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Abstract

Quantifying the differential abundance (DA) of specific taxa among experimental groups in
microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity)
and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we
present BIRDMAN (Bayesian Inferential Regression for Differential Microbiome Analysis), a
flexible DA method that can account for microbiome data characteristics and diverse
experimental designs. Simulations show that BIRDMAn models are robust to uneven
sequencing depth and provide a >20-fold improvement in statistical power over existing
methods. We then use BIRDMAnN to identify antibiotic-mediated perturbations undetected by
other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAN
can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA)
dataset, with substantial accuracy improvements over random forests and existing DA tools
across multiple sequencing centers. Collectively, BIRDMAnN extracts more informative biological
signals while accounting for study-specific experimental conditions than existing approaches.
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Main

Advances in sequencing technology and computational methods have enabled researchers to
experimentally characterize microbiomes across wide ranges of biological conditions, including
psychiatric diseases™?, cancer**, and COVID-19>°. However, as the understanding of microbial
effects on human health and disease has increased, the experimental questions, hypotheses,
and concomitant statistics have grown in complexity, with study designs now commonly
involving longitudinal analyses’®, experimental interventions'®*?, and meta-analyses’. Although
such approaches can provide mechanistic insights into the microbiome’s effect(s) on the host,
their conclusions are often limited by the ability to perform valid statistical analyses that are
sufficiently flexible to account for the added experimental complexity.

One common but critical challenge in these contexts is when population-level heterogeneity
(such as subject-to-subject variation) is confounded by technical variability. For example,
samples originating from the same sequencing center will tend to be more similar to each other
than those sequenced from different centers™. The confounding factors that may explain these
differences make it difficult to determine consistent microbial biomarkers associated with
biological variables or conditions of interest*—an effect compounded by other microbiome data
difficulties, such as high sparsity, high-dimensionality, and compositionality. Moreover, statistical
tools that can properly assess and account for strong structural effects while still indicating
which microbes truly vary between biological conditions are limited to date®.

Making matters more difficult, disagreement exists about how to benchmark differential
abundance (DA) tools and methods. Previous efforts have commonly focused on comparing the
results of hypothesis testing while accounting for the multiplicity of features through false-
discovery-rate (FDR) correction>™’. Studies have demonstrated that tools designed for
differential abundance often report contradictory results with different microbial abundances
among biologically distinct sampling groups™.

Addressing these challenges requires a more robust statistical framework for benchmarking
differential abundance methods and would benefit from flexible DA modeling approaches. Thus,
we developed BIRDMAN (Bayesian Inferential Regression for Differential Microbiome Analysis),
a flexible computational framework for hierarchical Bayesian modeling of microbiome data that
simultaneously accounts for its high sparsity, high-dimensionality, and compositionality.

The Bayesian approach to statistical modeling provides unique advantages compared to
frequentist solutions, such as the inclusion of prior information, uncertainty estimation of
parameters, native hierarchical modeling, and edge case smoothing (e.g., estimating log fold
changes when a feature is only present in one group). Implemented within the Stan
programming language (commonly used for designing probabilistic models), BIRDMAnN flexibly
enables parameter estimation of all biological variables and non-biological covariates. These
advantages allow us to demonstrate how explicitly modeling population-level effects in
probabilistic BIRDMAn models increases the amount of true biological signal recovered
compared to existing tools on both simulated and real-world datasets. Moreover, the BIRDMAN
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78  workflow significantly lowers the barrier of entry for differential abundance methods
79  development and implementation. Additionally, to address reproducibility issues of prior DA tool
80 benchmarking, we present a novel approach that employs techniques from compositional data
81 analysis, making the comparison of tools more interpretable and statistically valid.

82
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83
84  Fig 1: Overview of BIRDMAN workflow for customizable differential abundance analysis. A table

85  of counts by features is modeled using Bayesian probabilistic programming, resulting in credible

86 intervals of the estimated parameter posterior distributions. The statistical model can be
87 customized using the Stan probabilistic programming language and fit using the BIRDMAnN
88 Python interface.

g9 Results

90 BIRDMAnN is implemented as a Python interface to the Stan probabilistic programming
91 language, which utilizes Hamiltonian Monte Carlo sampling, one of the state-of-the-art
92 approaches for Bayesian uncertainty estimation”. Users can employ pre-configured model
93 designs or flexibly customize inputs to account for their specific experimental design and
94  biological questions; BIRDMAnN then fits and processes these models (Fig 1). The results of
95 these analyses are the posterior distributions of the defined parameters of interest, such as log-
96 fold changes and their uncertainty given the data (see Methods).

97

98 To showcase the statistical properties of BIRDMAn models, we first leverage simulations to
99 evaluate the accuracy of estimating differential uncertainty in the context of realistic biological
100 scenarios. Then, we apply BIRDMANn models on real-world data, demonstrating superiority for
101 resolving subject-level heterogeneity in an antibiotics experiment, as well as alleviating
102 sequencing center-specific effects in a cancer genomics dataset, each while capturing
103  biologically-informative signals.

104  Simulations demonstrate BIRDMAN model accuracy and precision

105 A common difficulty in benchmarking differential abundance methods is the lack of ground truth.
106  We typically do not know which microbial taxa are truly increasing or decreasing across
107  experimental conditions. To gain insights into the robustness of BIRDMANn models, we
108 performed a data-driven simulation of a case-control microbiome dataset with one binary
109 covariate, large batch effects (10 features, 10 batches, and 300 samples), data overdispersion,
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110 and known differentials associated with case status (see Methods) (Fig 2a). We then used
111 BIRDMAnN to estimate the model parameters for each feature and compared the Bayesian
112  posterior estimates with the true value, finding that BIRDMAn models recovered the ground
113 truth differentials with high accuracy and precision (Fig 2b) while outperforming other tools in
114 terms of root mean square error (RMSE) (Fig 2c). This highlights how BIRDMAn model
115 customization permits more accurate estimations of differentials.

116

117  One advantage of Bayesian models is that they can leverage posterior estimates to summarize
118 the uncertainty of these differentials, taking into account the sample size and the sequencing
119  depth. As expected, we show that when BIRDMAN models are fitted on larger sample sizes, the
120 uncertainty decreases, highlighting how incorporating more data, and avoiding rarefaction,
121 enables a more accurate estimation of the differentials (Fig 2d). Furthermore, we show that
122  decreasing the sequencing depth also increases the uncertainty, highlighting how rarefaction
123  could degrade parameter estimates’ precisions in BIRDMAn models (Fig 2e). Since BIRDMAN
124  can handle variable sequencing depths, there is no need to perform rarefaction before model
125 fitting, which is desirable when analyzing microbiome datasets™.

126
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128
129 Fig 2: (a) Robust Aitchison principal components plot of the simulated data, showing the large
130 separation by batch effect. Simulations of 10 batches (B1 to B10) of microbiome results, each
131 containing 10 features (F1 to F10), where each feature has a true differential abundance
132 between cases and controls that is the same for each batch, and also a random per batch bias.
133 (b) Recovery of the true simulated log ratio between cases and controls for each feature (black
134 dots), with credible intervals on average centered on the true log ratio (blue bars). (c) Superior
135 performance of BIRDMAnN over other differential abundance methods in minimizing the RMSE of
136 the difference between the estimated mean posterior log ratio between cases and controls,
137  revealing a >20-fold improvement in RMSE over the nearest competitor, DESeq2. (d) Estimated
138 distributions of log-fold changes from Bayesian analysis tighten as the number of samples
139 increases. Dashed line represents the true simulated value for each simulation. (e) Rarefaction
140 simulation performed using multinomial count generative models (1000 features) at three
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141 different sequencing depths shows that the variance of the posterior distribution decreases as
142 depth increases.

143  BIRDMAN models capture biological signals missed by other methods
144  during dual-course longitudinal antibiotics

145

146  Another challenge for DA methods is to compare multiple samples from the same subject
147  longitudinally (repeated measures) since concomitant host-specific variation can obscure
148  phenotypically-associated microbial changes. Methods designed for longitudinal data®2°
149  cannot easily account for modeling perturbations and struggle with scaling to high dimensions.
150 To demonstrate the use of BIRDMAN on repeated measure study designs, we evaluated a
151 published longitudinal study of two courses of the antibiotic ciprofloxacin (Cp) (3 subjects, 7
152  timepoints)®’. Notably, this study originally concluded that inter-subject variability drove the
153 response to antibiotics by examining beta-diversities, which do not account for auto-correlation
154  effects of repeated measures® (Fig 3a). Other studies have also highlighted the importance of
155  properly accounting for the microbial community composition prior to antibiotics when assessing
156  varying responses®®*, which requires accurate temporal modeling.

157

158 Given BIRDMAnN's flexibility, we constructed a customized DA model that leverages Linear
159 Mixed Effects models, accounting for repeated measurements from subjects while computing
160 temporal differences (see Methods). This model design then enabled the exploration of common
161  microbial community changes associated with antibiotic perturbation, which the originally
162  published methods could not identify. With the computed log-fold changes over time (Supp Fig
163 1a), we investigated how consistent antibiotic induced shifts were across subjects. For each
164  temporal difference, we took the top and bottom 40 OTUs to calculate sample log-ratios, which
165  were used to predict antibiotics intake®!. From these log-ratios, we observed strong, statistically
166  significant temporal shifts associated with each successive time interval (Supp Fig 1b).

167

168 To determine if existing tools could have identified these timepoint-specific perturbations, we
169 also developed a multinomial logistic regression classifier based on the BIRDMAnN results to
170  predict the corresponding time interval. We then compared our prediction performances against
171  classifiers built using ALDEx2%*, ANCOM-BC**, and DESeq2* results on the same samples, as
172  well as a classifier built on the center log-ratio transformed table (see Methods). Remarkably,
173 BIRDMAnN-informed classifiers were able to accurately differentiate between the different
174  treatment groups (accuracy > 0.65) (Supp Fig 1c) and showed substantially better prediction
175 accuracy compared to all other methods (Fig 3b). We also verified that this superior
176  performance held across varying numbers of OTUs used in log-ratio calculation (Supp Fig 1d).
177  Ultimately, these findings show how BIRDMAnN can identify clear-cut biological changes that
178 were missed or obscured by other approaches, highlighting its ability to confirm expected
179  biological hypotheses.

180

181  We used the sample log-ratios associated with the First and Second Cp applications and plotted
182 the dynamics over time (Fig 3c, d). Accordingly, we plotted the corresponding derivative log-fold
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183 changes computed from BIRDMAnN (Fig 3e, f) and see that our trajectories match between the
184 sample log-ratios and the estimated log-fold changes, indicating that our model was able to
185  successfully capture the overall signal independent of subject.

186

187  The antibiotic used in the original work, Cp, is known to primarily target (though not exclusively)
188  gram negative bacteria®>*. We thus hypothesized that the differential abundance results should
189 reflect the longitudinal dynamics of gram negative bacterial abundance. In the top and bottom
190 40 most changed taxa after FirstCp, 17.5% of the numerator taxa were gram negative, whereas
191 27.5% of the denominator were gram negative (Supp Fig 2e). Given the Cp antibiotic
192  mechanism, it is likely that gram negative taxa in the denominator decreased which caused the
193 increased log-ratio®”*® (Figure 2c). We see that there is a sharp decrease in this log-ratio at
194  FirstWPC, which could be attributed to gut homeostasis®’*®. However, we see a weaker pattern
195 in the top/bottom 40 microbes after SecondCp, where 2.5% of the numerator taxa were gram
196 negative and 10% of the denominator taxa were gram negative. In contrast to the FirstCp, the
197 microbes most affected by SecondCp quickly returned to their original abundances.
198  Furthermore, we see that the microbes most altered by FirstCp were not affected by SecondCp.
199  Altogether this hints at newly acquired antimicrobial resistant genes after the application of
200  FirstCp.
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Fig 3: (a) Robust Aitchison principal components plot of full dataset shows samples cluster
primarily by host subject. (b) Balanced accuracy of multinomial classification of time point by
tool. Differential abundance classifiers were constructed using logistic regression with the log-
ratios of the top 40 and bottom 40 OTUs associated with each timepoint as predictors.
Repeated k-fold cross-validation was performed with 5 splits and 10 repeats. The mean
classifier error is at least twice as great with all other differential abundance tools as with
BIRDMAN. Dashed line represents random guessing performance among the seven timepoints.
(c, d) Dynamics of sample log-ratios of (c) first Cp course and (d) second Cp course colored by
subject. (e, f) Dynamics of BIRDMAnN-estimated log-fold changes associated with (e) FirstCp
effect with preCp as reference and (f) SecondCp effect with Interim as reference. Shaded
intervals represent the 90% credible interval of the estimated posterior distributions.
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214 BIRDMAN models mitigate batch effects in cancer microbiome data

215 To investigate how generalizable BIRDMAn models are with respect to population
216  heterogeneity, we conducted a meta-analysis using cancer microbiome data derived from The
217  Cancer Genome Atlas (TCGA). This dataset is known to have large structural batch effects®,
218 where the samples were processed at multiple centers across North America, resulting in an
219  artificial separation of cancer microbiomes by sequencing center if not otherwise accounted for
220 (Fig 4a, Supp Fig 2a)**. These effects can make it difficult to determine microbial biomarkers
221  associated with tumors rather than artifacts of technical variation, but correcting for this could
222  enable downstream host-microbial cancer analyses. We thus tested how well BIRDMANn models
223  could extract biological signals from this dataset while accounting for technical batch effects
224  modeled as random effects. We additionally modeled each microbial feature’s abundance using
225  this approach to determine the specificity of these microbes for each cancer type (see Methods
226  and Code).

227

228  Since cancer types are known to have distinct microbiomes™*, we first confirmed that BIRDMAN
229 models could extract cancer type-specific differences despite the technical variation observed in
230 this study. From our log-ratio classification benchmarks, we observe that our custom BIRDMAnN
231 model can detect a substantially stronger differential signature between the cancer types
232 compared to ALDEx2, ANCOM-BC, DESeq@2, and Random Forests (Fig 4b; note the axis log-
233  scaling) after controlling for the batch effects due to the sequencing center (Supp Fig 2c).

234

235 To determine the generalizability of our results, we then constructed a leave-one-center-out
236  cross-validation benchmark using logistic regression on the BIRDMAnN-computed log-ratios.
237  Four cancer types with at least three represented data submitting centers (head and neck
238 cancer [HNSC], bladder cancer [BLCA], thyroid cancer [THCA], and cervical cancer [CESC])
239 were included in this benchmark. The receiver operating characteristic (ROC) curves
240 demonstrated strong classification performance (Fig 4c), indicating that BIRDMAnN captures
241  generalizable microbial signals across multiple sequencing centers. Generalizability can be a
242  major challenge in microbiome studies®, where classifiers become overfitted for individual
243  cohorts. We observe this with other DA tools (ALDEx2, DESeq2, ANCOM-BC) and even
244  Random Forests (Supp Fig 2d), where most tools struggle to achieve an area under the ROC
245  curves (AUROC) of >0.8. BIRDMAnN is competitive with these tools, achieving an AUROC >0.9
246  in HNSC, BLCA, and CESC cancers while achieving the highest predictive accuracy in BLCA
247 and CESC cancers. The high classifier accuracy leaving out each individual center
248 demonstrates that no one center's data strongly affects the classifier accuracy, with the
249  exception of Bl for THCA.

250

251 To investigate the heterogeneity across different cancer types, we next computed Kendall
252  correlations of BIRDMAnN-estimated microbial log-fold changes across all pairs of cancer types.
253  This analysis revealed similarities among cancer types that we would expect, including strong
254  similarities between kidney cancer subtypes (KIRC, KICH, KIRP), lung cancer subtypes (LUAD,
255 LUSC), and gastrointestinal (Gl) cancers (COAD, ESCA, HNSC, STAD), Additionally, the
256 BIRDMAnN-informed data suggested some novel associations, such as the similarity between
257  kidney cancers and liver cancer (LIHC). When clustering the individual microbes’ differentials
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258  (Supp Fig 2b), we also observed that numerous Gl-specific microbes differentiated Gl cancers
259  from other cancer types.

260

261  When focusing on comparing Gl cancers to lung cancers, we found that the resulting BIRDMAnN
262 log-fold changes accurately reflected known biology surrounding the niches in which these
263  microbiomes are commonly found. Specifically, Fusobacterium**, Prevotella*’, and Coproccus®
264  are genera commonly found in the Gl tract; conversely, Pseudomonas*, Staphyloccus®, and
265  Sphingobacterium®® genera include opportunistic pathogens that are commonly found in lung
266 infections (Fig 4f). We cross-referenced our results against the Tsay et al. cohort that utilized
267 16S rRNA sequencing to investigate lung cancer. Out of the 469 genera in the TCGA lung
268  issues, we observed that 39% of these microbes were also observed in the Tsay et al. cohort,
269 despite known previous discordant findings comparing 16S rRNA sequencing and whole
270 genome sequencing*”*®. Furthermore, when we focus on the top 100 microbes that are
271  detected to be associated with lung cancer, 70% of the represented genera were observed in
272  both the TCGA and Tsay et al. datasets. Altogether, this shows how BIRDMAn models can
273  provide biologically-informative results while properly accounting for and mitigating strong
274  structural batch effects that currently confound other DA approaches.

275
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280 comparing log-ratios of each cancer type vs. all others within each center. Dashed line
281 represents p=0.05. All differential abundance methods show significant differences with log-
282 ratios to separate the microbes in each individual cancer type from those found in all other

283 cancer types, but BIRDMAnN outperforms other methods in highlighting this difference. (c) ROC
284 curves for leave-one-center-out cross-validation for four cancer types where at least 3 centers

285 sequenced that cancer type (BRCA was not included as it was used as reference). Classifiers
286 were built to predict one-vs-rest for that cancer type. Bl = Broad Institute of MIT and Harvard;
287 BCM = Baylor College of Medicine; HMS = Harvard Medical School; MDA = MD Anderson
288 Institute for Applied Cancer Science; WUSTL = Washington University School of Medicine. (d)
289 Multinomial (mean) classification accuracy of classifiers to predict cancer type given the log-
290 ratios computed from the top and bottom 200 taxa associated with each cancer type. Random
291 Forests classifier, which is frequently used in this field but is not based on differential

292 abundance, was included as a comparison for this class of methods. Classifications were

293 performed within each center to remove batch effects from predictions. BIRDMAnN outperforms
294 all other methods, including Random Forests, for all tumor types. (e) Clustermap of Kendall tau

295 correlation coefficients of pairwise cancer type differentials (breast cancer as reference). (f)
296 Comparison of lung-associated genera with Gl-associated genera. Highlighted genera are
297 known to be associated with either lung or Gl microbiome and show strong directionality in the
298 BIRDMAnN results. (g) Venn diagram of genera present in TCGA lung samples and genera
299 present in advanced stage lung cancer from work published by Tsay et al. Additionally, the 22
300 genera represented in the top 100 features associated with TCGA lung cancer cancers are
301 included. A majority of these genera (16/22) are present in both datasets.

302 Discussion

303 Advances in Bayesian computation have lowered the barriers to developing statistical
304 workflows. To empower microbiome scientists to take advantage of these methods, we
305 developed and implemented a novel approach to differential abundance based on Bayesian
306 hierarchical modeling, with advantages highlighted in simulation benchmarks and real-world
307 datasets. Chiefly, BIRDMAnN is designed as a framework for researchers to account for the
308 statistical constraints specific to their biological questions. We have demonstrated the benefits
309 of this framework in common biological scenarios involving longitudinal study designs and
310 sequencing center variation — where BIRDMAnN can better correct for technical variation than
311 existing methods while identifying biologically-relevant signals. In addition to the ability to
312  construct novel DA models, we presented a robust method for benchmarking and comparing
313 results from different DA tools. In contrast to previous efforts investigating FDR in simulation
314  and reproducibility benchmarks®***°, we show how to construct sample classifiers from the log-
315 fold change estimates, enabling machine learning techniques such as cross-validation on
316  biological datasets.

317

318 Another key challenge of DA benchmarking is the absence of “ground truth,” or the true
319 differentials associated with biological conditions, especially in the presence of strong batch
320 effects. Simulations with known parameters for batch and biological effects can address this
321 limitation, and we showed that BIRDMAN models could recover, with high accuracy and
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322  precision, these parameters and their uncertainty. Additional simulations on parameter
323 uncertainty further showed decreases with increased sample size and higher sequencing depth,
324  corroborating previous work and traditional statistical knowledge.

325

326  We then investigated two real-world case studies—antibiotics response/recovery and cancer
327  microbiome interactions—demonstrating how BIRDMAnN can uncover expected and novel
328  biology. For each dataset, BIRDMANn models were able to account for the inherent effects of
329 center/subject on individual microbial abundances while, when necessary, accounting for
330 complex statistical factors (such as, random intercepts, random slopes, overdispersion). To
331 date, there is no other DA tool that provides a similar and necessary degree of flexible statistical
332  modeling. Our results on the previously published antibiotics dataset revealed the attenuating
333 effect of repeated Cp courses on Gram-negative bacteria, with potential implications for clinical
334  practice using antibiotics. Additionally, BIRDMAnN-informed results from the cancer microbiome
335 dataset could be useful in developing novel diagnostic and therapeutic strategies that target or
336  perturb cancer-specific features.

337

338 In light of our findings, there are notable assumptions that need to be considered. Specifically,
339 the choice of prior distributions affects the estimated posterior distributions, especially at low
340 sample sizes. Although priors allow researchers to include their expertise in their modeling
341  procedure, it is often the case that an appropriate prior distribution is unknown, requiring
342  uninformed priors with high uncertainty to be used. However, we note that as more analyses are
343  performed, their results can provide a rationale for picking future priors—a strong advantage of
344  the Bayesian approach over non-Bayesian methods. For our purposes, we defined the same
345  prior distribution for each feature within a dataset, but this can easily be adapted to better model
346  features with their expected parameter range. We also note that the (common) lack of absolute
347 abundance data is a limitation in evaluating differential abundance®'. Strategies to account for
348 this, such as in Williamson et al.*?, could potentially be translated into BIRDMAN models to
349 augment the modeling results. Furthermore, we model the microbial abundances using the
350 negative binomial approach, which is currently contested as an appropriate model for
351  sequencing count data®®. Still, an advantage of BIRDMAn is that the likelihood function is not
352 restricted to the negative binomial, and one can exchange it for the Poisson-Lognormal,
353  Multinomial, or any other count distribution”.

354

355 To summarize, we find that careful statistical consideration during DA analysis enables the
356 identification of microbe-phenotype associations that are missed by existing tools. The flexibility
357 of BIRDMAnN can thoroughly account for unwanted confounding factors, such as batch and
358 subject, resulting in higher confidence in reported microbial biomarkers. Moreover, the
359 presented log-ratio benchmarking approach opens up numerous possibilities for testing
360 improved machine learning capabilities on microbiome data. Overall, we posit that BIRDMAN’s
361 flexibility and utility will provide impactful statistical results for complex study designs while
362  enabling reproducible science in the microbiome field.

363
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364 Methods

365 Performing Bayesian inference with Stan

366 Parameter estimation was performed using Bayesian inference. Our approach utilizes Bayes’
367 Rule where &represents the parameter space and D represents our collected data:
368
p(oD) = PLIOPO)
369 P(D)
370

371  Because the evidence term, P(D), is simply a normalizing constant, we can rewrite Bayes’ Rule
372  as follows, substituting terms with their common nomenclature:

373

374 Posterior ~ Likelihood - Prior

375

376  Thus, our objective with Bayesian inference is to obtain the posterior distribution by modeling
377 the likelihood function of our data as well as our prior knowledge of the parameters. Absent a
378 model formulation involving conjugate priors, we cannot compute the posterior distribution
379 analytically. Instead, we use Stan to draw samples from the posterior distribution using the No-
380 U-Turn Hamiltonian Monte Carlo sampler®®. A series of Markov chains are initialized and
381 allowed to “warm-up” in their exploration of the parameter posterior distributions. Once the
382  defined number of warm-up iterations has concluded, a set number of samples are drawn from
383  each of the chains. Multiple chains are run to ensure that model convergence occurs.

384

385 We implement Bayesian inference using the CmdStanPy interface in Python, calling the C++
386  Stan toolchain for efficient sampling. The warm-up iterations are discarded by default and the
387  sampling iterations are saved for each Markov chain.

388 Negative binomial model parameterization

389  We fit counts of each microbe in a dataset according to a negative binomial distribution as an
390 approximation of multinomial logistic regression®. Due to overdispersion, standard count
391 models such as Poisson are inappropriate for sequencing data?’. We note that the negative
392  binomial model can be considered an extension to the Poisson model with additional variance
393  components™®.

394

395 The negative binomial models used in this work are described by parameters for both mean and
396 overdispersion. This is in contrast to traditional parameters in negative binomial models
397 described by the probability of success and the number of failures before an instance of a
398 success. The former model, often referred to as the “alternative parameterization,” is more
399 amenable to generalized linear modeling through hierarchical models as the mean can be
400 modeled directly.

401
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402  The basic format of the alternative parameterization negative binomial model is described below
403  where n corresponds to the count, ¢ the overdispersion, and ¥ the mean count.
404

_(r+e-1N(_n \"(_ ¢ Y\
405 NB(nlﬂ’qﬁ)_( n )(#+¢) (#+4’>)
406

407  We use a log-link function, ¥ = exp (1) to model the mean where the log mean count, 7, can be
408 represented by linear terms. To account for variable sequencing depth among samples, we
409 include log sequencing depth as an offset term in our models.

410 BIRDMAnN framework

411  We developed BIRDMANn as a framework for highly-customizable Bayesian differential
412  abundance modeling. BIRDMAnN abstracts much of the Bayesian workflow away for usage with
413  microbiome data. An object-oriented approach allows users to subclass basic models for their
414  custom implementations. BIRDMAnN includes, by default, a Negative Binomial model
415 implementation. This can be used without writing any new Stan code or subclassing any
416  BIRDMAN objects.

417

418 BIRDMAN models take BIOM tables®” as input containing the sample and observation IDs.
419 Sample metadata can be provided as Pandas DataFrames. We provide a method,
420 create_regression, with which users can provide an R-style formula to automatically create the
421 design matrix using the patsy Python package. Another method, specify_model, allows the
422  specification of the desired parameters and dimensions to return. This method is used by
423  create_inference to convert CmdStanPy output to ArviZ*® InferenceData objects.

424

425 There are two base classes included with BIRDMAn termed the TableModel and the
426  SingleFeatureModel. The TableModel allows fitting an entire dataset at once, while the
427  SingleFeatureModel allows for fitting individual features. The SingleFeatureModel is
428 advantageous as it allows for highly parallelized workflows. Because there are often hundreds
429  orthousands of features in a microbiome dataset, we note that using multiple CPUs to run many
430 features at once is often more efficient than fitting the entire table. We provide a convenience
431 class, Modellterator, to iterate through the features in a given table. This class also allows for
432  dividing the table into chunks. This allows users to customize the number of features to fit at
433  once depending on their computational resources.

434  Simulations

435  All simulations were performed through the fixed_param option in CmdStanPy. Ground-truth
436  parameters were provided into a negative binomial generative model to simulate data from
437  mean and dispersion parameters.

438

439  For the data-driven simulation, we randomly drew values for batch offset, batch dispersion, and

440 base dispersion parameters. These parameters were fed into a model with Bo = N(-8, 1),
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441 Bi=N(2,1) Log sampling depth was simulated from a Poisson-Lognormal distribution with A

442 drawn from &¥(5000,0.2) we simulated 300 samples comprising 10 total batches with 10 total
443  features.

444
445  For the variable sample size simulations, we simulated feature counts for 500 samples with
1
- =10
446 fPo= 8 b= 3, and ¢ . Log sequencing depths were simulated using a Poisson-
447  Lognormal model with A drawn from N (50000, 0.5) where depth varied.
448

449  To simulate variable rarefaction depth, we first drew ground truth intercept and beta values from

450 N(—8,1) ang N(2,1) respectively for 1000 features. These values were used to generate
451  counts for 300 samples through the multinomial distribution. We used the multinomial
452  distribution to enforce the same sampling depth for all samples, simulating rarefaction.

453  Antibiotics case study

454  16S data was downloaded from Qiita study 494; we used 16S OTUs picked against the
455  GreenGenes _13.8>° reference database at 97% sequence similarity. OTU picking was
456  performed with SortMeRNA® with Qiita default parameter values. Features present in fewer
457  than 10 samples were filtered. We also removed samples with a total sequencing depth less
458  than 1000.

459

460 To account for the longitudinal nature of this design, we used backwards difference encoding
461  such that each time point was compared to the one immediately before it. We implemented the
462  subject identifiers as a random effect with both random intercepts and random slopes. The
463  posterior draws were centered around the mean. Ranking of OTUs by differentials for log-ratio
464  feature selection was done using the posterior means.

465

466 We performed t-tests comparing the log-ratios between groups of samples at different
467 timepoints. The alternative hypothesis was chosen such that samples from the later time point
468  would have higher log-ratios than those from the initial timepoint due to the anticipated effect of
469  Cp on microbial populations.

470

471  We then implemented multinomial logistic regression, random forest classification, and repeated
472  k-fold cross-validation through scikit-learn for our machine learning approach. Because DESeq2
473  supports contrasts natively, we computed the same contrasts as BIRDMAnN for parity. With
474  ALDEx2 and ANCOM-BC, we computed the differentials associated with each timepoint using
475  preCp as reference. For the random forest classifier, we used the CLR-transformed feature
476  table (with a pseudocount of 1) entries as the predictors. All models were also provided one-hot-
477  encoded vectors for subject identifiers. Performance was measured using balanced accuracy.
478  For multinomial logistic regression we used the Ibfgs solver with 1000 max iterations. For the
479 random forest classifier we used a set random seed and 100 estimators. We used repeated
480  stratified k-fold cross validation with 5 splits and 10 repeats and a random seed. All other
481  parameters not mentioned were set to the scikit-learn defaults.
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482

483  Posterior draws for timepoint-contrast differentials were analyzed with (1) FirstCp-associated
484  features with preCp-associated features as reference and (2) SecondCp-associated features
485  with Interim-associated features as reference. In this way, the posterior distribution reflects how
486  each Cp course affects the selected bacterial features over time.

487

488  For determining the Gram status of each OTU, we used the BugBase® web interface. We took
489 the set intersection of Gram positive and Gram negative features with the features associated
490  with both FirstCp and SecondCp to determine the Gram status breakdown of both numerator
491  and denominator features.

492 TCGA case study

493  The bacterial TCGA tables were obtained from those processed in Narunsky-Haziza et al.** and
494  Poore et al.* All TCGA sequence data were accessed via the Cancer Genomics Cloud®® (CGC)
495 as sponsored by SevenBridges (https://cgc.sbgenomics.com) after obtaining data access from
496 the TCGA Data Access Committee through dbGaP (https://
497  dbgap.nchi.nim.nih.gov/aa/wga.cgi?page=login). On Qiita®’, TCGA WGS host-depleted and
498  quality-controlled fastq files were used to generate a metagenomic table by direct genome
499  alignments based on Woltka v0.1.1%® against the RefSeq® release 200 (built as of May 14,
500 2020). The resulting tables can be found on Qiita under study ID 13722, of which we filtered to
501 only analyze the bacteria and then were subsequently decontaminated through decontam®
502  (https://github.com/benjjneb/decontam) (version 1.14.0) following the protocol described in
503 Pooreetal’

504

505  After initial table generation, we removed samples from data submitting centers with very few
506 samples. We also filtered our data to only include samples from white, African-American, and
507  Asian races. Additionally, we only included samples from patients who were alive at the time of
508 sample procurement and retained only one sample per subject. To filter out lowly prevalent
509 features, we removed features present in fewer than 50 total samples. To remove samples with
510 low sequencing depth, we set a threshold of 500 reads. Finally, we included only cancer types
511  with at least 20 instances in the dataset for statistical power.

512

513 We then built statistical models to model the differential associated with each cancer type.
514 Because TCGA did not include “normal” samples from healthy individuals, we used breast
515 cancer (BRCA) tumor samples as reference. Both race® and gender were also included as
516 covariates. Data submitting center was incorporated as a random effect (both random intercepts
517  and random slopes).

518

519 Posterior means were computed for each feature’s association with each individual cancer type.
520 For each cancer type, we ranked the differentials and used the top and bottom 200 features
521  associated with that cancer type to compute log-ratios per sample. These log-ratios were used
522  as predictor variables in our machine learning models.

523
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524  Because not every cancer type was represented in each center, we performed multi-class
525 classification within centers. For each center, we fit a model to predict cancer type from our log-
526  ratios. This procedure was performed with 5 repeats of stratified 2-fold cross-validation. We
527 repeated this machine learning process for cancer type differentials from DESeq2, ALDEx2, and
528 ANCOM-BC. For comparison, we fit a random forest classifier on the CLR-transformed feature
529 table to predict cancer type as well.

530

531 The leave-one-center-out models were fit using binomial logistic regression with balanced class
532 weights. For each cancer type, we fit a model on all but one center and used that model to
533  predict cancer type for the held-out center. We also used the same random forest classifier as
534  previously described for comparison.

535 Analysis & visualization software

536  Analysis of the results in this work were primarily performed through Python (v3.8.13). Pandas®®
537  (v1.1.5) and NumPy™ (v1.22.3) were used for general data analysis. SciPy’* (v1.7.3) was used
538 for computing statistical tests. For interfacing with multidimensional arrays we used xarray’”
539  (v0.20.1) and Arviz*®® (0.12.1). Machine learning models were fit and cross-validated using
540  scikit-learn”™ (v1.0.2). Python figures were generated using seaborn’ (v0.11.2) and Matplotlib™
541 (v3.5.1) as well as Matplotlib-venn (v0.11.7). We used biom-format®’ (2.1.12) and scikit-bio
542  (v0.5.6) for statistical analysis of microbiome data structures.

543

544 R analysis was performed using the tidyverse’® packages dplyr (v1.0.9), stringr (v1.4.0), and
545  ggplot2 (v3.3.6). Phylogenetic visualization was performed using treeio’’ (v1.18.0) and ggtree’®
546  (v3.2.0). BIOM tables were read using the biomformat R package (v1.22.0).

s47  Code and data availability

548 All data used were downloaded from publicly available Qiita studies. The scripts and Stan
549 models used to analyze these data as well as Jupyter notebooks for the visualizations are
550 available at https://github.com/knightlab-analyses/birdman-analyses-final. The BIRDMAnN
551  software package is available at https://github.com/biocore/BIRDMAN and the documentation is
552 available at https://birdman.readthedocs.io/. All analyses in this work were performed using
553  BIRDMAnN v0.1.0.
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Supplementary Fig 1: (a) Phylogenetic tree of all OTUs with a heatmap of posterior means for
each time-interval contrast. OTUs assigned to one of the top 8 most abundant genera are
annotated through the colored strip. (b) When BIRDMAn is used to account for per-subject

variation, log-ratio comparisons of the top 40 OTUs vs. bottom OTUs are associated with the
difference between each time point and the next one. For each of these contrasts, the log-ratios
of the samples between the two time intervals were compared using a one-sided t-test. Plots
are annotated with p-values. Different taxa contribute to the log ratios for each contrast. (c)

Overall performance of BIRDMAn classifier on predicting the antibiotics time interval using the

log-ratios. The classifier prediction accuracies shown are aggregated across folds and repeats

from repeated k-fold cross-validation. (d) Accuracy of the multinomial classifier by number of
OTUs used in log-ratio calculations. Points represent mean accuracy across cross-validation
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767 iterations and shaded areas represent +1 standard deviation. (e) Distribution of Gram positive
768 and Gram negative OTUs associated with FirstCp and SecondCp log-ratios.
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771
772 Supplementary Fig 2: (a) RPCA projection of the original feature table subset to each
773  individual cancer type. Points are colored by data submitting centers, showing that many cancer
774 types exhibit strong separation by batch. (b) Posterior means (CLR) of feature differentials
775 clustered by cancer type. (c) Log-ratios identified by BIRDMAN separate each tumor type from
776 all others when stratified by center. Dashed line represents a t-test p-value at p = 0.05. (d)

777 Performance of leave-one-center-out cross-validation logistic regression classifier AUROC of all
778 methods.
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