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Summary

Animal behavior emerges from collective dynamics of interconnected neurons, making it
vulnerable to connectome damage. Paradoxically, many organisms maintain significant behavioral
output after large-scale neural injury. Molecular underpinnings of this extreme robustness remain
largely unknown. Here, we develop a quantitative behavioral analysis pipeline to measure
previously uncharacterized long-lasting latent memory states in planarian flatworms during whole-
brain regeneration. By combining >20,000 animal trials with neural population dynamic modeling,
we show that long-range volumetric peptidergic signals allow the planarian to rapidly reestablish
latent states and restore coarse behavior after large structural perturbations to the nervous system,
while small-molecule neuromodulators gradually refine the precision. The different time and
length scales of neuropeptide and small-molecule transmission generate incoherent patterns of
neural activity which competitively regulate behavior and memory. Controlling behavior through
opposing communication mechanisms creates a more robust system than either alone and may

serve as a generic approach to construct robust neural networks.
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Introduction

Given its high interconnected complexity, the nervous system is expected to be vulnerable to major
neuronal losses such as injuries, stroke, and degeneration1’2. However, many animals are capable
of regenerating large sections of their nervous system after severe injury while maintaining high
levels of motor function and sensitivity to various stimuli*”’. The extreme robustness of their
nervous system allows them to sense and escape from harmful environmental cues such as
predators and UV irradiation even during the process of regrowing a head. Neural robustness is
generally thought to be built in the topology of synaptic connectome using redundant links to
remove nodes of high centrality and reduce dependency on any given neuron!?* 10, Examples
include distributed nerve nets of cnidarians®* and duplicated neural circuits in segmented animals
such as annelids and insects>®. However, the duplication of network components may be limited

by the high metabolic cost of neural maintenance!'!.

Here, we present evidence for an alternative strategy for neural robustness: in addition to synaptic
connections, volumetrically transmitted long-range signals could increase effective connectivity
of the network without adding new structures to the system (Figure 1A). Volume transmission is
common in the nervous system and occurs at multiple scales. Besides transmitting across synapses,
small molecules such as monoamines and acetylcholine can leak out of the synaptic cleft and
function as neuromodulators. However, due to rapid reuptake and extracellular degradation, their
diffusion is limited to fast timescales (~100 ms) and short distances (~pum), thereby targeting
immediately adjacent neurons'? !4, In contrast, neuropeptides can be secreted throughout the entire
neuronal body and diffuse for up to minutes over hundreds of microns, transmitting their signal to

potentially large numbers of neurons with matching receptors'>'7. The large length scale of
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neuropeptide communication and its independence from synaptic connections may reduce

sensitivity to disruptions like missing neurons, axons, or connections.

We demonstrate neural robustness based on long-range diffusion through both experimental and
computational model systems. Experimentally, we study the planarian flatworm Schmidtea
mediterranea, a basal cephalized animal with the ability to regenerate its entire nervous system
from small tissue fragments'® 22, This regenerative ability is key to the survival and reproduction
of planarians, which undergo asexual fission by ripping off tail fragments which then develop into
new individuals®. The planarian nervous system contains diverse neural cell types and complex
structures including a bi-lobed brain, ventral nerve cords, and peripheral projections®*%*. The
number of neurons may fluctuate between ~1,000 to ~100,000 in a single animal during growth
and degrowth, requiring dynamic scaling of the entire neural architecture'®. At the functional level,
planarians show complex behavior that integrates information from chemical, light, temperature,
and mechanical stimuli®. In particular, ultraviolet (UV) light and mechanical cues are detected
through sensory cells distributed throughout the body and can stimulate reflex-like responses in
decapitated animals’?”%, though it is unclear whether more complex behaviors such as sensory
integration are similarly independent of the brain. The cellular and molecular underpinnings of the

planarian’s behavioral robustness remain mostly unexplored.

By developing a long-term high-content imaging platform, we observed thousands of planarians
during homeostasis and regeneration and quantified their behavior through six orders of magnitude
in time. This allowed us to identify previously unknown behavior including signal integration and

short-term memory, which revealed a long-lasting latent state in the planarian nervous system. We
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discovered that maintenance of this excited state is mediated by neuropeptides and demonstrably
more robust than inhibition, which is controlled by locally-acting small-molecule
neurotransmitters. Using a dual-channel neural signaling model, we show that the different time
and length scales of neuropeptide and small-molecule transmission create interfering patterns of
neural activity which competitively control neural population dynamics. Though genetic and
surgical structural network disruptions perturb both transmission mechanisms, long-range
diffusion allows peptide-mediated dynamics to better persist than those driven by small-molecules.
This allows peptide function to dominate, generating robust behavioral output. By dynamically
balancing contributions of the two signaling mechanisms, this mode of 'adaptive robustness'

achieves more consistent control after injury than either system would alone.

Results

High-content imaging reveals an excitable latent state in the planarian behavior

To uncover complex behavior of planarians such as sensory integration and memory, we imaged
freely behaving planarians for extended periods, which has been challenging due to their strong
preference for solid edges and photophobic responses®’. We developed quasi-2D fluidic
chambers®® to contain animals (Figure 1B) and used infrared (IR) for non-perturbative
illumination®"*2. We also incorporated programmable UV (365 nm) and vibrational stimuli to
drive ecologically relevant behavior through distinct sensory pathways2®2%33, We confirmed that
planarians could be continuously imaged on this setup over multiple days without significant

changes to their behavior (Figure S1).

Continuous imaging with a sub-second resolution allowed us to track animals and quantify the
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94  changes in their positions over time (i.e., speed). Additionally, we defined a scalar activity
95  measurement based on the rate of change in the planarian’s shape (Figure 1C, see Methods). This
96  activity score differentiated gliding, turning, and twitching, whereas speed did not resolve the latter
97 two (Figure 1D, Supplemental Movie 1). Activity measurements enabled us to quantify
98  responses with high sensitivity and precision across a broad range of UV doses (Figure S2).
99  Beyond known immediate reflexes’?’, short UV pulses (<10 s) resulted in exponentially decaying
100  post-stimulus activity, and longer stimulation caused persistent high activity for several minutes
101  before decay (Figure 1E). The duration of high activity extended proportional to the dose of
102 stimuli, implicating an ability to both integrate stimulus and differentiate the subsequent behavior
103  through maintenance of activity over several minutes and inhibition of responses at appropriate
104  end points. This led to a broad power-law scaling between pulse duration and total post-stimulus
105  activity, consistent with Steven’s law** (Figure S2A).
106
107  Maintenance and inhibition of behavioral state exhibit differential robustness during neural
108  regeneration
109  This readout of minutes-long memory enabled us to study how planarian’s information processing
110 ability changes during neural injury. We bisected planarians to completely remove the brain and
111  measured the UV response of tail fragments every two hours throughout regeneration (Figure 1F).
112 The response to long UV pulses (e.g., 30 s) remained largely intact, though with a reduction in
113 peak and total response after amputation. Strikingly, by 2 days post amputation (dpa), peak activity
114 was not only fully restored, but the response duration, measured as the time needed for activity to
115  return to the baseline, was maintained twice as long after the stimuli compared to whole-animal

116  controls, indicating an inability to properly inhibit behavior output. Excess activity (total activity
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117  beyond that of the control) gradually decreased as regeneration progressed and disappeared at ~8
118  dpa. Response to shorter pulses (e.g., 5 s) followed a similar trend, with initially reduced responses,
119  excess activity appearing as a second ‘resonant’ post-stimulus peak during 4-6 dpa, and full
120 recovery at 8 dpa. Notably, brain regeneration occurs in a similar timeframe, with a primordial
121 brain forming at ~3 dpa and undergoing structural development over the following week 2!,

122

123 Varying pulse duration between 1-30 s, we found that each stimulus generated reduced responses
124 on the first day after amputation, suggesting impaired ability to maintain post-stimulus activity.
125  Recovery of this ability caused excess activity to appear earlier during regeneration in response to
126 higher UV doses. In contrast, suppression of excess activity did not occur until ~7 dpa, with the
127  timing mostly independent of the UV dose (Figure 1G, Figure S3). The fact that maintenance and
128  inhibition of UV-stimulated behavior recover asynchronously in regeneration suggests that they
129  are controlled by separate neural processes which have different capacities to function within a
130 partial nervous system.

131

132 To test whether this phenomenon was specific to the UV-sensory circuit, we stimulated planarians
133 using mechanical vibration which is sensed orthogonally to UV, The post-stimulus response to
134 vibration followed a similar dose-response scaling as UV (Figure S4A,B). Following amputation,
135  vibration responses showed the same phases of recovery: early in regeneration the response was
136  reduced, then rebounded beyond the whole-animal controls before converging to the baseline
137  (Figure S4C), implying that the progression of behavioral recovery is likely governed by changes
138  in post-sensory neurons.

139
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140  Peptidergic and small-molecule signals maintain and inhibit behavioral states respectively
141  We next sought to identify the neural transmission systems controlling the activation, maintenance,
142 and inhibition of post-stimulus behavior. We began by disrupting the core SNARE complex,
143 including syntaxin, synaptobrevin, and snap25, which mediates synaptic vesicle fusion and
144  release®. These RNAi experiments all resulted in loss of the UV response (Figure 2A),
145  demonstrating that the synaptic network is required for producing behavioral output in planarians.
146  In addition, RNAI of the vesicular glutamate transporter, vglut, severely reduced UV response
147  (Figure 2B) and caused uncoordinated movement (Supplemental Movie 2), suggesting that
148  glutamate is a key synaptic transmitter in planarians.

149

150  We reasoned that regulation of behavioral states on the minute time scale may be governed by
151  neuromodulators shifting the patterns of neural firing. We used RNAI1 to knock down synthesis
152 enzymes of various small-molecule neurotransmitters/neuromodulators and neuropeptides and
153  found that disruption of octopamine (i.e., tyramine beta-hydroxylase, tbh, RNA1), dopamine
154  (tyrosine hydroxylase, th), GABA (gabaergic decarboxylase, gad), and acetylcholine (choline
155  acetyltransferase, chat) syntheses all led to excess post-stimulus activity in response to UV. Similar
156  to the excess activity observed during regeneration, these knockdowns resulted in a second
157  resonant peak in activity after 5 s UV stimulation and a significantly delayed decay of activity after
158 30 s UV pulses (Figure 2C,D). chat RNAi also increased peak activity. This suggests that
159  inhibition of post-stimulus activity depends on the cumulative function of multiple small-molecule
160  neurotransmitters.

161

162 In contrast, reduction of post-stimulus activity was only observed when knocking down
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163  prohormone convertase 2 (pc2), which is required for the maturation of many planarian
164  neuropeptides®®. Planarians have densely packed peptidergic neurons collectively expressing a
165  suite of >60 neuropeptides, most, if not all, of which are also capable of generating small-molecule

243637 Long-range peptide transmission could create a densely connected

166  neurotransmitters
167 network as almost every planarian neuron expresses some neuropeptides or neuropeptide
168  receptors®*. While peptides are known to often act synergistically*®*, disrupting pc2 allows for
169  reduction of overall peptide concentrations3¢°,

170

171 Though previous work noted that pc2 knockdown severely reduces coordinated movement*!, we
172 found that pc2 RNAIi animals under continuous UV stimulation could activate the full range of
173 behavior seen in control animals (Figure 2E, Supplemental Movie 3). Consistently, their
174  response to UV stimuli was activated to levels matching that of controls and showed little
175  differences with weak stimuli. However, unlike controls that maintained high activity after long
176  stimulation (30 s), responses in pc2 knockdown animals decayed immediately (Figure 2F,G). This
177  prevented the animals from differentiating their responses to long stimuli and caused saturation in
178  the dose-response curve (Figure 2H). These observations suggest that, while pc2 RNAi animals
179  can detect and respond to UV, they fail to integrate signals and maintain the latent memory state
180  needed for extended post-stimulus activity. Concordantly, when we amputated pc2 knockdown
181  animals, they failed to show either an extended response or resonant peak after 30 s and 5 s UV
182  pulses, respectively, during regeneration (Figure 2I). Altogether, these results suggest that long-
183  range peptide signaling underlies the rapid return of response maintenance after injury, whereas

184  small-molecule signals mediate the more fragile inhibitory functions.

185
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186  Neuropeptide signaling maintains short-term memory

187  We hypothesized that other forms of memory at this timescale may also be mediated by peptides
188  and similarly robust to injury. To test this, we exposed planarians to pairs of 5 s UV pulses
189  separated by a time delay. With delays on the order of minutes, the response to the second pulse
190  is significantly stronger than that of the first (Figure 3A), demonstrating sensitization, a form of
191  short-term memory. This could be enhanced by stronger first pulses (Figure 3B). To measure how

192 the memory of the first pulse changes over time*

, we varied the delay between pulses and found
193  a non-monotonic decay of the sensitizing effect with a secondary peak at ~ 3 min delay (Figure
194  3C). Sensitization is also seen when pairing mechanical vibration and UV pulses, suggesting that
195  this memory is embedded in post-sensory processes (Figure 3D).

196

197  While pc2 RNAIi did not affect response to single 5 s UV pulses (Figure 2E), it eliminated
198  sensitization, indicating that neuropeptides are required for maintaining short-term memory
199  (Figure 3E). Sensitization was initially lost in amputated planarians, but rapidly increased beyond
200  that of whole animal controls at 1 dpa, demonstrating rapid recovery of sensitization memory but
201  a lack of inhibition (Figure 3F,G). This observation parallels the trend in the single-pulse
202  responses during regeneration, suggesting that the same peptide-dependent excitable latent state
203  may encode both signal integration and short-term memory.

204

205  Peptide mediated functions are more robust to general brain perturbations

206  If long-range neuropeptide transmission is less reliant on the intact network structure than small-

207  molecule signaling, then lost inhibition and excess behavioral activity should be a generic

208  signature of brain injuries. To test this prediction, we performed several surgical cuts causing

10
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209  partial brain damage, including severing anterior commissures (i.e., ‘corpus callosum cut’),
210  amputating anterior to the eyespots, and biopsying posterior to the left eyespot. Even though these
211  injuries affected different neural structures, they all led to similarly extended UV responses within
212 the first day after injury (Figure 4A).

213

214 To rule out the possibility that excess activity is driven by wound response, we also perturbed
215  neural structures genetically by performing RNA1 to disrupt a set of 9 transcription factors (TFs)
216  known to play important roles in the development of various neuronal populations and other
217  processes during brain regeneration such as patterning and size regulation®®222*% Despite the
218  distinct functions of these TFs, almost all knockdowns led to similar excess activity in response to
219 UV through extended durations and higher activity peaks without physical injury (Figure 4B,C,
220  Figure SS5). The strikingly consistent effect across surgical and genetic perturbations implies that
221  the differential robustness of maintenance and inhibition of the latent state is likely not caused by
222 asynchronous regeneration of controlling neural populations. Instead the two processes may be
223 encoded through distinct patterns in population-scale neural dynamics, with peptide-mediated
224  dynamics more robust to structural changes independent of specific neural circuits.

225

226  Long-range volumetric transmission explains the robustness of peptide signaling

227  We then asked whether differential signaling ranges are sufficient to explain the observed
228  difference in the robustness of peptide and small-molecule mediated processes. To do so we
229  developed a neural network model in which neurons interact through both volumetric and synaptic
230  signals and constrained the two systems to regulate behavior in the same manner seen in planarians.

231  We then tested whether these mechanistic underpinnings were sufficient to stabilize peptide

11
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232  communication and generate excess behavioral output upon neural injury.

233

234 Specifically, we modeled population-scale neural dynamics using a custom recurrent neural
235 network (RNN) which simulates neuronal firing coupled through sparse synaptic links and
236  produces behavioral output through a readout matrix applied to the firing rates**. This model has
237  been previously shown to reproduce key aspects of animal neural dynamics when trained on
238  similar tasks**#%. To account for long-range volumetric signals, we augmented the model by
239  allowing neuron firing to trigger release of excitatory and inhibitory neuropeptides. These peptides
240  diffuse and persist extracellularly and modulate neuron firing potentials based on local
241  concentrations (Figure SA, Figure S6A, see Methods for model details).

242

243  Because the model is implemented in a deep-learning framework, we were able to constrain its
244 dynamics to produce experimentally observed behavior. Simply training on wild type response is
245  insufficient to ensure that long-range peptide and targeted small-molecule signals in the model
246  maintain and inhibit behavioral activity, respectively. Therefore, we also trained on pc2 RNAi data
247  while blocking peptide transmission in the model, allowing it to learn the effective contribution of
248  the volumetric signal. Similarly, we trained on data of RNAi blocking small-molecule
249  transmission to constrain their functional roles. Because of the relatively fast and targeted scales
250  of small-molecule transmission, we model their contribution as instantaneous action through
251  synaptic links and assign subsets of neurons as octopaminergic, dopaminergic, GABAergic, and
252 cholinergic. When training on the RNA1i data, transmission of the corresponding small molecule
253  was blocked while allowing neural firing and peptide release to sustain. This protocol was

254  sufficient to train models that each fit all the experiments simultaneously (Figure 5B).

12
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255

256  We then tested whether these constraints were sufficient to explain the differential robustness of
257  the two communication mechanisms. We simulated the effects of neural injury by ablating regions
258  of neurons at various locations and sizes (Figure SC-E). Matching experiments, large ablations
259  reduced the response, corresponding with early regeneration time points after decapitation when
260  the network is highly disrupted. Moderate ablations led to an extension of the response like those
261  observed in partially regenerated animals (Figure 1E-G). For a more direct experimental
262  validation, we amputated planarians to remove increasingly larger anterior structures and
263  measured response to 30 s UV pulses at 1 dpa. We observed the same trend of progressive increases
264  of duration and total responses before loss of response with largest amputations (Figure SF). This
265  consistency between experiments and model predictions demonstrates that the robustness of
266  peptide signaling and the early return of peptide-mediated maintenance of behavioral state after
267  injury can be explained solely by the difference in transmission mechanisms, regardless of the
268  circuit details.

269

270  Adaptive robustness through incoherent signal competition

271  This dual-channel model also allowed us to study why maintenance and inhibition of behavior
272  segregates by mechanism of neural transmission. For this, we measured how the two mechanisms
273  interact to drive neural population dynamics. Due to long decay time and long-range diffusion,
274  peptide signaling generates slowly varying, spatially correlated patterns of neural activity. In
275  contrast, targeted connections and local neural modulations produce rapidly changing, spatially
276  uncorrelated neural firing patterns. Because both mechanisms are broadly co-expressed in

277  planarian neurons®, these different patterns of neural activity propagate in a shared medium.

13
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278  Mechanistic differences of the two systems create incoherent correlation structures which
279  effectively compete for control over neural population dynamics. By aligning motor output to
280  components of neural dynamics driven by peptide signaling (e.g., spatially continuous patterns),
281  peptide function should stabilize and maintain behavior activity, while high-frequency targeted
282  signals disrupt these patterns, drive the neural activity to new states, and effectively inhibit
283  behavior activity (Figure S6B).

284

285  Upon ablation, propagation of small-molecule mediated signals were more severely disrupted,
286  reducing their competitive influence on firing patterns and increasing the relative contribution of
287  neuropeptides. This effect could be quantified by the peptide-mediated spatial correlation in firing
288  dynamics, which became more pronounced after moderate ablations, explaining the excess
289  behavior seen in this regime (Figure SG). This creates a system of behavior regulation through
290  neural pattern competition that is largely independent of specific neural circuitry, providing a new
291  paradigm of adaptive robustness during massive structural changes.

292

293  To further validate that differential robustness between signaling mechanisms drives the adaptive
294  robustness phenomenon, we varied the topological robustness of synaptic connectivity by training
295  over 150 independent RNN models with different connectivity network structures (Figure S6C).
296  More robust synaptic networks maintained their contribution to neural dynamics and prevented
297  ablation-induced excess activity even though the peptide transmission was kept identical (Figure
298  SH). This provides direct evidence that the excess activity induced by neural injury is caused by
299  the different capacity of the peptidergic and small-molecule signaling to maintain their functions

300  in disrupted neural networks.

14
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301

302  Discussion

303  In this study, we used the planarian’s ability to regrow an entire head de novo to study the neural
304  processes underlying its robust behaviors during brain regeneration. Extensive behavioral data and
305 computational analysis using a dual-channel signaling network led us to a conceptual model of
306  adaptive neural robustness (Figure 6). During structural injury, both channels are perturbed in a
307  correlated manner, making their competitive output, i.e., difference in strength, more robust than
308 the function of either alone. As the animal regenerates after injury, peptide-based functions recover
309  quickly due to the capacity of long-range diffusion to cross disrupted regions. In contrast, targeted
310  small-molecule functions require more complete connectome and thus take much longer to return.
311 By aligning behavioral output with the more robust peptide-dominant patterns of neural activity,
312 the planarian ensures reliable motor sensory responses throughout massive neural remodeling.
313

314  In contrast to neurogenesis during embryonic development that occurs in protected environments
315  suchas an egg, neural regeneration must proceed while responding to threats from the surrounding
316  world. For example, protection from UV irradiation is critical as it induces DNA damage, which
317 can become particularly harmful during regeneration due to elevated cell proliferation®’.
318  Allocating functions activating strong UV responses to a relatively robust communication
319  mechanism allows for rapid re-establishment of key survival mechanisms like the escape response
320  while permitting other features to be re-established later. Short-term memory also provides a
321  means for animals to evaluate changes in stimuli across space and time. This can enable phototaxis

48,49

322 at length scales much larger than their body size™™, which is essential for planarians to locate

323  areas of lower exposure to minimize damage induced by UV. Our results demonstrate that short-
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324  term memory is also mediated by neuropeptides allowing for recovery very early during
325 regeneration. Together, our findings imply that mechanisms enabling rapid behavioral recovery
326  after injury can provide an advantage under selective pressures in regenerating animals, especially
327  in organisms that reproduce through repeated fission and regeneration.

328

329  The long-range diffusion and slow time scales of neuropeptide signaling offer a molecular basis

330 for long-lasting latent neural states’*!

, which need to be robust after injury in order to properly
331  process information and maintain behavioral output. Indeed, the usage of peptide signals to
332  stimulate behaviors and promote arousal states has been observed in diverse animals including
333  nematodes, flies, and even mammals'>”>>*, In some cases, it has been shown that the peptide-
334  dependent circuits function opposingly to synaptic connectome such that the interactions between
335  the two drive the switching between behavioral states!>>. The parallel across different organisms
336  implies that the division of labor between the two transmission mechanisms may be a common

337  feature of many neural circuits. Examining whether these circuits possess similarly high robustness

338 is an important avenue for future research.
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339  STAR Methods

340

341 RESOURCE AVAILABILITY

342 Lead Contact

343  Further information and requests for resources and reagents should be directed to and will be
344 fulfilled by the lead contact, Bo Wang (wangbo @stanford.edu).

345

346  Materials availability

347  This study did not generate new unique reagents.

348

349  Data and code availability

350  All activity data used for analysis and model training are available at

351  tinyurl.com/robustBehavior. Original videos and radial segmentation measurements are available
352 from the authors upon request, due to the lack of public repository to host such large volumes of
353  data.

354

355  Software for video segmentation is available at github.com/samuelbray32/planameterization.
356  Repository for data analysis and visualization is available at github.com/samuelbray32/PARK.
357  Repository for dual-channel RNN model construction and training is available at

358  github.com/samuelbray32/dualChannelRNN.

359

360 EXPERIMENTAL MODEL AND SUBJECT DETAILS

361 Animals

17
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362  Asexual S. mediterranea were maintained in the dark at 20 °C in water supplemented with 0.5 g/L.
363 Instant Ocean Sea Salts (Carolina Biological Supply, Cat#671442) and 0.1 g/L. sodium
364  biocarbonate. Planarians of ~4 mm in length were used for whole-animal behavior experiments
365 and were fed once or twice a week. For amputation experiments, we selected animals of ~8 mm in
366 length such that the regenerated fragments were approximately the same size as those used in
367  whole-animal experiments.

368

369 RNAi

370  Gene knockdowns were carried out by feeding double-stranded RNA (dsRNA) to induce RNAI1
371  mediated gene silencing. For all experiments, we fed dsRNA to animals 5-7 times every 4-5 d,
372 except pc2 for which we fed 3 times. Animals were starved for 4 d prior to amputation, after which
373  tails were allowed to regenerate and imaged at 10-20 dpa, except for pc2 RNAI1 animals, which
374  were imaged 5 d after the last feeding without amputation. Knockdown of synaptobrevin and
375  syntaxin caused lysis after ~20 dpa, but no gross morphological phenotypes were observed during
376  the time window of imaging.

377

378  The dsRNA was synthesized using the established protocol®® and fed to animals by mixing in a
379  liver homogenate at a concentration of approximately 100 ng/ul. All clones for dsSRNA synthesis
380  were generated using oligonucleotide primers (Supplemental Table 1) and cloned into vector
381  plC53.2 (Addgene plasmid ID: 26536)%. For the RNAI control condition, we fed dSRNA matching
382  the ccdB and camR-containing insert of pJC53.2 under the same schedule of pc2 RNAi. Results
383  from these experiments showed no significant difference from animals without RNA1 feedings. To

384  maximize statistical power, we therefore combined data from these two conditions as the control

18


https://doi.org/10.1101/2023.01.20.523817
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.20.523817; this version posted January 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

385  to compare against all other knockdown conditions.

386

387 METHOD DETAILS

388  Imaging chamber

389  To create the imaging chambers, 150 mm petri dishes were plasma treated (Harrick Plasma, PDC-
390  001) for 2 min at high power to create a hydrophilic surface. Ten circular templates with 20 mm
391  diameter were traced in each dish with a permanent marker to pattern a hydrophobic mask. Each
392  region was first loaded with a single planarian in 800 ul of Instant Ocean water to ensure complete
393  wetting and then reduced to ~350 pl. This flattened the top surface of the droplet and reduced
394  reflections during imaging. After loading, the dish was gently filled with ~50 mL of silicone oil
395  (Fisher Scientific S159-500) until the top of all droplets were covered. The oil phase both reduced
396  evaporation and increased surface tension at the droplet boundary to prevent planarians from
397  escaping. Planarians remained viable and active for at least ~7 d at 20 °C under these conditions.
398  All animals were starved at least 4 d prior to imaging and all imaging sessions lasted no longer
399  than 7 d. For imaging regeneration time courses, animals were loaded at 8 hpa and rinsed before
400  loading to reduce the accumulation of material ejected from the wound site within the droplet. To
401  cover the complete span of regeneration, a second cohort of animals was imaged starting 3 dpa for
402  ~7 days. Activity responses at matching regeneration time were merged from both datasets and
403  used for all analyses.

404

405  Imaging setup

406  Animals were illuminated with an IR light source (850 nm) from the side, and images were

407  recorded using a Rasberry Pi NoIR camera, except for a higher resolution camera (Daheng
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408  Imaging, MER-1220-32U3M) used to generate the movies shown in Supplemental Movie 1-2.
409 UV light (365 nm) stimuli was delivered by a custom-built ring of 36 LEDs (Waveform Lighting,
410  7021.65) mounted above the camera to illuminate the entire dish uniformly and controlled by an
411  Arduino Uno (A000066) to adjust intensity and pulse duration. To eliminate glare from the
412 stimulus light source, an 800 nm long-pass filter (ThorLabs, FELH0800) was mounted within the
413  camera tube. Tactile stimulation was delivered by vibrating the stage with a small motor (Vibronics
414  Inc, VJQ24-35F580C), which was also controlled by the Arduino. For all stimulation experiments,
415  repetitions of the stimulation protocols were separated by 2 hr of unstimulated time to prevent
416  influence between trials.

417

418  Dual-channel RNN model

419  We modified a well-established RNN model* by adding long-range volumetric signals. All neural
420  models were implemented, trained, and run using Keras architecture with Tensorflow 1.14
421  backend in a Python environment with CUDA GPU acceleration®. For a graphical diagram of
422 model architecture, see Figure S6A.

423

424  Models trained within this work contain 2500 neuron nodes arranged in a 50 X 50 square grid

425 (Mpeuron) and 2 neuropeptides (n,.p). These values were chosen to maximize flexibility in model

426  training while maintaining loss gradients that could be stored in working memory. The RNN cell

427  has 5 state tensors passed between timepoints: a Ny eyron Vector of neuron states (X, ), an array
428  of each neuropeptide concentration at each neuron location (X, ), a binary variable indicating
429  whether neurons are capable of responding to neuropeptides in the sample condition (gpep), @

430  vector describing the modulatory potency of each neuron in the sample condition (gsyy), and a
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431  vector describing the ablation status of each neuron (4).

432

433  The model has one fixed parameter, a N,eyron X Mpeuron CONNectivity matrix (C), which is a
434 sparse, binary matrix. This matrix is defined using the Watts-Strogatz method”’. By varying the
435  average node-degree (k) and rewiring probability (f), this method can create networks with
436  topologies ranging from a completely regular ring structure (f = 0), to small-world networks (0 <
437 B < 1), to arandom network (f = 1). As previous studies have demonstrated ‘rich club’ small-
438  world networks in a variety of neural systems>®, we defaulted to using a network with k = 8, § =
439  0.001. For the models shown in Figure 5h, triplicate models with different initializations and C
440  were trained with node degrees logarithmically spaced from 2 to 64, and 8 logarithmically spaced
441  from O to 1 to average the effects of the sparse weighted connections. To compare the robustness
442 of the synaptic connectivity topology, we calculated the graph connectivity of the network using
443 the python package NetworkX>. This measure describes the smallest number of nodes that must
444 be removed to separate the graph and corresponds with our simulated perturbation of node
445  ablation.

446

447  The RNN cell has 7 trainable model parameters: a Ngymyius X Mneuron 1NPUt vector transforming

448  stimulus condition into influence on the neuron states, a Nyeyron X NMpeuron Weight matrix (Weyp),
449  a decay rate of neuron potential (8yeuron), the production rate of each neuropeptide upon neuron
450  firing (Upep), the decay rate of each extracellular neuropeptide (6pep), the diffusivity of each
451  neuropeptide (D), the scaling coefficient of peptide action on local neuron potential (W), and a
452 NMyeuron Vector Wy, which defines the transformation of the current stimulus state (U;) into change

453  in neuron potential.
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454

455 At each time step, firing rates are sampled from the neuron state according to:

456 F = relu (Xsyn + N(o,10-3))

457  The non-linear rectifier maps the state of the cell into a positive firing rate**. Extracellular
458  neuropeptides are updated according to:

459 Xpep(t + 1) = Xpep () + tpepF — SpepXpep () + D(Xpep (), D)

460  where D applies a diffusivity kernel:

461 D(Xpep(i,j, 1), D) = D[—4Xpep (i, 1) + Xpep (i — 1,J, 1) + Xpep (i + 1,j, 1) +

462 Xpep(i,j — 1,0) + Xpep(i,j + 1,0)]

463  to the peptide concentrations according to their arrangement on the square array of neurons. For
464  calculating spatial diffusion, the array is treated with periodic boundary conditions to remove the
465  effect of system size. Neural state updates are given by:

466 Xsyn(t +1) = [Xsyn(6) = SneuronXsyn(t) + (Woyn © C)(gsyn O F) + Wpep(gpep O
467 Xpep) + Wi U] © A.

468  Multiplication of modulatory weights and connectivity enforces a specific, sparse network of
469  connections throughout training. Multiplication of gg,, and the firing rate masks output from
470  genetic knockdown of small-molecules. Multiplication of g, and X,., masks contribution of
471  neuropeptide signaling. Multiplication of the entire state with A completely masks all contributions
472  of ablated neurons in a sample.

473

474 Model inputs are the stimulus vector across the simulation time range U, gsyn, gpep> and A, which

475  are concatenated in the model with X, a trainable variable providing the neuron and peptide states
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476  at time zero within the RNN. This concatenated tensor is fed as initial conditions to the RNN. The
477  RNN then simulates 1,200 timesteps (10 min) of zero-stimulus response. This allowed the neuron
478  states in a sample to evolve to form a stable state, which is given the knockdown and ablation
479  input. The final equilibrated state is then passed with U to the RNN, which simulates the dynamics
480  and returns the complete neural state at each timepoint. This is rectified into the firing rate, and
481  convolved with a single time step kernel, which effectively applies a trainable output matrix W,
482  to the firing rates at each time step to generate the simulated activity (Z). Z is returned as the output
483  of the complete machine learning model.

484

485  For initialization, elements in large weight matrices were independently sampled according to:
486 Weyn (i, H)~N(2 % 1075,2 x 107*), neural states of Xo(i,j)~N(0,1072), peptide states of
487  Xo(i,))~Exp(1072), W, (i, ))~N (0,5), and W,,,. (i, j)~N(0,0.05). Other parameters were set
488 t0: Upep = [1,1], 8pep = [0.2,0.2], D = [3,10], Wy, = [0.9,—0.6], Speyron = 1.25. These values
489  were chosen to produce non-diverging neural dynamics from which to begin training.

490

491  Models were trained on the median activity. To prevent overfitting to the timing of the UV pulse
492  during the simulation, the training data contained 20 samples for each stimulation and knockdown
493  condition with start times randomly selected between 1-4 min before the start of stimulation and a
494 sample duration of 26 min (except for Era 1, in which duration was set to 13 min to reduce size of
495  gradient operations and speed the initial training to obtain a rough shape of the response). The
496  training was performed without ablation (A = 1). In samples of pc2 RNAi data, gpe, = 0. To
497  account for small-molecule neurotransmitter knockdowns, neurons were randomly assigned as

498  GABAergic (12.5%), octopaminergic (12.5%), dopaminergic (12.5%), or cholinergic (50%), or
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499  generic (12.5%). The relatively high fraction of cholinergic neurons was chosen to match their
500  abundance in the planarian nervous system?*, but the model result was only weakly dependent on
501  the neuronal type fractions. We did not specify spatial patterns for these neuronal types to keep
502  the model general and mostly species agnostic. In samples of gad, tbh, th, or chat RNAi data, g5y,
503  was set to zero for the corresponding neurons to prevent their small-molecule modulatory
504  activities.

505

506  The loss (£) was defined as the mean square error between the median activity and simulated

507 activity Z, and was optimized using ADAM gradient descent®®. Models were trained in 4 eras:

508 Era 1: learning rate=10"* + 1073 exp (— %), epochs = 10, batch size = 6

509 Era 2: learning rate=10"* + 1073 exp (— eplo;h), epochs = 40, batch size = 4

510 Era 3: learning rate=3 X 1073, epochs=10, batch size = 4

511 Era 4: learning rate= 3 X 107> + 10~ * exp (— epOCh), epochs = 10, batch size =4

512 In Era 4, training was stopped early if the change in average loss was less than 5 X 10™* for 3
513  consecutive epochs.

514

515  Each model was trained using responses to 5 s and 30 s pulses for control animals, as well as pc2,
516  gad, tbh, th, and chat RNAi animals. To further constrain the functional fitting within the model,
517  we performed double knockdowns of gad:pc2, tbh:pc2, th:pc2, and chat:pc2 and included them
518  within the training set. Additionally, to stabilize the long-term behavior of the simulated model,
519  we stimulated animals with UV for 30 min at reduced intensities and included this data within the

520  training set.
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521
522 After training, the rate parameters in the model shown in detail in Figure 5 were: D: [2.9952657

523 10.002745]; ppep : [1.006925 0.99327475]; 8,¢p: [0.2064426 0.19140989]; Wjep: [ 0.90302687,

524 -0.59036015]; 6neuron: [1.2581608]. These parameters gave the range of peptide diffusion to be
525  3-10 cell bodies and their half-life to be ~ 5 min, which are biologically realistic based on previous
526  measurements’®.

527

528  To simulate responses after ablation, the ablation vector (4A) was generated to mask out neurons
529  corresponding to a spatially contiguous rectangular region of minimum aspect ratio with the
530  desired fraction of neurons. The location of the ablated region within the array was randomly
531  chosen for each sample. For each ablation fraction, responses were generated from 200 different
532 ablated regions and averaged to remove dependencies on locations of the ablation.

533

534  The spatial covariance was calculated by averaging over all pairs of neurons at a given distance
535  and across all timepoints on simulations lasting 11 min with a single 3 s pulse. This was sufficient
536  todrive neural activity without dominating the signal with spatial correlation embedded within the
537  input matrix W;,,. Ablated neurons were excluded from the calculation. For each ablation fraction,
538  we simulated results from 200 ablated regions and averaged covariances at each distance.

539

540 QUANTIFICATION AND STATISTICAL ANALYSIS

541  Behavioral activity quantification

542 Planarians were segmented using binary thresholding. For each frame, the center of mass (COM)

543  of the animal was determined and the perimeter pixel locations were identified and interpolated to
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544  give 100 evenly spaced anchor points. Radial distances were calculated as the distance from the
545  COM to each of these points. The radial measurement vector was L1 normalized and aligned such
546  that the maximum radial distance is at position 0. We then reduced the dimensionality of the radial
547  measurements using Principal Component Analysis (PCA) and used the first 10 PCs (97%
548  explained variance) for further analysis®’. PCs calculated using data from intact animals
549  responding to 5 s UV stimulation were used to analyze all datasets. These PCs correspond to
550  ‘eigen-shapes’ of the worm during movement, e.g., elongation (PC1), turning (PC2), and
551  scrunching (PC3)®'. For PCs that are symmetric across the worm (e.g., turning left and right gives
552  positive and negative values on PC2 respectively®'), we took the absolute value of the component
553  to prevent unnecessary separation of similar behaviors.

554

555  Because stationary and moving animals occupied overlapping shape space, incorporating temporal
556  information into the feature vector significantly improved our ability to quantify behavioral
557  activity. To do so, we convolved the shape measurement with Haar wavelet filters®> at scales
558  corresponding to 2.5, 7.5, and 15 s to obtain the rate of shape change at each time point. This also
559  served to filter out noise from the segmentation steps. Finally, we fit a one-dimensional stochastic
560 linear dynamic system (LDS) model to the wavelet filtered data® using the state space models
561  (SSM) Python package®. This model is a continuous analogue of the discrete Hidden Markov
562  Model and infers a single latent scalar variable (activity) at each timepoint which maximizes the
563 likelihood of the observations (wavelet filtered data).

564

565  Statistical analysis

566  Planarians displayed an asymmetric multimodal distribution of activities at any given time point.
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567  Therefore, we used non-parametric bootstrap statistics to test for significant differences between
568  population averages. When comparing time trace data, each bootstrap sample was performed by
569  choosing n responses with replacement from the collected data, where n is the number of responses
570  within the given dataset (Supplemental Table 2). This created new samples matching the size of
571  the experimental dataset®. The median value from these samples at each timepoint was recorded.
572 This procedure was repeated >1000 times to form a sampling distribution of the median population
573 activity at each timepoint from 5 min before to 30 min after the stimulus. All time traces plotted
574  are the mean estimate of median activity with 99% confidence intervals (CIs).

575

576  To test for significant differences between two conditions (e.g., RNAI), paired sets of samples
577  were taken from each dataset and the difference in median activity between each sample was
578  recorded. This procedure was repeated to form a sampling distribution of the difference in median
579 activities at each timepoint. Significance at a time point was declared if zero falls outside the 99%
580 CL

581

582  Response measurements

583  To compare responses between conditions, we used three summary statistics. First, total response
584  was quantified as the average median population activity during 10 min post-stimulation. This
585 interval was sufficiently long to capture the dynamics of extended responses while maintaining
586  sensitivity to short pulses. Post-stimulus response duration was defined as the time at which the
587  median activity first fell below a threshold value, 0.3, after stimulation. This threshold was chosen
588 to lie above the confidence interval of unstimulated population activity. Peak response was

589  quantified by the maximum median activity after the end of stimulation. To compare these values
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590 between conditions, we used non-parametric bootstrap estimation. We calculated the measurement
591  on 1,000 paired sample sets from control and experimental conditions and recorded the difference.
592  Significance was declared if zero difference fell outside the 99% confidence interval for the

593  sampling distribution of differences.
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797
798  Figure 1: High-content imaging quantifies behavioral changes throughout regeneration.
799  (A) Schematic showing the different ranges of peptidergic and small-molecule signals.
800  Neuropeptides create long-range volumetric diffusive cues that can increase robustness without
801  the need to change synaptic network topology.
802  (B) Schematic showing the imaging setup with individual planarians recorded in separate aqueous
803  droplets under IR illumination and UV or mechanical stimulations.
804 (C) Data processing pipeline includes segmentation, shape quantification using radial
805  measurements, dimensional reduction through principal component analysis (PCA), and a linear
806  dynamics system (LDS) to define the activity measurement.
807 (D) Joint distribution of activity and speed calculated from the behavioral data collected on animals
808  under 5 s UV stimulation.
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809  (E) Activity response of whole animals to UV stimuli ranging from 0.1 to 300 s. Time zero: end
810  of UV stimulation. For all time traces, solid lines: median activity; shaded region: 99% confidence
811 interval (CI).

812  (F) Response to UV stimulation throughout the time course of regeneration after decapitation.
813  Gray traces: whole-animal controls; colored traces: regenerating tail fragments. Purple bar:
814  duration of UV stimulation. Arrows: extended response to 30 s UV; arrowheads: ‘resonant peak’
815 in response to 5 s UV. Bars above the traces indicate time when the response of regenerating
816  animals is significantly different from whole-animal controls as measured by 1,000 nonparametric
817  bootstrap comparisons of the two populations (p < 0.01). dpa: day post amputation.

818  (G) Fractional change in UV response during head regeneration relative to the whole-animal
819  control. Average responses are calculated by bootstrap sampling of data from 6 hr before to 6 hr
820  after every time point. Shaded region: 99% CI; arrows: end of reduced activity and beginning of

821  excess activity; grey shaded zone: end of excess activity. hpa: hour post amputation.
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822

823  Figure 2: Peptide and small-molecule signals play opposing roles in regulating UV responses.
824  (A) Responses to UV stimulation after disrupting components of the SNARE core complex. Purple
825  bar: duration of UV stimulation.

826  (B) Responses to UV stimulation after vglut RNAI.

827  (C) Responses to UV stimulation after disrupting small-molecule neurotransmitter syntheses.

828 (D) Duration of post-stimulus activity under RNAi and control conditions. Symbols: mean
829  estimate from 1,000 non-parametric bootstrap samples; histograms: bootstrapped sampling
830  distribution.

831  (E) Joint distribution of activity and speed after pc2 RNA1 under continuous UV simulation.
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832  (F) Left: UV response after pc2 RNAI. Right: Duration of post-stimulus activity is reduced after
833  pc2 RNA..

834  (G) Duration of post-stimulus activity under pc2 RNAi and control conditions. Symbols: mean
835 estimate from 1,000 non-parametric bootstrap samples; histograms: bootstrapped sampling
836  distribution.

837  (H) Total response to UV stimulation of pc2 RNAi animals saturates at high UV dose. Error bars:
838  99% CI. Line: anticipated power-law relationship (Extended Data Figure 2b).

839 () UV response in 6 dpa regenerating tails with (red) and without (blue) pc2 RNAi. Gray: whole-
840  animal response.

841  Statistics. In (A), (B), (C), and (F), gray traces: RNAI controls; colored traces: RNAi of specific
842  genes. Bars above the traces in (A-D), (F), and (I) indicate times when the response is significantly
843  different from controls as measured by 1,000 nonparametric bootstrap comparisons of the two
844  populations (p < 0.01). Asterisks in (B) and (D) indicate p < 0.01, determined by 1,000 non-
845  parametric bootstrap comparisons of the difference in response duration between control and

846  RNAI groups.
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Figure 3: Neuropeptides are required for establishing short-term memory.

(A) Planarians show sensitization from prior UV exposure. Gray: response to single 5 s UV pulse;
blue: response to paired 5 s pulses separated by 3 min delay. For all time traces, lines: median
activity; shaded region: 99% CI.

(B) Sensitization, defined as the difference between total post-stimulus response to the second
pulse and that of a single UV pulse after a 3 min delay, increases with the duration of the first UV
pulse.

(C) Sensitization from two 5 s UV pulses vs. delay time.

(D) Sensitization is lost in pc2 RNAI (red) animals.

(E) Mechanical vibration (5 s) sensitizes response to 5 s UV pulse.
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(F) Response of paired 5 s UV pulses with 3 min delay through regeneration. Gray traces: whole-
animal controls; colored traces: regenerating tail fragments. Purple bar: duration of UV
stimulation.

(G) Total response in tail fragments to a single 5 s UV pulse (gray) and a 5 s pulse sensitized by
another 3 min prior (green) shows that the sensitization amplifies at early time points of
regeneration.

Statistics. Bars above the traces in (A) and (F): timepoints where activity in paired pulse is
significantly different from that of single pulse as measured by 1,000 nonparametric bootstrap
comparisons (p < 0.01). For all violin plots, symbols: mean estimate of sensitization using 1,000
non-parametric bootstrap samples of both the paired and single pulse conditions; histograms:
bootstrapped sampling distribution. Asterisks: sensitization significantly greater than zero (p <

0.01); diamond: significant difference in sensitization between control and pc2 RNAi (p < 0.01).
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871  Figure 4: Excess activity is a signature of perturbed neural structure.

872  (A) Response to 30 s UV shows extended activity after various minor injuries. Colored traces:
873  injured animals at 1 dpa; gray traces: whole-animal controls. Purple bar: duration of UV
874  stimulation.

875  (B) Violin plot showing the duration of post-stimulus activity. Symbols: mean estimate from 1,000
876  non-parametric bootstrap samples; histograms: bootstrapped sampling distribution. Asterisks: p <
877  0.01 comparing injured and whole-animal responses.

878  (C) Response to 5 s (top) and 30 s (bottom) UV after knockdown of neural TFs. Orange traces:
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RNAI; gray traces: control.

(D) Response duration after RNAi. Asterisks: p < 0.01 comparing RNAi and control conditions.
Statistics. Bars above the traces in (a) and (c) indicate the time when the response is significantly
different from whole-animal controls as measured by 1,000 nonparametric bootstrap comparisons
of the two populations (p < 0.01). Solid lines: median activity; shaded region: 99% CI; p-values in
(B) and (D) are determined by 1,000 non-parametric bootstrap comparisons of the difference in

response duration between the two groups.
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Figure 5: A RNN model recapitulates functional robustness after neural injury.

(A) Schematic of the dual-channel RNN model showing the feedback between peptidergic and
small-molecule signaling.

(B) Output of model trained to emulate planarian responses under various stimulation and
knockdown (KD) conditions. Gray: experimentally measured median activity; shaded region: 99%
CI; blue: model response.

(C) Schematic of neural ablation within the model. Red regions are spatially contiguous
populations of neurons with firing rates fixed at zero. For each ablation fraction, 200 regions are
randomly sampled.

(D) Model response to 30 s UV stimulation at different ablation fractions. Gray: response of intact

model; colored: mean activity over 200 sampled ablations; shaded region: interquartile value of
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898 activities across ablation samples.

899  (E) Total response after ablations shows excess activity at moderate ablation fractions. Symbols:
900 average total response across ablations; error bars: 99% CI from 1,000 non-parametric bootstrap
901  samples; solid lines: polynomial interpolation.

902  (F) Planarian response to 30 s UV shows similar trends with increasing ablation as in the model.
903  Landmarks for amputation (top): anterior-end of eyespot, posterior end of eyespot, one eyespot
904  length posterior to eyespot, midway between eyespot and pharynx, mid-pharynx. Data for all
905  injured conditions are collected at 1 dpa. Symbols: mean estimate from 1,000 non-parametric
906  bootstrap samples; histograms: bootstrapped sampling distribution. Asterisks: p < 0.01 comparing
907  amputated and intact worms.

908  (G) Magnitude of spatial covariance of firing rates, which provides a quantification of the relative
909  contributions of the two communication mechanisms. Expectedly, the spatial covariance was lost
910  with pc2 knockdown, but amplified when reducing small-molecule signals (Extended Data Figure
911  6b). Distances at which the covariance is measured correspond to the diffusion length scales of the
912  two peptides in the trained RNN model.

913  (H) Ablation-induced excess activity diminishes with increasing connectivity network robustness
914  quantified by the graph connectivity. Each dot represents an independently trained RNN with
915  different connectivity networks. The maximum excess response is defined as the ratio of maximum

916  average total response at any ablation level and the total response in the intact model.
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Figure 6: Adaptive robustness through multi-channel signaling.

Long range peptide signals (red) and targeted small-molecule signaling (purple) form a dual-
channel network and competitively regulate behavioral output (bottom). Under highly disrupted
post-amputation conditions (top left), the functions of both systems are compromised. As
regeneration proceeds, peptides can rapidly establish communication via long-range volumetric
diffusion to drive behavioral output, while the fragile targeted network remains fragmented
dysfunctional (top middle). The transient dominance of peptidergic signals at this stage leads to
excess activity in response to stimuli, which is then gradually refined as the connectome and
targeted small-molecule signaling re-establishes. When regeneration is complete, both
transmission mechanisms are restored and the behavior is constrained to the proper response (top

right).

49


https://doi.org/10.1101/2023.01.20.523817
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.20.523817; this version posted January 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

929  Supplemental Figures
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932  Figure S1: Planarians exhibit consistent behaviors throughout continuous imaging. Related
933  to Figure 1

934  (A) Activity response of whole animals exposed to 30 s UV pulses every 2 hr across days in the
935  imaging chamber. Purple bar: period of UV stimulation. Lines: median activity; shaded region:

936  99% CI as estimated by 1,000 non-parametric bootstrap samples.
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(B) Quantification of responses shows no change across days. Symbols: mean estimate of
measurement on each day; histogram: sampling distribution from 1,000 non-parametric bootstrap
samples. No significant differences in the response measurements were found across days relative
to the first day in the chamber as determined by 1,000 paired bootstrap samples from each

condition (p < 0.01).
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Figure S2: Activity scales as power law with total stimulation. Related to Figure 1

(A) Response of whole animals to UV as measured by speed. Time zero: end of UV stimulation.
Solid lines: median speed; shaded region 99% CI as estimated by 1000 non-parametric bootstrap
samples.

(B) Total post-stimulus activity follows a power-law scaling with the duration of UV stimulus
(slope = 0.18). Error bars: 99% CI.

(C) Total post-stimulus speed response scales with duration of the UV pulse only in the high-

stimulus regime. Error bars: 99% CI.
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952  Figure S3: Response to additional UV stimuli after head amputation. Related to Figure 1

953  Response to 1 s (left) and 10 s (right) UV pulses, by tail fragments after amputation. Gray: whole-
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954  animal controls; colored: regenerating tail fragments on each day post amputation (dpa). Bars
955  above the traces indicate time when the response of regenerating animals is significantly different
956  from whole-animal controls as measured by 1,000 nonparametric bootstrap comparisons of the

957  two populations (p < 0.01). Solid lines: median activity; shaded region: 99% CI.
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958

959  Figure S4: Response to vibration follows similar trends as those to UV. Related to Figure 1
960  (A) Response of whole animals to vibrational pulses. Time zero: end of stimulation. Solid lines:
961  median speed; shaded region 99% CI as estimated by 1,000 non-parametric bootstrap samples.
962  (B) Total activity scale with the duration of the vibrational stimulation. Error bars: 99% CI. Dashed
963 line: a power-law scaling with a slope of 0.18 as seen with UV stimulation.

964  (C) Response to 30 s vibration in regenerating tail fragments after amputation. Gray: whole-animal
965  response; colored: regenerating response on a given day post amputation (dpa). Bars above the
966 traces indicate time when the response of regenerating animals is significantly different from
967  whole-animal controls as measured by 1,000 nonparametric bootstrap comparisons of the two
968  populations (p < 0.01). For all time traces, lines: median activity; shaded region 99% CI. All

969  confidence intervals are determined from 1000 non-parametric bootstrap samples.
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971  Figure S5: Additional behavioral phenotypes after TF knockdown. Related to Figure 4

972 Whole-animal response to 5 s (left) and 30 s (right) UV pulses after knockdown of neural TFs.
973  Orange: RNAI conditions; gray: control animals. Bars above the traces indicate time when the
974  response of regenerating animals is significantly different from whole-animal controls as measured
975 by 1,000 nonparametric bootstrap comparisons of the two populations (p < 0.01). Solid lines:

976  median activity; shaded region: 99% CI.
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Figure S6: A modified RNN model to take into account the function of neuropeptides.
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979  Related to Figure 5

980  (A) Diagram of the dual-channel neuron model. Top: Complete architecture of the model. Bottom:
981  Operations performed at each timestep within the dual-channel RNN cell.

982  (B) Spatial covariance of firing rates is driven by peptidergic signals but interfered by small-
983  molecule signals. The initial peak and trough in covariance within the intact model roughly
984  correspond to the diffusive length scale of the excitatory (~3 cell bodies) and inhibitory (~7 cell
985  bodies) peptides, respectively. Removing targeted links increases covariance (gold). Conversely,
986  removing neuropeptides eliminates all spatial covariance (red).

987  (C) The magnitude of spatial covariance increases and then decays with increasing ablation.

988 (D) Ablation-induced excess activity is dependent on the robustness of connectivity network.
989  Excess activity is defined as the maximum average total response at any ablation level normalized
990 by the total response in the unabated model. Robustness of the connectivity network is estimated

991  using inverse average edge centrality.
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992  Supplemental files
993
994  Supplemental Movie 1: Activity score captures broad range of animal movements. Related
995  to Figure 1
996  The movie records the response of a planarian to a 5 s UV pulse within a droplet. Activity (cyan)
997  resolves non-traversal movements such as nodding and turning better than speed (gray). Shaded
998  region (purple) indicates period of UV stimulation.
999
1000  Supplemental Movie 2: vglut knockdown causes uncoordinated motor activity. Related to
1001  Figure 2
1002  The movie records the spontaneous behavior of a planarian after vglut RNAi. Animals fail to
1003  achieve translational movements and display eccentricities of muscular activities.
1004
1005  Supplemental Movie 3: pc2 knockdown animals show range of behavior. Related to Figure
1006 2
1007  Examples of crawling and turning movements in pc2 RNA1 planarians under 30 min continuous
1008 UV stimulation. Each clip is from a different animal within the experiment.
1009
1010  Supplemental Table 1: Primers used in this study. Related to STAR Methods
1011  Listed are conventional name, contig number, and forward and reverse primers used in cloning
1012 experiments for RNAi knockdown.
1013

1014  Supplemental Table 2: Trial replicate reporting. Related to Figure 1-4
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1015  Number of pulse trials for each experimental condition.
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