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Abstract 20 

Quantifying the differential abundance (DA) of specific taxa among experimental groups in 21 
microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) 22 
and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we 23 
present BIRDMAn (Bayesian Inferential Regression for Differential Microbiome Analysis), a 24 
flexible DA method that can account for microbiome data characteristics and diverse 25 
experimental designs. Simulations show that BIRDMAn models are robust to uneven 26 
sequencing depth and provide a >20-fold improvement in statistical power over existing 27 
methods. We then use BIRDMAn to identify antibiotic-mediated perturbations undetected by 28 
other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAn 29 
can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA) 30 
dataset, with substantial accuracy improvements over random forests and existing DA tools 31 
across multiple sequencing centers. Collectively, BIRDMAn extracts more informative biological 32 
signals while accounting for study-specific experimental conditions than existing approaches. 33 

  34 
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Main 35 

Advances in sequencing technology and computational methods have enabled researchers to 36 
experimentally characterize microbiomes across wide ranges of biological conditions, including 37 
psychiatric diseases1,2, cancer3,4, and COVID-195,6. However, as the understanding of microbial 38 
effects on human health and disease has increased, the experimental questions, hypotheses, 39 
and concomitant statistics have grown in complexity, with study designs now commonly 40 
involving longitudinal analyses7–9, experimental interventions10–12, and meta-analyses7. Although 41 
such approaches can provide mechanistic insights into the microbiome’s effect(s) on the host, 42 
their conclusions are often limited by the ability to perform valid statistical analyses that are 43 
sufficiently flexible to account for the added experimental complexity. 44 
 45 
One common but critical challenge in these contexts is when population-level heterogeneity 46 
(such as subject-to-subject variation) is confounded by technical variability. For example, 47 
samples originating from the same sequencing center will tend to be more similar to each other 48 
than those sequenced from different centers13. The confounding factors that may explain these 49 
differences make it difficult to determine consistent microbial biomarkers associated with 50 
biological variables or conditions of interest8—an effect compounded by other microbiome data 51 
difficulties, such as high sparsity, high-dimensionality, and compositionality. Moreover, statistical 52 
tools that can properly assess and account for strong structural effects while still indicating 53 
which microbes truly vary between biological conditions are limited to date15. 54 
 55 
Making matters more difficult, disagreement exists about how to benchmark differential 56 
abundance (DA) tools and methods. Previous efforts have commonly focused on comparing the 57 
results of hypothesis testing while accounting for the multiplicity of features through false-58 
discovery-rate (FDR) correction15–17. Studies have demonstrated that tools designed for 59 
differential abundance often report contradictory results with different microbial abundances 60 
among biologically distinct sampling groups19. 61 
 62 
Addressing these challenges requires a more robust statistical framework for benchmarking 63 
differential abundance methods and would benefit from flexible DA modeling approaches. Thus, 64 
we developed BIRDMAn (Bayesian Inferential Regression for Differential Microbiome Analysis), 65 
a flexible computational framework for hierarchical Bayesian modeling of microbiome data that 66 
simultaneously accounts for its high sparsity, high-dimensionality, and compositionality. 67 
 68 
The Bayesian approach to statistical modeling provides unique advantages compared to 69 
frequentist solutions, such as the inclusion of prior information, uncertainty estimation of 70 
parameters, native hierarchical modeling, and edge case smoothing (e.g., estimating log fold 71 
changes when a feature is only present in one group). Implemented within the Stan 72 
programming language (commonly used for designing probabilistic models), BIRDMAn flexibly 73 
enables parameter estimation of all biological variables and non-biological covariates. These 74 
advantages allow us to demonstrate how explicitly modeling population-level effects in 75 
probabilistic BIRDMAn models increases the amount of true biological signal recovered 76 
compared to existing tools on both simulated and real-world datasets. Moreover, the BIRDMAn 77 
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workflow significantly lowers the barrier of entry for differential abundance methods78 
development and implementation. Additionally, to address reproducibility issues of prior DA tool79 
benchmarking, we present a novel approach that employs techniques from compositional data80 
analysis, making the comparison of tools more interpretable and statistically valid. 81 
 82 

83 
Fig 1: Overview of BIRDMAn workflow for customizable differential abundance analysis. A table 84 
of counts by features is modeled using Bayesian probabilistic programming, resulting in credible 85 

intervals of the estimated parameter posterior distributions. The statistical model can be 86 
customized using the Stan probabilistic programming language and fit using the BIRDMAn 87 

Python interface. 88 

Results 89 

BIRDMAn is implemented as a Python interface to the Stan probabilistic programming90 
language, which utilizes Hamiltonian Monte Carlo sampling, one of the state-of-the-art91 
approaches for Bayesian uncertainty estimation20. Users can employ pre-configured model92 
designs or flexibly customize inputs to account for their specific experimental design and93 
biological questions; BIRDMAn then fits and processes these models (Fig 1). The results of94 
these analyses are the posterior distributions of the defined parameters of interest, such as log-95 
fold changes and their uncertainty given the data (see Methods).  96 
 97 
To showcase the statistical properties of BIRDMAn models, we first leverage simulations to98 
evaluate the accuracy of estimating differential uncertainty in the context of realistic biological99 
scenarios. Then, we apply BIRDMAn models on real-world data, demonstrating superiority for100 
resolving subject-level heterogeneity in an antibiotics experiment, as well as alleviating101 
sequencing center-specific effects in a cancer genomics dataset, each while capturing102 
biologically-informative signals. 103 

Simulations demonstrate BIRDMAn model accuracy and precision 104 

A common difficulty in benchmarking differential abundance methods is the lack of ground truth.105 
We typically do not know which microbial taxa are truly increasing or decreasing across106 
experimental conditions. To gain insights into the robustness of BIRDMAn models, we107 
performed a data-driven simulation of a case-control microbiome dataset with one binary108 
covariate, large batch effects (10 features, 10 batches, and 300 samples), data overdispersion,109 
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and known differentials associated with case status (see Methods) (Fig 2a). We then used 110 
BIRDMAn to estimate the model parameters for each feature and compared the Bayesian 111 
posterior estimates with the true value, finding that BIRDMAn models recovered the ground 112 
truth differentials with high accuracy and precision (Fig 2b) while outperforming other tools in 113 
terms of root mean square error (RMSE) (Fig 2c). This highlights how BIRDMAn model 114 
customization permits more accurate estimations of differentials. 115 
 116 
One advantage of Bayesian models is that they can leverage posterior estimates to summarize 117 
the uncertainty of these differentials, taking into account the sample size and the sequencing 118 
depth. As expected, we show that when BIRDMAn models are fitted on larger sample sizes, the 119 
uncertainty decreases, highlighting how incorporating more data, and avoiding rarefaction, 120 
enables a more accurate estimation of the differentials (Fig 2d). Furthermore, we show that 121 
decreasing the sequencing depth also increases the uncertainty, highlighting how rarefaction 122 
could degrade parameter estimates’ precisions in BIRDMAn models (Fig 2e). Since BIRDMAn 123 
can handle variable sequencing depths, there is no need to perform rarefaction before model 124 
fitting, which is desirable when analyzing microbiome datasets21.  125 
 126 
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 127 
 128 
Fig 2: (a) Robust Aitchison principal components plot of the simulated data, showing the large 129 
separation by batch effect. Simulations of 10 batches (B1 to B10) of microbiome results, each 130 

containing 10 features (F1 to F10), where each feature has a true differential abundance 131 
between cases and controls that is the same for each batch, and also a random per batch bias. 132 
(b) Recovery of the true simulated log ratio between cases and controls for each feature (black 133 
dots), with credible intervals on average centered on the true log ratio (blue bars). (c) Superior 134 

performance of BIRDMAn over other differential abundance methods in minimizing the RMSE of135 
the difference between the estimated mean posterior log ratio between cases and controls, 136 

revealing a >20-fold improvement in RMSE over the nearest competitor, DESeq2. (d) Estimated 137 
distributions of log-fold changes from Bayesian analysis tighten as the number of samples 138 

increases. Dashed line represents the true simulated value for each simulation. (e) Rarefaction 139 
simulation performed using multinomial count generative models (1000 features) at three 140 
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different sequencing depths shows that the variance of the posterior distribution decreases as 141 
depth increases. 142 

BIRDMAn models capture biological signals missed by other methods 143 

during dual-course longitudinal antibiotics 144 

 145 
Another challenge for DA methods is to compare multiple samples from the same subject 146 
longitudinally (repeated measures) since concomitant host-specific variation can obscure 147 
phenotypically-associated microbial changes. Methods designed for longitudinal data22–26 148 
cannot easily account for modeling perturbations and struggle with scaling to high dimensions. 149 
To demonstrate the use of BIRDMAn on repeated measure study designs, we evaluated a 150 
published longitudinal study of two courses of the antibiotic ciprofloxacin (Cp) (3 subjects, 7 151 
timepoints)27. Notably, this study originally concluded that inter-subject variability drove the 152 
response to antibiotics by examining beta-diversities, which do not account for auto-correlation 153 
effects of repeated measures28 (Fig 3a). Other studies have also highlighted the importance of 154 
properly accounting for the microbial community composition prior to antibiotics when assessing 155 
varying responses29,30, which requires accurate temporal modeling. 156 
 157 
Given BIRDMAn’s flexibility, we constructed a customized DA model that leverages Linear 158 
Mixed Effects models, accounting for repeated measurements from subjects while computing 159 
temporal differences (see Methods). This model design then enabled the exploration of common 160 
microbial community changes associated with antibiotic perturbation, which the originally 161 
published methods could not identify. With the computed log-fold changes over time (Supp Fig 162 
1a), we investigated how consistent antibiotic induced shifts were across subjects. For each 163 
temporal difference, we took the top and bottom 40 OTUs to calculate sample log-ratios, which 164 
were used to predict antibiotics intake31. From these log-ratios, we observed strong, statistically 165 
significant temporal shifts associated with each successive time interval (Supp Fig 1b). 166 
 167 
To determine if existing tools could have identified these timepoint-specific perturbations, we 168 
also developed a multinomial logistic regression classifier based on the BIRDMAn results to 169 
predict the corresponding time interval. We then compared our prediction performances against 170 
classifiers built using ALDEx232, ANCOM-BC33, and DESeq234 results on the same samples, as 171 
well as a classifier built on the center log-ratio transformed table (see Methods). Remarkably, 172 
BIRDMAn-informed classifiers were able to accurately differentiate between the different 173 
treatment groups (accuracy > 0.65) (Supp Fig 1c) and showed substantially better prediction 174 
accuracy compared to all other methods (Fig 3b). We also verified that this superior 175 
performance held across varying numbers of OTUs used in log-ratio calculation (Supp Fig 1d). 176 
Ultimately, these findings show how BIRDMAn can identify clear-cut biological changes that 177 
were missed or obscured by other approaches, highlighting its ability to confirm expected 178 
biological hypotheses. 179 
 180 
We used the sample log-ratios associated with the First and Second Cp applications and plotted 181 
the dynamics over time (Fig 3c, d). Accordingly, we plotted the corresponding derivative log-fold 182 
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changes computed from BIRDMAn (Fig 3e, f) and see that our trajectories match between the 183 
sample log-ratios and the estimated log-fold changes, indicating that our model was able to 184 
successfully capture the overall signal independent of subject. 185 
 186 
The antibiotic used in the original work, Cp, is known to primarily target (though not exclusively) 187 
gram negative bacteria35,36. We thus hypothesized that the differential abundance results should 188 
reflect the longitudinal dynamics of gram negative bacterial abundance.  In the top and bottom 189 
40 most changed taxa after FirstCp, 17.5% of the numerator taxa were gram negative, whereas 190 
27.5% of the denominator were gram negative (Supp Fig 2e).  Given the Cp antibiotic 191 
mechanism, it is likely that gram negative taxa in the denominator decreased which caused the 192 
increased log-ratio37,38 (Figure 2c). We see that there is a sharp decrease in this log-ratio at 193 
FirstWPC, which could be attributed to gut homeostasis37,38.  However, we see a weaker pattern 194 
in the top/bottom 40 microbes after SecondCp, where 2.5% of the numerator taxa were gram 195 
negative and 10% of the denominator taxa were gram negative. In contrast to the FirstCp, the 196 
microbes most affected by SecondCp quickly returned to their original abundances.  197 
Furthermore, we see that the microbes most altered by FirstCp were not affected by SecondCp. 198 
Altogether this hints at newly acquired antimicrobial resistant genes after the application of 199 
FirstCp.  200 
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201 
Fig 3: (a) Robust Aitchison principal components plot of full dataset shows samples cluster 202 

primarily by host subject. (b) Balanced accuracy of multinomial classification of time point by 203 
tool. Differential abundance classifiers were constructed using logistic regression with the log-204 

ratios of the top 40 and bottom 40 OTUs associated with each timepoint as predictors. 205 
Repeated k-fold cross-validation was performed with 5 splits and 10 repeats. The mean 206 
classifier error is at least twice as great with all other differential abundance tools as with 207 

BIRDMAn. Dashed line represents random guessing performance among the seven timepoints.208 
(c, d) Dynamics of sample log-ratios of (c) first Cp course and (d) second Cp course colored by 209 

subject. (e, f) Dynamics of BIRDMAn-estimated log-fold changes associated with (e) FirstCp 210 
effect with preCp as reference and (f) SecondCp effect with Interim as reference. Shaded 211 

intervals represent the 90% credible interval of the estimated posterior distributions. 212 
 213 
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BIRDMAn models mitigate batch effects in cancer microbiome data 214 

To investigate how generalizable BIRDMAn models are with respect to population 215 
heterogeneity, we conducted a meta-analysis using cancer microbiome data derived from The 216 
Cancer Genome Atlas (TCGA). This dataset is known to have large structural batch effects4, 217 
where the samples were processed at multiple centers across North America, resulting in an 218 
artificial separation of cancer microbiomes by sequencing center if not otherwise accounted for 219 
(Fig 4a, Supp Fig 2a)4,39. These effects can make it difficult to determine microbial biomarkers 220 
associated with tumors rather than artifacts of technical variation, but correcting for this could 221 
enable downstream host-microbial cancer analyses. We thus tested how well BIRDMAn models 222 
could extract biological signals from this dataset while accounting for technical batch effects 223 
modeled as random effects. We additionally modeled each microbial feature’s abundance using 224 
this approach to determine the specificity of these microbes for each cancer type (see Methods 225 
and Code). 226 
 227 
Since cancer types are known to have distinct microbiomes4,40, we first confirmed that BIRDMAn 228 
models could extract cancer type-specific differences despite the technical variation observed in 229 
this study. From our log-ratio classification benchmarks, we observe that our custom BIRDMAn 230 
model can detect a substantially stronger differential signature between the cancer types 231 
compared to ALDEx2, ANCOM-BC, DESeq2, and Random Forests (Fig 4b; note the axis log-232 
scaling) after controlling for the batch effects due to the sequencing center (Supp Fig 2c).  233 
 234 
To determine the generalizability of our results, we then constructed a leave-one-center-out 235 
cross-validation benchmark using logistic regression on the BIRDMAn-computed log-ratios. 236 
Four cancer types with at least three represented data submitting centers (head and neck 237 
cancer [HNSC], bladder cancer [BLCA], thyroid cancer [THCA], and cervical cancer [CESC]) 238 
were included in this benchmark. The receiver operating characteristic (ROC) curves 239 
demonstrated strong classification performance (Fig 4c), indicating that BIRDMAn captures 240 
generalizable microbial signals across multiple sequencing centers. Generalizability can be a 241 
major challenge in microbiome studies3, where classifiers become overfitted for individual 242 
cohorts. We observe this with other DA tools (ALDEx2, DESeq2, ANCOM-BC) and even 243 
Random Forests (Supp Fig 2d), where most tools struggle to achieve an area under the ROC 244 
curves (AUROC) of >0.8. BIRDMAn is competitive with these tools, achieving an AUROC >0.9 245 
in HNSC, BLCA, and CESC cancers while achieving the highest predictive accuracy in BLCA 246 
and CESC cancers. The high classifier accuracy leaving out each individual center 247 
demonstrates that no one center’s data strongly affects the classifier accuracy, with the 248 
exception of BI for THCA. 249 
 250 
To investigate the heterogeneity across different cancer types, we next computed Kendall 251 
correlations of BIRDMAn-estimated microbial log-fold changes across all pairs of cancer types. 252 
This analysis revealed similarities among cancer types that we would expect, including strong 253 
similarities between kidney cancer subtypes (KIRC, KICH, KIRP), lung cancer subtypes (LUAD, 254 
LUSC), and gastrointestinal (GI) cancers (COAD, ESCA, HNSC, STAD), Additionally, the 255 
BIRDMAn-informed data suggested some novel associations, such as the similarity between 256 
kidney cancers and liver cancer (LIHC). When clustering the individual microbes’ differentials 257 
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(Supp Fig 2b), we also observed that numerous GI-specific microbes differentiated GI cancers 258 
from other cancer types.  259 
 260 
When focusing on comparing GI cancers to lung cancers, we found that the resulting BIRDMAn 261 
log-fold changes accurately reflected known biology surrounding the niches in which these 262 
microbiomes are commonly found. Specifically, Fusobacterium41, Prevotella42, and Coproccus43 263 
are genera commonly found in the GI tract; conversely, Pseudomonas44, Staphyloccus45, and 264 
Sphingobacterium46 genera include opportunistic pathogens that are commonly found in lung 265 
infections (Fig 4f). We cross-referenced our results against the Tsay et al. cohort that utilized 266 
16S rRNA sequencing to investigate lung cancer. Out of the 469 genera in the TCGA lung 267 
issues, we observed that 39% of these microbes were also observed in the Tsay et al. cohort, 268 
despite known previous discordant findings comparing 16S rRNA sequencing and whole 269 
genome sequencing47,48. Furthermore, when we focus on the top 100 microbes that are 270 
detected to be associated with lung cancer, 70% of the represented genera were observed in 271 
both the TCGA and Tsay et al. datasets. Altogether, this shows how BIRDMAn models can 272 
provide biologically-informative results while properly accounting for and mitigating strong 273 
structural batch effects that currently confound other DA approaches. 274 
 275 
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276 
Fig 4: (a) Whole-genome sequenced cancer microbiome data from TCGA shows strong batch 277 

effects by sequencing center (colored by center; see Supp Fig 2a for per cancer type plots). 278 
Samples are summarized by the 2D kernel density estimate for each center. (b) T-test p-values 279 
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comparing log-ratios of each cancer type vs. all others within each center. Dashed line 280 
represents p=0.05. All differential abundance methods show significant differences with log-281 
ratios to separate the microbes in each individual cancer type from those found in all other 282 

cancer types, but BIRDMAn outperforms other methods in highlighting this difference. (c) ROC 283 
curves for leave-one-center-out cross-validation for four cancer types where at least 3 centers 284 
sequenced that cancer type (BRCA was not included as it was used as reference). Classifiers 285 
were built to predict one-vs-rest for that cancer type. BI = Broad Institute of MIT and Harvard; 286 

BCM = Baylor College of Medicine; HMS = Harvard Medical School; MDA = MD Anderson 287 
Institute for Applied Cancer Science; WUSTL = Washington University School of Medicine. (d) 288 
Multinomial (mean) classification accuracy of classifiers to predict cancer type given the log-289 

ratios computed from the top and bottom 200 taxa associated with each cancer type. Random 290 
Forests classifier, which is frequently used in this field but is not based on differential 291 

abundance, was included as a comparison for this class of methods. Classifications were 292 
performed within each center to remove batch effects from predictions. BIRDMAn outperforms 293 
all other methods, including Random Forests, for all tumor types. (e) Clustermap of Kendall tau 294 

correlation coefficients of pairwise cancer type differentials (breast cancer as reference). (f) 295 
Comparison of lung-associated genera with GI-associated genera. Highlighted genera are 296 

known to be associated with either lung or GI microbiome and show strong directionality in the 297 
BIRDMAn results. (g) Venn diagram of genera present in TCGA lung samples and genera 298 

present in advanced stage lung cancer from work published by Tsay et al. Additionally, the 22 299 
genera represented in the top 100 features associated with TCGA lung cancer cancers are 300 

included. A majority of these genera (16/22) are present in both datasets. 301 

Discussion 302 

Advances in Bayesian computation have lowered the barriers to developing statistical 303 
workflows. To empower microbiome scientists to take advantage of these methods, we 304 
developed and implemented a novel approach to differential abundance based on Bayesian 305 
hierarchical modeling, with advantages highlighted in simulation benchmarks and real-world 306 
datasets. Chiefly, BIRDMAn is designed as a framework for researchers to account for the 307 
statistical constraints specific to their biological questions. We have demonstrated the benefits 308 
of this framework in common biological scenarios involving longitudinal study designs and 309 
sequencing center variation — where BIRDMAn can better correct for technical variation than 310 
existing methods while identifying biologically-relevant signals. In addition to the ability to 311 
construct novel DA models, we presented a robust method for benchmarking and comparing 312 
results from different DA tools. In contrast to previous efforts investigating FDR in simulation 313 
and reproducibility benchmarks19,49,50, we show how to construct sample classifiers from the log-314 
fold change estimates, enabling machine learning techniques such as cross-validation on 315 
biological datasets.   316 
 317 
Another key challenge of DA benchmarking is the absence of “ground truth,” or the true 318 
differentials associated with biological conditions, especially in the presence of strong batch 319 
effects. Simulations with known parameters for batch and biological effects can address this 320 
limitation, and we showed that BIRDMAn models could recover, with high accuracy and 321 
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precision, these parameters and their uncertainty. Additional simulations on parameter 322 
uncertainty further showed decreases with increased sample size and higher sequencing depth, 323 
corroborating previous work and traditional statistical knowledge. 324 
 325 
We then investigated two real-world case studies—antibiotics response/recovery and cancer 326 
microbiome interactions—demonstrating how BIRDMAn can uncover expected and novel 327 
biology. For each dataset, BIRDMAn models were able to account for the inherent effects of 328 
center/subject on individual microbial abundances while, when necessary, accounting for 329 
complex statistical factors (such as, random intercepts, random slopes, overdispersion). To 330 
date, there is no other DA tool that provides a similar and necessary degree of flexible statistical 331 
modeling. Our results on the previously published antibiotics dataset revealed the attenuating 332 
effect of repeated Cp courses on Gram-negative bacteria, with potential implications for clinical 333 
practice using antibiotics. Additionally, BIRDMAn-informed results from the cancer microbiome 334 
dataset could be useful in developing novel diagnostic and therapeutic strategies that target or 335 
perturb cancer-specific features. 336 
 337 
In light of our findings, there are notable assumptions that need to be considered. Specifically, 338 
the choice of prior distributions affects the estimated posterior distributions, especially at low 339 
sample sizes. Although priors allow researchers to include their expertise in their modeling 340 
procedure, it is often the case that an appropriate prior distribution is unknown, requiring 341 
uninformed priors with high uncertainty to be used. However, we note that as more analyses are 342 
performed, their results can provide a rationale for picking future priors—a strong advantage of 343 
the Bayesian approach over non-Bayesian methods. For our purposes, we defined the same 344 
prior distribution for each feature within a dataset, but this can easily be adapted to better model 345 
features with their expected parameter range. We also note that the (common) lack of absolute 346 
abundance data is a limitation in evaluating differential abundance51. Strategies to account for 347 
this, such as in Williamson et al.52, could potentially be translated into BIRDMAn models to 348 
augment the modeling results.  Furthermore, we model the microbial abundances using the 349 
negative binomial approach, which is currently contested as an appropriate model for 350 
sequencing count data53. Still, an advantage of BIRDMAn is that the likelihood function is not 351 
restricted to the negative binomial, and one can exchange it for the Poisson-Lognormal, 352 
Multinomial, or any other count distribution54. 353 
 354 
To summarize, we find that careful statistical consideration during DA analysis enables the 355 
identification of microbe-phenotype associations that are missed by existing tools. The flexibility 356 
of BIRDMAn can thoroughly account for unwanted confounding factors, such as batch and 357 
subject, resulting in higher confidence in reported microbial biomarkers. Moreover, the 358 
presented log-ratio benchmarking approach opens up numerous possibilities for testing 359 
improved machine learning capabilities on microbiome data. Overall, we posit that BIRDMAn’s 360 
flexibility and utility will provide impactful statistical results for complex study designs while 361 
enabling reproducible science in the microbiome field. 362 
  363 
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Methods 364 

Performing Bayesian inference with Stan 365 

Parameter estimation was performed using Bayesian inference. Our approach utilizes Bayes366 
Rule where  represents the parameter space and  represents our collected data:  367 
 368 

.  369 
 370 

Because the evidence term, , is simply a normalizing constant, we can rewrite Bayes’ Rule371 
as follows, substituting terms with their common nomenclature: 372 
 373 

 374 
 375 
Thus, our objective with Bayesian inference is to obtain the posterior distribution by modeling376 
the likelihood function of our data as well as our prior knowledge of the parameters. Absent a377 
model formulation involving conjugate priors, we cannot compute the posterior distribution378 
analytically. Instead, we use Stan to draw samples from the posterior distribution using the No-379 
U-Turn Hamiltonian Monte Carlo sampler20. A series of Markov chains are initialized and380 
allowed to “warm-up” in their exploration of the parameter posterior distributions. Once the381 
defined number of warm-up iterations has concluded, a set number of samples are drawn from382 
each of the chains. Multiple chains are run to ensure that model convergence occurs. 383 
 384 
We implement Bayesian inference using the CmdStanPy interface in Python, calling the C++385 
Stan toolchain for efficient sampling. The warm-up iterations are discarded by default and the386 
sampling iterations are saved for each Markov chain. 387 

Negative binomial model parameterization 388 

We fit counts of each microbe in a dataset according to a negative binomial distribution as an389 
approximation of multinomial logistic regression55. Due to overdispersion, standard count390 
models such as Poisson are inappropriate for sequencing data21. We note that the negative391 
binomial model can be considered an extension to the Poisson model with additional variance392 
components56. 393 
 394 
The negative binomial models used in this work are described by parameters for both mean and395 
overdispersion. This is in contrast to traditional parameters in negative binomial models396 
described by the probability of success and the number of failures before an instance of a397 
success. The former model, often referred to as the “alternative parameterization,” is more398 
amenable to generalized linear modeling through hierarchical models as the mean can be399 
modeled directly.  400 
 401 
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The basic format of the alternative parameterization negative binomial model is described below402 
where  corresponds to the count,  the overdispersion, and  the mean count. 403 
 404 

 405 
 406 

We use a log-link function,  to model the mean where the log mean count, , can be407 
represented by linear terms. To account for variable sequencing depth among samples, we408 
include log sequencing depth as an offset term in our models. 409 

BIRDMAn framework 410 

We developed BIRDMAn as a framework for highly-customizable Bayesian differential411 
abundance modeling. BIRDMAn abstracts much of the Bayesian workflow away for usage with412 
microbiome data. An object-oriented approach allows users to subclass basic models for their413 
custom implementations. BIRDMAn includes, by default, a Negative Binomial model414 
implementation. This can be used without writing any new Stan code or subclassing any415 
BIRDMAn objects. 416 
 417 
BIRDMAn models take BIOM tables57 as input containing the sample and observation IDs.418 
Sample metadata can be provided as Pandas DataFrames. We provide a method,419 
create_regression, with which users can provide an R-style formula to automatically create the420 
design matrix using the patsy Python package. Another method, specify_model, allows the421 
specification of the desired parameters and dimensions to return. This method is used by422 
create_inference to convert CmdStanPy output to ArviZ58 InferenceData objects. 423 
 424 
There are two base classes included with BIRDMAn termed the TableModel and the425 
SingleFeatureModel. The TableModel allows fitting an entire dataset at once, while the426 
SingleFeatureModel allows for fitting individual features. The SingleFeatureModel is427 
advantageous as it allows for highly parallelized workflows. Because there are often hundreds428 
or thousands of features in a microbiome dataset, we note that using multiple CPUs to run many429 
features at once is often more efficient than fitting the entire table. We provide a convenience430 
class, ModelIterator, to iterate through the features in a given table. This class also allows for431 
dividing the table into chunks. This allows users to customize the number of features to fit at432 
once depending on their computational resources. 433 

Simulations 434 

All simulations were performed through the fixed_param option in CmdStanPy. Ground-truth435 
parameters were provided into a negative binomial generative model to simulate data from436 
mean and dispersion parameters. 437 
 438 
For the data-driven simulation, we randomly drew values for batch offset, batch dispersion, and439 

base dispersion parameters. These parameters were fed into a model with ,440 
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. Log sampling depth was simulated from a Poisson-Lognormal distribution with 441 

drawn from . We simulated 300 samples comprising 10 total batches with 10 total442 
features. 443 
 444 
For the variable sample size simulations, we simulated feature counts for 500 samples with445 

, , and . Log sequencing depths were simulated using a Poisson-446 

Lognormal model with  drawn from  where depth varied. 447 
 448 
To simulate variable rarefaction depth, we first drew ground truth intercept and beta values from449 

 and  respectively for 1000 features. These values were used to generate450 
counts for 300 samples through the multinomial distribution. We used the multinomial451 
distribution to enforce the same sampling depth for all samples, simulating rarefaction. 452 

Antibiotics case study 453 

16S data was downloaded from Qiita study 494; we used 16S OTUs picked against the454 
GreenGenes_13.859 reference database at 97% sequence similarity. OTU picking was455 
performed with SortMeRNA60 with Qiita default parameter values. Features present in fewer456 
than 10 samples were filtered. We also removed samples with a total sequencing depth less457 
than 1000. 458 
 459 
To account for the longitudinal nature of this design, we used backwards difference encoding460 
such that each time point was compared to the one immediately before it. We implemented the461 
subject identifiers as a random effect with both random intercepts and random slopes. The462 
posterior draws were centered around the mean. Ranking of OTUs by differentials for log-ratio463 
feature selection was done using the posterior means. 464 
 465 
We performed t-tests comparing the log-ratios between groups of samples at different466 
timepoints. The alternative hypothesis was chosen such that samples from the later time point467 
would have higher log-ratios than those from the initial timepoint due to the anticipated effect of468 
Cp on microbial populations. 469 
 470 
We then implemented multinomial logistic regression, random forest classification, and repeated471 
k-fold cross-validation through scikit-learn for our machine learning approach. Because DESeq2472 
supports contrasts natively, we computed the same contrasts as BIRDMAn for parity. With473 
ALDEx2 and ANCOM-BC, we computed the differentials associated with each timepoint using474 
preCp as reference. For the random forest classifier, we used the CLR-transformed feature475 
table (with a pseudocount of 1) entries as the predictors. All models were also provided one-hot-476 
encoded vectors for subject identifiers. Performance was measured using balanced accuracy.477 
For multinomial logistic regression we used the lbfgs solver with 1000 max iterations. For the478 
random forest classifier we used a set random seed and 100 estimators. We used repeated479 
stratified k-fold cross validation with 5 splits and 10 repeats and a random seed. All other480 
parameters not mentioned were set to the scikit-learn defaults. 481 
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 482 
Posterior draws for timepoint-contrast differentials were analyzed with (1) FirstCp-associated 483 
features with preCp-associated features as reference and (2) SecondCp-associated features 484 
with Interim-associated features as reference. In this way, the posterior distribution reflects how 485 
each Cp course affects the selected bacterial features over time. 486 
 487 
For determining the Gram status of each OTU, we used the BugBase61 web interface. We took 488 
the set intersection of Gram positive and Gram negative features with the features associated 489 
with both FirstCp and SecondCp to determine the Gram status breakdown of both numerator 490 
and denominator features. 491 

TCGA case study 492 

The bacterial TCGA tables were obtained from those processed in Narunsky-Haziza et al.62 and 493 
Poore et al.4 All TCGA sequence data were accessed via the Cancer Genomics Cloud63 (CGC) 494 
as sponsored by SevenBridges (https://cgc.sbgenomics.com) after obtaining data access from 495 
the TCGA Data Access Committee through dbGaP (https:// 496 
dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login). On Qiita64, TCGA WGS host-depleted and 497 
quality-controlled fastq files were used to generate a metagenomic table by direct genome 498 
alignments based on Woltka v0.1.165 against the RefSeq66 release 200 (built as of May 14, 499 
2020). The resulting tables can be found on Qiita under study ID 13722, of which we filtered to 500 
only analyze the bacteria and then were subsequently decontaminated through decontam67 501 
(https://github.com/benjjneb/decontam) (version 1.14.0) following the protocol described in 502 
Poore et al.4 503 
 504 
After initial table generation, we removed samples from data submitting centers with very few 505 
samples. We also filtered our data to only include samples from white, African-American, and 506 
Asian races. Additionally, we only included samples from patients who were alive at the time of 507 
sample procurement and retained only one sample per subject. To filter out lowly prevalent 508 
features, we removed features present in fewer than 50 total samples. To remove samples with 509 
low sequencing depth, we set a threshold of 500 reads. Finally, we included only cancer types 510 
with at least 20 instances in the dataset for statistical power. 511 
 512 
We then built statistical models to model the differential associated with each cancer type. 513 
Because TCGA did not include “normal” samples from healthy individuals, we used breast 514 
cancer (BRCA) tumor samples as reference. Both race68 and gender were also included as 515 
covariates. Data submitting center was incorporated as a random effect (both random intercepts 516 
and random slopes). 517 
 518 
Posterior means were computed for each feature’s association with each individual cancer type. 519 
For each cancer type, we ranked the differentials and used the top and bottom 200 features 520 
associated with that cancer type to compute log-ratios per sample. These log-ratios were used 521 
as predictor variables in our machine learning models. 522 
 523 
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Because not every cancer type was represented in each center, we performed multi-class 524 
classification within centers. For each center, we fit a model to predict cancer type from our log-525 
ratios. This procedure was performed with 5 repeats of stratified 2-fold cross-validation. We 526 
repeated this machine learning process for cancer type differentials from DESeq2, ALDEx2, and 527 
ANCOM-BC. For comparison, we fit a random forest classifier on the CLR-transformed feature 528 
table to predict cancer type as well. 529 
 530 
The leave-one-center-out models were fit using binomial logistic regression with balanced class 531 
weights. For each cancer type, we fit a model on all but one center and used that model to 532 
predict cancer type for the held-out center. We also used the same random forest classifier as 533 
previously described for comparison. 534 

Analysis & visualization software 535 

Analysis of the results in this work were primarily performed through Python (v3.8.13). Pandas69 536 
(v1.1.5) and NumPy70 (v1.22.3) were used for general data analysis. SciPy71 (v1.7.3) was used 537 
for computing statistical tests. For interfacing with multidimensional arrays we used xarray72 538 
(v0.20.1) and ArviZ58 (0.12.1). Machine learning models were fit and cross-validated using 539 
scikit-learn73 (v1.0.2). Python figures were generated using seaborn74 (v0.11.2) and Matplotlib75 540 
(v3.5.1) as well as Matplotlib-venn (v0.11.7). We used biom-format57 (2.1.12) and scikit-bio 541 
(v0.5.6) for statistical analysis of microbiome data structures. 542 
 543 
R analysis was performed using the tidyverse76 packages dplyr (v1.0.9), stringr (v1.4.0), and 544 
ggplot2 (v3.3.6). Phylogenetic visualization was performed using treeio77 (v1.18.0) and ggtree78 545 
(v3.2.0). BIOM tables were read using the biomformat R package (v1.22.0). 546 

Code and data availability 547 

All data used were downloaded from publicly available Qiita studies. The scripts and Stan 548 
models used to analyze these data as well as Jupyter notebooks for the visualizations are 549 
available at https://github.com/knightlab-analyses/birdman-analyses-final. The BIRDMAn 550 
software package is available at https://github.com/biocore/BIRDMAn and the documentation is 551 
available at https://birdman.readthedocs.io/. All analyses in this work were performed using 552 
BIRDMAn v0.1.0. 553 
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Supplementary Figures 754 

755 
Supplementary Fig 1: (a) Phylogenetic tree of all OTUs with a heatmap of posterior means for 756 

each time-interval contrast. OTUs assigned to one of the top 8 most abundant genera are 757 
annotated through the colored strip. (b) When BIRDMAn is used to account for per-subject 758 

variation, log-ratio comparisons of the top 40 OTUs vs. bottom OTUs are associated with the 759 
difference between each time point and the next one. For each of these contrasts, the log-ratios760 

of the samples between the two time intervals were compared using a one-sided t-test. Plots 761 
are annotated with p-values. Different taxa contribute to the log ratios for each contrast. (c) 762 

Overall performance of BIRDMAn classifier on predicting the antibiotics time interval using the 763 
log-ratios. The classifier prediction accuracies shown are aggregated across folds and repeats 764 
from repeated k-fold cross-validation. (d) Accuracy of the multinomial classifier by number of 765 
OTUs used in log-ratio calculations. Points represent mean accuracy across cross-validation 766 
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iterations and shaded areas represent ±1 standard deviation. (e) Distribution of Gram positive 767 
and Gram negative OTUs associated with FirstCp and SecondCp log-ratios. 768 

 769 
 770 

771 
Supplementary Fig 2: (a) RPCA projection of the original feature table subset to each 772 

individual cancer type. Points are colored by data submitting centers, showing that many cancer773 
types exhibit strong separation by batch. (b) Posterior means (CLR) of feature differentials 774 

clustered by cancer type. (c) Log-ratios identified by BIRDMAn separate each tumor type from 775 
all others when stratified by center. Dashed line represents a t-test p-value at p = 0.05. (d) 776 

Performance of leave-one-center-out cross-validation logistic regression classifier AUROC of all777 
methods. 778 
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