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Abstract

The pGinger suite of expression plasmids comprises 43 plasmids that will enable precise
constitutive and inducible gene expression in a wide range of gram-negative bacterial species.
Constitutive vectors are composed of 16 synthetic constitutive promoters upstream of RFP, with
a broad host range BBR1 origin and a kanamycin resistance marker. The family also has seven
inducible systems (Jungle Express, Psal/NahR, Pm/XylS, Prha/RhaS, LacO1/Lacl,
LacUV5/Lacl, and Ptet/TetR) controlling RFP expression on BBR1/kanamycin plasmid
backbones. For four of these inducible systems (Jungle Express, Psal/NahR, LacO1/Lacl, and
Ptet/TetR), we created variants that utilize the RK2 origin and spectinomycin or gentamicin

selection. Relevant RFP expression and growth data have been collected in the model bacterium
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Escherichia coli as well as Pseudomonas putida. All pGinger vectors are available via the Joint
BioEnergy Institute (JBEI) Public Registry.
Introduction

Precise and reliable control over gene expression is one of the most fundamental
requirements of synthetic and molecular biology (1). Consequently, there has been considerable
effort towards identifying myriad genetic elements that enable researchers to regulate the
strength and timing of transcription across all domains of life (2—4). The end result of these
efforts are often consolidated families of plasmid vectors that facilitate advanced genetic
engineering, such as the BglBrick family of plasmids for E. coli (5, 6) and the jStack vectors
used in multiple plant species (7). However, as the field of synthetic biology moves beyond
traditional model organisms, families of expression vectors must be tailored to meet the specific
requirements of particular hosts. Advances in non-model organisms often come in the form of
species or genus specific toolkits (8—10), though more recently comprehensive plasmid toolkits
have been developed and validated for a wide range of gram-negative organisms (11). Resources
such as the Standard European Vector Architecture (SEVA) platform provide repositories of
standardized sequences and constructs (12, 13). Still, given that many bacteria require very
particular combinations of promoters, origins, and selectable markers to enable controlled gene
expression, there remains a need for vectors that will allow rapid prototyping of genetic circuits
in understudied bacteria.

To facilitate the exploration of non-model hosts, we have developed a small suite of
plasmids that permit both constitutive and inducible expression from the broad host-range origin
of replication BBR1 using a kanamycin selection marker. For a subset of the inducible systems

that are known to work across multiple hosts, we have assembled combinatorial variants that
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utilize the compatible broad host-range origin RK2 (14) as well as both spectinomycin and
gentamicin selection markers. This family of plasmids, which we have named the pGinger suite,
requires no assembly of these parts, can be easily cloned into via standard Gibson assembly
techniques, and has both digital sequences and physical samples that can be publicly accessed

through the Joint BioEnergy Institute (JBEI) registry (15).

Results

Design and Architecture of pGinger Plasmids

All pGinger vectors express RFP with a consensus ribosomal binding site (RBS -
TTTAAGAAGGAGATATACAT) derived from the BglBrick plasmid library. The overall
conserved plasmid architecture and naming convention of the pGinger suite are shown in Figure

1.
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Figure 1: Plasmids architecture of the pGinger suite: The pGinger plasmids share a common naming convention
where the first two letters after pGinger correspond to the origin and resistance marker respectively, followed by the

expression system. All plasmids share the same architecture as the above map of pGingerBK-TetR, whereby a
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conserved RBS-RFP is downstream of the promoter followed by a strong terminator. All selectable markers are

upstream of the promoter, with the origin between the marker and the RFP cassette.

The BBR1 origin and kanamycin cassette of relevant pGinger vectors were both derived from
plasmid pBADTrfp (16). To develop a family of constitutive expression plasmids, the AraC
coding sequence and promoter of pBADTrfp were replaced with 16 different synthetic promoters

from the Anderson Promoter Library (http://parts.igem.org/Promoters/Catalog/Anderson). For

the inducible vectors, the AraC coding sequence and promoter of pPBADTrfp were replaced with
the following seven inducible systems: Jungle Express - derived from pTR _sJExD-rfp (17);
Psal/NahR - derived from pPS43 (18); Prha/RhaS - derived from pCV203 (18); Ptet/TetR -
derived from pBbE2a-RFP (6); Pm/XyIS - derived from pPS66 (18); LacO1/Lacl - derived from
pBbE6a-RFP (6); LacUV5/Lacl - derived from pBbE5a-RFP (6). Three of these inducible
systems, Pm/XylS, Psal/NahR, Prha/RhaS, utilize an activator or bifunctional transcription
factor; the other systems feature transcriptional repressors. These BBR1 vectors contain the mob
element that facilitates conjugal transfer. For four of the inducible systems (Jungle Express,
Psal/NahR, LacO1/Lacl, and Ptet/TetR), additional vectors were constructed that varied both the
origin and antibiotic marker. All RK2 origins were derived from pBb(RK2)1k-GFPuv (8), while
the gentamicin resistance cassette was derived from pMQ30 (19), and the spectinomycin cassette
was derived from pSR43.6 (20). The RK2 vectors do not contain the mob element. A full

description of each pGinger vector can be found in Table 1.

Name Origin Marker Promoter Class System Inducer JBEI ICE No.

pGingerBK-J23100 BBRI1 Kanamycin Constitutive J23100 NA JPUB_020797
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pGingerBK-J23101 BBRI1 Kanamycin Constitutive J23101 NA JPUB_020799
pGingerBK-J23102 BBRI1 Kanamycin Constitutive J23102 NA JPUB_020815
pGingerBK-J23103 BBRI1 Kanamycin Constitutive J23103 NA JPUB_020801
pGingerBK-J23104 BBRI1 Kanamycin Constitutive 123104 NA JPUB_020803
pGingerBK-J23105 BBRI1 Kanamycin Constitutive J23105 NA JPUB_020817
pGingerBK-J23106 BBRI1 Kanamycin Constitutive 123106 NA JPUB_020793
pGingerBK-J23107 BBRI1 Kanamycin Constitutive 123107 NA JPUB_020819
pGingerBK-J23108 BBRI1 Kanamycin Constitutive J23108 NA JPUB_ 020821
pGingerBK-J23110 BBRI1 Kanamycin Constitutive J23110 NA JPUB_020805
pGingerBK-J23111 BBRI1 Kanamycin Constitutive J23111 NA JPUB_020807
pGingerBK-J23113 BBRI1 Kanamycin Constitutive J23113 NA JPUB_020809
pGingerBK-J23114 BBRI1 Kanamycin Constitutive J13114 NA JPUB_ 020811
pGingerBK-J23117 BBRI1 Kanamycin Constitutive J13117 NA JPUB_020795
pGingerBK-J23118 BBRI1 Kanamycin Constitutive J23118 NA JPUB_ 020823
pGingerBK-J23119 BBRI1 Kanamycin Constitutive J23119 NA JPUB_ 020813
pGingerBK-JE BBRI1 Kanamycin Inducible Jungle Express | Crystal Violet | JPUB_ 020825
pGingerBK-NahR BBRI1 Kanamycin Inducible Psal/NahR Salicylic acid | JPUB_020831
pGingerBK-RhaS BBRI1 Kanamycin Inducible Prha/RhaS Rhamnose JPUB_020829
pGingerBK-TetR BBRI1 Kanamycin Inducible Ptet/TetR Oxytetracycline | JPUB_020835
pGingerBK-XylS BBRI1 Kanamycin Inducible Pn/XylS Benzoate JPUB_020827
pGingerBK-Lac BBRI1 Kanamycin Inducible LacO1/Lacl IPTG JPUB_ 020833
pGingerBK-LacUV5 BBRI1 Kanamycin Inducible LacUV5/Lacl IPTG JPUB_020837
pGingerBG-JE BBRI1 Gentamicin Inducible Jungle Express | Crystal Violet | JPUB_ 020847
pGingerBS-JE BBRI1 Spectinomycin Inducible Jungle Express | Crystal Violet | JPUB_ 020855
pGingerRK-JE RK2 Kanamycin Inducible Jungle Express | Crystal Violet | JPUB 020871
pGingerRG-JE RK2 Gentamicin Inducible Jungle Express | Crystal Violet | JPUB 020881
pGingerRS-JE RK2 Spectinomycin Inducible Jungle Express | Crystal Violet | JPUB_ 020863
pGingerBG-NahR BBRI1 Gentamicin Inducible Psal/NahR Salicylic acid | JPUB_020845
pGingerBS-NahR BBRI1 Spectinomycin Inducible Psal/NahR Salicylic acid | JPUB_020853
pGingerRK-NahR RK2 Kanamycin Inducible Psal/NahR Salicylic acid | JPUB_020869
pGingerRG-NahR RK2 Gentamicin Inducible Psal/NahR Salicylic acid | JPUB_020879
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pGingerRS-NahR RK2 Spectinomycin Inducible Psal/NahR Salicylic acid | JPUB_020859
pGingerBG-TetR BBRI1 Gentamicin Inducible Ptet/TetR Oxytetracycline | JPUB_020843
pGingerBS-TetR BBRI1 Spectinomycin Inducible Ptet/TetR Oxytetracycline | JPUB_020851
pGingerRK-TetR RK2 Kanamycin Inducible Ptet/TetR Oxytetracycline | JPUB_020865
pGingerRG-TetR RK2 Gentamicin Inducible Ptet/TetR Oxytetracycline | JPUB_ 020877
pGingerRS-TetR RK2 Spectinomycin Inducible Ptet/TetR Oxytetracycline | JPUB_020861
pGingerBG-LacOl1 BBR1 Gentamicin Inducible LacOl/Lacl IPTG JPUB 020841
pGingerBS-Lac BBR1 Spectinomycin Inducible LacOl/Lacl IPTG JPUB_020849
pGingerRK-LacOl RK2 Kanamycin Inducible LacO1/Lacl IPTG JPUB_020867
pGingerRG-LacO1 RK2 Gentamicin Inducible LacOl/Lacl IPTG JPUB 020875
pGingerRS-LacO1 RK2 Spectinomycin Inducible LacOl/Lacl IPTG JPUB _020857

Table 1: Plasmids in the pGinger suite: Relevant characteristics of pGinger plasmids including origin of

replication, antibiotic selection, promoter characteristics, and if applicable inducing molecule. JBEI public registry

numbers are also included for digital accessibility.

Evaluation of Constitutive Expression pGinger Plasmids

To evaluate the relative strength of constitutive Anderson promoters in the context of the

pGinger vectors, plasmids were introduced into both P. putida and E. coli. Fluorescence was

measured after growth in LB medium after 24 hours. When fluorescence was normalized to cell

density, expression from Anderson promoters showed significant correlation (Spearman’s p =

0.49, p = 0.045) between P. putida and E. coli (Figure 2). Promoters J23103 and J23113 were

significantly stronger in E. coli than in P. putida, while promoter J23111 was significantly

stronger in P. putida. Promoter sequences and mean expression values in both E. coli and P.

putida are listed in Table 2.
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Figure 2: Activity of Constitutive Promoters in E. coli and P. putida. RFP expression normalized to cell density
from Anderson promoters within either E. coli (y-axis) or P. putida (x-axis) are shown with standard deviations (
n=3). The background fluorescence of the two bacteria is indicated by WT (wild-type). Optical density

measurements are shown in Figure S1.

Promoter Promoter Sequence E. coli expression P. putida expression
J23100 ttgacggctagctcagtcctaggtacagtgctage 13267 (+/- 517) 22343 (+/- 1262)
J23101 tttacagctagctcagtcctaggtattatgctage 11530 (+/- 2565) 22010 (+/- 3162)
123102 ttgacagctagctcagtcctaggtactgtgctage 13300 (+/- 1815) 24067 (+/- 858)
J23103 ctgatagctagctcagtcctagggattatgctage 18476 (+/- 1857) 565 (+/- 135)



https://doi.org/10.1101/2023.01.23.524619
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.23.524619; this version posted April 7, 2023. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

123104 ttgacagctagctcagtectaggtattgtgetage 18522 (+/- 682) 23440 (+/- 4588)
J23105 tttacggctagctcagtcctaggtactatgctage 2622 (+/- 363) 10220 (+/- 558)
J23106 tttacggctagctcagtcctaggtatagtgetage 5697 (+/- 369) 14659 (+/- 748)
123107 tttacggctagctcagccctaggtattatgctage 2798 (+/- 44) 7429 (+/-716)
J23108 ctgacagctagctcagtcctaggtataatgctage 1149 (+/- 84) 1523 (+/- 84)
J23110 tttacggctagctcagtcctaggtacaatgctage 6402 (+/- 782) 12098 (+/- 2251)
J23111 ttgacggctagctcagtcctaggtatagtgctage 1547 (+/- 106) 15548 (+/- 3229)
J23113 ctgatggctagctcagtcctagggattatgetage 16220 (+/- 480) 826 (+/- 92)
J23114 tttatggctagctcagtcctaggtacaatgctage 625 (+/- 48) 1325 (+/- 289)
123117 ttgacagctagctcagtcctagggattgtgctage 229 (+/- 25) 730 (+/- 28)
J23118 ttgacggctagctcagtcctaggtattgtgctage 9628 (+/- 507) 21237 (+/- 5215)
J23119 ttgacagctagctcagtcctaggtataatgctage 22157 (+/- 473) 14979 (+/- 3262)
WT NA 124 (+/- 6) 141 (+/-17)

Table 2: Expression of pGinger Anderson promoters: For each Anderson promoter the sequence is provided as

well as the mean cell density normalized RFP fluorescence in both E. coli and P. putida. Standard deviations are

provided in parentheses, n=3. The background fluorescence of E. coli is indicated by WT (wild-type).

Evaluation of Inducible pGinger Plasmids

The expression of the seven inducible systems within the pGinger suite was evaluated

using the BBR1 origin and kanamycin marker (pGingerBK) against a titration of the inducer in

both E. coli and P. putida (Figure 3). All systems showed inducibility in E. coli, and all but the

rhamnose inducible system Prha/RhaS showed inducibility in P. putida. Relevant expression



https://doi.org/10.1101/2023.01.23.524619
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.23.524619; this version posted April 7, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

characteristics of the inducible pGingerBK vectors in both tested bacteria are listed in Table 3.
The strongest normalized expression from an inducible system in E. coli was the Ptet/TetR
system, while both the strongest in P. putida were found to be Psal/NahR and Jungle Express
inducible systems, which showed nearly identical maximal expression. In both bacteria, the
Jungle Express system demonstrated the greatest level of induction relative to background

expression.
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Figure 3: Activity of Inducible Systems in E. coli and P. putida. RFP expression normalized to cell density (y-
axis) from inducible systems within either E. coli (top panel in orange) or P. putida (bottom panel in blue) as a

function of inducer concentration in mM (x-axis). Fits to the Hill equation are shown as dashed lines and shaded to
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show confidence intervals. Raw data points are overlaid ( n=3). Corresponding optical density measurements are

shown in Figure S2.

System Organism Background Max Exp. Max Conc. Induction
LacO1/Lacl E. coli 1510 (+/- 186) 13127 (+/- 1693) 1 mM 9x
P. putida 137 (+/- 5) 3074 (+/- 30) 5mM 22x
Psal/NahR E. coli 762 (+/- 130) 12051 (+/- 759) 100 uM 16x
P. putida 237 (+/- 5) 25697 (+/- 2976) 5mM 108x
LacUV5/Lacl E. coli 3577 (+/- 36) 10137 (+/- 855) 10 mM 4x
P. putida 203 (+/- 53) 16622 (+/- 3671) 10 mM 82x
Jungle Express E. coli 104 (+/-7) 26717 (+/- 418) 1 uM 257x
P. putida 176 (+/- 5) 14552 (+/- 145) 2.5uM 83x
Prha/RhaS E. coli 172 (+/- 42) 9251 (+/- 1389) 5mM 54x
P. putida NA NA NA NA
Ptet/TetR E. coli 341 (+/- 10) 33631 (+/- 7692) 1 uM 98x
P. putida 176 (+/-9) 3214 (+/- 319) 1 uM 18x
Pm/XylS E. coli 329 (+/- 57) 15280 (+/- 1590) 313 uM 46x
P. putida 161 (+/-7) 8401 (+/- 1877) 5mM 52x

Table 3: Inducible Systems in E. coli and P. putida: For each inducible system on a BBR1 origin with a
kanamycin marker, the experimentally observed background (uninduced) fluorescence and maximal fluorescence
are given for both E. coli and P. putida. Standard deviations are provided in parentheses, n=3. Additionally, the

inducer concentration used to achieve maximal expression and the relative induction levels are listed.
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To evaluate the effect of varying origin and selectable markers on expression from
inducible systems, all six variants of the Jungle Express, LacO1/Lacl, Psal/NahR, and Ptet/TetR
were investigated for their dose-response to their inducer molecules in E. coli (Figure 4).
Relevant expression parameters are listed in Table 4. In general, BBR1 variants showed greater
expression than RK2 origin plasmids, which is expected given the higher copy of BBR1
plasmids in E. coli (11). Amongst the pGinger Jungle Express vectors, both pGingerRS-JE and
pGingerRK-JE showed dose-responses distinct from the other vectors (Figure 4A). Notably, all

pGingerRS (RK2-Spectinomycin) plasmids showed the lowest expression across each system

tested (Table 4).
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Figure 4: Activity of Inducible pGinger variants in E. coli. For origin and selection marker pGinger variants of
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Jungle Express (A), LacO1/Lacl (B), Psal/NahR (C), and pTet/TetR (D), dose-response curves of normalized RFP

expression are shown as a function of mM inducer. Error bars represent standard deviations (n=3). Note that the x-

axis is non-linear. Corresponding optical density measurements are shown in Figure S3. Kinetic experiments for

these systems are shown in Figure S4-S7.

System Origin Marker Background Max Exp. Max Conc. Induction
LacO1/Lacl BBRI1 Kan 1510 (+/- 186) 13127 (+/- 1693) 1 mM 9x
LacO1/Lacl BBRI1 Gent 1976 (+/- 70) 14143 (+/- 1608) 63 uM 7x
LacO1/Lacl BBRI1 Spec 1830 (+/- 320) 10694 (+/- 943) 250 uM 6x
LacO1/Lacl RK2 Kan 803 (+/- 216) 8213 (+/-721) 250 uM 10x
LacO1/Lacl RK2 Gent 1823 (+/- 78) 7654 (+/- 230) 250 uM 4x
LacO1/Lacl RK2 Spec 950 (+/- 46) 4967 (+/- 895) 16 uM 5x

Psal/NahR BBRI1 Kan 1260 (+/- 57) 16484 (+/- 1693) 500 uM 9x
Psal/NahR BBRI1 Gent 1877 (+/- 334) 16317 (+/- 1534) 31uM 9x
Psal/NahR BBRI1 Spec 1372 (+/- 84) 14083 (+/- 984) 1 mM 10x
Psal/NahR RK2 Kan 445 (+/- 39) 8048 (+/- 859) 1 mM 18x
Psal/NahR RK2 Gent 934 (+/- 56) 9299 (+/- 460) 1 mM 10x
Psal/NahR RK2 Spec 482 (+/- 69) 7510 (+/- 817) 1 mM 16x
Jungle Express BBRI1 Kan 104 (+/- 6) 267175 (+/- 418) 1 uM 257x
Jungle Express BBRI1 Gent 136 (+/- 19) 33060(+/- 1185) 250 nM 243x
Jungle Express BBRI1 Spec 152 (+/- 5) 26039 (+/- 355) 250 nM 171x
Jungle Express RK2 Kan 163 (+/-27) 8616 (+/- 902) 125 nM 52x
Jungle Express RK2 Gent 138 (+/- 51) 21314 (+/- 9517) 250 nM 155x
Jungle Express RK2 Spec 168 (+/- 5) 3763 (+/- 204) 125 nM 22x
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Ptet/TetR BBRI Kan 341 (+/- 10) 33631 (+/- 7692) 1 uM 98x
Ptet/TetR BBRI Gent 351 (+/- 32) 21646 (+/- 5579) 500 nM 62x
Ptet/TetR BBRI Spec 232 (+/- 43) 19224 (+/- 3027) 125 1M 83x
Ptet/TetR RK2 Kan 184 (+/- 5) 10281 (+/- 967) 31nM 56x
Ptet/TetR RK2 Gent 232 (+/- 39) 7883 (+/- 865) 63 nM 34x
Ptet/TetR RK2 Spec 197 (+/- 5) 3399 (+/- 143) 16 nM 17x

Table 4: Inducible pGinger variants in E. coli: For pGinger variants of LacO1/Lacl, Psal/NahR, Jungle Express,
and Ptet/TetR inducible systems, the experimentally observed background (uninduced) fluorescence and maximal
fluorescence in E. coli are provided. Standard deviations are provided in parentheses, n=3. Additionally, the inducer

concentration used to achieve maximal expression and the relative induction levels are listed.

Discussion

The pGinger suite of plasmids offers researchers an array of small, pre-assembled vectors
that will permit rapid identification of useful genetic elements in diverse gram-negative bacteria
due to the use of broad host-range origins (RK2) and selectable markers known to work across
many species (kanamycin, spectinomycin, gentamicin). The compatibility of RK2 and BBR1
origins may also permit researchers to introduce multiple pGinger vectors into a single strain
simultaneously (14). In combination with other recent plasmid suites that have been publicly
released, the pGinger plasmids have the potential to facilitate more advanced synthetic biology

and metabolic engineering efforts in bacterial species that have been traditionally understudied.
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Materials & Methods

Strains and Media

Cultures were grown in lysogeny broth (LB) Miller medium (BD Biosciences, USA) at
37 °C for E. coli XL1-Blue (QB3 Macrolab, USA) and 30 °C for P. putida KT2440 (ATCC
47054). The medium was supplemented with kanamycin (50 mg/L, Sigma Aldrich, USA),
gentamicin (30 mg/L, Fisher Scientific, USA), or spectinomycin (100mg/L, Sigma Aldrich,
USA), when indicated. All other compounds were purchased through Sigma Aldrich (Sigma
Aldrich, USA).

Plasmid Design and Construction

All plasmids were designed using Device Editor and Vector Editor software, while all
primers used for the construction of plasmids were designed using j5 software (15, 21, 22).
Plasmids were assembled via Gibson Assembly using standard protocols (23). Plasmids were
routinely isolated using the Qiaprep Spin Miniprep kit (Qiagen, USA), and all primers were
purchased from Integrated DNA Technologies (IDT, Coralville, IA). The fluorescent protein
used in all plasmids was mRFP1 (24).

Plasmid and Sequence Availability

All strains and plasmid sequences from Table 1 can be found via the following link to the

JBEI Public Registry: https://public-registry.jbei.org/folders/771. Users can request strains via a

MTA.

Characterization assays

To characterize RFP expression from these vectors, we measured optical density and
fluorescence after growth in 96 well plates for 24 hours. First, overnight cultures were inoculated

into 5 mL of LB medium from single colonies and grown at 30 °C or 37 °C. These cultures were
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then diluted 1:100 into 500 pL of LB medium with the appropriate antibiotic in 96 square v-
bottom deep well plates (Biotix™ DP22009CVS). For characterization of the inducible systems,
inducer was added to wells in the first column of the plate at the maximum concentration tested
and diluted two-fold across the plate until the last column, which was left as the zero-inducer
control. Plates were sealed with a gas-permeable microplate adhesive film (Axygen™ BF400S)
and grown for 24 hours at either 30 °C or 37 °C with shaking at 200 rpm. Optical density was
measured at 600 nm, and fluorescence was measured at an excitation wavelength of 535 nm and
an emission wavelength of 620 nm. All data was analyzed and visualized using custom Python
scripts using the SciPy (25), NumPy (26), Pandas, Matplotlib, and Seaborn libraries. Fits to the

Hill equation were done as previously described (27).
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