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Species invasions can disrupt aquatic ecosystems by re-wiring
food webs. A trophic cascade triggered by the invasion of
the predatory zooplankter spiny water flea (Bythotrephes
cederstrémii) resulted in increased phytoplankton due to de-
creased zooplankton grazing. Here, we show that increased
phytoplankton biomass led to an increase in lake anoxia.
The temporal and spatial extent of anoxia experienced a
step change increase coincident with the invasion. Anoxia
was driven by phytoplankton biomass and stratification changes,
and anoxic factor increased by 10 days. In particular, anoxia
established more quickly following spring stratification. A
shift in spring phytoplankton phenology encompassed both
abundance and community composition. Diatoms (Bacil-
laryophyta) drove the increase in spring phytoplankton biomass,
but not all phytoplankton community members increased,
shifting the community composition. We infer that increased
phytoplankton biomass increased labile organic matter and
drove hypolimnetic oxygen consumption. These results demon-

strate how a species invasion can shift lake phenology and
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Scientific significance statement

Invasive species can affect aquatic ecosystems, often by disrupting food webs. We investigated whether the invasive
predatory zooplankton spiny water flea could additionally impact the biogeochemistry of a lake, specifically hypolim-
netic anoxia dynamics. Using 24 years of observations spanning a spiny water flea invasion that triggered a food
web-mediated increase in phytoplankton, we found that increased spring phytoplankton coincided with an earlier

onset of anoxia, thereby drawing a connection between a species invasion and a shift in lake oxygen dynamics.

Data availability statement

All data is publicly available through the Environmental Data Initiative via identifiers referenced in the methods. Scripts
and data to reproduce the results are available on GitHub (https:/github.com/robertladwig/spinyAnoxia) and in Ro-
hwer et al. (2023).
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1 | INTRODUCTION

The introduction of non-native species to lake food webs can disrupt energy flow and mass transfer in aquatic ecosys-
tems, and can threaten aquatic ecosystem stability and services, often to a greater extent than abiotic, anthropogenic
environmental changes (Dudgeon et al., 2006; Lopez et al., 2022; Vander Zanden et al., 1999). Many studies of species
invasions in lakes focus on food web changes, but the indirect feedbacks species invasions have on lake biogeochem-

istry are often overlooked. The invasion literature on “zoogeochemistry” is mostly focused on nutrient shunting and
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relocation. A notable example includes the role of dreissenid mussels in shunting carbon, nitrogen, and phosphorus
from pelagic to benthic habitats (Vanni, 2021; Ozersky et al., 2015; Li et al., 2021). However, there are few examples
of food web disruptions that lead to alterations in oxygen dynamics in lakes. The paucity of limnological datasets that
involve a species invasion and include both lake biology and biogeochemistry has limited our understanding of how
species invasions affect foundational biogeochemical processes in lakes.

Lake Mendota is a eutrophic lake in Wisconsin, USA, with a long history of limnological observations through the
North Temperate Lakes Long Term Ecological Research program (NTL-LTER). Lake Mendota experienced a population
irruption of the non-native predatory zooplankton spiny water flea (Bythotrephes cederstrémii) in 2009 (Walsh et al.,
2016b)!. Spiny water flea predation reduced the abundance of the lake’s dominant zooplankton, Daphnia pulicaria,
which is a keystone species in the food web, and a key food item for native fish populations (Walsh et al., 2016a;
Johnson and Kitchell, 1996; Rani et al., 2022). The reduction in Daphnia caused a 1 m decline in water clarity due to
the reduction in Daphnia grazing pressure on phytoplankton (Walsh et al., 2016a), and shortened the duration and
intensity of Lake Mendota's spring clearwater phase (Matsuzaki et al., 2020). The reduction in water clarity was overall
due to higher diatom biomass (Walsh et al., 2018), along with an earlier appearance of Cyanophyta (Cyanobacteria)
during the clearwater phase (Rohwer et al., 2022).

Notable shifts in nutrient concentrations and oxygen dynamics in Lake Mendota have also been observed (Hanson
et al., 2020; Ladwig et al., 2022). Ladwig et al. (2021a) applied a mechanistic aquatic ecosystem model that was able
to replicate hypolimnetic dissolved oxygen (DO) consumption and bottom-water anoxia from 1995 to 2015, but the
model performance declined post-2009, with the model overestimating hypolimnetic oxygen concentrations. This
suggests the model did not capture a potential ecosystem shift. Epilimnetic phosphate concentrations from 2010-
2018 also decreased by 65% compared to 1995-2009, which could be explained by an increase in whiting events,
whereby calcium carbonate precipitation adsorbs available phosphorus (Walsh et al., 2019). In addition, the reduction
of grazers (i.e., Daphnia pulicaria) and increased phytoplankton biomass may have led to increased phosphorus uptake
that was exported to the hypolimnion via sinking algal cells. Together, these studies hint that the irruption of spiny
water flea not only reshaped zooplankton and phytoplankton communities, but may also affect seasonal DO dynamics.

Past studies have quantified the impacts of trophic cascades on lake ecosystems (Carpenter and Kitchell, 1993;
Carpenter et al., 2001), including on Lake Mendota (Walsh et al., 2016a). Adding to this knowledge, we explore the
aftermath of a trophic cascade by quantifying how the impacts of the spiny water flea irruption in Lake Mendota
resulted in an increase in the annual spatial and temporal extent of anoxia using 25 years of long-term data. We
hypothesize that the spiny water flea irruption caused an abrupt phenological shift in lake anoxia stemming from
increased algal biomass. Mechanistically, one could expect increased grazing pressure on planktivorous zooplankton
by spiny water flea to cause an increase in spring phytoplankton biomass, which would result in enhanced hypolimentic
DO consumption through fallout and mineralisation of algal biomass (Fig. 1).

2 | METHODS

2.1 | Lake Mendota

Lake Mendota is a 39.6 ha, dimictic, eutrophic lake with a maximum depth of 25 m (Magnuson et al., 2021a). Physical,
chemical, and biological data have been collected fortnightly (when ice-free) to monthly (when ice-covered) by the
NTL-LTER since 1995. (Magnuson et al., 2006).

1Species name changed from Bythotrephes longimanus to Bythotrephes cederstromii.
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FIGURE 1 Consequences of the trophic cascade triggered by spiny water flea in Lake Mendota. (A)
Pre-invasion: Diatom blooms after ice melt are grazed on by zooplankton (esp. Daphnia), resulting in a spring
clearwater phase that is characterized by deeper Secchi depths (blue shading). After the lake stratifies, hypolimnetic
anoxia develops (pink shading) and Cyanobacteria become the dominant phytoplankton. (B) Post-invasion: Spiny
water flea graze on Daphnia, in turn reducing grazing pressure on diatoms. The spring diatom bloom extends and
intensifies, and the duration and magnitude of the spring clearwater phase decreases. The additional deposition of
organic matter from sinking phytoplankton biomass leads to increased hypolimnetic consumption of oxygen. This
reduces the lag-time between stratification onset and the formation of hypolimnetic anoxia.

All in-lake measurements were collected in the center of the lake (43.0988N, -89.4054W) and include: ice dura-
tion (Magnuson et al., 2021c), integrated water-column measurements from 0-20 m of zooplankton and spiny water
flea density measured by zooplankton net tows (Magnuson et al., 2019), integrated water-column measurements from
0-8 m of phytoplankton density and biomass (Magnuson et al., 2022), and depth-discrete measurements of dissolved
oxygen (DO), water temperature, nitrate/nitrite (NO3~/NO, ), soluble reactive phosphorus (SRP), dissolved reactive
silica, and Secchi depth (Magnuson et al., 2021b; Rohwer and McMahon, 2022). Discharge data from the Yahara River
were obtained from USGS gage 05427718 (U.S. Geological Survey, 2022).

2.2 | Data analysis to explore hypolimnetic anoxia

The annual extent of anoxia was quantified using anoxic factor, AF, which was calculated according to Nirnberg
(1995) as:

(1)

AF = Z t::"

n
i=1
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where t; corresponds to the time duration (days) of an area, A;, in the water column with DO < 1.5 g m™3, and A; is
surface area (m2). We chose a conservative threshold for anoxia of 1.5 g 3 (Chapra and Canale, 1991). To identify break
points in the time series of annual anoxia, we first applied an Ordinary Least Square Cumulative Sum (OLS-CUSUM)
test to quantify the timing of a significant structural change, and afterwards applied the ‘breakpoints’ function from
the strucchange R-package (Zeileis et al., 2002). Subsequently, years were grouped as either pre- (n = 14) or post (n
= 9) irruption, with Jan 2010 as the breakpoint, and Wilcoxon Rank Sum Tests were used to compare groupings.

To evaluate candidate predictors for anoxic factor, we curated datasets of multiple predictors. Biweekly water
temperature measurements were temporally interpolated to daily values using linear, constant, and spline interpola-
tion. The transition from mixed to stratified conditions (stratification onset) was defined as when the density gradient
between surface and bottom water layers was > 0.1 g m™ and the water column had an average temperature > 4 °C.
Stratification duration was quantified as the number of days between stratification onset and offset (when these condi-
tions were no longer met). DO measurements were temporally interpolated using spline interpolation. Acknowledging
that these variables do show non-linearity in timeseries, interpolation adds uncertainty to some of the following anal-
yses. However, the inherent autocorrelation in both temperature and oxygen dynamics suggests that over 24 years
of data, biweekly interpolated data should result in a high signal to noise ratio. Nutrient data were temporally linearly
interpolated to weekly values with the NTL1akeloads R-package (Dugan, 2023), area-averaged, and labeled as either

surface or deep water based on a mean thermocline depth of 13 m.

Clearwater phase intensity (CW P in meter-days) was quantified by integrating Secchi depths between April and

June:

CWP:/zsecchiat (2)

where zs..cp are Secchi depths (m) lineally interpolated to daily values. This method allowed us to quantify year-to-
year variability in the intensity of the clearwater phase without the need to define a threshold that would arbitrarily

correspond to the formation or breakdown of a clearwater phase.

Interpolated daily DO data were used to calculate the hypolimnetic oxygen consumption fluxes, volumetric, and
areal consumption fluxes, according to the Livingstone and Imboden (1996) model. For calculating the vertical anoxia
height, only DO concentrations below the bottom depth of the metalimnion, calculated using rLakeAnalyzer (see
Read et al. 2011) were used.

Candidate predictor selection to explain the inter-annual variability in anoxic factor in a multiple linear model was
determined with the 'Boruta’ random forest classifier function from the Boruta R-package (Kursa and Rudnicki, 2010).
Candidate predictor importance was calculated using the relaimpo R-package sensu Lindeman et al. (1980). For the
predictor analysis, we included: annual stratification duration, stratification start and break-down date, ice cover dates
and duration from the previous winter, summer volumetric, areal, and total oxygen sink, annual days of phytoplankton
biomass surpassing concentrations ranging from 0.5 mg L1 to 3 mg L%, annual total Yahara River discharge, annual
spring clearwater intensity, maximum Secchi depth during spring, annual average spiny water flea biomass, annual
average surface and bottom SRP and nitrate concentrations, and annual average silica concentrations. Important
candidate predictors were analyzed using a multiple linear regression model, where a stepwise model selection based

on AIC was used to remove predictors.
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2.3 | Phytoplankton and anoxia phenology

Sampling dates were divided annually into four "lake seasons" based on water temperature profiles: 1) ice stratified
period, 2) spring mixed period, 3) summer stratified period, and 4) fall mixed period. Phytoplankton biomass within
each season and year were averaged to account for uneven sampling and compared between seasons, pre- and post-
2009. Changes in phytoplankton community composition were further investigated using the vegan R package (Ok-
sanen et al., 2020). Bray-Curtis differences between average annual communities were calculated and analyzed with
nonmetric multidimensional scaling (NMDS). Analysis of similarities (ANOSIM) was applied to the distance matrix to
determine if years within an invasion group were statistically more similar to themselves than to all years. Shannon and
Simpson diversity were calculated for each year and averaged by invasion group to compare pre- and post-invasion
diversity. Oxygen phenology was investigated as the difference in days from when stratification developed to when
the lowest hypolimnion layer dropped to < 1.5 g m™3 DO.

3 | RESULTS

3.1 | Anoxiaincreased with spiny water flea irruption

Anoxic factor increased from an average of 56 days pre-2010 to 66 days, concordant with the spiny water flea irruption
in 2009 (Fig. 2A). We explored the temporal trends of potential contributors to anoxia to identify patterns that may
be coincident with the 2010 shift in anoxic factor. The phytoplankton-related metrics in general showed significant
change (p < 0.01) between pre- and post-spiny water flea regimes (Fig. 2B): modeled average volumetric oxygen
consumption increased by 0.03 + 0.03 g m™ d"! (Fig. 2C, p-value < 0.1 compared to the other phytoplankton-related
metrics that are p < 0.01), average total days with phytoplankton biomass >1.0 mg L1 increased by 75.6 + 20.0
days per year (Fig. 2D), average spring clearwater intensity decreased by 169.1 + 99.0 meter-days per year (Fig. 2E).
Meanwhile, stratification and ice duration did not significantly change(Fig. 2F-G). SRP decreased, with a significant (p
< 0.01) decline in the surface layer (Fig. 2H).

Six predictors were determined to be significant predictors for the annual anoxic factor: annual stratification
breakdown, annual ice-cover duration, annual duration of phytoplankton biomass over 1.0 mg L1, annual average
spiny water flea abundance, annual average surface water layer SRP and bottom water layer SRP concentrations.
The resulting linear model has an R2 of 0.87 and a p-value < 0.05. Stratification duration, phytoplankton biomass
and spiny water flea biomass had a positive correlation with anoxic factor, whereas ice cover duration and both SRP
concentrations were inversely correlated. Phytoplankton biomass (38%) and stratification (29%) drove interannual
variability in anoxic factor, whereas the remaining four predictors accounted for less than 30% (9% for spiny water
flea biomass, 8% for ice duration, 7% for surface SRP, and 5% for bottom SRP).

3.2 | Spring biomass changes are coincidant with increase in anoxia

After establishing that a step-change increase in anoxic factor occurred in 2010, we further characterized the phe-
nology of anoxia change by investigating the vertical extent of anoxia in the water column before and after the spiny
water flea irruption (Fig. 3B). Anoxia expansion started earlier in the year after the spiny water flea irruption, shifting
from July to June. However, a shift in the timing of anoxia breakdown was not apparent, nor were changes in the
gradient or maximum vertical extent. Given that the linear regression model identified phytoplankton biomass as a

driver of the anoxia variability, we compared phytoplankton biomass before and after the spiny water flea irruption
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FIGURE 2 Long-term dynamics of lake variables. (A) Anoxic factor over time. Breakpoint analysis of anoxic
factor identified 2010 as a breakpoint. The dotted vertical line indicates the breakpoint. (B) Spiny water flea
abundance over time. (C) Modeled hypolimnetic volumetric oxygen depletion flux calculated from observed DO
data. (D) Days of phytoplankton biomass time series with a biomass over 0.5 mg L™ per year. (E) Spring clearwater
phase (CWP) over time quantified from Secchi depth. (F) Stratification duration over time. Grey ribbon represents
the potential uncertainty between sampling points. The red line represents the spline interpolation (G) Ice duration
over time. (H) Annual average SRP concentrations in the surface water layer (solid line) and bottom water layer
(dotted line). Box plot highlights only the surface layer SRP concentrations.

(Fig. 3A). Post-invasion phytoplankton biomass was elevated prior to the period of anoxia.

We compared the average phytoplankton biomass within a season for each year before and after the spiny water
flea irruption (Fig. 4A). Mean spring phytoplankton biomass increased to concentrations typical of the stratified sum-
mer season, from 1 * 1 (pre-invasion) to 3 + 2 mg L1 (post invasion) (p < 0.005) (Fig. 4A). Similarly, biomass under

lake-ice increased to concentrations previously typical of spring, from 0.3 + 0.3 to 2 + 2 mg L'! (p < 0.005). In con-
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FIGURE 3 A) Annual time series of total phytoplankton biomass before (pre) and after (post) spiny water flea
invasion in 2010. Grey lines denote the average timing of ice-off and spring stratification. B) Annual time series of
anoxia transition depth (DO < 1.5 g m™3).

trast, later in the season no statistically significant change in total biomass was observed during the stratified summer
season (p > 0.1) and more modest increases were observed during the fall mixed season (p < 0.05).

To further examine whether anoxia onset shifted earlier, we calculated the lag between stratification onset and
anoxia onset, when DO in the lowest hypolimnion layer was < 1.5 g m™3. Post invasion, the lag between stratification

and anoxia onset decreased by nearly 2 weeks, from 51 + 9 days to 39 + 15 days (p < 0.05) (Fig. 4B).

3.3 | Diatoms drive phytoplankton increase

Seasonal phytoplankton communities were broadly consistent before and after the spiny water flea invasion; spring
was dominated by Bacillariophyta (diatoms), summer was dominated by Cyanophyta (Cyanobacteria), and fall was dom-
inated by a mix of diatoms and Cyanobacteria (Figure 5). This phytoplankton phenology is typical of a eutrophic lake
(e.g., PEG model, Sommer et al. 1986) and previously documented in Lake Mendota (Carey et al., 2016). Diatoms were
predominantly responsible for the increase in spring biomass, comprising the majority of the phytoplankton commu-
nity in all years (67 + 20% and 65 + 25% respectively). Diatom biomass in the spring increased 2-fold, from 0.9 + 0.9
to 2 + 2 mg L'l (p = 0.08), but the proportion of phytoplankton biomass comprised of diatoms remained relatively
constant.

Although diatoms dominated the spring phytoplankton community, three other phytoplankton divisions also con-
tributed to the increase in spring phytoplankton biomass. Chlorophyta (green algae) remained at 5-9% of the com-
munity but increased 4-fold, from 0.04 + .02 to 0.1 + 0.1 mg/L ( p < 0.005), Cyanobacteria remained at 5-9% of the
community, but increased by 6-fold, from 0.03 + 0.03 to 0.2 + 0.2 (p < 0.005), and Pyrrhophyta (dinoflagellates) re-
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FIGURE 5 Spring phytoplankton biomass composition. (A) Barplots of average annual spring phytoplankton
taxa biomass in the spring mixed lake season. (B) Barplots of average annual spring phytoplankton taxa relative
abundances. The other category includes Xanthophyta, Euglenophyta, Haptophyta, and unclassified organisms. The
spring mixed season is majority diatoms (Bacillariophyta), which increase along with green algae (Chlorophyta),
Cyanobacteria (Cyanophyta), and dinoflagellates (Pyrrhophyta). Despite shifts in spring phytoplankton community
composition to include more green algae, Cyanobacteria, and dinoflagellates, diatoms remained most abundant in
spring and drove the increase in spring phytoplankton biomass.

mained at 1-3% of the community but increased 3-fold, from 0.02 + 0.03 to 0.05 + 0.03 (p < 0.05). Two phytoplankton
divisions decreased their relative contribution, thus shifting the community composition. Cryptophyta (cryptophytes)

decreased from 17 + 12 to 9 + 7% of the community (p = 0.07), and Chrysophyta (golden algae) decreased from 3 + 2
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to 1 £+ 1% of the community (p = 0.05), although the absolute biomass of both taxa remained constant. A comparison
of community composition using Bray-Curtis distance found that the communities were more similar during years
with the same invasion status than among all years (ANOSIM significance < 0.05), but these changes were modest
enough that phytoplankton Shannon and Simpson diversity did not significantly change.

4 | DISCUSSION

Contrary to the pre-2009 interannual dynamics of anoxia, which were predominantly driven by changes in water col-
umn stability and stratification duration (Ladwig et al., 2021a; Jane et al., 2022), we highlight that the anoxia increase
in 2010 was driven by indirect ecosystem impacts of spiny water flea on Lake Mendota’s phytoplankton. Spiny water
flea prey on the zooplankton grazer Daphnia, and the reduction in Daphnia grazing enabled phytoplankton, primarily
diatoms, to flourish (Walsh et al., 2017, 2018). The link between epilimnetic phytoplankton biomass and elevated hy-
polimnetic oxygen consumption has been well established for eutrophic lakes (Paerl, 1988). The increase in springtime
phytoplankton biomass observed in this study likely increased the settling flux of organic matter and availability of a
labile substrate for hypolimnetic mineralisation. Given that physical factors like stratification did not change following
the species invasion, the observed increases in springtime phytoplankton biomass and lake anoxia, as indicated by the
decrease in lag between stratification development and anoxia onset, seems beyond coincidence.

Phosphorus dynamics in the lake also shifted following the spiny water flea invasion (Walsh et al., 2019), with
a decrease in SRP. While this pattern runs counter to known positive relationships between nutrient availability and
phytoplankton biomass (Conley et al., 2009), biophysical processes may provide an explanation. Whiting events can
occur when phytoplankton blooms raise eplimnetic pH through the uptake of inorganic carbon, which triggers the
precipitation of calcium carbonate and the co-precipitation of SRP (Walsh et al., 2019). Simultaneously, by reducing
Daphnia, spiny water flea indirectly reduced grazing pressure on phytoplankton, causing spring diatom blooms to
persist longer and at higher concentrations. Increased phytoplankton biomass may have also reduced surface layer
SRP concentrations due to uptake. This suggests that in addition to increasing hypolimnetic anoxia, the spiny water
flea-triggered increase in phytoplankton shifted nutrient dynamics in Lake Mendota.

The cascading impacts of a species invasion highlight the complexity of lake ecosystems, and the far-reaching
impacts of a single species addition. These impacts can also extend through time, as a disturbed ecosystem may be
more vulnerable to future disturbance (Turner et al., 2020). The susceptibility of Lake Mendota to spiny water flea may
stem from a biomanipulation in the 1980s (Walsh et al., 2017), when piscivorous fish were stocked to improve water
clarity. One outcome was a food web with low planktivorous fish abundance, a trophic niche which spiny water flea
was able to fill. Species invasions can sometimes pave the way for future invasions (Spear et al., 2021) or introduce
new synergies with existing species (Simberloff and Von Holle, 1999). In Lake Mendota, zebra mussels invaded in
2015 (Spear et al., 2022), potentially confounding the second half of our post-spiny water flea analysis. In a long-term
study of Lake Mille Lacs, a spiny water flea invasion had no net effect on phytoplankton biomass as a simultaneous
invasion by zebra mussels compensated for the increased grazing pressure (Rantala et al., 2022). However, in Lake
Mendota, Spear et al. (2021) observed no change in water clarity with the zebra mussel invasion. Rohwer et al. (2022)
did observe changes in phytoplankton community composition following the zebra mussel invasion, finding an earlier
timing of Cyanobacteria onset in the microbial community2. However, we did not observe a change in anoxia ex-

tent or phytoplankton biomass associated with zebra mussels. Together, shifts in Cyanobacteria phenology (Rohwer

2Note that our lake season "spring mixed" differs from the "spring" season in Rohwer et al. (2022) in that "spring mixed" also includes a large

portion of clearwater phase.
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et al., 2022) and the shifts in phytoplankton community composition and abundance observed here are examples of
ecosystem shifts following species invasions.

In this study, we show how the spiny water flea invasion affected both phenology and biogeochemistry of the
Lake Mendota ecosystem. Quantifying the impact of anoxia on Lake Mendota’s ecosystem is a challenge. Anoxic
conditions limit the spatial extent of species habitat (Stefan et al., 1996; Magee et al., 2019; Karatayev et al., 2013),
can lead to fish kills (Rao et al., 2014), promote biogeochemical redox reactions resulting in sediment release of nutri-
ents and metals (Hupfer and Lewandowski, 2008), and enhance methane emissions (Tranvik et al., 2009). Increases
in anoxia represent an additional impact of the spiny water flea invasion that has not been previously accounted for.
However, invasions are not the only drivers or stressors that force abrupt change (Turner et al., 2020). Climate change
is shortening ice duration (Sharma et al., 2021), increasing water temperature (Woolway et al., 2022), decreasing wind
speeds (Magee et al., 2016), and increasing intensity of rain events in the midwestern US (Kucharik et al., 2010);
and road salt is shifting lake stratification regimes (Ladwig et al., 2021b). As climate change-caused disturbances
increase the stochasticity of aquatic ecosystems, ecological consequences can be far-reaching, from affecting com-
munity composition to increasing the extent of oxygen-depleted waters, thereby further restricting organism habitat.
Comprehensive long-term monitoring programs that collect observations of food webs, physical characteristics, and
biogeochemistry will continue to be essential for studying how these interacting drivers of change impact all aspects

of lake ecosystems.
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