding method (t-SNE), 

which is suited for visualization and identification of clusters in high dimensional datasets55. Two-

dimensional representation of t-SNE results facilitated identification of 8 different clusters of target vectors, 

representing different groups of products. Product clusters are shown in Figure 4B. Notably, gene targets 

common to all products in a group were found for all clusters (Table 2). 

 

Table 2.- Shared gene targets within each cluster of products. 

 

Cluster 

 

Chemical Products 

Shared KO 

targets 

Shared KD 

targets 

Shared OE 

targets 

 

 

 

1 

betaxanthin, caffeic acid, vanillin -

glucoside, -ionone, glycyrrhetinic 

acid, miltiradiene, lycopene, 

taxadien-α-yl acetate, 

protopanaxadiol, genistein, 

quercetin, catechin, kaempferol, 

patchoulol, oleanolate, lupeol 

 

RNR1, RNR4, 

RNR3, CAR2. 

FAA4, FAA1, 

FDH1 

 

SAH1, ARG5,6, 

MET6, LPD1, 

ADO1, MAE1, 

ARG7, MDH2, 

ARG8, ATP19 

 

 

 

NA 
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2 

-carotene, cinnamoyltropine, ARA, 

DHA, EPA, astaxanthin, psilocybin, 

docosanol 

RNR1, RNR4, 

RNR3, CAR2. 

FAA4, FAA1, 

FDH1 

IDP1, ARG5,6, 

LPD1, MAE1, 

MDH1, ARG7, 

PPA2, MDH2, 

ARG8, ATP19 

 

 

NA 

 

3 

ergosterol, squalene, santalene, 

farnesene, amorphadiene, limonene, 

geraniol, artemisinic acid 

 

NA 

 

LPP1 

PDB1, PDA1, 

PDX1, ERG12, 

ERG8, LAT1, 

MVD1 

4 Itaconic acid, glutamine, proline, 

putrescine, spermine 

NA LPP1 PDB1, PDA1, 

PDX1, LAT1 

5 valencene, nootkatone, linalool, -

amyrin 

NA ARG5,6, ARG8 ERG12, ERG8, 

MVD1 

 

6 

tryptophan, adipic acid, cis-

muconate, hydroxymandelic acid 

 

MAE1 

 

LPP1 

 

ARO4 

 

7 

 

phenylalanine, 2-phenylethanol, 

mandelic acid, cinnamate 

 

MAE1 

 

LPP1 

ARO4, ARO1, 

ARO2, SOL3, 

GND1, ZWF1, 

PHA2, ARO7 

 

 

8 

 

 

Free-fatty acids, oleate, palmitoleate 

 

 

NA 

 

LPP1, ARG5,6, 

MAE1, CAR2, 

ARG8 

CDC19, BPL1, 

SOL3, GND1, 

PDC1, ACS2, 

PPA2, ZWF1, 

ACC1, ALD6 

 

In general, these clusters are composed by products that belong to different chemical families, with the 

exception of cluster 3 and 5, composed mostly by terpenes, and cluster 8, formed just by lipid compounds. 

Mapping product origin (native or heterologous) and protein limitations information into the clustering 

results showed that, clusters 1 and 2 are composed by heterologous and highly protein-constrained products 

belonging to different compound classes; terpenes whose production is constrained by substrate availability 

tend to group together, in cluster 3; and most native products, despite their protein limitations, do not fall 

into the identified clusters. Altogether, this shows that metabolic engineering strategies for the different 

product clusters are defined by gene modifications that are related with redirecting flux and energy from 

central metabolism to the final specific heterologous pathways. This suggests that shared molecular 

characteristics between products (i.e., chemical classification of products) might not be the most decisive 

aspect when designing genetic modification strategies for enhanced production of multiple chemicals 

(platform or chassis strains).  
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In order to understand the particular metabolic rewiring required by each platform strain designed with the 

aid of the cluster analysis, turnover rates were calculated for the 12 main precursor metabolites in central 

carbon metabolism (D-glucose-6-phopshate, D-fructose-6-phosphate, ribose-5-phosphate, erythrose-4-

phosphate, glyceraldehyde-3-phosphate, 3-phosphoglycerate, phosphoenolpyruvate, pyruvate, acetyl-CoA, 

2-oxoglutarate, succinyl-CoA and oxaloacetate)11 using FBA simulations for different scenarios, optimal 

biomass formation and optimal production of each of the studied chemicals. Fold-changes were then 

computed for each of the precursor turnover rates, by comparing the optimal production flux distributions 

to their optimal biomass formation counterpart, for all 102 production scenarios. In this way fold-changes 

higher than one indicate that, for increased production, the overall flux towards a precursor should be 

upregulated, in comparison to a wild-type metabolic state, while fold-changes lower than one imply that 

the flux towards a precursor needs to be down-regulated (see Materials and Methods section in the 

Supplementary Materials).  

 

Figure 4C shows that significant upregulation of flux towards erythrose-4-phosphate (E4P) and pyruvate, 

moderate upregulation of phosphoenolpyruvate (PEP), a drastic decrease in ribose-5-phosphate (R5P) and 

α-ketoglutarate (AKG) turnover rates and, a moderate down-regulation of the flux towards oxaloacetate 

(OXO), acetyl-CoA and succinyl-CoA should be combined to achieve optimal production levels of the 

products in clusters 1 and 2. Additionally, it can be seen that fluxes towards precursors located downstream 

from pyruvate (TCA cycle intermediates and acetyl-CoA) are needed to be downregulated for products in 

these clusters. This can be explained by a lower demand of building blocks, due to the decrease of biomass 

formation rate in a production scenario. Moreover, as all products in these clusters were found to be protein-

limited, a predicted coordinated down-regulation of the lower section of central carbon metabolism suggests 

that forcing a fermentative regime, in which most of the energy is produced by glycolysis to minimize the 

protein burden induced by cellular respiration, thus, leaving room for expression of inefficient heterologous 

enzymes, offers the optimal conditions (metabolic mode) for production of these chemicals. 

 

For the case of products in cluster 3, predictions indicate that a metabolic rewiring that induces significant 

upregulation of R5P, E4P and pyruvate production, and intense down-regulation of the flux towards and α-

ketoglutarate is needed to improve production of these terpene compounds (Figure 4D), suggesting that an 

increased supply of NADPH (produced in the first steps of the pentose phosphate pathway, preceding 

ribose-5-phosphate) is needed for these products. The gene target profiles for the bioamines putrescine and 

spermine were found to cluster together with their precursor amino acids proline and glutamate, as well as 

itaconic acid (cluster 4). Figure S7A shows that genetic modifications common to all products in this cluster 
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cause only moderate changes in the turnover rate of central carbon metabolism precursors, mostly for those 

in lower glycolysis, indicating that the optimal production mode for these products does not differ 

significantly from a wild-type optimal growing metabolic strategy. A strong requirement for increased flux 

towards E4P was found to be common to all terpenes, despite the protein limitations involved in their 

production pathways, as shown by Figures 4C, 4D and S7B. 

 

Production of native and heterologous products derived from the shikimate pathway, those in clusters 6 and 

7, were found to require an increase of flux towards the immediate precursors E4P and PEP, together with 

enhanced NADPH supply, provided by an increased flux to R5P, and a reduction of the metabolic turnover 

of precursors located downstream of PEP, in order to maximize carbon conversion (Figure S7C). Finally, 

significant increase of acetyl-CoA turnover, together with a moderate upregulation of the pentose-

phosphate pathway for increased NADPH flux, was found to be the optimal reprogramming strategy for 

production of free fatty acids, oleate and palmitoleate (Figure S7D), resembling previous successful work 

in yeast cells56. 

 

The set of common target predictions for a given cluster of products provides a modulated gene expression 

program capable of rewiring central carbon metabolism for increased production of key precursor 

metabolites. Implementation of these predictions in yeast cells can be used to drive the development of 

platform strains, specialized in providing the production scaffold for multiple chemicals. Platform strains 

can then be transformed into product-specific ones by introducing the necessary heterologous genetic 

components. This platform-based procedure will potentially reduce the resources and efforts involved in 

the development of next-generation cell factories. 

 

Web-based resources for exploration of metabolic engineering targets in S. cerevisiae 

 

Predicted gene targets for increased production of the chemicals in this study were incorporated into 

metabolic atlas for visualization in a metabolic network context. Figure 5 shows the gene modifications 

for improved patchoulol production in the central carbon metabolism of yeast as an example, where genes 

indicated for OE, KD and KO can be found. Furthermore, metabolic maps for other pathways, even in 

secondary and intermediate metabolism, are also available. Visualization options for the 102 products can 

be found at: www.dev.metabolicatlass.org. Additionally, in order to facilitate the utilization of the 

ecFactory method, interactive tutorials for prediction of engineering targets for 2-phenylethanol and heme 

production in yeast are available as MATLAB live scripts at: 

https://github.com/SysBioChalmers/ecFactory/tree/main/tutorials. 
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Conclusions  

 

Here we demonstrated that, by accounting for enzyme limitations, the use of metabolic models for 

quantitative prediction in metabolic engineering can be extended and improved. Enzyme-constrained 

models enabled assessment of the impact of enzyme capacity on the total protein and substrate costs of 

chemical production in cell factories, and reduction of the number of gene engineering targets for 

increased production predicted by stoichiometric constraint-based methods to a minimal optimal set of 

modifications. The model ecYeastGEM was used to predict gene engineering targets for enhanced 

production of 102 chemical products with yeast cells, including native and heterologous biochemicals 

with distinct chemical characteristics. Predictions showed to resemble complex engineering strategies that 

involve coordinated modulation and coordination of multiple pathways. Notably, supportive experimental 

evidence was found in the literature to verify the gene target predictions in 22 of the studied chemicals.  

 

Sets of gene targets common across products were identified for 8 different groups of chemicals, inferred 

with a clustering algorithm. Flux balance analysis simulations indicate that, these core genetic 

modifications represent the expression tunning profiles, needed to rewire the central carbon metabolism 

of yeast towards increased production of the main metabolic precursors required by groups of valuable 

chemicals. By visualizing the 8 different rewiring schemes we learned that clustering of products 

according to their gene target predictions obeys to combinations of these three basic factors: 1) protein 

burden induced by the specific production pathways and its impact on energy production; 2) the 

metabolic precursor that provides the main carbon flux for final product formation; 3) products that 

require increased NADPH flux levels. Thus, the presented approach suggests the advantages of using of 

enzyme-constrained models for design and understanding of platform strains optimized for diverse 

chemical production. Nonetheless, expanding the scope and number of chemicals and host organisms for 

this kind of large-scale studies might help to unveil additional core principles for rationally engineering of 

metabolism.  

 

We envision that the tools and methodology developed in this study will contribute to accelerate 

development of robust and efficient microbial strains both for specialized and also versatile production of 

valuable chemicals, promoting the conversion from petrol a bio-based economy.  
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Main Figures 

 

 
Figure 1.- Exploration of chemical production in yeast using enzyme-constrained metabolic 
modeling. A) Chemical classification of 102 chemicals for in silico prediction. Numbers within 
parenthesis indicate number of native products in the different families, those outside the 
parenthesis indicate the total number of products in the family. B) Production landscape 
predicted by a metabolic model with and without enzyme constraints at low and high glucose 
uptake levels. C) Production yield plot for the highly protein-constrained product choline. D) 
Production yield plot for the substrate-limited putrescine. E) Predicted substrate and protein cost 
of chemical production in yeast. Product origin, chemical classification and molecular weights 
are indicated by the characteristics of the 102 markers.  
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Figure 2.- Prediction of metabolic engineering targets with ecFactory. A metabolic model with 
enzyme constraints is used for (1) prediction of gene targets for rewiring flux towards increased 
production. (2) Gene targets are classified and filtered according to enzymatic efficiency and 
connectivity. (3) A minimal combination of targets for sustaining optimal production levels is 
obtained. 
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Figure 3.- Prediction of gene engineering targets for increased production of 102 chemicals in 
yeast. A) Distribution of the number of gene targets per product predicted at different steps in the 
ecFactory pipeline. Level1, FSEOF-based prediction; Level2, filtering by enzyme characteristics; 
Level3, obtention of minimal set of targets for optimal production. B) Distribution of product 
specificity of gene targets across 102 chemicals. C) Representation of the presence of the top 10 
most common predicted overexpression targets across products and families. 
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Figure 4.- Model-driven design of platform strains for diverse chemical production. A) 
representation of gene targets for optimal production as mathematical vectors. B) Identification of 
clusters of products with similarities in their predicted engineering targets using t-SNE. Chemical 
families are indicated as AA, amino acids; Alc, alcohols; Alk, alkaloids; Aro, aromatics; Bio, 
bioamines; FAL, fatty acids and lipids; fla, flavonoids; oAc, organic acids; stb, stillbenoids; ter, 
terpenes. C) FBA predicts cluster-specific metabolic rewiring strategies. Fold-change in turnover 
rate of the main metabolic precursors, compared to wild-type, necessary for optimal production of 
the products in clusters 1, 2 and 3. 
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Figure 5.- Map of S. cerevisiae’s central carbon metabolism from metabolic atlas. Gene targets 
for increased production of the terpene patchoulol are shown in red, for overexpressions; yellow 
for down-regulated targets; and gene for predicted gene deletions. 
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