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Abstract— One of the most difficult and pressing problems in
computational cell biology is the inference of gene regulatory
network structure from transcriptomic data. Benchmarking
network inference methods on model organism datasets has
yielded mixed results, in which the methods sometimes perform
reasonably well and other times fail to outperform random
guessing. In this paper, we analyze the feasibility of network
inference under different noise conditions using stochastic
simulations. We show that gene regulatory interactions with
extrinsic noise appear to be more amenable to inference than
those with only intrinsic noise, especially when the extrinsic
noise causes the system to switch between distinct expression
states. Furthermore, we analyze the problem of false positives
between genes that have no direct interaction but share a
common upstream regulator, and explore a strategy for dis-
tinguishing between these false positives and true interactions
based on noise profiles of mRNA expression levels. Lastly, we
derive mathematical formulas for the mRNA noise levels and
correlation using moment analysis techniques, and show how
these levels change as the mean mRNA expression level changes.

I. INTRODUCTION

In what is known as the “central dogma” of molecular

biology, information encoded in DNA is transcribed into

strands of messenger RNA (mRNA), which are then trans-

lated into proteins, which then carry out various functions

within the cell. Sometimes the function of a protein from

one gene involves regulating the expression of other genes.

When a protein increases the expression of another gene, we

refer to this as “activation.” When a protein decreases the

expression of another gene, we refer to this as “repression.”

Intricate networks of these positive and negative regulatory

interactions between genes (called gene regulatory networks

or GRNs) give rise to much of the complexity of life [17],

[27]. Understanding the roles and functionality of GRNs

is a pressing problem for cell biologists, especially since

malfunctions of GRNs can have disastrous medical impacts

on human health, leading to diseases like cancer, for example

[19].

In this paper, we present models of different noise con-

ditions related to regulatory interactions between genes. In

this context, intrinsic noise refers to the inherent stochasticity

in the processes of transcription, translation, and the degra-

dation of mRNA and proteins, and is especially prevalent in

cases of low copy number fluctuations of these molecules. By
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contrast, extrinsic noise refers to the impact of other factors,

such as upstream regulators, external stimuli, or changes in

cell state that affect the regulatory interaction [6], [13], [32],

[36], [38].

A specific challenge for computational biologists studying

GRNs is network inference – that is, the attempt to infer the

structure of a GRN from gene expression data [29]. Although

modern high-throughput next generation sequencing (NGS)

experiments like RNA-seq have led to an abundance of

gene expression data, the challenge of network inference is

still quite difficult. Part of the reason for this difficulty is

that NGS transcriptomic experiments like RNA-seq involve

destroying each cell to sequence its RNA content. So, each

cell provides only a single time point of data, rather than a

timeseries dataset.

Most network inference methods attempt to infer regula-

tory interactions between genes based on statistical relation-

ships between their expression levels (typically quantified by

mRNA abundance). Some examples of these methods include

correlation [45], linear or non-linear regression [11], [14],

[37], information theory [4], [5], [7], [24], [25], Bayesian

techniques [8], [44], and others [1]–[3], [15], [18], [43], [46].

An excellent introductory review of the topic of gene

regulatory network inference can be found in Huynh-Thu and

Sanguinetti 2018 [16]. Recent theoretical work on models of

gene expression and regulation can be found in [22], [39]–

[41].

II. EFFICACY OF NETWORK INFERENCE METHODS

Although the problem of gene regulatory network infer-

ence has been widely studied for more than a decade, there

are still questions about the efficacy of these methods and

whether network inference from transcriptomic data is a

feasible goal. A key point of skepticism is that these methods

typically assume that mRNA abundance measurements can

be used as a reliable proxy for protein abundance. Typically,

the protein (not the mRNA) produced by a gene is what

regulates the expression of other genes, but it is often

mRNA abundance data that we have access to, so most GRN

inference methods take mRNA data as an input.

There are some reasons to question the assumption that

mRNA abundance data can be used as a reliable proxy for

protein abundance. For example, Mahajan et al. 2022 [21]

shows though theoretical analysis and stochastic simulations

that, under conditions of only intrinsic noise, the correlation

between mRNA abundance and protein abundance even for

the same gene becomes quite weak if there is a large

difference between the mRNA stability and protein stability.
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TABLE I

ACTIVATION MODEL, NO EXTRINSIC NOISE

Event Count Update Propensity

mRNA1 production M1 → M1 + 1 k1
mRNA1 degradation M1 → M1 − 1 γ1M1

Protein production P → P + 1 kpM1

Protein degradation P → P − 1 γpP

mRNA2 production M2 → M2 + 1 k2
Pn

cn+Pn

mRNA2 degradation M2 → M2 − 1 γ2M2

Additionally, Liu et al. 2016 [20] reviews the literature and

reports a similar finding, that the correlation between mRNA

levels and protein levels can be weak in some scenarios,

and knowledge of mRNA transcript abundance alone is not

always sufficient to predict protein abundance levels.

So how well do these network inference methods actually

work? There have been several attempts to test the efficacy

of network inference methods by benchmarking them on

data from model organisms, such as E. coli, S. cerevisiae,

and mice [23], [26], [28]. In these benchmarking studies,

the underlying structure of the gene regulatory network

is already known from experimental investigation, so the

predictions of network inference methods can be checked

against the correct answers. The most famous of these

benchmarking attempts is Marbach et al. 2012 [23]. The

results of this benchmarking study were mixed. When tested

on a S. cerevisiae dataset, network predictions failed to

substantially outperform the accuracy that would be expected

by random guessing. However, when tested on E. coli data,

the network predictions performed substantially better than

random guessing.

So, our current understanding of the efficacy of gene

regulatory network inference is quite murky and uncertain.

It seems that network inference from transcriptomic data

cannot be considered entirely feasible or unfeasible. Rather,

it seems to be feasible under some conditions and unfeasible

under other conditions. In this paper, we attempt to shed light

on this topic, investigating through stochastic simulations

which noise conditions may be more or less amenable to

network inference from transcriptomic data.

III. STANDARD ACTIVATION MODEL, NO EXTRINSIC

NOISE

In this section, we briefly review and replicate results

from Mahajan et al. 2022 [21], which studied the feasibility

of network inference from mRNA abundance data under

conditions of only intrinsic noise. We consider a system

with two genes: Gene 1 and Gene 2. Gene 1 is transcribed

into mRNA1, which is then translated into the Protein.

The Protein then activates the transcription of Gene 2 into

mRNA2. We refer to this as the Activation scenario. A

diagram of this scenario is shown in Figure 1.

We define the integer-valued random processes M1(t),
P (t), and M2(t) to track the counts of the mRNA1, Protein,

and mRNA2 respectively. For the sake of simplicity, we will

refer to these processes as M1, P , and M2 from now on.

TABLE II

ACTIVATION MODEL PARAMETERS

Parameter Description Value

k1 mRNA1 production rate 4

γ1 mRNA1 degradation rate 2

kp Protein production rate 2

γp Protein degradation rate 2
τ

k2 mRNA2 maximum production rate 4

γ2 mRNA2 degradation rate 2

n Hill coefficient 3

c Hill function parameter 1

Gene 1

mRNA2mRNA1

Protein

Gene 2

Gene 1

mRNA2mRNA1

Extrinsic 
Factor

Protein

Gene 2

Gene 1

mRNA2mRNA1

Gene 2

Extrinsic 
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Fig. 1. Activation Model, No Extrinsic Noise – M1 tracks the count
of mRNA1, which is produced with a constant rate, and also degrades
with some rate. P tracks the count of the Protein, which is produced
from mRNA1, and also degrades with some rate. The Protein activates the
production of mRNA2, which also degrades with some rate. We track the
count of mRNA2 with the variable M2.

The stochastic model is described in Table I. The model

consists of six events that occur probabilistically with rates

given in the third column. When the event occurs, the counts

for the variables are updated according to the reset map in

the second column. Descriptions of the parameters, as well as

the values we used in our simulations, are listed in Table II.

With this setup, we can simulate the model using Gillespie’s

stochastic simulation algorithm (SSA) [9].

We model the activation of M2 production by P as the

Hill function k2
Pn

cn+Pn , where P is the level of the Protein,

n is the Hill coefficient (which determines how linear or

nonlinear the activation is), c is a constant parameter that

affects the saturation dynamics of the Hill function, and

k2 is the maximum production rate. As P increases, the

fraction Pn

cn+Pn saturates and approaches 1, so the entire term

k2
Pn

cn+Pn approaches k2.

Part of the analysis in [21] involved calculating the corre-

lation between the mRNA levels under different assumptions

about the relative stability of the mRNA and protein. In our

case, we are interested in the correlation between M1 and

M2 under different assumptions about the relative stability

of mRNA1 and the Protein. The stability of mRNA1 is the

reciprocal of its degradation rate: 1
γ1

. The stability of the

Protein, likewise, is: 1
γp

. So, the ratio of Protein stability to

mRNA1 stability can be expressed as γ1

γp

. We refer to this

stability ratio as τ .

A key finding in [21] was that in this model with only

intrinsic noise, correlation between the mRNA levels is quite
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Fig. 2. Plot of the Pearson correlation coefficient between M1 and M2 for
different ratios of Protein stability to mRNA1 stability, which we define in
terms of the degradation rates as

γ1

γp

. Error bars show one standard deviation.

Simulations were run using the parameter values shown in Table II.

TABLE III

CASCADE MODEL WITH EXTRINSIC NOISE

Event Count Update Propensity

Extrinsic Factor production Z → Z + β kz
Extrinsic Factor degradation Z → Z − 1 γzZ

mRNA1 production M1 → M1 + 1 k1
Zn

cn+Zn

mRNA1 degradation M1 → M1 − 1 γ1M1

Protein production P → P + 1 kpM1

Protein degradation P → P − 1 γpP

mRNA2 production M2 → M2 + 1 k2
Pn

cn+Pn

mRNA2 degradation M2 → M2 − 1 γ2M2

weak, and gets weaker as the ratio of stability between the

protein and mRNA increases. Figure 2 shows our replication

of this result: the correlation between M1 and M2 is quite

weak, and drops to nearly 0 as the ratio of stability between

the Protein and mRNA1 increases.

This result seems to give a bleak outlook for the challenge

of network inference. If there is weak or zero correlation

between mRNA abundance for genes that regulate each other,

how can we hope to infer gene regulatory network structure

from transcriptomic data? However, as noted in the previous

section, attempts to benchmark network inference methods

on real data have yielded mixed results. In some cases,

the network inference methods sometimes have performed

reasonably well, and in other cases they have failed to

outperform random guessing. In the next section, we will

modify the model in a way that could explain this mixed-

feasibility of network inference.

IV. CASCADE MODEL WITH EXTRINSIC NOISE

In the previous section, we analyzed a model that included

only intrinsic noise in the processes of transcription and

translation. However, a more realistic model of the biological

system might include extrinsic noise, which could come from

environmental stimuli, changes to the internal cell state, or

regulation from another upstream gene. In this section, we

introduce a new component to the model, which we refer

TABLE IV

CASCADE MODEL PARAMETERS

Parameter Description Value

kz Extrinsic Factor production rate 1

2β̂

γz Extrinsic Factor degradation rate 0.1

k1 mRNA1 maximum production rate 4

γ1 mRNA1 degradation rate 2

kp Protein production rate 2

γp Protein degradation rate 2
τ

k2 mRNA2 maximum production rate 4

γ2 mRNA2 degradation rate 2

n Hill coefficient 3

c Hill function parameter 1

to as the Extrinsic Factor, to represent the extrinsic noise

source. We track the level of the Extrinsic Factor with the

integer-valued random process Z(t). From now on we will

refer to Z(t) as simply Z for the sake of simplicity.

In this model, Gene 1 is transcribed mRNA1 (with counts

tracked by M1) which is then translated into the Protein (with

counts tracked by P ), which then activates the transcription

of Gene 2 into mRNA2 (with counts tracked by M2).

However, unlike the model in the previous section, in this

model the production mRNA1 is activated by the Extrinsic

Factor. We purposely define the Extrinsic Factor in vague

biological terms, so that it can be thought of as an upstream

transcription factor, external stimulus, or any other source of

extrinsic noise affecting the transcription of mRNA1. We

refer to this as the Cascade scenario. A diagram of this

scenario is shown in Figure 3.

This stochastic model is described in Table III. Unlike the

other variables, which update with increases and decreases

of 1, the production of the Extrinsic Factor occurs with a

burst of size β, which is drawn from a random geometric

distribution with mean β̂. With this setup, increasing β̂ while

holding the mean of Z constant increases the noise level

of Z. In this section, we will report results for different

mean burst sizes of β̂, ranging 1 to 20. In all of these cases,

the mean burst size β̂ is changed, and the parameter kz is

updated so that the mean of Z over time is held constant.

We model the degradation of the Extrinsic Factor with the

parameter γz . In this model, the production of mRNA1 is

activated by the Extrinsic Factor via a Hill function, with a

maximum production limit of k1. The Hill function parame-

ters c and n are the same for both the activation mRNA1

transcription and the activation of mRNA2 transcription.

Other than these changes, we model the degradation of

mRNA1, the production and degradation of the Protein, and

the production and degradation of mRNA2 the same as in

the previous section.

Figures 4, 5, and 6 show three scenarios in which the mean

of Z is held constant, but the burst size mean β̂ is varied. In

Figure 4, the burst size is only 1, and in this simulation the

correlation between M1 and M2 is 0.109. In Figure 5, the

mean burst size is 10, and in this simulation the correlation

between M1 and M2 is 0.334. In Figure 6, the mean burst

size is 20, and in this simulation the correlation between M1
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Fig. 3. Cascade Model with Extrinsic Noise – We introduce an Extrinsic
Factor (tracked by Z) to the model, which we purposely define in abstract
terms so that it can refer to an upstream transcription factor, environmental
stimulus, or something else. The Extrinsic Factor activates the production of
mRNA1 (tracked by M1), which also degrades with some rate. The Protein
(tracked by P ) is produced from mRNA1, and also degrades with some rate.
The Protein activates the production of mRNA2 (tracked by M2), which
also degrades with some rate.
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Fig. 4. Simulation using parameter values listed in Table IV, with mean

β̂ = 1, meaning that β = 1 with no variation. This simulation yielded a
correlation coefficient between M1 and M2 of 0.109.

and M2 is 0.469.

Figure 7 shows the general relationship between the mean

burst size β̂ and the correlation between M1 and M2, and

confirms what we could see visually in Figures 4, 5, and 6:

higher mean burst size β̂ leads to higher levels of correlation

between M1 and M2. Figure 8 shows this correlation for both

different mean burst sizes of β̂ and different Protein/mRNA1

stability ratios (τ ). Here, correlation levels for the Cascade

scenario are compared to the Activation scenario results

from Figure 2. Under conditions of extrinsic noise with high

bursts of Extrinsic Factor production, the level of correlation

between M1 and M2 persists more than in the scenario with

no extrinsic noise, although it becomes slightly weaker.

In this section, we purposely defined the Extrinsic Factor

in abstract terms without a definite biological meaning.

However, it is interesting to consider possible biological

implications of these results. Note that as we increase the

burst size of Extrinsic Factor production, the model begins to

resemble a system with distinct transcriptional states, rather
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Time
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Fig. 5. Simulation using parameter values listed in Table IV, with Extrinsic

Factor burst size β drawn from a geometric distribution with mean β̂ = 10.
This simulation yielded a correlation coefficient between M1 and M2 of
0.334.
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Fig. 6. Simulation using parameter values listed in Table IV, with Extrinsic

Factor burst size β drawn from a geometric distribution with mean β̂ = 20.
This simulation yielded a correlation coefficient between M1 and M2 of
0.469.

than stochastic fluctuations around a single steady state, as

in the Activation scenario with only intrinsic noise. For

example, in Figure 6, the system could be thought of as

representing the switching between two expression states (an

ON state and an OFF state in this case). This phenomenon of

transient switching between distinct gene expression states is

thought to play a role in many biological systems, including

drug resistance in cancer [30], [31], so it is interesting to

note that GRN inference from mRNA abundance data may

be more feasible under these conditions than under a single

steady state condition.

V. DISTINGUISHING BETWEEN CASCADE AND

COREGULATION

Another key finding from Mahajan et al. 2022 [21] related

to the difficulty of distinguishing between scenarios in which

one gene regulates another and scenarios in which both genes

are regulated by a common upstream regulator. Both of these
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Fig. 7. Simulations using parameter values listed in Table IV, with β drawn
from geometric distributions with means ranging from 2 to 20 (as shown
on the horizontal axis). The stochastic model for the Cascade scenario is
described in Table III. Error bars show one standard deviation.

0.5 1.0 2.0 4.0
Protein/mRNA1 Stability Ratio

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Co
rre

la
tio

n(
M

1,M
2)

Cascade With Extrinsic Noise
Activation
Cascade1
Cascade5
Cascade10
Cascade20

Fig. 8. Simulations using parameter values listed in Table IV, with β
drawn from geometric distributions of 1, 5, 10, and 20, and stability ratios
(τ ) of 0.5, 1, 2, and 4. Error bars show one standard deviation. The
“Activation” bars show correlation levels for the Activation scenario with no
extrinsic noise (shown previously in Figure 2). The bars labeled “Cascade1,”
“Cascade5,” “Cascade10,” and “Cascade20” show the correlation levels for
the Cascade scenario, with mean Extrinsic Factor burst sizes of β̂ = 1,

β̂ = 5, β̂ = 10, and β̂ = 20, respectively.

scenarios can yield a correlation between the mRNA levels,

so there is a possibility of a false positive network inference

error in the latter scenario. In this section, we analyze a

situation in which rather than Gene 1 regulating Gene 2,

instead Gene 1 and Gene 2 are both regulated by the Extrinsic

Factor. We will attempt to distinguish between this scenario

and the previous scenarios in which Gene 1 directly regulated

Gene 2.

In this new model, we continue using the Extrinsic Factor

(tracked by Z) to model extrinsic noise, which can be

thought of as an upstream regulator in this case. However,

instead of the Extrinsic Factor activating Gene 1, which

then activates Gene 2, in this model the Extrinsic Factor

activates both Gene 1 and Gene 2 directly, with no direct

TABLE V

COREGULATION MODEL

Event Count Update Propensity

Extrinsic Factor production Z → Z + β kz
Extrinsic Factor degradation Z → Z − 1 γzZ

mRNA1 production M1 → M1 + 1 k1
Zn

cn+Zn

mRNA1 degradation M1 → M1 − 1 γ1M1

mRNA2 production M2 → M2 + 1 k2
Zn

cn+Zn

mRNA2 degradation M2 → M2 − 1 γ2M2
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mRNA2mRNA1
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mRNA2mRNA1
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Fig. 9. Coregulation Model – We can think of the Extrinsic Factor (tracked
by Z) as an upstream regulator in this case. The Extrinsic Factor activates
the transcription of mRNA1 (tracked by M1) and mRNA2 (tracked by M2),
both of which also degrade with some rate. In this model, we no longer
track the level of the Protein, because we do not need this information to
model the production of mRNA2.

regulation between Gene 1 and Gene 2. We refer to this

as the Coregulation scenario. A diagram of this scenario is

shown in Figure 9.

The stochastic model is described in Table V. We model

the production and degradation of the Extrinsic Factor the

same as in the last section, with production occurring in

bursts of size β, drawn from a geometric distribution with

mean β̂. As in the last section, the transcription of both

mRNA1 and mRNA2 is modeled with Hill functions, and

the Hill function parameters c and n are the same for both.

However, unlike in the previous section, the transcription of

mRNA2 is now activated by the Extrinsic Factor, not by

the Protein. The Protein is left out of this model since we no

longer need to track its abundance to model the transcription

of mRNA2.

Figure 10 shows the correlation between M1 and M2 for

different burst sizes in the Coregulation scenario, compared

to the correlation in the Cascade scenario that we simulated

in the previous section. As you can see, it is very difficult to

distinguish between the Cascade scenario and the Coregula-

tion scenario based on only the correlation between the two

mRNA levels.

However, it may be possible to distinguish between these

scenarios based on the noise profiles of M1 and M2. Figure

11 shows the ratio
CV (M1)
CV (M2)

in both scenarios, for burst

sizes ranging from 2 to 20. CV here is the coefficient of

variation, or the standard deviation of the sample divided by

the mean of the sample. It appears that we can distinguish

between the scenarios using this noise ratio, even though
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Fig. 10. Simulations using parameter values listed in Table IV, with β
drawn from geometric distributions with means ranging from 2 to 20 (as
shown on the horizontal axis). The stochastic model for the Cascade scenario
is described in Table III. The stochastic model for the Coregulation scenario
is described in Table V. Blue dots show the correlation between M1 and
M2 levels for the Cascade scenario, and red dots show the correlation for
the Coregulation scenario. Error bars show one standard deviation.
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Fig. 11. Simulations using parameter values listed in Table IV, with
β drawn from geometric distributions with means ranging from 2 to 20
(as shown on the horizontal axis). In this case, rather than plotting the

correlation between M1 and M2, we plot the noise ratio
CV (M1)
CV (M2)

, where

CV is the coefficient of variation. Blue dots show the noise ratio for the
Cascade scenario, and red dots show the noise ratio for the Coregulation
scenario. Error bars show one standard deviation.

both scenarios have similar levels of correlation. In the

Coregulation scenario, M1 and M2 have similar noise, so

their CV ratio is close to 1. However, in the Cascade scenario,

M1 has lower noise than M2, leading to a lower CV ratio.

VI. FURTHER ANALYSIS

In the previous sections, we used stochastic simulations

of different scenarios to study the correlation between M1

and M2 under different noise conditions. While stochastic

simulations are a valuable tool for analysis, it can also

be helpful to have a mathematical framework for analysis

that does not rely on simulations. In this section, we

analyze simplified linear models of the three previously

TABLE VI

LINEAR ACTIVATION MODEL

Event Count Update Propensity

mRNA1 production M1 → M1 + 1 k1
mRNA1 degradation M1 → M1 − 1 γM1

Protein production P → P + 1 kpM1

Protein degradation P → P − 1 γP

mRNA2 production M2 → M2 + 1 k2P

mRNA2 degradation M2 → M2 − 1 γM2

described scenarios, and derive formulas for the coefficients

of variation of M1 and M2, and the correlation between

M1 and M2 for each scenario.

Activation We begin with the first scenario in which

Gene 1 regulates Gene 2, with no extrinsic noise. In our

previous model for this scenario, we used a nonlinear Hill

function to describe the activation of Gene 2 by Gene 1.

However, in this section, we will make the simplifying

assumption of a linear regulatory relationship between Gene

1 and Gene 2, in order to make the model more amenable

to mathematical analysis. We also make the simplifying

assumption that mRNA1, Protein, and mRNA2 all have

the same degradation rate, which we call γ. After making

these assumptions, the stochastic model for this scenario is

described in Table VI.

Our eventual goal is to derive a formula for the correlation

between M1 and M2 in this model, as well as formulas for

the coefficients of variation for both M1 and M2. In order

to do this, we start by deriving the first and second order

steady state moments for all of the variables. For the rest of

this section, we will use angle brackets to signify expected

value. For example, ïM1ð will denote the expected value of

M1 (also called the first order moment of M1), and ïM2
1 ð

will denote the expected value of M2
1 (also called the second

order moment of M1).

With this simplified linear Activation model, we can use

standard moment analysis techniques [10], [12], [33]–[35],

[42] to solve for the first and second order steady state

moments of M1 and M2:

ïM1ð =
k1

γ
(1)

ïM2ð =
k1k2kp

γ3
(2)

ïM2
1 ð =

k1(γ + k1)

γ2
(3)

ïM2
2 ð =

k1k2kp
(

4γ2(2γ + k2) + k2kp(3γ + 8k1)
)

8γ6
(4)

ïM1M2ð =
k1k2kp(γ + 4k1)

4γ4
(5)

The coefficient of variation for a random variable can be

written in terms of its first and second and order moments.
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TABLE VII

LINEAR CASCADE MODEL

Event Count Update Propensity

Extrinsic Factor production Z → Z + 1 kz
Extrinsic Factor degradation Z → Z − 1 γzZ

mRNA1 production M1 → M1 + 1 k1Z

mRNA1 degradation M1 → M1 − 1 γM1

Protein production P → P + 1 kpM1

Protein degradation P → P − 1 γP

mRNA2 production M2 → M2 + 1 k2P

mRNA2 degradation M2 → M2 − 1 γM2

For example, the coefficient of variation for M1 can be

written as:

CV (M1) :=

√

ïM2
1 ð − ïM1ð2
ïM1ð

(6)

Since we already have expressions for the first and second

order moments of M1 and M2, we can write the coefficients

of variation for these variables in terms of the model param-

eters:

CV (M1) =
γ√
γk1

(7)

CV (M2) =

√

γk1k2kp(4γ(2γ + k2) + 3k2kp)

2
√
2k1k2kp

(8)

We note that, based on Equation 7, the variation in M1

is Poissonian, since CV (M1) =
√

1
ïM1ð

. We can also write

the correlation between M1 and M2 in terms of the first and

second order moments:

Cor(M1,M2) :=
ïM1M2ð − ïM1ðïM2ð

√

ïM2
1 ð − ïM1ð2

√

ïM2
2 ð − ïM2ð2

(9)

We can write this in terms of the model parameters:

Cor(M1,M2) =

√
k1k2kp√

2
√

k1k2kp(4γ(2γ + k2) + 3k2kp)
(10)

Cascade We use the same approach to derive formulas for

these measures in the Cascade model, in which the Extrinsic

Factor activates Gene 1, which then activates Gene 2. Again,

we make the simplifying assumptions of linear activation

rather than nonlinear activation via a Hill function, and

that the mRNA1, Protein, and mRNA2 all have the same

degradation rate, which we call γ. Also, we no longer model

Extrinsic Factor production as a burst, so the Z production

count update is now Z → Z + 1, not Z → Z + β.

After making these assumptions, the stochastic model for

the Cascade scenario is shown in Table VII.

We can use the same moment analysis techniques de-

scribed in the previous section to write formulas for the coef-

ficients of variation and correlation in the Cascade scenario.

The coefficient of variation for M1 is:

TABLE VIII

LINEAR COREGULATION MODEL

Event Count Update Propensity

Extrinsic Factor production Z → Z + 1 kz
Extrinsic Factor degradation Z → Z − 1 γzZ

mRNA1 production M1 → M1 + 1 k1Z

mRNA1 degradation M1 → M1 − 1 γM1

mRNA2 production M2 → M2 + 1 k2Z

mRNA2 degradation M2 → M2 − 1 γM2

CV (M1) =

√

γγzk1kz(γ+γz+k1)
γ+γz

k1kz
(11)

The coefficient of variation for M2 and the correlation

between M1 and M2 are shown at the top of the next page

because of their large size.

Coregulation Once again, we use the same approach for the

Coregulation scenario, in which the Extrinsic Factor activates

both Gene 1 and Gene 2. We again make the simplifying

assumptions that this is linear activation, rather than acti-

vation via Hill function, and that the mRNA1, Protein, and

mRNA2 all have the same degradation rate, which we call γ.

Again, we no longer model Z production as a burst, so the Z

production count update is now Z → Z+1, not Z → Z+β.

After making these assumptions, the stochastic model for the

Coregulation scenario is shown in Table VIII.

We use the same moment analysis techniques as in the

previous sections to write expressions for the coefficients of

variation and correlation for M1 and M2:

CV (M1) =

√

γγzk1kz(γ+γz+k1)
γ+γz

k1kz
(14)

CV (M2) =

√

γγzk2kz(γ+γz+k2)
γ+γz

k2kz
(15)

Cor(M1,M2) =
k1k2kz

√

k1kz(γ + γz + k1)
√

k2kz(γ + γz + k2)
(16)

Analytical Results For this part of the analysis, we set

the parameters so that ïM1ð = ïM2ð, and so that this

mean mRNA level is the same across all three scenarios.

We then vary the mean mRNA level, and observe how the

correlation and coefficients of variation change. In Figure

12, we show that as the mean mRNA level increases, the

correlation between M1 and M2 increases in the Cascade

and Coregulation scenarios, but decreases in the Activation

scenario. In Figure 13, we show that as the mean mRNA

expression level increases, the ratio of M1 noise to M2 noise

holds steady at 1 in the Coregulation scenario, drops only

very slightly before stabilizing in the Cascade scenario, and

drops off quite steeply in the Activation scenario.

These results have some interesting biological implica-

tions. They seem to suggest that the difference in feasibility

of network inference between the Activation and Cascade
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CV (M2) =

√

√

√

√

√γγzk1k2kpkz





k1k2kp

(

8γ2+9γγz+3γ2
z

)

(γ+γz)3
+ 4γ(2γ + k2) + 3k2kp





2
√

2k1k2kpkz

(12)

Cor(M1,M2) =
k1k2kpkz

(

k1

(

4γ2 + 3γγz + γ2
z

)

+ (γ + γz)3
)

√

2(γ + γz)
√

k1kz(γ + γz + k1)

√

k1k2kpkz

(

k2kp

(

k1

(

8γ2 + 9γγz + 3γ2
z

)

+ 3(γ + γz)3
)

+ 4γ(γ + γz)3(2γ + k2)
) (13)
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Fig. 12. Correlation formula results for all three scenarios. We keep the
mean mRNA abundance levels equal between M1 and M2, and equal across
all three scenarios, and plot the correlation as we vary this mean mRNA
expression level. Activation refers to the regulatory scenario described in
Figure 1. Cascade refers to the regulatory scenario described in Figure 3.
Coregulation refers to the regulatory scenario described in Figure 9.

scenarios is more pronounced in high copy number situations

compared to low copy number situations, and that there is

also more of a false positive threat from Coregulation sce-

nario in high copy number situations. They also suggest that

the differences in noise profiles between the direct regulation

scenarios (Activation and Cascade) and the Coregulation

scenario persist in high copy number situations.

VII. DISCUSSION

In this paper, we have analyzed the feasibility of network

inference under different noise conditions through stochastic

simulations, considering both intrinsic and extrinsic noise.

We began by replicating a key result from Mahajan et al.

2022 [21] which suggests that under conditions of only

intrinsic noise, the correlation between mRNA abundance

levels for two genes in an activation relationship is quite

weak, and gets weaker as the ratio of protein stability to

mRNA stability increases. Under these conditions of only

intrinsic noise, network inference from transcriptomic data

would be very difficult.

Next, we investigated a scenario in which an extrinsic

noise source activates the expression of a gene, which

then activates the expression of another gene. Under these

conditions, we found that the correlation between mRNA

abundance levels for the two genes gets stronger as the

extrinsic noise begins to resemble a state variable. We also
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M
1 a
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Fig. 13. We keep the mean mRNA abundance levels equal between M1 and

M2, and equal across all three scenarios, and plot the noise ratio
CV (M1)
CV (M2)

as we vary this mean mRNA expression level. Activation refers to the
regulatory scenario described in Figure 1. Cascade refers to the regulatory
scenario described in Figure 3. Coregulation refers to the regulatory scenario
described in Figure 9.

found that the correlation persists (although it becomes

weaker) even as the ratio of protein stability to mRNA

stability increases. A biological takeaway from this result

is that if a cell has distinct transient expression states,

resulting from external factors or internal regulatory network

dynamics, then under those conditions the task of network

inference from transcriptomic data seems more tractable

than under conditions of intrinsic noise only. This result is

notable because transient state-switching between different

gene expression states is thought to play a role in various

biological phenomena, including drug resistance in cancer

[30], [31].

We then considered a scenario in which two genes are

coregulated by a common upstream gene. Under these con-

ditions, we still observe a correlation between the mRNA

abundance levels of the two genes, potentially leading to a

false positive error in the task of network inference. However,

simulation results suggest that even though this scenario

yields similar levels of correlation to the Cascade scenario,

we may be able to distinguish between the two scenarios

using the noise profiles of the mRNA levels.

Finally, we provided a mathematical framework for further

analysis of simplified linear models of each of the noise

scenarios. We used moment analysis techniques to derive

expressions for the coefficients of variation of the mRNA

levels, as well as the correlation between them, and explored
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how these measures change with changes in mean mRNA

levels. This allows us to make predictions about the differ-

ence between the feasibility of network inference in low copy

number and high copy number situations, for each of the

three noise scenarios.

Future work will include further theoretical analysis of

these models. Additionally, goals for future work include

testing the predictions made in this paper on real biological

datasets, using data from single cell RNA-seq experiments, as

well as further benchmarking of network inference methods

on data model organisms and synthetic gene regulatory

circuits.
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