

1 **Archaeal type IV pili stabilize *Haloferax volcanii* biofilms in flow**

2 **Authors:**

3 Pascal D. Odermatt¹, Phillip Nussbaum², Sourabh Monnappa¹, Lorenzo Talà¹, Zhengqun Li²,

4 Shamphavi Sivabalasarma², Sonja-Verena Albers^{*2}, Alex Persat^{*1}

5 **Affiliations:**

6 ¹Global Health Institute and Institute for Bioengineering, School of Life Sciences, EPFL,

7 Lausanne, Switzerland.

8 ²Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Freiburg, Germany;

9 *Correspondence to: alexandre.persat@epfl.ch, sonja.albers@biologie.uni-freiburg.de

10

11 **Abstract**

12 Biofilms represent a prevalent lifestyle of unicellular organism that confers protection to external
13 challenges. The mechanisms by which archaea form biofilms are however not entirely clear. *H.*
14 *volcanii* is an extremely halophilic euryarchaeon that commonly colonizes salt crust surfaces. *H.*
15 *volcanii* produces long and thin appendages called type IV pili that are known to play a function
16 in surface attachment and biofilm formation in archaea and bacteria. Here, we used biophysical
17 experiments to identify critical function of type IV pili in the mechanical integrity of *H. volcanii*
18 biofilms. Using interferometric scattering microscopy (iSCAT) to non-invasively visualize T4P in
19 live cells, we find that piliation varies across mutants expressing single pilin isoforms. Using
20 microfluidic experiments, we found that the adhesive strength of these mutants correlates with
21 their extent of piliation. We found that in flow, *H. volcanii* forms clonal biofilms that extend in
22 three dimensions. Expression of PilA2, a single pilin isoform, is sufficient to maintain normal
23 levels of piliation and form biofilms with a structure indistinguishable from WT. Furthermore, we
24 found that fluid flow is a crucial determinant of biofilm integrity: in the absence of flow, biofilms
25 lose cohesion and tend to disperse in a density-dependent manner. Overall, our results
26 demonstrate that T4P-surface and possibly T4P-T4P interactions promote biofilm formation and
27 integrity, and that flow is a crucial ingredient regulating archaeal biofilm formation.

28 **Introduction**

29 In their natural environments, many archaea experience extreme physicochemical selective
30 pressures including high salinity, low pH or elevated temperatures^{1,2}. Archaeal species have
31 evolved to grow in and adapt to these harsh selective pressures. Multicellular communities of
32 contiguous cells attached to solid surfaces called biofilms represent a common bacterial
33 strategy to improve resilience in adverse environments³⁻⁵. Sheltering from external
34 environmental stressors improves the fitness of biofilm-dwelling cells, making biofilm the most
35 prevalent lifestyle for terrestrial microbes. While bacterial biofilms have been under intensive
36 investigation due to their importance for human health and industry, whether archaeal biofilms
37 follow similar assembly rules remains unknown^{6,7}.

38 Biofilms typically form as single cells attach on a surface and divide while maintaining
39 cohesion with adjacent cells, thereby forming discrete multicellular aggregates. To maintain
40 biofilm cohesion, single cells secrete extracellular polymeric substances (EPS) that connect
41 contiguous cells and the entire community. Investigations of bacterial model systems such as
42 the pathogens *Pseudomonas aeruginosa* and *Vibrio cholerae* have revealed their basic
43 principles of biofilm morphogenesis and the associated emergent properties⁸. These two
44 species abundantly secrete polysaccharides that form a gel matrix cementing cells together.
45 Other species including *Neisseria meningitidis* and *Escherichia coli* use proteinaceous filaments
46 such as pili and fimbriae to maintain a cohesive multicellular structure⁹. In archaea, various
47 *Sulfolobus* species, a variety of halophilic strains and methanogens can form surface-
48 associated communities reminiscent of biofilms^{3,10-13}. However, the basic principles of archaeal
49 biofilm formation and robustness to external forces are unknown^{3,14}.

50 In addition to cell-cell cohesion, initial surface attachment is a critical to the initiation and
51 stability of biofilms. Direct cell body adhesion promotes attachment, but is very sensitive to
52 surface physicochemical properties¹⁵. Many bacteria solve this by employing filaments that can
53 reach and anchor to the surface at a distance. Type IV pili (T4P) are micrometer-long protein
54 filaments extending from the cell surface that many times play critical roles in early bacterial
55 biofilm formation. *P. aeruginosa* uses T4P to attach to surfaces, and their successive extension
56 retraction cycles to explore the surface which ultimately induces aggregation^{16,17}. In a similar
57 manner, *V. cholerae* attaches to surfaces with T4P to form biofilms^{8,18}. In *Neisseria meningitidis*,
58 T4P promote both cell-surface and cell-cell attachment¹⁹. Archaea exhibit a wide variety of T4P
59 filaments which have been shown to be important for surface adhesion, cell-cell recognition,
60 sugar uptake and motility^{11,20,21}. For example, *Sulfolobus acidocaldarius* exhibits two different

61 T4P, the archaeal adhesive pilus²² (aap) and the UV inducible pilus²³ (Ups), which both mediate
62 static biofilm formation and affect their morphology²². The archaellum mainly plays a role in the
63 dispersal of the *S. acidocaldarius* biofilm. *Haloferax volcanii* also produces T4P, which promote
64 adhesion to the surface of abiotic materials^{24,25}.

65 Archaeal and bacterial T4P machineries are evolutionary related and follow the same
66 assembly steps²⁶. Interestingly, *H. volcanii* expresses not one but six pilin isoforms, PilA1 to
67 PilA6 encoded in four separate operons (**Fig. 1A**). The contributions of each of these isoforms
68 to T4P formation and function are unclear. A mutant lacking all six isoforms cannot attach to
69 surfaces, while strains expressing any of the single isoforms recovers some ability to attach,
70 suggesting they are able to assemble T4P²⁵. These observations indicate that *H. volcanii* uses
71 T4P in initial surface attachment, thereby potential playing a role in biofilm formation.

72 Here, we rigorously investigate the functions of *H. volcanii* T4P during biofilm formation under
73 flow. We first resolve the contributions of each pilin isoform in T4P biogenesis and surface
74 attachment. Then, we focus on *H. volcanii* biofilm morphogenesis and show that flow promotes
75 the cohesion of the multicellular community, suggesting a role of T4P in maintaining cell-cell
76 cohesion in a force-dependent manner.

77

78 **Results**

79 **The PilA2 pilin isoform is sufficient to maintain WT piliation**

80 To visualize T4P at the surface of live *H. volcanii*, we used interferometric scattering microscopy
81 (iSCAT) microscopy. We had previously employed iSCAT for the dynamic visualization of T4P
82 in live *P. aeruginosa* cells at high temporal resolution²⁷. Here, the sensitivity of iSCAT allowed
83 us to resolve these filaments in live archaea without the need of labels. In iSCAT images, the
84 H26 WT strain displayed many archaella which scatter light strongly, obstructing visualization of
85 T4P (**Fig. 1B, supplementary movie 1**). To reveal T4P, we therefore imaged cells in a
86 background lacking archaella by deletion of the *arlA1* gene. We subsequently refer to this
87 background as WT. To test the contributions of each pilin isoform in T4P biogenesis, we
88 generated mutants with a single pilin type by deleting three out of the four pilin operons among
89 *pilA1*, *pilA2*, *pilA3/4* and *pilA5/6* (**Fig 1A**). We refer to a mutant strain with all pilins deleted but
90 pilin *n* as PilAn.

91 On iSCAT images, T4P appear as long and thin filaments emanating from the strongly-
92 scattering cell body (**Fig. 1B**). WT had many T4P, while mutants differed in their distributions of
93 T4P number per cell. We found that more than 90% of WT and PilA2 had T4P, both with a
94 median of 3 per cell (**Fig. 1C**). By contrast, more than 60% of PilA1, PilA3/4 and PilA5/6 cells
95 did not visibly produce T4P under iSCAT imaging. This demonstrates that the expression of the
96 pilin subunit PilA2 alone is sufficient to maintain WT-level of piliation. In contrast, expression of
97 any other pilin subunit alone severely limits piliation, but does not abolish the ability to form T4P.
98 We noticed that most T4P attach to the surface by their tip during the entire visualization time
99 (typically 10 s). Out of the >1,500 T4P we visualized, we could not find any obvious evidence for
100 retraction. This suggests that T4P may not power surface-associated motility in *H. volcanii*,
101 consistent with the fact that archaeal genomes generally do not contain genes for T4P retraction
102 ATPases²¹. Alternatively, retraction could also be conditional depending on experimental
103 conditions.

104 **T4P promotes *H. volcanii* surface attachment in flow**

105 Based on our visualization of steady tip contact, we suspected that T4P function in securing
106 surface attachment. Consistent with this hypothesis, *H. volcanii* lacking all pilin isoforms fails to
107 form microcolonies on plastic surfaces²⁵. Mutants expressing a combination of these isoforms
108 showed quantitatively distinct abilities to form these microcolonies, but how this is directly
109 related to single cell adhesion is confounded by many factors of microcolony growth. To directly

110 test the contributions of each pilin isoform in adhesion of single cell to surfaces, we used a flow-
111 based microfluidic assay to directly measure their attachment strength. When attached to a
112 surface, single cells in flow experience shear forces that tend to detach them from the surface²⁸.
113 Shear force increases linearly with flow velocity, which we here tune via flow rate, controlled by
114 a syringe pump. In these microfluidic experiments with a channel width of 500 μm and height of
115 90 μm a flow rate of 100 $\mu\text{l}/\text{min}$ exerts a force of approximately 10 pN on a 4 μm^2 single cell at
116 the channels centerline²⁹. We injected an exponentially-growing culture in a microchannel,
117 allowed cells to settle and attach to the glass surface, after which we initiated flow, increasing
118 flow rate in a stepwise fashion (**Fig. 2A**). During this flow ramp, we continuously imaged surface
119 attached population at the single cell resolution to count the number of cells remaining on the
120 surface as a function of flow intensity.

121 We found qualitative differences between WT and *pilA* mutants. WT cells remained attached
122 to the surface at flow rates below 200 $\mu\text{l}/\text{min}$ (~ 20 pN shear force). PilA2 cells could resist flow
123 forces as well as WT (**Fig. 2B**). By contrast, most pilin mutants detached at low flow rates (**Fig.**
124 **2AB**). The population of surface-associated cells in the PilA1, PilA3/4 and PilA5/6 strains
125 dramatically decreased at flow rates near 20 $\mu\text{l}/\text{min}$ corresponding to a maximum of ~ 2 pN
126 shear force, indicating a very weak adhesion (**Fig. 2C**). In summary, iSCAT imaging along with
127 biophysical characterization of adhesion strength suggests that *H. volcanii* T4P play an
128 important mechanical role in surface attachment. The characterization of mutants expressing
129 single pilin isoforms shows that PilA2 is necessary and sufficient to phenocopy WT-level
130 piliation and surface adhesion. The other pilin subunits are however not necessary for surface
131 attachment. In addition, the low absolute value of adhesion force of mutants with low piliation
132 indicate that *H. volcanii* exclusively uses T4P to attach on surfaces and doesn't produce other
133 unspecific surface adhesins such as polysaccharides in its planktonic state. Given their
134 adhesive function and their importance in biofilm formation in bacteria, we hypothesized that
135 T4P could promote *H. volcanii* biofilm formation on surfaces under flow. We thus first
136 investigated the ability of WT *H. volcanii* to form immersed biofilms under flow conditions on
137 long timescales.

138 ***H. volcanii* uses T4P to form clonal biofilms in flow**

139 Biofilms form in flow when surface-attached single cells proliferate while maintaining cohesion
140 with their progeny. To achieve this, they rely on cell-surface and cell-cell interactions. Given the
141 large decrease in adhesion strength of mutants exhibiting low piliation, we tested whether T4P-
142 dependent adhesion is crucial in the initiation of *H. volcanii* biofilm formation. We therefore first

143 assessed WT *H. volcanii*'s ability to form biofilms in microfluidic channels maintained at 45 °C.
144 We applied a shear stress of ~ 0.5 pN which could still allow a few cells to attach in all isoform
145 mutants (flow rate of 20 μ l/min, corresponding to 5 μ l/min in adhesion experiments). We found
146 that single WT cells remained attached to the surface, grew and divided to form large
147 multicellular structures (**Fig. 3A, supplementary movie 2**). In flow, microcolonies developed
148 into mature biofilms nearly 100 μ m-wide over the course of hours. Single cells eroded from the
149 biofilm, thereby stretching the microcolonies in the flow direction to generate a "comet" shape
150 (Figure 3B). This indicates that biofilm-dwelling archaea are loosely attached to the community
151 after division. Ultimately, when biofilms reach a critical size, colonies ultimately slowly shear-off
152 the surface to slowly roll down with the flow after 30 h of growth (**Supplementary movie 2**).

153 We inspected the three-dimensional architecture of mature biofilms of strains constitutively
154 expressing fluorescent proteins by confocal spinning disk microscopy (**Fig 3B-D**). These
155 visualizations allowed us to quantitatively compare the growth of strains expressing T4P subunit
156 isoforms with WT. Out of the four mutants, only PilA2 consistently produced hundreds of
157 biofilms as WT did (**Fig. S1**). In 2 out of 7 replicates, PilA1 formed a single biofilm, in 2 out of 6
158 attempts we found a single biofilm of the PilA3/4 mutant. PilA5/6 never produced a single
159 biofilm, however a few cells managed to colonize the surface. Overall, these experiments
160 revealed that strains with strong defects in T4P assembly are unable to form mature biofilms,
161 while WT and PilA2 strains that are capable of forming T4P robustly formed multicellular
162 structures. Since at this flow all mutants retain some ability to attach to the surface, our results
163 are consistent with T4P mediating cell-cell attachment that is so critical to maintain biofilm
164 architecture.

165 We asked whether PilA2 was sufficient to maintain *H. volcanii* biofilm architecture. We found
166 that when grown separately, biofilms of WT and PilA2 strains showed seemingly identical
167 architecture under flow (**Fig. 3C**). We however wondered whether lacking all other isoforms
168 could create subtle changes that would impact architecture and fitness of the PilA2 isoform. To
169 inspect potential differences, we performed competition experiments between WT and PilA2
170 strains each expressing a distinct fluorescent protein (**Fig. 3D**). Both biofilms extended in the
171 vertical direction and again, there was no obvious difference in their architecture. In addition, we
172 could not measure any growth advantage for WT over PilA2.

173 ***H. volcanii* physiologically adapts to the biofilm lifestyle**

174 To better understand *H. volcanii* physiological changes associated with the multicellular lifestyle,
175 we measured the transcriptional changes induced by biofilms growth. In particular, we

176 wondered whether biofilm-dwelling archaea tend to increase the production of matrix
177 components such as T4P to promote biofilm resilience. We quantitatively compared the
178 transcriptomes of biofilm and exponentially-growing planktonic WT H26 populations. RNAseq
179 data shows that most *pilA* isoforms tend to be upregulated in biofilms (**Fig. S2**). In agreement
180 with adapting a sessile lifestyle, biofilm-derived cells exhibited a decreased expression of
181 archaellum genes *arlA1*, *arlA2* as well as *arlD2* and *arlH* (**Table S1**). Consistent with these
182 results, iSCAT visualization of nascent biofilms show that single cells extended many T4P early
183 on as they nucleated biofilms (**Fig 3E**). Unfortunately, due to cell-crowding effects, we could not
184 rigorously quantify T4P abundance at this stage, nor could we visualize them at later stages of
185 biofilm formation. Transcriptomic and iSCAT results further validate a model where T4P play a
186 crucial role in biofilm architecture and area actively produced to adapt to the multicellular
187 lifestyle. 5 out of 6 pilins were upregulated in biofilms, indicating they play alternative functions
188 within biofilms, or that these functions are condition-dependent.

189 **Stopping flow induces rapid biofilm dispersal**

190 Our results show that T4P promote cell-surface adhesion, but how cell-cell cohesion is
191 established in *H. volcanii* biofilms is still unclear. While the components and role of extracellular
192 polymeric substances (EPS) in biofilm structural integrity has been identified for various
193 bacterial species, whether a homologous matrix is formed in *H. volcanii* biofilms is less clear.
194 Visualizations show the potential presence of polysaccharides and DNA in *H. volcanii* biofilms
195 but how these contribute to cell-cell cohesion is not established¹⁴. The erosion of cells from the
196 biofilm in the direction of flow suggests a rather loose connection between cells (**Fig. 3AB**). In
197 addition, dynamic imaging of mature biofilms at high frame rate shows that while single cells are
198 secured in the biofilm structure, their positions undergo slight fluctuations (**Fig. 4A**,
199 **Supplementary movie 3**). This supports that biofilms are loosely cohesive via T4P and do not
200 produce a polysaccharide matrix.

201 As a result of the apparently loose cell-cell interactions, we anticipated that biofilms would
202 further erode with increasing flow. We however found that flow reduced the amount of
203 fluctuations in the position of single cells (**Fig. 4B**). Thus, we hypothesize that hydrodynamic
204 forces may stabilize cohesion between cells within biofilms. In these experiments, we found that
205 that biofilms started dispersing when flow stopped. To rigorously characterize this effect, we
206 grew biofilms overnight with an RFP expressing strain under flow. We then temporarily stopped
207 flow for 45 min before imaging. Indeed, we found that the total fluorescent intensity dramatically

208 decreased and only a fraction of the cells remained attached to the surface (**Fig. 4CE**). This
209 suggests that flow is a crucial factor promoting structural integrity of biofilms.

210 Biomass loss was heterogeneous along the microchannel. Most biofilm dispersal occurred
211 near the outlet, while biofilms localized upstream kept growing when flow was stopped. We
212 compared the biofilm structural integrity between upstream and downstream sections. We
213 visualized 20 h-old biofilms while decreasing flow rate in a stepwise manner between 20 μ l/min
214 and 0 μ l/min (**Fig. 4E**). We found that while biofilms in the upstream section grew at all flows
215 including at 0 μ l/min, downstream biofilms dramatically dispersed only when flow rate was set to
216 zero (**Fig. 4E**). High resolution visualizations of the dispersed biofilm show that the colony lost a
217 large fraction of cells but the biofilm base left a cell imprint at the coverslip surface, indicating
218 cell-surface interaction is maintained to some extent.

219 We then wondered what distinguishes upstream and downstream population so that only
220 colonies near the channel outlet disperse. In immersed biofilm experiments under flow, cell
221 density commonly increases along the channel, as flow removes single cells from upstream
222 biofilms that can reattach and grow downstream (**Fig. 4E**)³⁰. We hypothesized that local cell
223 density might influence the dispersal process. Consistent with this, we found that areas with
224 strong dispersion were also more colonized. To verify this dependence on density, we observed
225 dispersal of biofilms grown to different densities where colonies are distinctively smaller. High
226 density biofilms dispersed in the downstream section when flow was stopped. By contrast,
227 biofilms of lower density did not disperse upon flow arrest, but rather uniformly increased in
228 biomass (**Fig. S3A**). In summary, these results suggest that flow has a direct effect on biofilm
229 structural integrity. In the absence of flow, a destabilization of cell-cell interactions loosens
230 biofilm cohesion. This loss of attachment liberates archaeal cells in the fluid which may further
231 stimulate dispersion enabling interactions with planktonic cells.

232 We envision a mechanism where T4P maintain connections between cells under the
233 influence of flow-forces. These interactions become weaker when flow stops allowing cells to
234 separate from each other, explaining the density-dependent phenotype. Based on this rationale
235 we hypothesized that exogenously introducing cells within the medium by perfusing the
236 microfluidic channel would be sufficient to promote dispersal of biofilms that would normally not
237 disperse upon flow arrest (**Fig. S3B**). We thus stopped flow of grown biofilms, injected an
238 exponentially growing cell culture in fresh medium in the microchannel and compared dispersion
239 with a negative control (medium only). Incubation of WT biofilms with liquid grown WT cells
240 vastly increased dispersion compared to the medium control homogenously along the entire

241 channel (**Fig. S3CD**). To test the extent to which T4P of newly-introduced cells interfered with
242 T4P providing biofilm cohesion, we performed a similar experiment using a T4P-lacking mutant.
243 We incubated WT biofilms with an exponentially growing culture of a deletion mutant lacking the
244 prepilin peptidase gene *pilD*, which in turn prohibits pilin subunit polymerization. We still
245 observed that planktonic $\Delta p i l D$ cells promoted dispersal over a blank medium control, albeit to a
246 lower extent compared to WT cells (**Fig. S3D**). Therefore, planktonic cells can perturb the
247 cohesion between biofilm-dwelling cells, and T4P may improve this disruption possibly by
248 further disengaging bound T4P from their biofilm targets.

249

250

251

252 **Discussion**

253 Biofilms represent the most common lifestyle for many unicellular organisms. Surface
254 appendages play a dominant role in surface attachment, biofilm formation and integrity. T4P
255 facilitate biofilm morphogenesis in *P. aeruginosa*, *V. cholerae* and *N. meningitidis*. Here, using
256 high resolution label-free microscopy imaging of T4P, in conjunction with biofilm growth
257 experiments under controlled flow conditions using a microfluidic setup, we find that flow-
258 dependent T4P-mediated surface adhesion and pili-pili interactions are essential components
259 for biofilm formation in *H. volcanii*.

260 At the level of T4P biogenesis, we found that PilA2 alone is sufficient to phenocopy WT
261 piliation and surface adhesion properties. This suggests that the other pilin isoforms do not play
262 a fundamental role in initial surface adhesion under flow. Interestingly, PilA5/6 were upregulated
263 in matured biofilms in our microfluidic setup under flow. This is in agreement with the study from
264 Esquivel *et al.*²⁵ in which different *H. volcanii* mutants were tested for their adherence to a glass
265 surface under static (non-shaking) conditions. Under these conditions, PilA2 was not important
266 for microcolony formation, but PilA5/6 mutants produced the most microcolonies. Therefore, we
267 postulate that these pilin play different roles for biofilm formation during different environmental
268 conditions: PilA2 is the main adhesive pilin under flow conditions, whereas PilA5/6 are important
269 without flow or at later stages of biofilm morphogenesis.

270 We showed that *H. volcanii*'s can form biofilms in a constant flow environment. Our results
271 highlight the functional role T4P for *H. volcanii* biofilm formation, by both acting on cell-surface
272 adhesion and cell-cell cohesion. Inspired by the observation that cells didn't seem to be lock into
273 a position, we postulate that T4P loosely maintain *H. volcanii* biofilm structural integrity. This
274 scenario is reminiscent of *N. meningitidis* biofilms where pili-pili interactions promote cell-cell
275 cohesion that maintains biofilm integrity³¹. In this case, T4P retraction strengthen these
276 interactions, but *H. volcanii* T4P do not appear to retract. However, flow can induce tension
277 force in T4P, thereby stimulating these interactions, possibly in a mechanism that involves catch
278 bonds between T4P. Our results suggest that flow maintains biofilm structural integrity is
279 consistent with this mechanism. In addition, stopping flow stimulates dispersal, most likely in a
280 passive mechanism where lack of tension forces in T4P loosen their connections. Flow-
281 dependent dispersal indicates that for *H. volcanii*, the biofilm lifestyle confers a selective
282 advantage in flow but not in a resting fluid. When flow stops, cohesion between cells is
283 irreversibly lost, and disassociated cells move away from the biofilm. Flow may thus represent a
284 mechanical signal, indicating that conditions are favourable to adopt a planktonic lifestyle and

285 explore other environments. Conversely, flow may indicate that there exists a locally favourable
286 flux of nutrients, for which maintaining a sedentary lifestyle is more efficient.

287 Taken together, our study identifies T4P and flow as key components in the process of
288 biofilm development in *H. volcanii*. Improving visualization methods within biofilms will provide
289 more information on their structural role in the multicellular communities. More generally, we
290 envision that replicating different facets of the natural environments of archaea in the lab will
291 enable of more comprehensive understanding of their physiology.

292

293 **METHODS**

294 **Strains and culture conditions**

295 The *Escherichia coli* cells used for cloning were grown in LB-medium³² supplemented with 100
296 µg/ml ampicillin under constant shaking at 150 rpm at 37°C or LB-agar plates containing
297 ampicillin at 37°C. *Haloferax volcanii* cells were either grown in full YPC-medium³³ when used
298 for transformation or selective Ca medium³³ supplemented with an extended trace element
299 solution³⁴ for experiments. *H. volcanii* plates with solid medium for transformants were prepared
300 as described by Allers *et al.*³³. *H. volcanii* was grown in a shaking incubator at 45°C, plates were
301 sealed in plastic bags to prevent evaporation and were grown at 45°C as well. In general, a pre-
302 culture of relevant *H. volcanii* strains were grown in 3-5 ml Cab medium in a rotational shaker at
303 45°C overnight and where required, diluted the next day to reach the required density at the
304 time of experiments. Strains used for this study are indicated in Table S1

305

306 **Plasmid construction**

307 DNA modification enzymes and PHUSION® polymerase for DNA amplification were all obtained
308 from New England Biolabs (NEB) and were used as indicated by the manufacturer. Knock-out
309 plasmids for the deletion of the different pilins and the major archaellin ArlA1 were cloned by the
310 amplification of a ~500 bp upstream region and ~500 bp downstream region of the respective
311 genes. For the pilin knock-out plasmids the amplified upstream regions of the different pilins
312 contained a KpnI restriction site and at the 3'-end a region homologous to the respective
313 downstream fragment. The downstream fragments were amplified with a XbaI restriction site.
314 The different fragments were digested with either KpnI or XbaI and subsequently cloned into
315 integrative plasmid pTA131 opened with KpnI and XbaI as well. The ligation products were
316 transformed into *E. coli* Top10 for circularization. The up- and downstream fragment for the
317 arlA1 knock-out plasmid were connected by a NdeI restriction site and were cloned in pTA131
318 via KpnI and XbaI. Plasmids and primers used in this study are indicated in Table S1.

319

320 **Plasmid transformation and strain construction of *H. volcanii***

321 Before transformation of the constructed knock-out plasmids into *H. volcanii* they were passed
322 through a dam/dcm deficient *E. coli* strain. *H. volcanii* transformation was performed using
323 polyethylene glycol 600 as described before³⁵. Transformants were plated on selective Ca-

324 plates and the plates incubated at 45°C until colonies were visible. To generate the different
325 knock-outs one colony of per knock-out attempt was transferred to 5 ml YPC-medium. When the
326 cultures reached OD₆₀₀ 1 they were diluted back 1:500 into 5 ml fresh YPC-medium. This step
327 was repeated in total three times. To screen for pop-out events the single cultures were diluted
328 hundred times and 100 µl of each dilution plated on Ca-plates supplemented with 50 µg/ml 5-
329 fluoorotic acid and 10 µg/ml Uracil. Colonies from these plates were screened via colony PCR
330 for gene deletions with the primers indicated in Table X. To obtain the strains with just one set of
331 pilin the others were deleted consecutively. Subsequently to remove the archaellum, the major
332 archaellin ArlA1 was deleted in all pilin deletion mutants following the process described above.

333

334 **Media preparation**

335 Stock solutions were prepared as follows. For 2 L of a 30% buffered Salt Water (BSW) stock
336 solution 480 g NaCl, 60 g MgCl₂·6 H₂O, 70 g MgSO₄·7 H₂O, 14 g KCl, 40 mL were first
337 dissolved in ~1.6 L warm distilled water, then 40 mL of 1M Tris-HCl pH 7.5 was added and
338 topped up with distilled water to a final volume of 2 L. 10x CA stock solution was prepared by
339 dissolving 10 g of Casamino Acids to ~150 mL of distilled water and stored at 4 °C. Then the pH
340 was adjusted to 7.2 by addition of 1 M KOH. Distilled water was then added to a final volume of
341 200 mL. 1000x vitamin solution was prepared by dissolving 50 mg Thiamine and 5 mg Biotin in
342 50 mL of distilled water. 100x trace element solution was prepared by (need details here).

343 To prepare medium, 200 mL of BSW, 100 mL of distilled water, 33 mL of 10x CA stock and 2
344 mL of a 0.5 M CaCl₂ were mixed. This solution was then autoclaved and/or filtered using 0.22
345 µm medium filter units. Immediately before using media vitamins and trace elements were
346 added at appropriate dilutions, 1000x and 100x, respectively.

347

348 **Microfluidic device**

349 Microfluidic devices were prepared by baking a PDMS and curing agent mixture (Sylgard 184,
350 Dow Corning) at a ratio of 10:1 at 80°C for at least 6 hours using microfabricated one
351 dimensional channels arranged on a silicon wafer³⁶. Individual devices were cut out and liquid
352 reservoir with diameter 6-8 mm at inlet, and in- and outlet for tubing connections were punched
353 (see schematic Figure 4A). Devices were then bonded onto coverslip glass slide which were
354 previously cleaned by rinsing with isopropanol in between two water-ethanol-water rinsing

355 steps. Drops of water was blown away with compressed air followed by a short incubation at
356 80°C. To bond coverslip glass and PDMS devices together, both surfaces were oxygen plasma
357 treated (Zepto, Diener Electronic) for 1 min beforehand. A round glass coverslip was then
358 bonded using the same plasma surface treatment ontop of the PDMS devices to cover the
359 punched out liquid reservoir which functioned as a bubble trap. Devices were then incubated at
360 80°C briefly and immediately used for experiments. For biofilm growth experiments microfluidic
361 channels with a width of 2 mm and height of 300 µm were used. For iSCAT and surface
362 adhesion assessments smaller channels without a liquid reservoir with a width of 500 µm and
363 height of 90 µm, respectively, were used.

364

365 **iSCAT**

366 Cells from liquid pre-culture were diluted to reach ~OD 0.1 the next morning. Cells were then
367 diluted (~3-6x) and used for iSCAT imaging between OD 0.15-0.2. Cells were added to small
368 microfluidic channel at low flow using kd science syringe pump. The observation chamber was
369 heated to the maximum temperature (~42 °C). iSCAT experiments were performed as
370 described in detail previously²⁷. Typically, iSCAT movies were recorded for a duration of 10 s at
371 50 fps. Quantification of surface appendages from post-processed iSCAT movies were
372 analysed by randomly displaying an iSCAT movie in Matlab without knowledge of the strain. Pili
373 were then identified visually for each cell.

374

375 **Adhesion**

376 A pre-culture of cells from a plate was grown overnight. The next day, the culture was diluted
377 accordingly to reach an OD between 0.15-0.2 for adhesion experiments. A microfluidic channel
378 (width: 500 µm; height: 90 µm) was perfused with medium, then 100 µl of a cell solution was
379 added to the luer stub (27G x ½" Luer Stubs, Instech) connecting the syringe outlet nozzle and
380 tubing. The liquid level was allowed to drop slightly by gravitational force before a small volume
381 of fresh medium was added on top and the luer stub was reconnected to the syringe making
382 sure no air bubble got introduced. Flow was set to 20 µl/min for 1-2 min till cells appeared in the
383 microfluidic channel, then flow was stopped to allow cells to adhere to the glass for maximal 15
384 min. Then, flow was restarted at 0.5 µl/min, and once it appeared steady acquisition was
385 started. A phase image was acquired at one location every 10 s using a 40x Ph2 objective on a

386 Nikon Eclipse Ti inverted optical microscope equipped with a Prime95B sCMOS camera
387 (Photometrics). The flow rate was increased every 2 min as indicated in Figure 2A until no more
388 cells remained attached in the field of view. Then the procedure was repeated with subsequent
389 strains at the same location. Image analysis was done in ImageJ. For the background
390 subtraction, the last empty image in the sequence was used. First, a positive offset was applied
391 to the entire image dataset, then the original last image was subtracted from the entire dataset
392 providing a flat background intensity across the whole dataset. Number of cells in each image
393 were then counted by thresholding background corrected phase contrast images and counting
394 the particles using ImageJ. We computed shear stress from flow rate as in reference 29.

395

396 **Biofilm growth**

397 For biofilm growth experiments tubing (1.09 mm outer diameter polyethylene tube, Instech)
398 connected to a 30 or 50 ml plastic syringe (BD Plastipak) filled with Cab medium which was
399 prewarmed in the microscopy heating chamber before loading the syringe. A blunt luer stub was
400 used to connect syringe and tubing. The syringe pump (kd science) was connected to the inlet
401 of a large channel microfluidic device. The liquid reservoir (with intentionally leaving a small air
402 bubble in the reservoir) and observation channel were filled with medium before outlet tubing
403 was connected and left to equilibrate for some time with flow. Then the inlet and outlet tubing
404 were disconnected such that a small drop of medium was covering the outlet opening. Then 5-8
405 μ l of a diluted or non-diluted pre-culture cell solution was pipetted into the microfluidic channel
406 from the outlet filling up ~75 % of the channel volume, making sure no cells reached the liquid
407 reservoir at the inlet. The outlet was then closed with tape for 5-10 min to allow cells to attach to
408 the glass before the inlet tubing was reinserted. After a short time (<3 min) the tape at the outlet
409 was removed and the tubing reconnected. The cell coverage was then inspected by microscopy
410 and excessive cells removed by repeatedly tapping the bottom of the microfluidic channel until
411 the desired coverage was reached. Random images along the channel were recorded either
412 before or just after cell loading, which were used for background subtraction for the analysis
413 later. Microscopic observation was performed using a Nikon inverted microscope with
414 temperature-controlled incubation chamber set to 45°C.

415

416

417 **Biofilm dispersal**

418 1 mL of exponentially growing cells were centrifuged for 2 min at 16'100 rcf, supernatant was
419 discarded and cells resuspended in an appropriate volume of fresh Cab medium to an OD₆₀₀ of
420 0.2. A 1 mL BD Plastipak syringe with a blunt luer stub was filled with this cell solution, mounted
421 on a syringe pump and used for biofilm dispersal experiments. To minimize flow disturbance
422 during switching the inlet tubing from the large syringe used for growing biofilms overnight to the
423 syringe containing the cell solution the inlet tubing was cut close to the luer stub and connected
424 to the syringe containing the cell solution. The cell solution was pumped for 10 minutes making
425 sure the entire channel was filled with incoming cells. Fluorescence images along the
426 microfluidic channel were recorded with a 10X/0.25 Ph1 DL objective (Nikon) before and after
427 biofilms have been exposed to flow manipulations as indicated. Generally, before recording the
428 second image, flow was restarted for 5 min to flush out any non-attached cells.

429

430 **Fluorescence image analysis**

431 Images were then analyzed as follows: background images of the empty channels acquired
432 before biofilms were grown, were opened as a stack in ImageJ and the median projection was
433 used as to flatten the background. The images were then transformed into a montage using
434 ImageJ. A threshold was applied to the montage images in ImageJ to generate a mask of the
435 cell area, and for each column of pixels (perpendicular to the direction of the channel) the
436 median of the background was set to 0 by addition or subtraction in Matlab. Then, the overall
437 median intensity of the background of the montage was set to 0 by addition or subtraction in
438 ImageJ. This rendered an even flat background of median value 0 along the entire channel. The
439 total fluorescence intensity was then obtained by masking the background area and summing
440 the integrated intensity of the biofilms. The change in fluorescence intensity was calculated by
441 subtracting the image acquired before the procedure from the image acquired after the
442 procedure. The resulting differential image was then color coded to represent positive values in
443 cyan and negative in magenta at equal intensity ranges. To calculate the fluorescence along the
444 channel the intensity of the non-masked along the montage was summed for each column of
445 pixels. The values were then smoothed by applying a moving average over 200-pixel columns.

446

447

448 **Measurements of cell fluctuations in biofilms**

449 Biofilms were grown overnight as described above. Images (200 frames within 5 s) were
450 acquired at 20 μ l/min before flow rate was changed to 2, 0.5, 0 and back to 20 μ l/min,
451 respectively. The procedure was then repeated once more at the same location. Image
452 sequences were acquired for each flow rate from which we computed standard deviation of
453 image stacks using ImageJ. One sequence of flow ramps lasted about 4 minutes.

454

455 **RNA isolation**

456 Biofilms grown for ~20 hours were harvested as follows. Outlet tubing was disconnected and
457 outlet opening was closed with tape. The inlet tubing was cut with scissors to minimize
458 disturbances and the device was removed from the microscope incubation chamber. A second
459 hole was punched from the sidewall into the liquid reservoir at the inlet and the reservoir liquid
460 was carefully sucked out with a pipet, leaving only the microfluidic channel filled with medium.
461 Then, the liquid reservoir was filled with 20 mM Hepes, 2% SDS at pH 8, the scotch tape at the
462 outlet removed and liquid sucked through the channel from the outlet opening to detach the
463 cells by gently pipetting a fraction of the Hepes solution back and forth. Finally the entire liquid
464 was collected and transferred to an Eppendorf tube which was then vortexed to ensure cell
465 lysis. Harvesting biofilm grown cells was completed within less than 5 min per channel. Once
466 cells were harvested, an appropriate amount of Trizol and chloroform reagent was added to the
467 Eppendorf tube according to the manufacturer's protocol (protocol). After centrifugation at 4°C
468 at 12'000 rcf for 15 min, the clear aqueous phase was transferred to a fresh nuclease free tube
469 and RNA was isolated using Zymoresearch Nucleic acid concentrator column protocol
470 according to the manufacturer's protocol (details).

471 Cells from liquid culture were harvested from a diluted pre-culture cell suspension the following
472 day at an OD₆₀₀ of 0.13-0.15. Cells were centrifuged in 50 ml falcon tubes at maximum speed
473 (xspeed) for 4 minutes and resuspended in a HEPES/SDS mix (as above) after discarding
474 supernatant. Then the same protocol as for biofilm-isolated cells was followed.

475 RNA was then analyzed using bioanalyzer and rRNA depletion was done using siRNAtools
476 depletion assay for *H. volcanii* based on magnetic removal of rRNA. The samples were then
477 processed at genomics facility EPFL. Transcriptomics analysis was done using usegalaxy.org.
478 Using hisat2 map reads to genome, paired-end library, reverse direction. Count the maps using

479 htseq-count tool. We analyses differential expression using the deseq2 tool. Genome sequence

480 [ASM2568v1 - Genome - Assembly - NCBI \(nih.gov\)](#)

481

482 **References**

483 1. Baker, B. J. *et al.* Diversity, ecology and evolution of Archaea. *Nature Microbiology* **5**, 887–
484 900 (2020).

485 2. Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. *Annual Review of*
486 *Microbiology* **67**, 437–457 (2013).

487 3. Koerdt, A., Gödeke, J., Berger, J., Thormann, K. M. & Albers, S. V. Crenarchaeal Biofilm
488 Formation under Extreme Conditions. *PLoS ONE* **5**, (2010).

489 4. Megaw, J. & Gilmore, B. F. Archaeal persisters: Persister cell formation as a stress
490 response in *haloferax volcanii*. *Frontiers in Microbiology* **8**, 1–10 (2017).

491 5. Lapaglia, C. & Hartzell, P. L. Stress-induced production of biofilm in the hyperthermophile
492 *Archaeoglobus fulgidus*. *Applied and Environmental Microbiology* **63**, 3158–3163 (1997).

493 6. Orell, A., Fröls, S. & Albers, S.-V. Archaeal Biofilms: The Great Unexplored. *Annual Review*
494 *of Microbiology* **67**, 337–354 (2013).

495 7. van Wolferen, M., Orell, A. & Albers, S.-V. Archaeal biofilm formation. *Nat. Rev. Microbiol.*
496 **16**, 699–713 (2018).

497 8. Teschler, J. K. *et al.* Living in the matrix: assembly and control of *Vibrio cholerae* biofilms.
498 *Nature Reviews Microbiology* **13**, 255–268 (2015).

499 9. Flemming, H.-C. & Wingender, J. The biofilm matrix. *Nat. Rev. Microbiol.* **8**, 623–633
500 (2010).

501 10. Bang, C. *et al.* Biofilm formation of mucosa-associated methanarchaeal strains. *Front*
502 *Microbiol* **5**, 353 (2014).

503 11. Pohlschroder, M. & Esquivel, R. N. Archaeal type IV pili and their involvement in biofilm
504 formation. *Front Microbiol* **6**, 190 (2015).

505 12. Chimileski, S., Franklin, M. J. & Papke, R. T. Biofilms formed by the archaeon *Haloferax*
506 *volcanii* exhibit cellular differentiation and social motility, and facilitate horizontal gene
507 transfer. *BMC Biology* **12**, 65 (2014).

508 13. Fröls, S., Dyall-Smith, M. & Pfeifer, F. Biofilm formation by haloarchaea. *Environmental*
509 *Microbiology* **14**, 3159–3174 (2012).

510 14. Fröls, S., Dyall-Smith, M. & Pfeifer, F. Biofilm formation by haloarchaea. *Environmental*
511 *Microbiology* **14**, 3159–3174 (2012).

512 15. Tuson, H. H. & Weibel, D. B. Bacteria–surface interactions. *Soft Matter* **9**, 4368–13 (2013).

513 16. O'Toole, G. A. & Kolter, R. Flagellar and twitching motility are necessary for *Pseudomonas*
514 *aeruginosa* biofilm development. *Molecular Microbiology* **30**, 295–304 (1998).

515 17. Cont, A., Vermeil, J. & Persat, A. Mechanoregulation of biofilm architecture promotes *P.*
516 *aeruginosa* antibiotic tolerance. 2022.02.16.480709 Preprint at
517 <https://doi.org/10.1101/2022.02.16.480709> (2022).

518 18. Teschler, J. K., Nadell, C. D., Drescher, K. & Yildiz, F. H. Mechanisms Underlying *Vibrio*
519 *cholerae* Biofilm Formation and Dispersion. *Annu Rev Microbiol* **76**, 503–532 (2022).

520 19. Yi, K., Rasmussen, A. W., Gudlavalleti, S. K., Stephens, D. S. & Stojiljkovic, I. Biofilm
521 formation by *Neisseria meningitidis*. *Infection and Immunity* **72**, 6132–6138 (2004).

522 20. Chaudhury, P., Quax, T. E. F. & Albers, S.-V. Versatile cell surface structures of archaea.
523 *Mol Microbiol* **107**, 298–311 (2018).

524 21. Makarova, K. S., Koonin, E. V. & Albers, S.-V. Diversity and Evolution of Type IV pili
525 Systems in Archaea. *Frontiers in Microbiology* **7**, 650–16 (2016).

526 22. Henche, A.-L., Koerdt, A., Ghosh, A. & Albers, S.-V. Influence of cell surface structures on
527 crenarchaeal biofilm formation using a thermostable green fluorescent protein. *Environ*
528 *Microbiol* **14**, 779–793 (2012).

529 23. Ajon, M. *et al.* UV-inducible DNA exchange in hyperthermophilic archaea mediated by type
530 IV pili. *Mol Microbiol* **82**, 807–817 (2011).

531 24. Esquivel, R. N., Schulze, S., Xu, R., Hippler, M. & Pohlschroder, M. Identification of
532 *Haloferax volcanii* Pilin N-glycans with diverse roles in pilus biosynthesis, adhesion, and
533 microcolony formation. *Journal of Biological Chemistry* **291**, 10602–10614 (2016).

534 25. Esquivel, R. N., Xu, R. & Pohlschroder, M. Novel archaeal adhesion pilins with a conserved
535 N terminus. *Journal of Bacteriology* **195**, 3808–3818 (2013).

536 26. Denise, R., Abby, S. S. & Rocha, E. P. C. Diversification of the type IV filament superfamily
537 into machines for adhesion, protein secretion, DNA uptake, and motility. *PLOS Biology* **17**,
538 e3000390 (2019).

539 27. Talà, L., Fineberg, A., Kukura, P. & Persat, A. *Pseudomonas aeruginosa* orchestrates
540 twitching motility by sequential control of type IV pili movements. *Nature Microbiology* **4**,
541 774–780 (2019).

542 28. Dufrêne, Y. F. & Persat, A. Mechanomicrobiology: how bacteria sense and respond to
543 forces. *Nature Reviews Microbiology* (2020) doi:10.1038/s41579-019-0314-2.

544 29. Persat, A. *et al.* The Mechanical World of Bacteria. *Cell* **161**, 988–997 (2015).

545 30. Rossy, T., Nadell, C. D. & Persat, A. Cellular advective-diffusion drives the emergence of
546 bacterial surface colonization patterns and heterogeneity. *Nature Communications* **10**, 1–9
547 (2019).

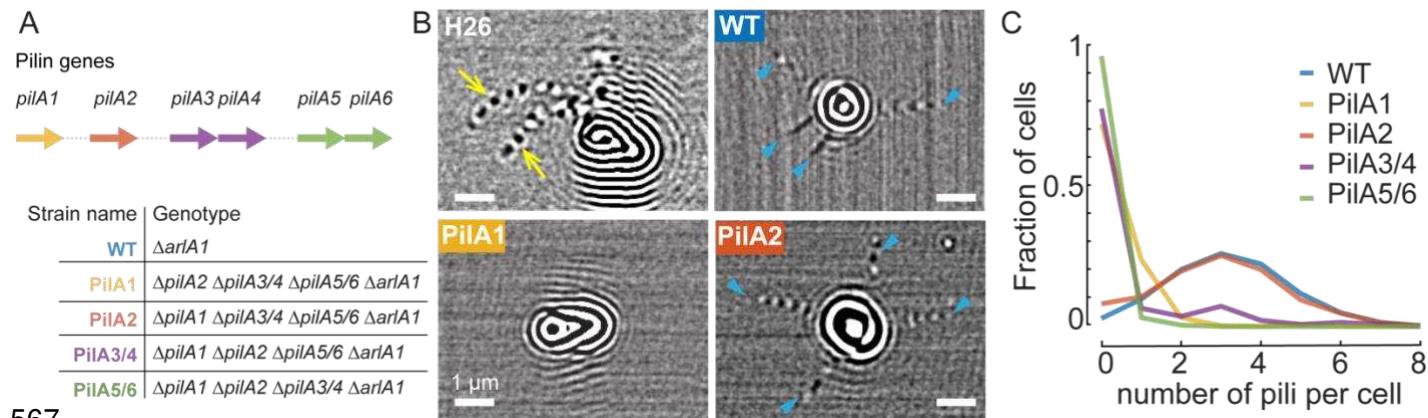
548 31. Bonazzi, D. *et al.* Intermittent Pili-Mediated Forces Fluidize *Neisseria meningitidis*
549 Aggregates Promoting Vascular Colonization. *Cell* **174**, 143-149.e16 (2018).

550 32. Bertani, G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic
551 *Escherichia coli*. *Journal of bacteriology* **62**, 293–300 (1951).

552 33. Allers, T., Ngo, H.-P., Mevarech, M. & Lloyd, R. G. Development of additional selectable
553 markers for the halophilic archaeon *Haloferax volcanii* based on the *leuB* and *trpA* genes.
554 *Applied and environmental microbiology* **70**, 943–53 (2004).

555 34. Duggin, I. G. *et al.* CetZ tubulin-like proteins control archaeal cell shape. *Nature* **519**, 362–
556 365 (2015).

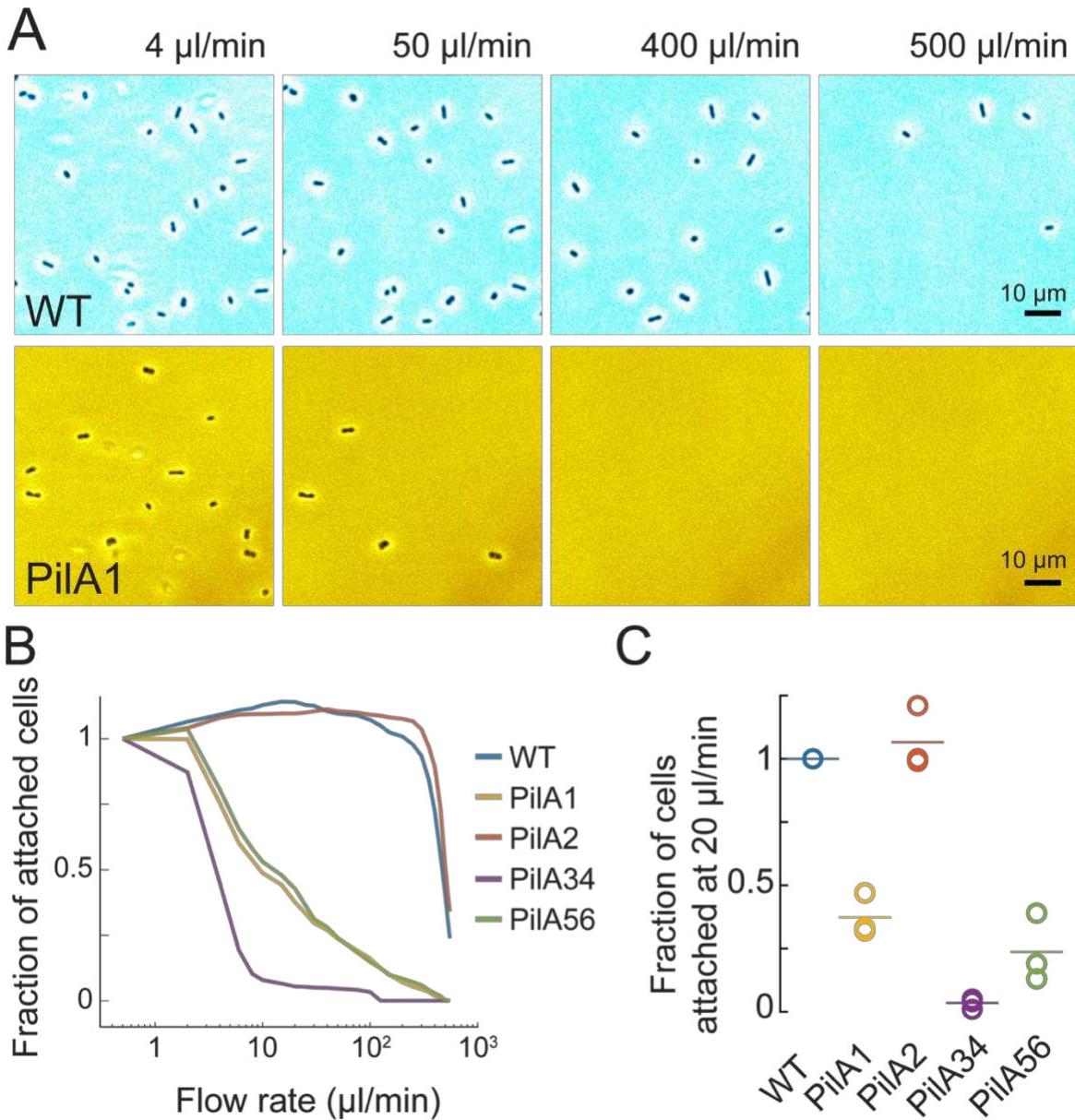
557 35. Cline, S. W., Lam, W. L., Charlebois, R. L., Schalkwyk, L. C. & Doolittle, W. F.
558 Transformation methods for halophilic archaeabacteria. *Canadian Journal of Microbiology* **35**,
559 148–152 (1989).


560 36. Cont, A., Rossy, T., Al-Mayyah, Z. & Persat, A. Biofilms deform soft surfaces and disrupt
561 epithelia. *bioRxiv* (2020) doi:10.1101/2020.01.29.923060.

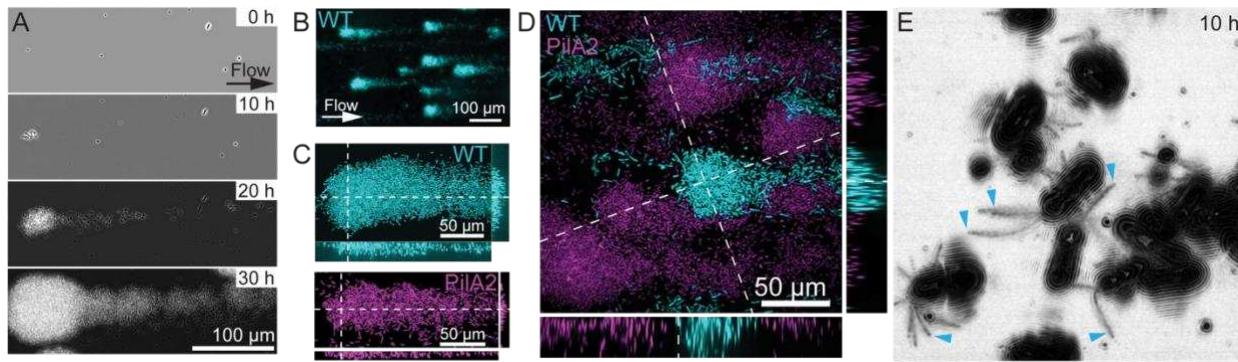
562 37. Gamble-Milner, R. Genetic analysis of the Hel308 helicase in the archaeon *Haloferax*
563 *volcanii*. *PhD thesis, University of Nottingham* (2016).

564

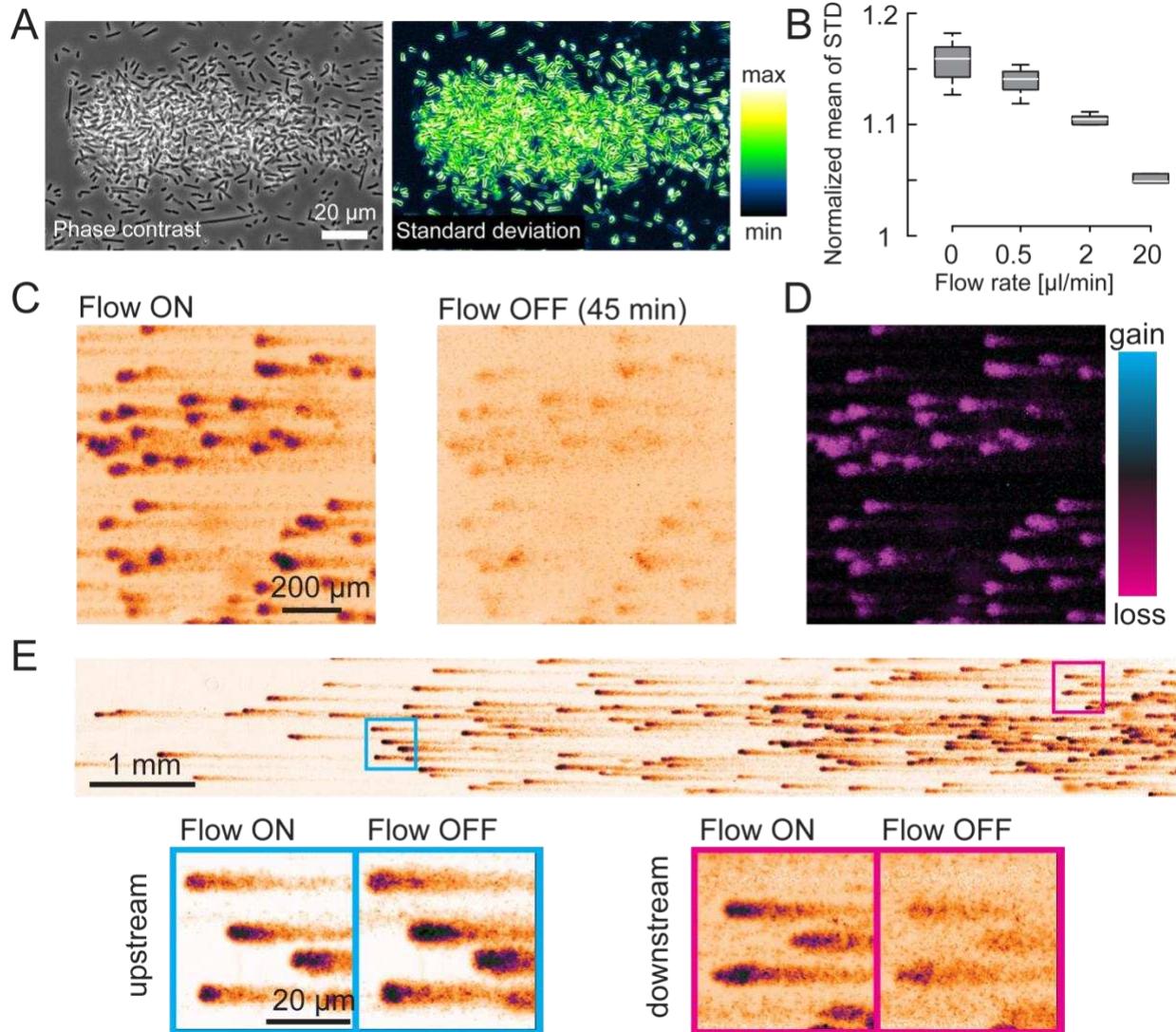
565


566 **Figures**

568 **Figure 1: The PilA2 pilin subunit isoform is sufficient to produce type IV pili in *H. volcanii*.**

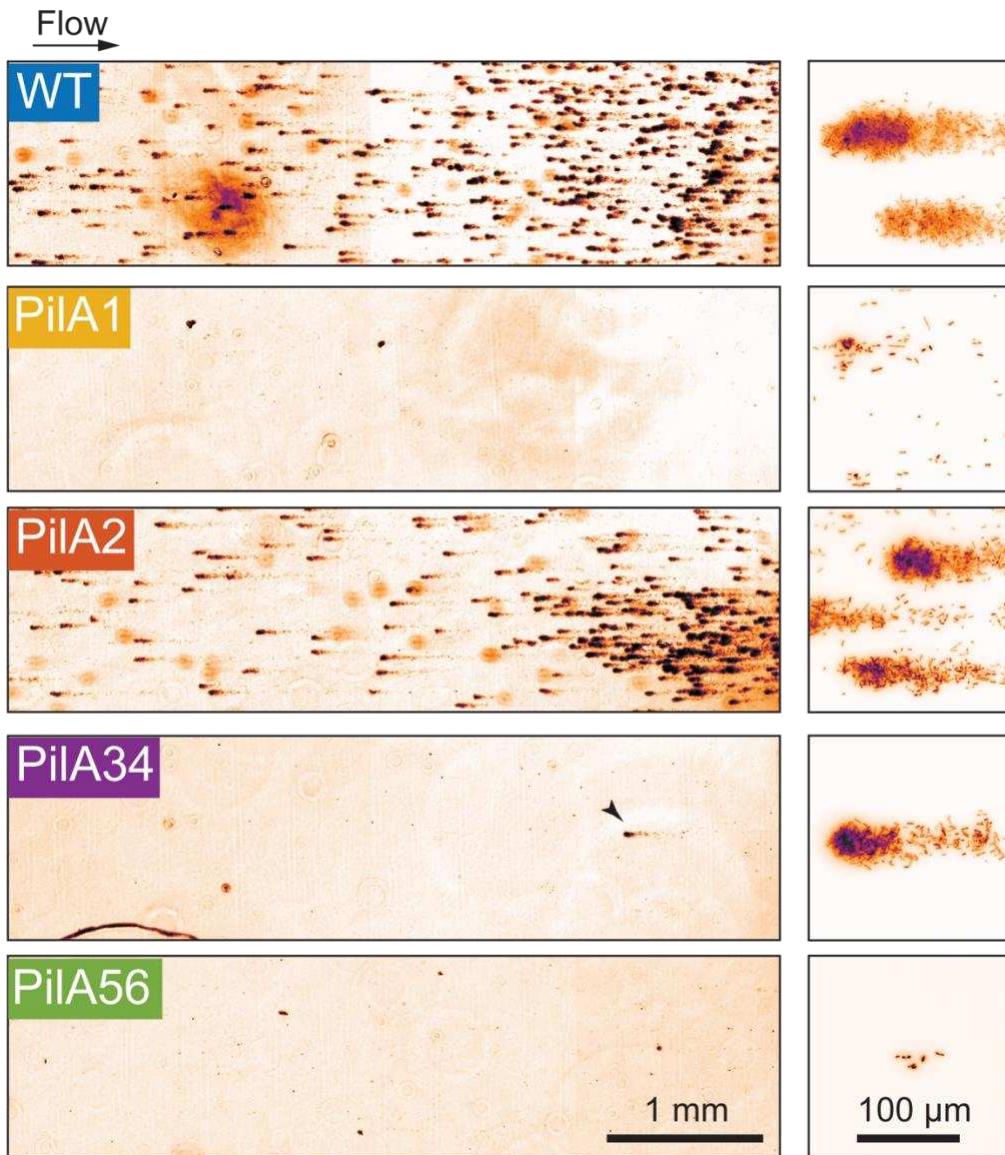

569 **A**) Description of strains expressing single pilin isoforms. **(B)** Representative iSCAT images of
570 *H. volcanii*. (Top left) Archaella are visible in H26 (yellow arrows). (Top right) WT (archaellum-
571 less H26 $\Delta arlA1$) expressing all six PilA isoforms displays multiple T4P (blue arrowheads).
572 (Bottom left) PilA1 typically does not produce T4P. (Bottom right) T4P are commonly visualized
573 at the surface of PilA2. **(C)** Distribution of T4P numbers per cell for strains expressing different
574 PilA subunit isoforms. The median T4P number for WT and PilA2 is 3, while all other strains
575 have zero median T4P number.

576

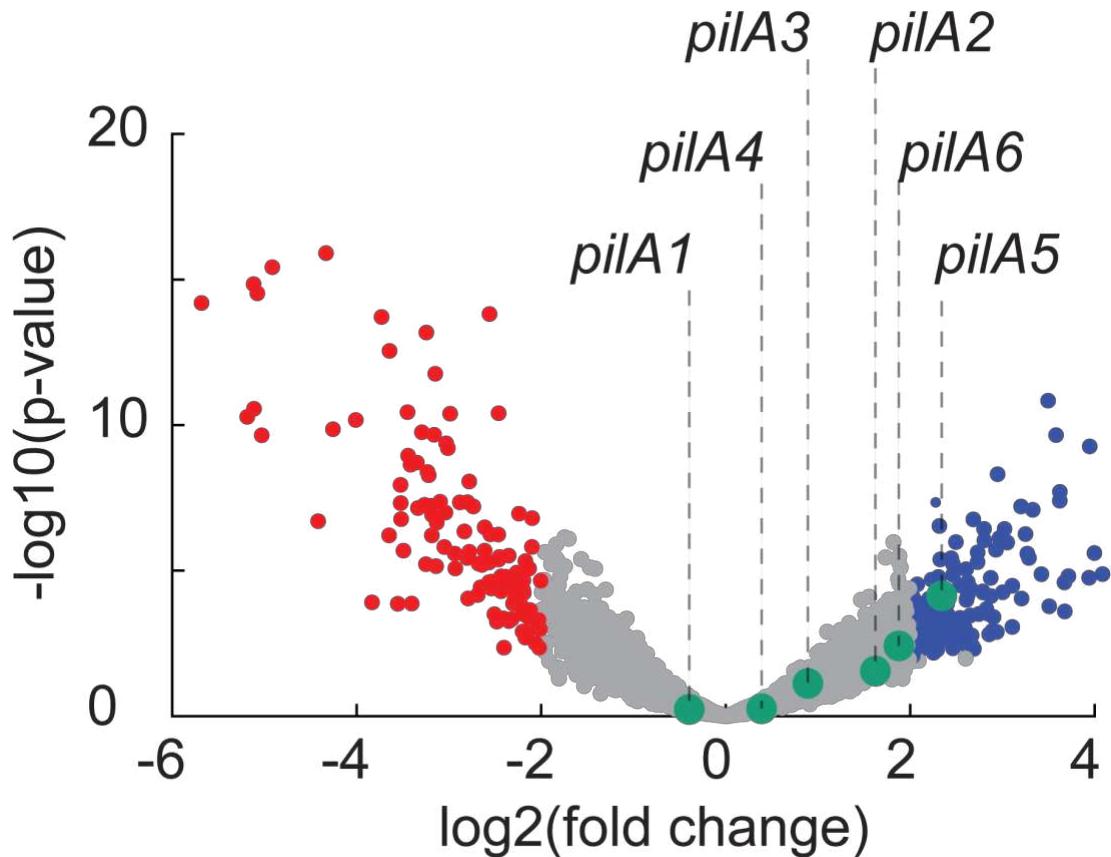

577

578 **Figure 2: *H. volcanii* T4P enhances surface attachment.** We incubated *H. volcanii* cells in
579 microchannels to allow for attachment. We then incrementally increased flow rate in the channel
580 every two minutes. **(A)** Phase contrast snapshots of WT and PilA2 strains at increasing flow
581 rates. Most PilA2 cells gave already detached at 50 $\mu\text{l}/\text{min}$. **(B)** Fraction of surface-attached
582 cells for strains expressing each pilin isoforms during an increasing ramp in flow rate. WT and
583 PilA2 populations remain attached as shear stress increases, while cells from strains expressing
584 the other PilA isoforms detach at lower flow rates. **(C)** Fraction of cells remaining attached at 20
585 $\mu\text{l}/\text{min}$. All fractions are normalized to the respective WT fraction of 3 independent experiments.

586


587 **Figure 3: *H. volcanii* uses T4P to form biofilms in flow. A)** Time series of phase images from
588 WT biofilm growth under constant flow of 20 µl/min. *H. volcanii* forms comet-shape biofilms
589 stretching in the flow direction. **B)** Confocal microscopy of WT-mCherry biofilms. **(C)** Confocal
590 images of biofilms from WT-mCherry (top) and PilA2-GFP (bottom). Orthogonal views show that
591 biofilms from both strains extend in the vertical direction. **(D)** Confocal visualizations of WT-
592 mCherry and PilA2-GFP mixed biofilms. **E)** Representative iSCAT image of a microcolony early
593 on during biofilm formation. The image corresponds to the standard deviation of 500 iSCAT
594 images to improve visualizations. Blue arrowheads indicate T4P.

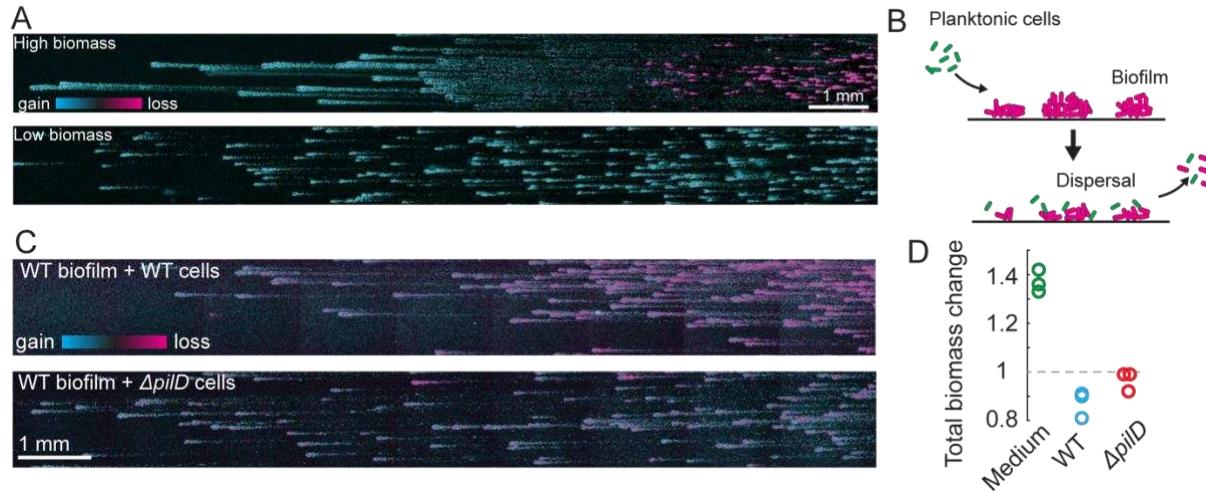
595


596 **Figure 4: Flow promotes cell-cell cohesion in *H. volcanii* biofilms. (A)** Phase contrast
597 image of an H26 biofilm and standard deviation of phase-contrast movie of the same biofilm of
598 biofilm shows that cells are stationary but wiggle in the community (**Supplementary movie 3**).
599 **(B)** Mean standard deviation of biofilms phase contrast image sequences. The reduction of the
600 standard deviation shows a stabilizing effect of flow. **(C)** Stopping flow disperses biofilms.
601 Fluorescence images of WT-mCherry biofilms grown overnight at constant flow (20 $\mu\text{l}/\text{min}$).
602 Flow was then stopped for 45 min and restarted for 5 min to flush out unattached cells before
603 imaging. Biofilms largely dispersed during this procedure and few cells remained attached to the
604 surface. **(D)** Relative fluorescence intensity changes upon flow arrest. **(E)** Biofilm dispersion is
605 heterogeneous along the channel. Downstream biofilms disperse upon flow arrest, while
606 upstream biofilms do not.

607 **Supplementary Material**

608

609 **Figure S1:** Representative fluorescence microscopy images of biofilms from strains expressing
610 the respective PilA isoforms growing in flow. Only strains reliably producing T4P (WT and PilA2)
611 can reproducibly form robust biofilms in flow. Biofilm formation is abolished in strains with low
612 piliation (PilA1, PilA3/4 and PilA5/6). In these backgrounds, single cells occasionally attach to
613 the surface, but rarely grow into mature biofilms. Right column: Close-up views of selected
614 region in microfluidic channel.


615

616 **Figure S2:** Volcano plot of gene expression measurements of WT biofilms relative to
617 exponential liquid culture. *pilA5* is clearly upregulated in biofilms, while other *pilA* subunits tend
618 to be upregulated, albeit with a low p-value. The relatively low values of fold-changes in gene
619 expression is a well-documented phenomenon in archaea.

620

621

622

623

624 **Figure S3: Interactions with planktonic cells stimulates biofilm dispersal.** **(A)** Relative
625 changes in biofilm biomass. Biofilms all grow in the upstream region while they disperse
626 downstream. In conditions where biofilm biomass is lower, stopping flow does not induce
627 dispersal. **(B)** To test the contribution of loose cells on dispersal, we introduce exponential-
628 phase cultures in fresh medium into the channel containing mature biofilms and stop flow for 45
629 min. **(C)** Images showing change of fluorescence intensity upon incubation with liquid-grown
630 cells. Liquid-grown WT cells were flushed into microfluidic channels containing WT biofilms.
631 Unlike previous experiments shown in Fig. 4, biomass decreased throughout the entire
632 microchannel. When incubated with the T4P-deficient Δ apiD mutant, biofilms also dispersed
633 slightly. **(D)** Quantification of relative biomass change upon flow arrest.

634

635 **Table S1:** Strains used in this study

Strain Name	Background strain	Genotype	Source/reference
<i>H. volcanii</i>			
H26	-	Δ pyrE2	³³
HTQ 265	H26	Δ pilA2, 3-4, 5-6 (pilA1 only) Δ arlA1 Δ pyrE2	This study
HTQ 266	H26	Δ pilA1, 3-4, 5-6 (pilA2 only) Δ arlA1 Δ pyrE2	This study
HTQ 267	H26	Δ pilA1, 2, 5-6 (pilA3-4 only) Δ arlA1 Δ pyrE2	This study
HTQ 268	H26	Δ pilA1, 2, 3-4 (pilA5-6 only) Δ arlA1 Δ pyrE2	This study
<i>E. coli</i>			
10-beta Competent Cells “TOP10”	-	Δ (ara-leu) 7697 araD139 fhuA Δ lacX74 galK16 galE15 e14- ϕ 80dlacZ Δ M15 recA1 relA1 endA1 nupG rpsL (Str ^R) rph spoT1 Δ (mrr-hsdRMS-mcrBC)	New England Biolabs
dam ⁻ /dcm ⁻ Competent	-	ara-14 leuB6 fhuA31 lacY1 tsx78 glnV44 galK2 galT22 mcrA dcm-6 hisG4 rfbD1 R(zgb210::Tn10) Tet ^S endA1 rspL136 (Str ^R) dam13::Tn9 (Cam ^R) xylA-5 mtl-1 thi-1 mcrB1 hsdR2	New England Biolabs

636

637

638 **Table S2:** Plasmids used in this study

Plasmids	Description	Primers used	Enzymes used	Source/reference
pTA131	integrative plasmid with a <i>pyrE2</i> selection marker for knock-outs in <i>H.volcanii</i> (Amp ^r)	-	-	33
pTA1392	Plasmid containing <i>pyrE</i> selection marker	-	-	37
pSVA5677	Knock-out plasmid for the deletion of <i>pilA1</i> (Amp ^r)	10581, 10582; 10583, 10584	Kpnl, XbaI	This study
pSVA5678	Knock-out plasmid for the deletion of <i>pilA2</i> (Amp ^r)	10585, 10586; 10587, 10588	Kpnl, XbaI	This study
pSVA5679	Knock-out plasmid for the deletion of <i>pilA3-4</i> (Amp ^r)	10589, 10590; 10591, 10592	Kpnl, XbaI	This study
pSVA5680	Knock-out plasmid for the deletion of <i>pilA5-6</i> (Amp ^r)	10593, 10594; 10595, 10596	Kpnl, XbaI	This study
pTA1536	Knock-out plasmid for the deletion of <i>arlA1</i> (Amp ^r)	13181, 13182; 13183, 13184	Kpnl, Ndel, XbaI	This study

639

640 **Table S3 Primers used in this study**

Primer Number/Name	Sequence 5'→3'	Description
10581	CGGGGTACCGCAAGCTCC ACTCGCATTGGTCTC	Forward primer for the amplification of ~500 bp up-stream region of the <i>pilA1</i> start codon with a Kpnl restriction site
10582	GCGGAATCAGTCGCGGGG AGGTGTTGGTTCTCGTATA CATACGCGGTTA	Reverse primer for the amplification of ~500 bp up-stream region of the <i>pilA1</i> start codon
10583	CTCCCCGCGACTGATTCC GCGATAATC	Forward primer for the amplification of ~500 bp down-stream region of

		the <i>pilA1</i> stop codon containing a complementary sequence to the amplicon of the up-stream region
10584	TGCTCTAGATTCTCGCTC GTGGCGACGACGATG	Reverse primer for the amplification of ~500 bp down-stream region of the <i>pilA1</i> stop codon with a XbaI restriction site
10597	ATGGCTTCGGGATTGTCCA CGGTCGCTGAG	Forward primer for <i>pilA1</i> knock-out screening
10598	GGATGGAAGACCGCACCA TCACCATCAAC	Reverse primer for <i>pilA1</i> knock-out screening
10599	GGACCGATCTCCCAGCCG ATTCGTGACTTC	Primer for <i>pilA1</i> knock-out sequencing
10585	CGGGGTACCCGCACGCCG GCCGTGATAGAAATAG	Forward primer for the amplification of ~500 bp up-stream region of the <i>pilA2</i> start codon with a KpnI restriction site
10586	AAAGTCGGTCAGTGGTTC GTTGGATACTCCTGCGCC CGGACAG	Reverse primer for the amplification of ~500 bp up-stream region of the <i>pilA2</i> start codon
10587	ACGAACCACTGACCGACTT TTTTGC	Forward primer for the amplification of ~500 bp down-stream region of the <i>pilA2</i> stop codon containing a complementary sequence to the amplicon of the up-stream region
10588	TGCTCTAGATAGCTCGTCA CCGCTGTGGTGGATG	Reverse primer for the amplification of ~500 bp down-stream region of the <i>pilA2</i> stop codon with a XbaI restriction site
11300	GACGACCTCGCCGTAAAT CTGCATGTCTTC	Forward primer for <i>pilA2</i> knock-out screening and sequencing
11301	CACTCGAAACGGACGATC CCGACGAGAAAG	Reverse primer for <i>pilA2</i> knock-out screening and sequencing
11302	CTGTATTTCCACGACTGTT CAGGCCGGTTC	Primer for <i>pilA2</i> knock-out sequencing
10589	CGGGGTACCGTGCAGCGA GATGGACCTCTACTAC	Forward primer for the amplification of ~500 bp up-stream region of the <i>pilA3-4</i> start codon with a KpnI restriction site
10590	CCCGCGAAGGCTGTGTCGC GTGCGTTATGTCCGACAC CCGGACGGTATC	Reverse primer for the amplification of ~500 bp up-stream region of the <i>pilA3-4</i> start codon
10591	ACGCGACACAGCCTTCGC GGCATC	Forward primer for the amplification of ~500 bp down-stream region of

		the <i>pilA3-4</i> stop codon containing a complementary sequence to the amplicon of the up-stream region
10592	TGCTCTAGAGTTGGAGGA GGTCGTCGTCGACTTC	Reverse primer for the amplification of ~500 bp down-stream region of the <i>pilA3-4</i> stop codon with a XbaI restriction site
11303	ACGTTCCACTTCGAACCTCC GCGACACCGAC	Forward primer for <i>pilA3-4</i> knock-out screening and sequencing
11304	TATCTCGACGGCGACATC GACAAGGGCTAC	Reverse primer for <i>pilA3-4</i> knock-out screening and sequencing
11305	GTGCTGATGATCGTCGGG ACGCTCGCTATG	Primer for <i>pilA3-4</i> knock-out sequencing
10593	CGGGGTACCGACCAACCCG AAACTCGCACAGGAAG	Forward primer for the amplification of ~500 bp up-stream region of the <i>pilA5-6</i> start codon with a KpnI restriction site
10594	TGTTCTACCCAGGACCGG CCTCTGA	Reverse primer for the amplification of ~500 bp up-stream region of the <i>pilA5-6</i> start codon
10595	GGCCGGTCCTGGGTAGAA CATACCGGAATCAGCACC GCATCCCATC	Forward primer for the amplification of ~500 bp down-stream region of the <i>pilA5-6</i> stop codon containing a complementary sequence to the amplicon of the up-stream region
10596	TGCTCTAGACAGCATCGAA CGGGACCGTATCGAG	Reverse primer for the amplification of ~500 bp down-stream region of the <i>pilA5-6</i> stop codon with a XbaI restriction site
11306	AATCGTTCGTCGCCGAACT CGAGACGAAGG	Forward primer for <i>pilA5-6</i> knock-out screening and sequencing
11307	CCGTCGCTTCGAGTTCCAA CCAGATGCTTC	Reverse primer for <i>pilA5-6</i> knock-out screening and sequencing
11308	TGCGGATGGTACGCAGGT GGGATGGAACAG	Primer for <i>pilA5-6</i> knock-out sequencing
13181	GATAGGTACCGTGCCTCC TGATAAACTCTCC	Forward primer for the amplification of ~500 bp up-stream region of the <i>arlA1</i> start codon with a KpnI restriction site
13182	ATTGCGCATATGAGATTTC GTGGGTTGGTCC	Reverse primer for the amplification of ~500 bp up-stream region of the <i>arlA1</i> start codon with a NdeI restriction site
13183	ATTGCGCATATGGGAGATT CAAATGTTCAACAAAC	Forward primer for the amplification of ~500 bp down-stream region of

		the <i>arlA1</i> stop codon with a NdeI restriction site
13184	GTACTCTAGACGCCGATG AGGTTAGTGTG	Reverse primer for the amplification of ~500 bp down-stream region of the <i>arlA1</i> stop codon with a XbaI restriction site
7034	GTATCGGACCCTGTGGTC TC	Forward primer for <i>arlA1</i> knock-out screening and sequencing
7035	GCCGTGCACTCCGAACAA AC	Reverse primer for <i>arlA1</i> knock-out screening and sequencing

641
642
643