

1

2 **Coronaviruses use ACE2 monomers as entry receptors**

3

4

5 Patrick Eiring^{1,4}, Teresa Klein^{1,4}, Simone Backes³, Marcel Streit², Sören Doose¹,
6 Gerti Beliu^{2,5}, Markus Sauer^{1,2,5}

7

8

9 ¹Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am
10 Hubland, 97074 Würzburg, Germany

11 ²Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging,
12 University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany

13 ³Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97080
14 Würzburg, Germany

15

16 ⁴These authors contributed equally

17 ⁵Corresponding authors: Gerti Beliu (gerti.beliu@uni-wuerzburg.de), Markus Sauer
18 (m.sauer@uni-wuerzburg.de)

19

20

21 **Keywords**

22 ACE2 receptor, SARS-CoV-2, super-resolution imaging, *d*STORM, quantitative imaging

23 **Abstract**

24 The angiotensin-converting enzyme 2 (ACE2) has been identified as entry receptor on cells
25 enabling binding and infection with the severe acute respiratory syndrome coronavirus 2
26 (SARS-CoV-2) via trimeric spike (S) proteins protruding from the viral surface^{1,2}. It has been
27 suggested that trimeric S proteins preferably bind to plasma membrane areas with high
28 concentrations of preferably multimeric ACE2 receptors to achieve a higher binding and
29 infection efficiency^{1,3}. However, our current knowledge about the influence of ACE2 expression
30 and organization in the plasma membrane on SARS-CoV-2 infection efficiency remains
31 elusive. Here we used *direct* stochastic optical reconstruction microscopy (dSTORM) in
32 combination with different labeling approaches to visualize the distribution and quantify the
33 expression of ACE2 on different cells. Our results reveal that endogenous ACE2 receptors are
34 present as monomers in the plasma membrane with densities of only 1-2 receptors μm^{-2} . In
35 addition, binding of trimeric S proteins does not induce clustering of ACE2 receptors in the
36 plasma membrane. Supported by infection studies using vesicular stomatitis virus (VSV)
37 particles bearing S proteins our data demonstrate that a single S protein interaction per virus
38 particle with a monomeric ACE2 receptor is sufficient for infection which attests SARS-CoV-2
39 a high infectivity.

40

41 **Introduction**

42 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third human
43 coronavirus that recently emerged. It is spreading rapidly in humans, causing COVID-19,
44 respiratory syndromes with severe and often fatal progression⁴⁻⁷. The SARS-CoV-2 genome
45 shares ~80% identity with that of SARS-CoV responsible for the SARS pandemic in 2002⁸. All
46 human coronaviruses, including SARS-CoV, MERS-CoV and, SARS-CoV-2 are enveloped,
47 single-stranded, positive-sense RNA viruses. Each SARS-CoV-2 virus particle (virion) is
48 equipped with 24-40 homotrimeric transmembrane spike (S) glycoproteins that are key to
49 binding and fusing with human cells⁹. After more than two years of investigations, it is
50 undisputed that SARS-CoV-2 invades human cells by binding with the S1 subunit via the
51 receptor-binding domain (RBD) to the peptidase domain of angiotensin-converting enzyme 2
52 (ACE2) as entry receptor¹. Through binding to ACE2, another cleavage site on subunit S2 is
53 exposed, followed by spike priming and fusion using the cellular serine protease TMPRSS2^{2,10}.
54 At low protease levels, entry via endosomal uptake can also occur¹¹. The fact that antiserum
55 raised against human ACE2 completely blocks infection with SARS-CoV-2 demonstrates that
56 binding of the virus to the receptor is the decisive first step in infection².

57 Since the S protein undergoes large conformational changes during the fusion process, it must
58 be highly flexible and dynamic. Especially the RBD in the S1 subunit was revealed to be
59 considerably flexible, exhibiting two conformational states, an inactive *down* state and an
60 active *up* state, whereby only the *up* state can bind to ACE2. Recently, it has been shown that
61 the trimeric structure of the S protein of SARS-CoV-2 exists with one RBD in an *up* and two in
62 *down* conformations¹² suggesting stoichiometric binding of one S protein per ACE2 receptor.
63 Furthermore, high flexibility of the spikes themselves allows them to sway and rotate, thus
64 possibly enabling multiple spikes per virus to bind to a human cell³. This, however, would
65 require a high expression level of ACE2 or the occurrence of ACE2 oligomers or preformed
66 clusters in the plasma membrane to increase the chance for neighboring spikes to find binding
67 sites. Indeed, high-resolution cryo-electron microscopy structures obtained on the recombinant
68 full-length human ACE2 in contact with the RBD suggest that ACE2 forms homodimers
69 whereby each monomer can bind a S-glycoprotein trimer¹.

70 These findings are of utmost importance for the structure-based rational design of binders with
71 enhanced affinities to either ACE2 or the S protein of coronaviruses. However, structural
72 investigations of SARS-CoV-2 – ACE2 interactions have been performed with purified proteins
73 and thus do not reflect the native environment, i.e., the plasma membrane of cells, with its
74 particular organization principles. For example, it has been shown that viruses preferentially
75 bind to detergent-resistant ordered plasma membrane domains, i.e., glycolipid nano- and
76 microdomains, to penetrate the cell, e.g., because of the enrichment of their receptors in these
77 domains^{13,14}. Hence, it has to be investigated if ACE2 exists in preformed dimers or oligomers
78 in the plasma membrane and, whether these clustering sites are enriched in glycolipid domains
79 that are important for invagination of the membrane and endocytosis of the viral particle^{1,11,15}.
80 In addition, ACE2 expression has been investigated only indirectly by quantifying RNA
81 expression in nasopharyngeal and bronchial samples or using immunoblotting with polyclonal
82 anti-ACE2 antibodies¹⁶. For example, in one of the investigations, it has been found that
83 decreased expression of ACE2 is associated with cardiovascular diseases¹⁷. On the other
84 hand, patients with COVID-19 displayed an average three-fold increase in ACE2 expression
85 that may promote multi-organ failure^{18,19}. In addition, a lower expression of alveolar ACE2 in
86 young children compared to adults has been associated with a lower prevalence of COVID-19
87 in children²⁰. However, protein expression levels in cells are often poorly predicted by mRNA-
88 transcript levels²¹.

89 Despite the outstanding importance for SARS-CoV-2 drug design, knowledge about the
90 expression level of ACE2 receptors in the plasma membrane of target cells and their
91 interactions with trimeric spike proteins remains elusive. Here, we have set out to visualize the
92 distribution, investigate their oligomeric state and quantify the number of endogenous ACE2
93 receptors in the plasma membrane of Vero, Vero E6, U2-OS, COS-7, HEK293T, and ACE2

94 overexpressing HEK293T cells by single-molecule sensitive super-resolution fluorescence
95 imaging using fluorescently labeled primary antibodies. The influence of ACE2 expression
96 level on infectivity was verified using replication-defective vesicular stomatitis virus (VSV)
97 particles bearing coronavirus S proteins²². Our results demonstrate that endogenous ACE2 is
98 present as a monomer in the plasma membrane in the absence and presence of S protein and
99 does not form dimers or higher aggregates. Furthermore, our data imply that the infection
100 efficiency is also determined by other factors, including lipid composition of the plasma
101 membrane and possibly other molecules among the 332 interaction partners so far identified²³.

102

103 **Results**

104 **Imaging and quantification of plasma membrane ACE2 receptors by *d*STORM**

105 It is common ground that binding of the S protein to the ACE2 receptor is a critical step for
106 SARS-CoV-2 to infiltrate target cells. Infection studies using replication-defective vesicular
107 stomatitis virus (VSV) particles bearing coronavirus S proteins²² revealed that most human cell
108 lines are susceptible to infection². Therefore, we selected Vero (African green monkey kidney
109 cells), Vero E6, and HEK293T cells (a transfectable derivative of human embryonic kidney 293
110 cells) as accepted reference systems for SARS-CoV research in cell-culture-based infection
111 models^{2,24,25}. In addition, we overexpressed ACE2 in HEK293T cells to investigate the
112 influence of higher ACE2 expression levels on infection efficiency. Furthermore, we used COS-
113 7 (a derivative of the African green monkey kidney fibroblast cell line CV-1) and U2-OS as
114 negative controls since fibroblast cell lines have shown negligible infection efficiency^{2,24}, which
115 has been attributed to the low ACE2 expression level²⁶.

116 For fluorescence imaging and quantification of endogenous plasma membrane ACE2, we used
117 single-molecule sensitive super-resolution imaging by *d*STORM²⁷. To extract quantitative
118 information from single-molecule localization data, the average number of blinking events
119 measured for a single fluorescently labeled probe (e.g. antibody) can be used to determine the
120 number of bound probes, which corresponds to the expression level of accessible endogenous
121 plasma membrane proteins^{28,29}. We tested different monoclonal antibodies with respect to
122 binding specificity and selected the monoclonal anti-ACE2 antibody from Biolegend (clone:
123 A200691), which showed the lowest non-specific binding tendency. To facilitate quantification,
124 we labeled the primary antibody with Alexa Fluor 647 (AF647) at a degree of labeling (DOL)
125 of 2.5. Cells were fixed with 4% methanol-free formaldehyde and stained for ACE2 receptors
126 with primary antibody for 1 h in PBS. After post-fixation with 4% formaldehyde / 0.2%
127 glutaraldehyde, *d*STORM imaging of cells was performed by total internal reflection
128 fluorescence (TIRF) microscopy to selectively image the basal plasma membrane at a high
129 signal-to-noise ratio (Fig. 1a). To ensure saturation of accessible antigen epitopes on the

130 plasma membrane we titrated the antibody concentration in separate experiments and used
131 antibody concentrations of $4 \mu\text{g ml}^{-1}$ in all *d*STORM quantification experiments (Supplementary
132 Fig. 1).

133 *d*STORM images revealed a homogeneous distribution of ACE2 in the plasma membrane of
134 Vero, Vero E6, HEK293T, and ACE2 overexpressing HEK293T cells (Fig. 1a and
135 Supplementary Fig. 2). To study the distribution of plasma membrane ACE2 receptors, we
136 used a density-based spatial clustering of applications with noise (DBSCAN) algorithm with
137 customized localization analysis (LOCAN)³⁰. After selecting basal membrane regions that do
138 not show folded membrane areas, repeated localizations were grouped using the DBSCAN
139 algorithm with appropriate parameters to ensure each cluster represents an isolated
140 receptor³¹. The Ripley-h function confirms that localization clusters only occur on the length
141 scale of the localization precision (Extended Data Fig. 1a). Under the applied experimental and
142 dilute labeling conditions, we localized each AF647 antibody on average 9.2 ± 0.2 times.
143 Hence, each localization cluster with on average ~ 9 localizations corresponds to a labeled
144 ACE2 receptor. The overall density of ACE2 in the plasma membrane was low enough to yield
145 well-separated nearest neighbors for all plasma membranes investigated (Fig. 1a). In each
146 experiment, 10-20 cells were analyzed to obtain ACE2 density distributions. For both Vero cell
147 lines similar amounts of ACE2 receptors could be identified with 1.4 ± 0.1 (S.E.) and 2.0 ± 0.7
148 (S.E.) receptors μm^{-2} in Vero and Vero E6, respectively (Fig. 1b). ACE2 levels were slightly
149 lower for HEK293T cells with 1.0 ± 0.2 (S.E.) receptors μm^{-2} . Transfection of HEK293T cells
150 led to overexpression of ACE2 receptors with densities of 17.0 ± 2.2 (S.E.) ACE2 receptors
151 μm^{-2} . Both COS-7 and U2-OS control cell lines showed negligible ACE2 densities well below
152 0.5 receptors μm^{-2} , most probably due to the non-specific binding of antibodies on the
153 membrane (Supplementary Fig. 3). These results show that endogenous ACE2 receptors are
154 expressed homogenously but at low densities of $\leq 2 \mu\text{m}^{-2}$ in the plasma membrane of Vero
155 cells (Fig. 1b), which translates into average distances of ACE2 receptors of ~ 500 nm (Fig.
156 1c).

157

158 **ACE2 expression levels correlate with VSV infection efficiency**

159 To investigate if the ACE2 expression directly determines the infection efficiency, the different
160 cells lines were infected with VSV particles bearing coronavirus S proteins (VSV-S^{GFP})². In the
161 genome of VSV-S^{GFP} particles, the coding sequence of the endogenous surface protein G is
162 deleted and replaced with the GFP open reading frame. By infecting S protein expressing cells,
163 newly budding particles contain the S protein as the only surface protein. Upon infection with
164 VSV-S^{GFP}, cells express green fluorescent protein (GFP). To measure the percentage of
165 infected cells, nuclei were stained with DAPI (Fig. 2a). Albeit ACE2 expression levels are

166 similar on both Vero cell lines, infection with VSVs was only possible for Vero E6 but not for
167 Vero cells, i.e., $6.1\% \pm 4.1\%$ (S.D.) of Vero E6 cells showed GFP expression whereas Vero as
168 well as COS-7 and U2-OS did not show GFP signal after 24 h of infection (Fig. 2b and
169 Supplementary Fig. 4). Interestingly, the infection efficiency of Vero E6 cells was substantially
170 (~5-fold) higher than observed for HEK293T cells (Fig. 2b), although the ACE2 expression
171 levels differ only by a factor of 2 (Fig. 1b). Overexpressing ACE2 HEK293T cells showed the
172 highest infection efficiency of $28.4\% \pm 12.6\%$ (S.D.) (Fig. 2b) in accordance with the higher
173 ACE2 expression level (Fig. 1b).

174 To examine if predominantly those cells were infected that express higher ACE2 levels, we
175 quantified and compared ACE2 expression levels on infected and non-infected cells in the
176 same experiment. Therefore, cells were fixed after 24 h incubation with VSV-S^{GFP} particles and
177 immunostained for ACE2. *d*STORM was performed on cells showing GFP signal (infected)
178 and cells without GFP signal (uninfected) within the same well (Fig. 2c). Here, infected Vero
179 E6 and HEK293T cells showed only slightly higher ACE2 expression levels (Fig. 2d). These
180 results demonstrate that ACE2 receptors are necessary for SARS-CoV-2 infection and
181 infection efficiency correlates with ACE2 expression for the same cell line. However, the
182 infection efficiency can differ strongly for different cell lines indicating that other factors play at
183 least a supporting role in infection.

184

185 **Oligomeric state of ACE2 in the plasma membrane**

186 The stoichiometry of plasma membrane proteins is an important determinant of function and
187 interactions between individual proteins. Previous reports suggested the binding of multiple
188 spikes per virus to ACE2 homodimers or oligomers in the plasma membrane via stoichiometric
189 binding of one S protein per ACE2 receptor^{1,3,12}. Therefore, it is easy to believe that ACE2
190 receptors are prearranged as multimers in the plasma membrane, or, alternatively, form
191 multimers upon binding of S-glycoprotein trimers to increase the binding strength and infection
192 efficiency. To verify the existence of receptor multimers in the plasma membrane of cells,
193 photoactivated localization microscopy (PALM) in combination with photoactivatable
194 fluorescent proteins such as mEos fused to the protein of interest has been the method of
195 choice^{32,33}. However, visualization of endogenous proteins requires immunolabeling and thus
196 remains more challenging.

197 To investigate the capability of *d*STORM to distinguish endogenous monomeric from dimeric
198 plasma membrane proteins, we imaged monomeric CD18³⁴, homodimeric CD69³⁵ as well as
199 heterodimeric CD11a/CD18³⁴ by *d*STORM on Jurkat cells using primary AF647 labeled
200 antibodies for immunostaining (Figs. 3a-c). Analysis of *d*STORM data revealed mean
201 localization numbers per localization cluster of 7.3 ± 0.2 (S.E.) for monomeric CD18, $14.2 \pm$

202 0.3 (S.E.) for dimeric CD69 and 16.3 ± 0.4 (S.E.) for heterodimeric CD11a/CD18. The dimeric
203 receptor population is indicated by the shift towards higher localization numbers per cluster in
204 the probability density function (PDF) of localizations detected per spatially separated
205 fluorescent signal (localization cluster) of CD69 and CD11a/CD18 (Fig. 3d).

206 *d*STORM imaging performed with primary AF647 labeled anti-ACE2 antibodies showed similar
207 results as detected for CD18. The PDF of localization numbers showed no indication of dimer
208 or higher aggregate formation, demonstrating the presence of monomeric ACE2 receptors in
209 the plasma membrane of Vero, Vero E6, and HEK293T cells (Fig. 3d). Even ACE2
210 overexpressing HEK293T (HEK293:hACE2) cells demonstrate the presence of ACE2 as a
211 monomer in the plasma membrane (Fig. 3d). To confirm that endogenous dimeric receptors
212 can indeed be identified by *d*STORM of adherent HEK293T cells we performed
213 immunostaining of Neuropilin-1, a dimeric receptor important for SARS-CoV-2 entry and
214 infectivity³⁶. *d*STORM imaging and analysis using anti-NRP-1 antibodies confirmed the
215 existence of dimeric NRP-1 receptors on HEK293T cells (Extended Data Fig. 2a). The PDF of
216 localization numbers for NRP-1 localization clusters (Extended Data Fig. 2b) is similar to PDFs
217 recorded for dimeric CD69 and heterodimeric CD11a/CD18 (Fig. 3d). Interestingly, HEK293T
218 cells express ~ 3 NRP-1 μm^{-2} , but Vero as well as Vero E6 cells do express NRP-1 only at
219 negligible levels in the plasma membrane (Extended Data Fig. 2c) indicating a less important
220 role of NRP-1 for SARS-CoV-2 infections in Vero cells.

221 Finally, we used click labeling of genetically modified ACE2 receptors with tetrazine-dyes to
222 exclude that the detection of monomeric ACE2 is caused by the size of IgG antibodies and
223 related steric hindrance preventing labeling of dimeric receptors with two antibodies. For site-
224 specific incorporation of the non-canonical amino acid (ncAA) TCO*-L-lysine into human ACE2
225 (pCG1-hACE2)^{37,38} in COS-7 cells, we used genetic code expansion (GCE)^{39,40}. The method
226 enables site-specific efficient labeling of intra- and extracellular proteins with minimal linkage
227 error with organic tetrazine-dyes via bioorthogonal click labeling⁴¹ while preserving the
228 functionality of proteins^{42,43}. The generated click mutant (pCG1-ACE2^{N137TAG}) was tested for
229 ncAA incorporation and click labeling. Here, the mutant N137TAG showed efficient labeling
230 demonstrated by a continuous fluorescence signal visible along the cell membrane
231 (Supplementary Fig. 5). After click labeling of ACE2 in living COS-7 cells with tetrazine-AF647
232 (Tet-AF647), they were either directly fixed or first treated with recombinant trimeric spike
233 protein before fixation, followed by *d*STORM imaging (Extended data Fig. 1c). We computed
234 nearly identical Ripley-h functions from all recorded localizations with and without spike
235 addition. Comparison with synthetic data that resembles *d*STORM blinking conditions and that
236 clusters homogenously distributed on identical region of interest suggests no further clustering
237 in the experimental data. Also, DBSCAN cluster analysis revealed monomeric ACE2
238 distributions and no alteration upon spike addition (Extended Data Figs. 1a,b). Localization

239 data analysis thus demonstrated that the treatment with trimeric spike protein does not induce
240 the formation of ACE2 multimers corroborating that ACE2 is expressed as a monomer in the
241 plasma membrane that do not multimerize upon binding of trimeric spike proteins¹.

242

243 Discussion

244 The ACE2 receptor is of fundamental importance for infections with SARS-CoV-2, but
245 knowledge about its expression level, distribution, and oligomeric state in the plasma
246 membrane of target cells has remained elusive. Here we used immunolabeling with primary
247 monoclonal antibodies and super-resolution fluorescence imaging by *d*STORM to visualize the
248 distribution and quantify the expression of endogenous ACE2 receptors in the plasma
249 membrane of various cell lines. Our results show that endogenous ACE2 is homogenously
250 expressed in the plasma membrane of HEK293T, Vero, and Vero E6 cells that are accepted
251 cell-culture-based infection models for SARS-CoV-2 infection^{2,25,26} with expression levels of 1-
252 2 ACE2 molecules μm^{-2} (Fig. 1a,b and Supplementary Fig. 2). As expected, on the plasma
253 membrane of cells like COS-7 and U2-OS that are not subjected to SARS-CoV-2 infections,
254 ACE2 expression is negligible (Supplementary Fig. 3).

255 Furthermore, infection studies with VSV-S^{GFP} particles in combination with *d*STORM imaging
256 corroborated the finding that ACE2 represents the key receptor for SARS-CoV-2 entry, i.e.
257 infected cells generally expressed slightly more ACE2 molecules on their surface (Fig. 2).
258 However, our data show that the infection efficiency differs strongly between different cell lines.
259 A striking example represents the different infection efficiency of Vero and Vero E6 cells (Fig.
260 2b). While they exhibit similar ACE2 expression levels (Fig. 1a,b), Vero cells are not infected
261 by VSV-S^{GFP} particles. Therefore, we hypothesized that other co-receptors of SARS-CoV-2
262 entry, such as NRP-1³⁶, are expressed at substantially higher concentrations on Vero E6.
263 However, our data demonstrate that NRP-1 does not play a role in the infectivity of Vero cells
264 (Extended Data Fig. 2).

265 Since glycosphingolipids are important host cell targets for different pathogens and are
266 supposed to represent endocytotic entry sites¹⁴, we investigated the impact of sphingolipids
267 on infectivity. In this context, glycosphingolipids such as monosialotetrahexosylganglioside
268 GM1, a prototype ganglioside, which interacts with protein receptors within lipid rafts to
269 generate signaling platforms are important^{44,45}. Therefore, we visualized the lipid raft marker
270 GM1 by staining with AF647 labeled cholera toxin subunit B. Fluorescence imaging revealed
271 a high abundance of GM1 in the plasma membrane of Vero E6 and a lower concentration in
272 Vero cells (Extended Data Fig. 3), indicating that glycosphingolipids support viral entry via
273 ACE2 receptors⁴⁶. COS-7 cells also exhibit a high GM1 concentration in their plasma
274 membranes (Extended Data Fig. 3) but cannot be infected by SARS-CoV-2^{2,25}, which is due

275 to the negligible small expression of ACE2 in the plasma membrane (Supplementary Fig. 3).
276 Overall, these data demonstrate that ACE2 receptors are necessary but not sufficient for
277 SARS-CoV-2 infection.

278 The so far unanswered question of SARS-CoV-2 infection that still remained is if pre-clustering
279 or binding-induced clustering of ACE2 receptors in dimers, trimers, or higher aggregates is
280 crucial for viral entry. Intuitively one expects that a trimeric S protein can bind to several ACE2
281 receptors in the plasma membrane of target cells to improve binding strength and thus the
282 infection probability^{1,12,13}. These considerations are in line with the finding that higher ACE2
283 expression levels promote infection with SARS-CoV-2 (Fig. 1b and 2d)¹⁸⁻²⁰. To address this
284 question, we performed *d*STORM experiments with reference receptors that form monomers,
285 dimers, and heterodimers in the plasma membrane using AF647 labeled primary antibodies.
286 The refined analysis of localization numbers per localization cluster detected revealed that
287 *d*STORM with primary antibodies can distinguish between endogenous monomeric and
288 dimeric receptors and showed that ACE2 is present as a monomer in the plasma membrane
289 (Fig. 3). Binding-induced clustering was investigated by introducing an unnatural amino acid
290 into ACE2 at a site where it does not interfere with RBD binding followed by click labeling with
291 Tet-AF647 and *d*STORM imaging before and after addition of trimeric S proteins. The obtained
292 data clearly revealed that binding of one S protein subunit to one ACE2 receptor does not
293 induce clustering to improve the binding strength (Extended Data Fig. 1). Considering the
294 average distance between neighboring ACE2 receptors of ~500 nm (Fig. 1c) supports this
295 finding because it appears unlikely that binding of a trimeric S protein to a monomeric ACE2
296 receptor can unite other ACE2 receptors in reasonable time that are separated at such large
297 distances. Furthermore, such low ACE2 densities make it unlikely that more than one S protein
298 per virus particle can interact with a cell³. Thus, it appears that electron microscopy structures
299 obtained from interacting recombinant expressed proteins do not necessarily reflect
300 interactions of plasma membrane receptors embedded in their native environment with viral
301 proteins. To conclude, our data unequivocally demonstrate that the molecular mechanisms of
302 SARS-CoV-2 infection are not understood in detail. Yet, we hope that the presented
303 quantitative molecular understanding of the ACE2 – S protein interaction on the cell membrane
304 offers perspectives for the development of improved drugs for the treatment of SARS-CoV-2
305 infections.

306
307
308
309

310 **References**

- 311 1. Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human
312 ACE2. *Science* **368**, 1444-1448 (2020).
- 313 2. Hoffmann, N. et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is
314 blocked by a clinically proven protease inhibitor. *Cell* **181**, 271-280 (2020).
- 315 3. Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. *Nature* **581**, 221-
316 224 (2020).
- 317 4. Li, Q. et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected
318 pneumonia. *N. Eng. J. Med.* **381**, 1199-1207 (2020).
- 319 5. Zhu, Z. et al. From SARS and MERS to COVID-19: a brief summary and comparison of
320 severe acute respiratory infections caused by three highly pathogenic human
321 coronaviruses. *Respir. Res.* **21**, 224 (2020).
- 322 6. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in
323 Wuhan, China. *Lancet* **395**, 497-506 (2020).
- 324 7. V'Kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. Coronavirus biology and
325 replication: implications for SARS-CoV-2. *Nat. Rev. Microbiol.* **19**, 155-170 (2021).
- 326 8. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat
327 origin. *Nature* **579**, 270-273 (2020).
- 328 9. Ke, Z. et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions.
329 *Nature* **588**, 498-502 (2020).
- 330 10. Belouzard, S., Chu, V. C. & Whittaker, G. R. Activation of the SARS coronavirus spike
331 protein via sequential proteolytic cleavage at two distinct sites. *Proc. Natl. Acad. Sci. USA*
332 **106**, 5871-5876 (2009).
- 333 11. Koch, J., Uckley, Z. M., Doldan, P., Stanifer, M., Boulant, S., Lozach, P.Y. TMPRSS2
334 expression dictates the entry route used by SARS-CoV-2 to infect host cells. *EMBO J.* **40**,
335 e107821 (2021).
- 336 12. Henderson, R. et al. Controlling the SARS-CoV-2 spike glycoprotein conformation. *Nat.*
337 *Struct. Mol. Biol.* **27**, 925-933 (2020).
- 338 13. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. *Science* **327**,
339 46-50 (2010).
- 340 14. Sezgin, E., Levental, I., Mayor, S. & Eggeling, S. The mystery of membrane organization:
341 composition, regulation and roles of lipid rafts. *Nat. Rev. Mol. Cell Biol.* **18**, 361-374 (2017).
- 342 15. Gao, H., Shi, W. & Freund, L. B. Mechanics of receptor-mediated endocytosis. *Proc. Natl.*
343 *Acad. Sci. USA* **102**, 9469-9474 (2005).
- 344 16. Hikmet, F., Méar, L., Eedvinsson, A., Micke, P., Uhlen, M. & Lindskog, C. The protein
345 expression profile of ACE2 in human tissues. *Mol. Sys. Biol.* **16**, e9610 (2020).
- 346 17. Crackower, M. A. et al. Angiotensin-converting enzyme 2 is an essential regulator of heart
347 function. *Nature* **417**, 822-828 (2002).
- 348 18. Chua, R. L. et al. COVID-19 severity correlates with airway epithelium-immune cell
349 interactions identified by single-cell analysis. *Nat. Biotechnol.* **38**, 970-979 (2020).
- 350 19. Xu, H. et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral
351 mucosa. *Int. J. Oral Sci.* **12**, 8 (2020).
- 352 20. Sharif-Askari, N. S. et al. Airways expression of SARS-CoV-2 receptor ACE2 and
353 TMPRSS2 is lower in children than adults and increases with smoking and COPD. *Mol.*
354 *Ther. Methods Clin. Dev.* **18**, 1-6 (2020).
- 355 21. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA
356 abundance. *Cell* **165**, 535-550 (2016).
- 357 22. Kleine-Weber, H. et al. Mutations in the spike protein of middle east respiratory syndrome
358 coronavirus transmitted in Korea increase resistance to antibody-mediated neutralization.
359 *J. Virol.* **93**, e01381-18 (2019).
- 360 23. Gordon, D. E. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.
361 *Nature* **583**, 459-468 (2020).
- 362 24. Ogando, N. S. et al. SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics,
363 rapid adaption and cytopathology. *J. Gen. Virol.* **101**, 925-940 (2020).

364 25. Kaye, M. *et al.* SARS-associated coronavirus replication in cell lines. *Emerg. Infect. Dis.*
365 **12**, 128-133 (2006).

366 26. Wang, L. *et al.* Susceptibility to SARS-CoV-2 of cell lines and substrates commonly used
367 to diagnose and isolate influenza and other viruses. *Emerg. Infect. Dis.* **27**, 1380-1392
368 (2021).

369 27. Heilemann, M. *et al.* Subdiffraction-resolution fluorescence imaging with conventional
370 fluorescent probes. *Angew. Chem. Int. Ed.* **47**, 6172-6176 (2008).

371 28. Nerreter, T. *et al.* Super-resolution microscopy reveals ultra-low CD19 expression on
372 myeloma cells that triggers elimination by CD19 CAR-T. *Nat. Commun.* **10**, 3137 (2019).

373 29. Garcia-Guerrero, E. *et al.* Upregulation of CD38 expression on multiple myeloma cells by
374 novel HDAC6 inhibitors is a class effect and augments the efficacy of Daratumomab.
375 *Leukemia* **35**, 201-214 (2021).

376 30. Doose S. LOCAN: a python library for analyzing single-molecule localization microscopy
377 data. *Bioinformatics* **38**, 2670-2672 (2022).

378 31. Ebert, V. *et al.* Convex hull as diagnostic tool in single-molecule localization microscopy.
379 *Bioinformatics* **38**, 5421-5429 (2022).

380 32. Lee, S.-H., Shin, J. Y. & Bustamante, C. Counting single photoactivatable fluorescent
381 molecules by photoactivated localization microscopy (PALM). *Proc. Natl. Acad. Sci. USA*
382 **109**, 17436-17441 (2012).

383 33. Karathanasis, C. *et al.* Single-molecule imaging reveals the oligomeric state of functional
384 TNF α -induced plasma membrane TNFR1 clusters in cells. *Sci. Signal.* **13**, eaax5647
385 (2020).

386 34. Dassanayake, R. P., Maheswaran, S. K. & Srikumaran, S. Monomeric expression of bovine
387 β 2-integrin subunits reveals their role in *Mannheimia haemolytica* Leukotoxin-induced
388 biological effects. *Infect. Immun.* **75**, 5004-5010 (2007).

389 35. Risso, A., *et al.* CD69 in resting and activated T lymphocytes. Its association with a GTB
390 binding protein and biochemical requirements for its expression. *J. Immunol.* **146**, 4105-
391 4114 (1991).

392 36. Cantuti-Castelvetri, L., *et al.* Neuropilin-1 facilitates SARS-CoV-2 entry and infectivity.
393 *Science* **370**, 856-860 (2020).

394 37. Hoffmann, M., *et al.* Differential sensitivity of bat cells to infection by enveloped RNA
395 viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses. *PLoS ONE* **8**,
396 e72942 (2013).

397 38. Hoffmann, M., *et al.*, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is
398 blocked by a clinically proven protease inhibitor. *Cell* **181**, 271-280 (2020).

399 39. Prescher, J. A., Bertozzi, C. R. Chemistry in living systems. *Nat. Chem. Biol.* **1**, 13-21
400 (2005).

401 40. Liu, C. C., Schultz, P. G. Adding new chemistries to the genetic code. *Annu. Rev. Biochem.*
402 **79**, 413-444 (2010).

403 41. Beliu, G. *et al.* Bioorthogonal labeling with tetrazine-dyes for super-resolution microscopy.
404 *Commun. Biol.* **2**, 261 (2019).

405 42. Beliu, G. *et al.* Tethered agonist exposure in intact adhesion/class B2 GPCRs through
406 intrinsic structural flexibility of the GAIN domain. *Mol. Cell* **81**, 905-921 (2021).

407 43. Bessa-Neto, D. *et al.* Bioorthogonal labeling of transmembrane proteins with non-canonical
408 amino acids allows access to masked epitopes in live neurons. *Nat. Commun.* **12**, 6715.

409 44. Nakayama, H., Nagafuku, M., Suzuki, A., Iwabuchi, K. & Inokuchi, J-I. The regulatory roles
410 of glycosphingolipid-enriched lipid rafts in immune systems. *FEBS Lett.* **592**, 3921-3942
411 (2018).

412 45. Prasanna, X., Jafurulla, M., Sengupta, D. & Chattopadhyay, A. The ganglioside GM1
413 interacts with the serotonin1A receptor via the sphingolipid binding domain. *Biochim.
414 Biophys. Acta* **1858**, 2818-2826 (2016).

415 46. Nguyen, L., *et al.* Sialic acid-containing glycolipids mediate binding and viral entry of SARS-
416 CoV-2. *Nat. Chem. Biol.* **18**, 81-90 (2022).

417

419 **Acknowledgments**

420 The authors thank E. Maier for cell culture support. The expression plasmid of hACE (pCG1-
421 hACE2) was a gift to S.B. from M. Hoffmann (Göttingen, Germany). The plasmid for the
422 expression of the tRNA/aminoacyl transferase pair (pNEU-hMbPyIRS-4xU6M15, herein
423 termed (PyIRS/tRNA^{PyL}) was a gift from I. Coin (Addgene, no. 105830). P.E., T.K. and M.S.
424 received funding from the European Research Council (ERC) under the European Union's
425 Horizon 2020 research and innovation programme (grant agreement No 835102), the
426 Deutsche Forschungsgemeinschaft (DFG SA829/19-1) and the Bundesministerium für Bildung
427 und Forschung (BMBF, grant #13N15986).

428

429 **Author contributions**

430 G.B. and M.S. conceived, designed and supervised the project. P.E. and T.K. performed all
431 *d*STORM, widefield and quantification experiments. S.B. produced VSV particles. S.B. and
432 T.K. performed infection experiments. G.B. and M.St. performed ncAAs incorporation and
433 click-labeling. S.D. performed data analysis. G.B. and M.S. wrote the manuscript. All authors
434 revised the final manuscript.

435

436 **Competing interest**

437 The authors declare no competing interests.

438

439 **Data availability**

440 The data that support the findings of this study will be provided by the corresponding author
441 upon reasonable request.

442

443 **Code availability**

444 The code used for super-resolution microscopy analysis is available on GitHub
445 (<https://github.com/super-resolution/Eiring-et-al-2023-supplement>).

446

447 **Methods**

448 **Fluorescence labeling.** For microscopy measurements Cellvis chamber slides (8 well
449 Chambered Coverglass System #1.5 High Performance Cover Glass ($0.17 \pm 0.005 \mu\text{m}$), Cellvis)
450 were coated with 0.1 mg/mL poly-D-lysine (PDL) for HEK293T cells or left untreated.

451 Afterwards, cells were seeded into the chambers and allowed to adhere for one day. For ACE2
452 overexpression HEK293T cells were transfected for 24 h with human ACE2 (pCG1-hACE2,
453 200 ng DNA/well) using JetPrime (Promega) according to the manufacturer's instructions.
454 Then cells were fixed with 4 % methanol-free formaldehyde in HBSS for 10 min prior to staining
455 with either 4 μ g/ml anti-ACE2 (Biolegend, clone A20069I) or anti-NRP-1 (Biolegend, clone
456 12C2) antibodies for 1h. As a last step cells were fixed with 4% methanol-free formaldehyde /
457 0.2% glutaraldehyde before being imaged. All antibodies were labeled with AF647-NHS
458 (Thermofisher, A20006) at a degree of labeling (DOL) of 2-3 to ensure specific binding and
459 optimal imaging conditions.

460 **dSTORM imaging.** dSTORM measurements were performed using an IX-71 inverted
461 microscope equipped with an APON 60XOTIRF oil-immersion objective and an IX2-NPS
462 nosepiece stage (all from Olympus, Hamburg, Germany)⁴⁷. AF647 was excited with an
463 appropriate laser system (Genesis MX 639 from Coherent, Göttingen, Germany). The
464 excitation light was spectrally cleaned by appropriate bandpass filters and focused onto the
465 backfocal plane of the objective. To switch between different illumination modes (Epi and TIRF
466 illumination) the lens system and mirror were arranged on a linear translation stage. A
467 polychromatic mirror (ZT405/514/635rpc, Chroma) was used to separate excitation (laser) and
468 emitted (fluorescence) light. The fluorescence emission was collected by the same objective
469 and transmitted by the dichroic beam splitter and detection filter (HC 679/41, Semrock), before
470 being projected on an electron-multiplying CCD camera (iXon Ultra 897, Andor, Belfast, UK).
471 The final pixel size of 128 nm was generated by placing additional lenses in the detection path.
472 Excitation intensity was about \sim 3 kW/cm². Typically, 15,000 frames were recorded at a frame
473 rate of \sim 50 Hz (20 ms exposure time). To induce photoswitching of AF647 a PBS based buffer
474 (pH 7.4) containing 100 mM β -mercaptopethylamin (Sigma-Aldrich) was used.

475 **Image reconstruction and data analysis.** The recorded dSTORM images were
476 reconstructed with rapidSTORM 3.3⁴⁸. Localization data acquired in dSTORM measurements
477 were filtered to remove background noise with less than 800 photons and analyzed with
478 Locan³⁰. For analysis of each dSTORM image an appropriate region of interest at the basal
479 membrane of the cell, was chosen. For clustering analysis, a DBSCAN clustering algorithm
480 was applied to group detected localizations⁴⁹. Suitable parameters were ϵ = 20 and minPoints
481 = 3. Using these parameters allowed for quantification of detected localization within a certain
482 distance giving ultimately information about existing oligomeric states and addressable
483 receptors on the cell surface. We calculated and displayed Ripley's H-function, a normalized
484 Ripley's K-function as previously described⁵⁰. Computation was carried out for each ROI
485 without edge correction. The averaged H-function was compared to those from 100 simulated
486 data sets with localizations distributed on the same ROIs (and identical number of localizations
487 in each ROI) according to complete spatial randomness or a Neyman-Scott process. The

488 Neyman-Scott clustering process has homogeneously distributed parent events with each
489 parent having n offspring events, where n is geometrically-distributed with mean equal to 9
490 (the average number of localizations recorded for a single antibody), and with the offspring
491 positions having a Gaussian offset with a standard deviation of 10 nm. The maximum of the
492 H-function indicates a distance that is between cluster radius and diameter and thus provides
493 an estimate for the average cluster size.

494 **Pseudotyping of VSV with SARS-CoV-2 Spike protein (VSV-S^{GFP} production).**

495 Pseudotyping of vesicular stomatitis virus (VSV) with the SARS-CoV-2 Spike protein was
496 performed as previously described (Hoffmann et al., 2020 PMID: 32142651). Briefly, VSVΔG-
497 GFP/luciferase was pseudotyped on BHK cells inducibly expressing the VSV G protein (kindly
498 provided by Gert Zimmer) to generate VSVΔG-G. Next, 293T cells were transfected with a
499 plasmid expressing SARS-CoV-2 Spike (kindly provided by Markus Hoffmann and Stefan
500 Pöhlmann Hoffmann et al., 2020 PMID: 32142651) using TransIT-X2 (Mirus) according to the
501 manufacturer's instructions. At 24 h posttransfection, cells were infected with VSVΔG-G. In
502 order to neutralize residual input virus, inoculated cells were washed twice with phosphate-
503 buffered saline (PBS) 2 h postinfection, and new medium containing 1:1,000 anti-VSV-G
504 antibody (8G5F11; Kerafast) was added. Supernatant containing replication-deficient VSVΔG
505 pseudotyped with SARS-CoV-2 Spike protein (VSVΔG-S) was harvested 24 h postinfection,
506 clarified by centrifugation, and stored at -80°C. Viral titers were determined on Vero E6 cells
507 by quantifying GFP positive cells.

508 **Infection assay.** To determine the percentage of infected cells, cells were seeded as
509 described for *d*STORM analysis. On the next day cells were incubated with 250 µl VSV-
510 S^{GFP}/well for 24 h, washed with HBSS and subsequently fixed with 4% methanol-free
511 formaldehyde / 0.1% glutaraldehyde in HBSS for 10 min. After washing with HBSS, nuclei were
512 stained with NucBlue™ Fixed Cell ReadyProbes™ Reagenz (DAPI) (ThermoFisher, R37606).
513 After an additional washing step with HBSS, the sample was analyzed on the EVOS™ FL Auto
514 2 microscope (Invitrogen). Each well was imaged automatically using a 20x objective and DAPI
515 and GFP cubes to obtain two color images. In each image the nuclei and GFP expressing cells
516 were counted using the particle analyzer in Fiji after applying unsharp masking and a threshold
517 of 200. The percentage of infected cells was calculated for one well from all single images
518 belonging to that well. The mean infectivity of a cell line was calculated from several wells in
519 multiple experiments. Overall 1,144,292 (Vero), 747,301 (Vero E6), 1,053,538 (HEK293T),
520 729,943 (HEK293T:hACE2), 300,252 (COS-7) and 229,619 (U2-OS) cells were analyzed.

521 **GM1 staining.** The glycolipid GM1 was stained with cholera toxin subunit B conjugated to
522 AF647. Cells were seeded as described for *d*STORM analysis. The next day the sample was
523 put on ice for 5 minutes, then stained with 5 µg/ml cholera toxin AF647 on ice for 20 min. After

524 washing once with HBSS, cells were fixed with 4% formaldehyde / 0.2 % glutaraldehyde in
525 HBSS for 10 min and washed again. Widefield imaging was performed on the ELYRA7 system
526 (Zeiss, Germany) with a 25x objective.

527

528 **Reproducibility.** All experiments were performed at least three times. Representative images
529 are shown for each experiment.

530 **Reporting Summary.** Further information on research design is available in the Nature
531 Research Reporting Summary linked to this article.

532

533 **References**

534 47. van de Linde, S., *et al.* Direct stochastic optical reconstruction microscopy with standard
535 26 fluorescent probes. *Nat. Protoc.* **6**, 991-1009 (2011).

536 48. Wolter, S. *et al.* rapidSTORM: accurate, fast open-source software for localization
537 microscopy. *Nat. Methods* **9**, 1040–1041 (2012).

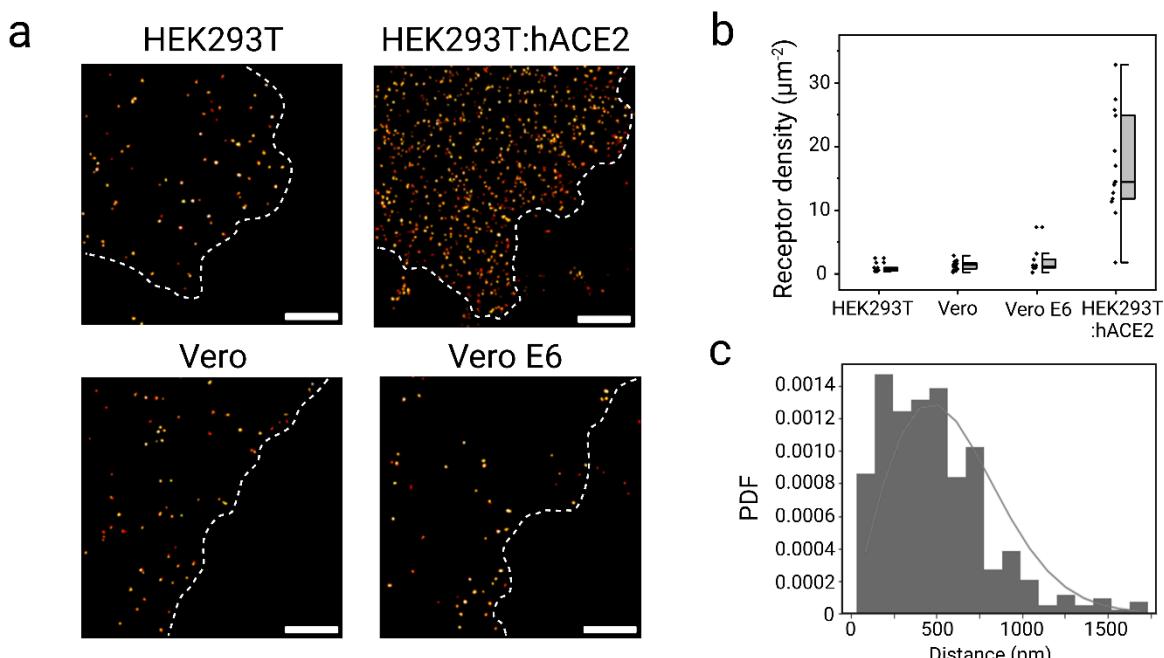
538 49. Schubert, E., Koos, A., Emrich, T., Züfle, A., Schmid, K. A., & Zimek, A. (2015). A
539 framework for clustering uncertain data. In *Proceedings of the VLDB Endowment* (Vol. 8,
540 Issue 12, pp. 1976–1979). Association for Computing Machinery.

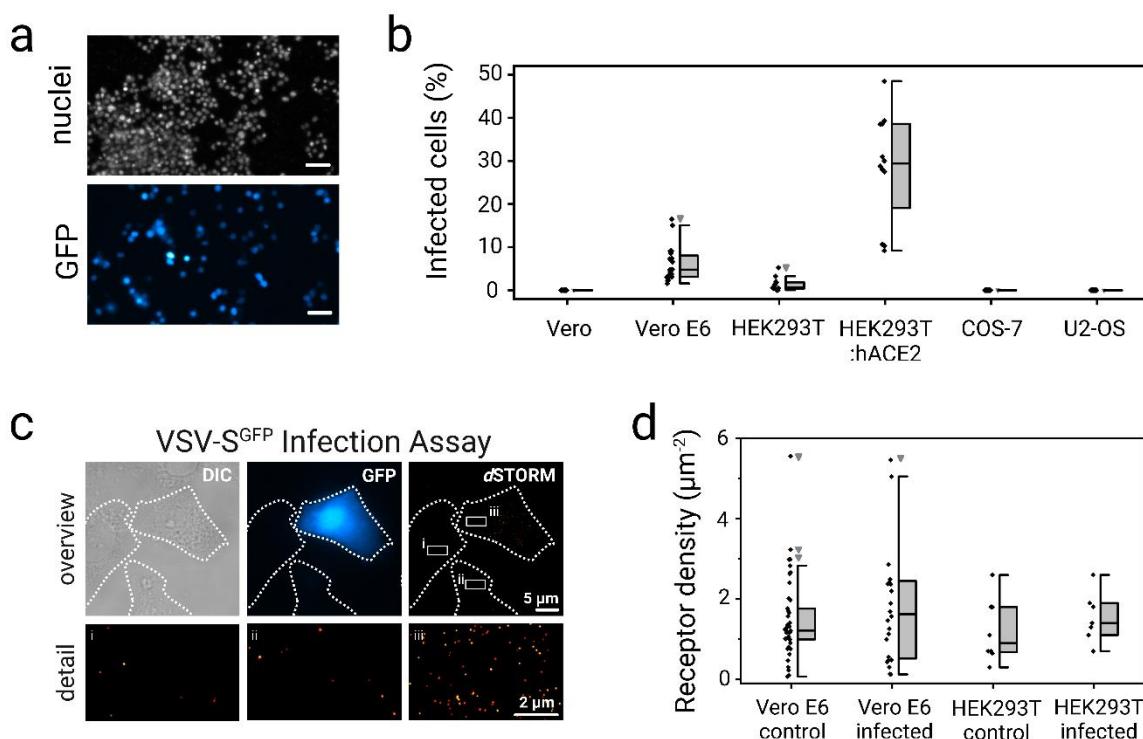
541 50. Kiskowski, M. A., Hancock, J. F. & Kenworthy, A. K. On the use of Ripley's K-function
542 and its derivatives to analyze domain size. *Biophys. J.* **97**, 1095–1103 (2009).

543

544

545


546


547

548

549

550

574

575 **Fig. 2. Infectivity of cells does not solely depend on ACE2 expression.** **a**, Widefield
576 fluorescence images of GFP and DAPI of ACE2 overexpressing HEK293T cells after 24 h
577 infection with VSV-S^{GFP}. **b**, Percentage of cells infected (showing GFP signal) after 24 h
578 infection with VSV-S^{GFP}. **c**, VSV-S^{GFP} infection assay comparing infection (widefield GFP
579 signal) and ACE2 expression (dSTORM) in Vero E6 cells. Small panels (i-iii) display
580 magnifications of boxed regions in the dSTORM image. **d**, ACE2 receptor density (μm^{-2})
581 determined by dSTORM in infected and uninfected Vero E6 and HEK293T cells. Scale bar, 50
582 μm (a), 5 μm (c), and 2 μm (magnified views (c)).

583

584

585

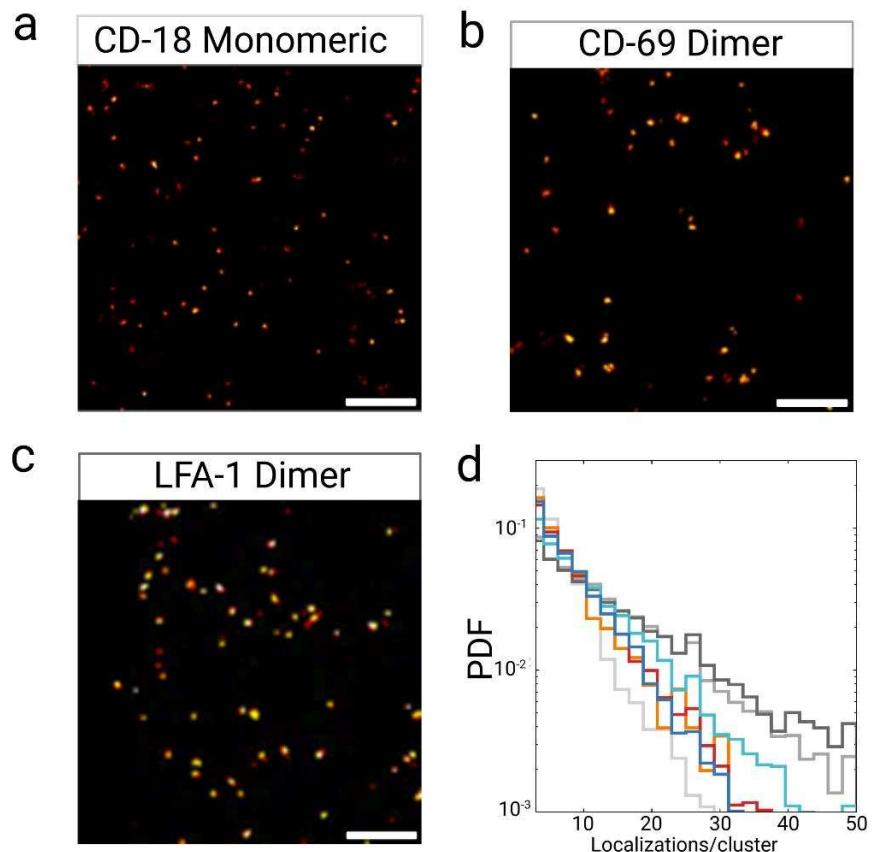
586

587

588

589

590


591

592

593

594

595

596 **Fig. 3. dSTORM with antibodies reveals the oligomeric state of receptors.** dSTORM
597 images of monomeric CD18³³ (a), homodimeric CD69³⁴ (b) as well as heterodimeric LFA-1³³
598 (c) on Jurkat cells using primary labeled antibodies for immunostaining. d, PDFs of the
599 localization numbers detected for the three receptors CD18 (light grey), CD69 (grey), and LFA-
600 1 (dark grey) showing a broader distribution towards higher localization numbers per spatially
601 isolated localization cluster for dimeric receptors. PDFs of the localization numbers detected
602 for ACE2 on HEK293T (orange), on HEK293T:ACE2 (red), Vero E6 (cyan) or Vero (blue)
603 demonstrate the organization of ACE2 as monomers in the plasma membrane. Scale bar, 3
604 μm .

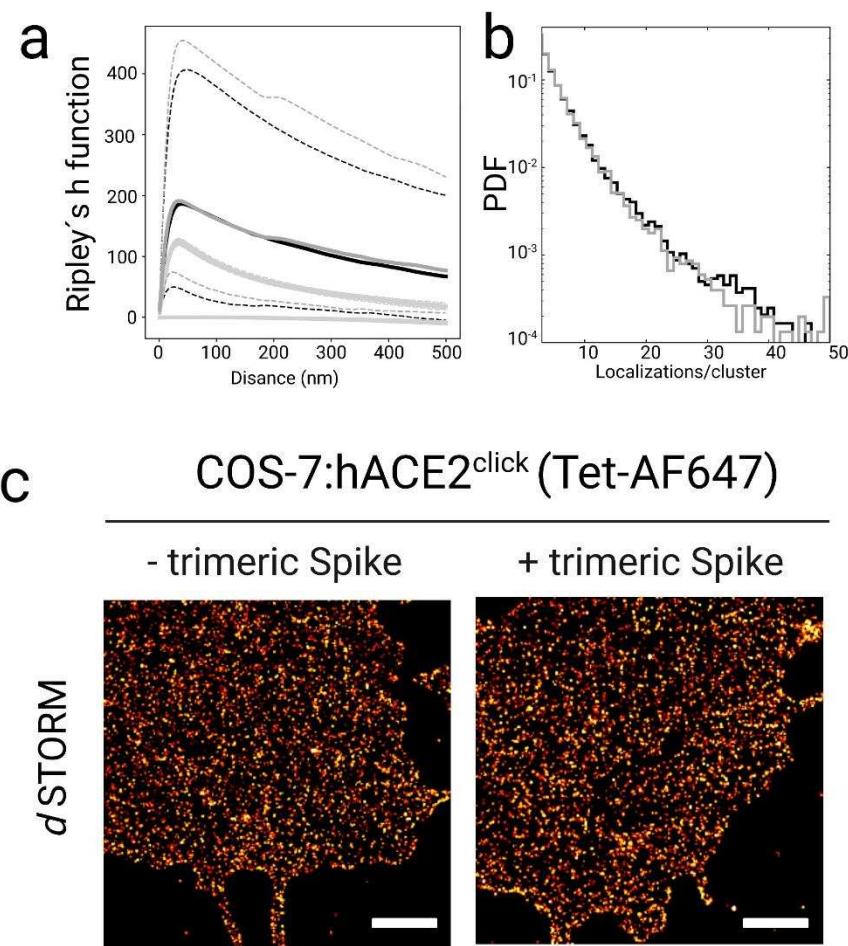
605

606

607

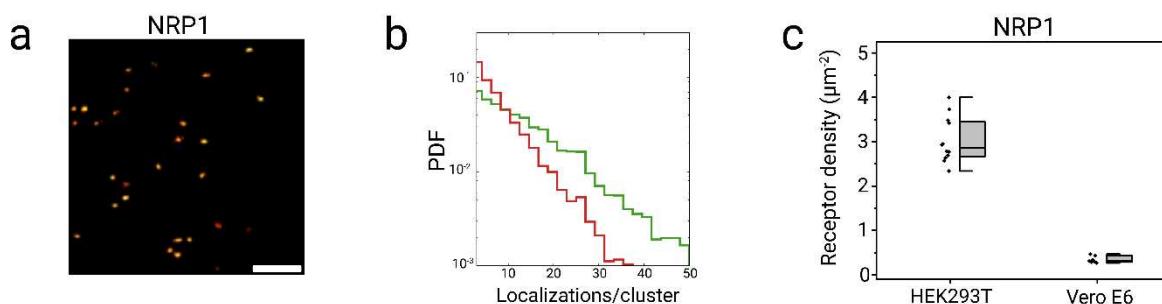
608

609


610

611

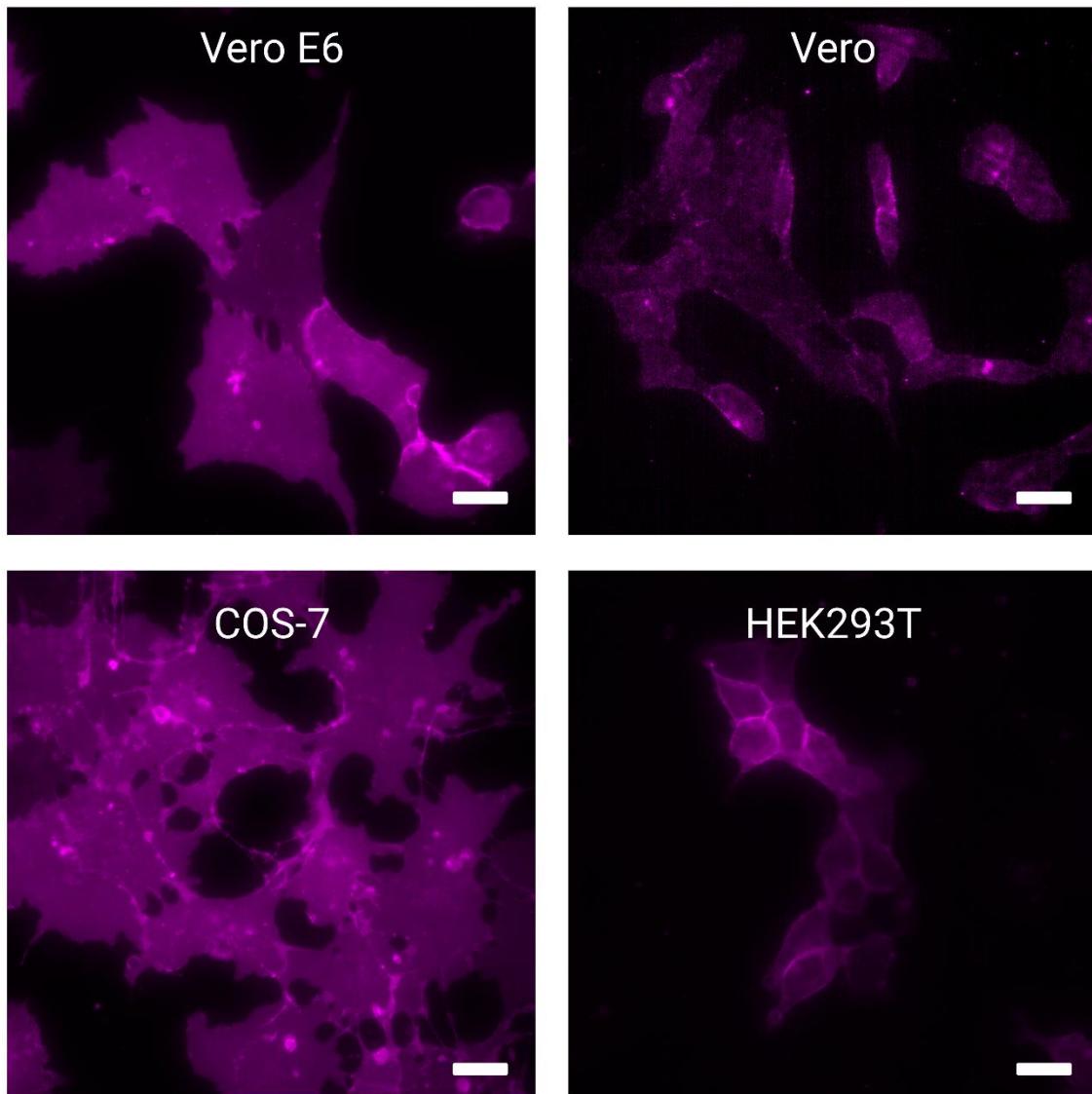
612


613

614

615 **Extended Data Fig. 1. Binding of trimeric spike protein does not induce dimerization or**
616 **trimerization of ACE2.** **a**, Spatial distribution of localizations as analyzed by Ripley's h
617 function for $\text{ACE2}^{\text{N}137\text{T}AG}$ (black) and $\text{ACE2}^{\text{N}137\text{T}AG}$ in the presence of spike (gray) reveals
618 identical clustering solely due to the repeated *d*STORM blinking events. For comparison,
619 Ripley's H function from 100 replicates of simulated data with spatial distributions following
620 complete spatial randomness (bottom grey lines) or a clustered Neyman-Scott process (center
621 grey lines) in identical ROIs are displayed (lower gray). Dotted lines indicate 95% confidence
622 intervals of Ripley functions computed from 7 and 4 recordings, respectively. **b**, PDFs of
623 localization numbers detected per localization cluster (as identified by DBSCAN yielding >3000
624 clusters for each condition) are identical confirming that ACE2 is present as monomer in the
625 plasma membrane (black) and does not oligomerize in the presence of trimeric spike protein
626 (grey). **c**, *d*STORM images of COS-7 cells expressing $\text{ACE2}^{\text{N}137\text{T}AG}$ labeled with Pyr-Tet-
627 AF647. Cells were either directly fixed after click labeling or first treated with recombinant
628 trimeric spike protein (10 $\mu\text{g}/\text{ml}$ for 20 min) before fixation and imaging. Scale bars, 1 μm (a).

629


630

631 **Extended Data Fig. 2. NRP-1 is identified as multimer in the membrane by dSTORM.** a,
632 dSTORM image of a HEK293T cell immunostained with AF647 labeled anti-NRP-1 primary
633 antibody. b, PDF of localization numbers detected per NRP-1 localization cluster (green)
634 showing a distribution typical for a dimer compared to monomeric ACE-2 (red). c, Boxplots
635 NRP-1 expression determined from dSTORM images with HEK293T, and Vero E6 cells. Vero
636 cells show negligible expression of NRP-1. Scale bar, 3 μm (a).

637

638

639

640

641 **Extended Data Fig. 3. Higher GM1 concentrations in the plasma membrane support**
642 **SARS-CoV-2 infection.** Widefield fluorescence images of GM1 glycolipid abundance in
643 different cell lines. GM1 was stained with 5 μ g/ml AF647 labeled cholera toxin. Vero cells have
644 substantially less GM1 present on the plasma membrane than Vero E6, HEK293T and COS-7
645 cells. Scale bars, 20 μ m.

646

647

648

649