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Abstract  38 

Understanding potential roles of facilitative interactions between species is one of the major 39 

challenges in ecology and microbiology. However, we still have limited knowledge of 40 

entangled webs of facilitative interactions in ecosystems. By compiling whole-genome 41 

shotgun metagenomic data of an experimental microbial community, we tested the hypothesis 42 

that architecture of facilitative interaction networks could change through time. A metabolic 43 

modeling approach for estimating dependence between microbial genomes (species) allowed 44 

us to infer the network structure of potential facilitative interactions at 13 time points through 45 

the 110-day monitoring of experimental microbiomes. We then found that positive feedback 46 

loops, which were theoretically predicted to promote cascade breakdown of ecological 47 

communities, existed within the inferred networks of metabolic interactions prior to the 48 

drastic community-compositional shift observed in the microbiome time-series. We further 49 

applied <directed-graph= analyses to pinpoint potential keystone species located at the <upper 50 

stream= positions of such feedback loops. These analyses on facilitative interactions will help 51 

us understand key mechanisms causing catastrophic shifts in microbial community structure.  52 

 53 

Keywords: community stability, dysbiosis, ecosystem functions, microbe-microbe 54 

interactions, metabolic modeling, microbial functions, microbiomes, mutualism, species 55 

interactions 56 
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INTRODUCTION 58 

In nature, species form complex webs of interactions, thereby driving various types of 59 

community- and ecosystem-level phenomena (May, 1972; Ives and Carpenter, 2007; Allesina 60 

and Tang, 2012). Roles of interspecific interactions in sudden shifts of community structure 61 

are among the most important targets of ecological research (Scheffer et al., 2001; Scheffer 62 

and Carpenter, 2003; Ratzke et al., 2020). Theoretical studies have predicted that architecture 63 

(topology) of interaction networks determines consequences of ecological interactions such as 64 

species coexistence or community collapse (Thébault and Fontaine, 2010; Rohr et al., 2014; 65 

Levine et al., 2017). Although a number of empirical studies on plants and animals have been 66 

conducted to test the theories (Olesen et al., 2007; Lever et al., 2014; CaraDonna and Waser, 67 

2020), our knowledge of potential relationship between network architecture and community-68 

level consequences have been limited for microbial ecosystems.  69 

 In microbial ecology, estimating architecture of potential interactions itself has been 70 

increasingly common (Faust and Raes, 2012; Friedman and Alm, 2012; Berry and Widder, 71 

2014; Kurtz et al., 2015). Amplicon sequencing (DNA metabarcoding) of prokaryote 16S 72 

rRNA gene, for example, have been frequently used to infer structure of networks depicting 73 

co-occurrence patterns of microbial species (Barberan et al., 2012; Faust et al., 2012; Berry 74 

and Widder, 2014). Nonetheless, those networks obtained with co-occurrence pattern analyses 75 

include pairs of species that merely share environmental preferences, making it difficult to 76 

investigate webs of direct facilitative/competitive interactions between species (Warton et al., 77 

2015; Toju et al., 2017; Kurtz et al., 2019; Blanchet et al., 2020). Moreover, although studies 78 

on co-occurrence patterns assume bidirectional associations between species, interspecific 79 

interactions in nature are not necessarily bidirectional (Sugihara et al., 2012; Ushio et al., 80 

2018; Delmas et al., 2019). Consequently, reconstructing networks consisting of not only 81 

bidirectional but also unidirectional interactions between species (i.e., <directed graphs=) is an 82 

essential step for advancing our understanding of microbial community processes.  83 

 A promising approach for investigating complex webs of microbial interactions is to 84 

estimate flows of metabolites between microbial species based on metagenomic datasets 85 

(Stolyar et al., 2007; Klitgord and Segrè, 2010; Zomorrodi and Maranas, 2012; Levy and 86 

Borenstein, 2013). Because species9 ability to metabolize given chemical compounds is 87 

encoded in their genomes, metabolic modeling has been applied to infer potential metabolic 88 

interactions between microbes (Zelezniak et al., 2015; Magnúsdóttir et al., 2017). If genomic 89 

information is available for a pair of species, potential dependence of a species on the other 90 
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species can be evaluated in terms of the list of metabolites presumably emitted by the other 91 

species (Zelezniak et al., 2015; Magnúsdóttir et al., 2017). By applying such community-scale 92 

metabolic modeling (Frioux et al., 2020), we will be able to gain insights into network 93 

architecture of facilitative interactions (Sung et al., 2017; Hassani et al., 2018; Gralka et al., 94 

2020). Analyses on temporal shifts in such metabolic interaction network architecture, in 95 

particular, are expected to enhance our understanding of processes or mechanisms causing 96 

community collapse (or dysbiosis). Nonetheless, there have been, to our knowledge, no study 97 

reporting changes in facilitative interaction network architecture through microbial 98 

community dynamics.  99 

 In this study, we performed an analysis of metabolic interaction networks using the 100 

whole-genome shotgun metagenomic dataset of an experimental bacterial community (Fujita 101 

et al., 2022a). Across the 110-day monitoring of a co-culture system of a freshwater bacterial 102 

community (Fujita et al., 2022b), the previous study examined temporal shifts in the level of 103 

ecological niche overlap between species in order to infer dynamics of competitive 104 

interactions (Fujita et al., 2022a). In this study, we reconstructed networks of facilitative 105 

interactions based on the metabolic modeling of shotgun metagenomic data at 13 time points 106 

across the time-series. We then evaluated changes in the architectural features of the directed 107 

graphs through the time-series. Specifically, we tested the hypothesis that positive feedback 108 

loops, which have been predicted to destabilize biological communities, existed prior to a 109 

sudden community-compositional shift observed in the microbiome experiment. In addition, 110 

we examined the presence of microbial species that could be located at the source or sink 111 

positions within the directed graphs of metabolic flows. Overall, the preliminary application 112 

of community-level metabolic modeling provides a platform for understanding relationship 113 

between dynamics of interaction network architecture and ecosystem-level consequences.  114 

 115 

MATERIALS AND METHODS 116 

Time-series data of the microbial experiment 117 

We used the 110-day time-series dataset of the microbial community experiment described 118 

elsewhere (Fujita et al., 2022a, 2022b). In the experiment, the source microbial community 119 

was sampled from a pond (<Shoubuike=) near Center for Ecological Research, Kyoto 120 

University (34.974 ºN, 135.966 ºE). The source community was then introduced into the 121 

deep-well culture system of an oatmeal broth medium [0.5% (w/v) milled oatmeal (Nisshoku 122 
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Oats; Nippon Food Manufacturer)] with eight replicates, kept at 23 ºC for five days (Fujita et 123 

al., 2022b). After the five-day pre-incubation, 200 ¿L out of 1,000-¿L culture medium was 124 

sampled from each well of the deep-well plate after mixing (pipetting) every 24 hours for 110 125 

days. In each sampling event, 200 ¿L of fresh medium was added to each well so that the total 126 

culture volume was kept constant. For the samples, amplicon sequencing of 16S rRNA was 127 

conducted as reported previously (Fujita et al., 2022b). Based on the amplicon sequencing of 128 

the community compositional dynamics, we selected the replicate community that showed the 129 

largest community compositional changes within the time-series (Fujita et al., 2022a): a rapid 130 

and substantial community compositional change occurred around Day 18 in the replicate 131 

community (Fig. 1). The extracted DNA samples of the replicate community was subjected to 132 

a whole-genome shotgun sequencing analysis, which targeted 13 time points across the time-133 

series (Day 1, 10, 20, 24, 30, 40, 50, 60, 70, 80, 90, 100, 110; ca. 10 Gb per sample) (Fujita et 134 

al., 2022a). The analysis described below was performed by compiling the whole-genome 135 

shotgun sequencing data (Fujita et al., 2022a).  136 

  137 

Whole-genome shotgun metagenomics 138 

The whole-genome shotgun sequencing data were processed as detailed previously (Fujita et 139 

al., 2022a). Briefly, after adaptor trimming with Cutadapt (Martin, 2011) and quality filtering 140 

with Fastp0.21.0 (Chen et al., 2018) [in total, the number of output sequencing reads was 141 

1002.49 M (160.08 Gb)], the sequences of each time-point sample were assembled using 142 

metaSPAdes 3.15.2 (Bankevich et al., 2012). Binning and quality assessing, were then 143 

performed with MetaWRAP 1.3.2 (Uritskiy et al., 2018) and CheckM 1.1.3 (Parks et al., 144 

2015), respectively. The identity between MAGs were calculated with FastANI 1.33 (Jain et 145 

al., 2018) and MAGs with > 99 % identity were grouped through the time-series. The read-146 

coverage calculation was then conducted using CoverM 0.6.0 (Woodcroft B, 2021). 147 

Taxonomic annotation and genome annotation were conducted, respectively, with GTDB-Tk 148 

1.6 (Chaumeil et al., 2020; Parks et al., 2022) and Prokka 1.14.6 (Seemann, 2014) 1.14.6. The 149 

metagenome-assembled genomes (MAGs) with > 80 % completeness and < 5 % 150 

contamination were used in the analyses below. The orthology numbers of Kyoto 151 

Encyclopedia of Genomes (KEGG) were retrieved for respective genes using GhostKOALA 152 

2.2 (Kanehisa et al., 2016) and the completeness of metabolic pathways was estimated for 153 

each MAG using KEGG decoder 1.3 (Graham et al., 2018). In total, 32 MAGs belonging to 154 
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20 genera (16 families; 12 orders) were detected across the time-series (Supplementary Data 155 

1) (Fujita et al., 2022a).  156 

 157 

Metabolic modeling 158 

To explore potential effects of facilitative interactions between microbes within the 159 

microbiome, we performed an analyses of metabolite-exchange interaction networks based on 160 

the MAGs detailed above. For each MAG, we reconstructed a metabolic model based on the 161 

top-down carving approach of curated <universal models= (i.e., manually curated and 162 

simulation-ready metabolic models) (Machado et al., 2018) using CarveMe 1.5.0 (Machado et 163 

al., 2018). Potential metabolic interactions between microbial MAGs were then evaluated 164 

based on species coupling scores indicating dependency of target species in the presence of 165 

others as implemented in SMETANA 1.0.0 (Zelezniak et al., 2015). In this approach, all 166 

potential exchanges of metabolites between species were mapped with the default parameters 167 

as implemented in SMETANA.  168 

 169 

Network analysis 170 

The inferred metabolic interaction network of each time point was then analyzed based on the 171 

treeness, feedforwardness, and orderability (Corominas-Murtra et al., 2013) Treeness is a 172 

measure of pyramidal (top-down) network structure, in which small numbers of nodes at 173 

upper layers have outward links to many other nodes at lower layers. Feedforwardness is a 174 

measure of network-scale bias in the direction of links: a high feedforwardness value 175 

represents strong upstream-downstream structure within a network. Meanwhile, orderability 176 

represents the degree of the lack of feedback loops within directed graphs (networks). As the 177 

orderability index is defined as the proportion of nodes outside feedback network loops, it 178 

ranges from 0 (loop structure involving all nodes) to 1 (absence of loops). 179 

 To evaluate topological positions of respective microbial MAGs within the networks, 180 

influence (Masuda et al., 2009) (a measure of the degree to which a focal node has influence 181 

on the others within a directed graph) and PageRank centrality (Page and Brin, 1998) (a 182 

measure of the degree to which a focal node has links from other nodes with many inward 183 

links) were calculated.  184 

 185 
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RESULTS 186 

Ecosystem-level profiles 187 

After the drastic change in community structure around Day 18 (Fig. 1), the community-level 188 

compositions of metabolic pathways/processes greatly changed (Fig. 2). For example, the 189 

function of sulfite dioxygenase and that of NO2
2/NO/N2O reduction pathways seemed to 190 

decline by Day 30 and 40, respectively (Fig. 2). Although microbes encoding these functions 191 

in their genomes might still exist at a small proportion (under detection limit of our 192 

sequencing analysis), rapid alternations of major functional profiles presumably occurred in 193 

the microbial ecosystem through the time-series. 194 

 195 

Dynamics of metabolic interaction networks 196 

Microbial MAGs belonging to different taxa were linked with each other within the network 197 

of potential facilitative interactions (Fig. 3; Supplementary Data 2). In particular, microbes in 198 

the class Gammaproteobacteria were inferred to provide metabolites to microbes in other 199 

taxonomic groups. Likewise, Terracidiphilus bacteria (Acidobacteriae) had links of potential 200 

metabolite supply towards some bacteria belonging to Gammaproteobacteria and 201 

Alphaproteobacteria at some time points (Fig. 3). The number of detectable nodes suddenly 202 

decreased between Days 20 and 30, entailing rapid decline of the inferred metabolic 203 

interaction networks (Fig. 3). The microbial community then reached a quasi-stable state 204 

characterized by several bacteria in the genera Hydrotalea, Terracidiphilus, Mangrovibacter, 205 

and Rhizomicrobium (from Day 40 to Day 50; Fig. 3). Among them, unidirectional facilitative 206 

effects from Mangrovibacter to other bacteria were inferred based on the metabolic modeling 207 

analysis (Fig. 3). The number of detectable MAGs gradually increased from Day 60, resulting 208 

in the restoration of an entangled web of potential metabolic interactions on Day 110 (Fig. 3).  209 

 The treeness, feedforwardness, and orderability of the network of the potential 210 

metabolic interactions varied considerably across the time-series (Fig. 4). Until Day 20, the 211 

network structure was characterized by low treeness, low feedforwardness, and low to 212 

moderate orderability (Fig. 4b). The facilitative interaction network then showed drastic 213 

architectural shift until Day 40 as characterized by the rapid increase of orderability (Fig. 4b). 214 

This result indicates that the dynamics of the network architecture are characterized by the 215 

presence of positive feedback loops (as represented by low orderability) early in the time-216 

series and that such feedback loops disappeared from the microbial community by Day 40 217 
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(Fig. 3). Through the gradual restoration of network complexity after Day 60, the presence of 218 

feedback loops was inferred again on Day 110 (Fig. 3) as indicated by lowered network 219 

orderability estimate on the day (Fig. 4).  220 

 221 

Potential keystone species 222 

Within the metabolic interaction networks (Fig. 3), some microbial MAGs belonging to the 223 

class Gammaproteobacteria were located at the <upper stream= of the network, showing high 224 

influence scores (Fig. 5; Supplementary Data 1). In particular, a gammaproteobacterial MAG 225 

in the genus Mangrovibacter consistently showed the highest influence among the microbes 226 

detected at most time points (Fig. 5). Meanwhile, microbes located at the sink positions 227 

within the inferred metabolic interaction networks (i.e., MAGs with high PageRank scores) 228 

represented diverse taxonomic groups (Fig. 5). From Day 40 to 50, through which a small 229 

number of bacterial taxa represented the microbiome structure, simple source3sink 230 

relationship of potential metabolite flow was observed between Mangrovibacter and others 231 

(i.e., Hydrotalea, Terracidiphilus, and Rhizomicrobium; Figs. 4 and 5).  232 

 233 

DISCUSSION 234 

We showed preliminary results on temporal shifts in the network architecture of facilitative 235 

interactions by compiling a whole-genome shotgun metagenomic dataset of experimental 236 

microbiome dynamics. While ecosystem-level profiles of metabolic functions (Fig. 2) have 237 

been intensively investigated (Raes and Bork, 2008), shotgun metagenomic data also allow us 238 

to infer ecological processes of species interactions (Figs. 3-5). Classic theory predicts that 239 

facilitative interactions basically destabilize biological communities (Allesina and Tang, 240 

2012). However, recent theoretical studies suggest that such effects of facilitative interactions 241 

depend on network architecture of interactions (Bastolla et al., 2009; Thébault and Fontaine, 242 

2010; Fontaine et al., 2011; Morton et al., 2022). Nestedness, for example, have been 243 

intensively investigated as a potential key property of facilitative interaction networks in 244 

terms of species coexistence (Bascompte et al., 2003; Thébault and Fontaine, 2010; Rohr et 245 

al., 2014). Meanwhile, most studies on facilitative ecological interactions have relied on the 246 

assumption that all links within a network are bidirectional (i.e., mutualistic). In this study, we 247 

explored ways for uncovering the structure of directed graphs of species interactions 248 

(Sugihara et al., 2012; Ushio et al., 2018; Delmas et al., 2019) based on a metagenomic 249 
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analysis of potential metabolic interactions (Zelezniak et al., 2015). Our finding that 250 

architecture of directed interaction networks could drastically change through time will fuel 251 

discussion on potential roles of interaction network structure on biological community 252 

dynamics and stability. 253 

 Among the directed-graph indices examined in this study, orderability was of particular 254 

interest (Fig. 4). It has been theoretically predicted that presence of positive feedback loops in 255 

facilitative interaction networks can destabilize ecological communities (Coyte et al., 2015; 256 

Levine et al., 2017). Specifically, such feedback structure of dependence may magnify 257 

cascades of population collapse once balance of population size among constituent species 258 

fluctuates within the feedback loops. In a previous study on the examined experimental 259 

microbiome, a high level of niche overlap among bacterial species was inferred to have 260 

promoted community compositional shifts (Fujita et al., 2022a). In particular, niche overlap 261 

within the gammaproteobacterial or alphaproteobacterial sub-community (guild) presumably 262 

resulted in competitive exclusion of constituent microbial populations (Fujita et al., 2022a). 263 

Such competition-driven decline of some gammaproteobacterial or alphaproteobacterial 264 

species may have triggered a cascade breakdown of species (Rezende et al., 2007) through the 265 

positive feedback loop observed in this study (Fig. 3). In other words, once competitive 266 

exclusion occurs within an ecological guild, species depending on the metabolites of the 267 

declining guilds are expected to be negatively influenced by the reduced flow of metabolites 268 

through the facilitative interaction network.  269 

 Treeness and feedforwardness of network architecture give additional important 270 

information about propagation of negative effects within networks. If a facilitative interaction 271 

network has hierarchical structure represented by high treeness and feedforwardness 272 

(Corominas-Murtra et al., 2013), placement of the ecological guilds from which fluctuations 273 

are initiated would influence subsequent ecological processes through the network. 274 

Specifically, fluctuations occurred in upstream positions may be propagated more rapidly 275 

throughout the network, while those derived from downstream positions would entail minimal 276 

impacts on the entire community. Albeit the potential roles of such hierarchical structure, the 277 

network architecture observed early in the experimental community (until Day 20) was 278 

represented by low treeness and feedforwardness (Fig. 4b). Thus, influence of hierarchical 279 

network structure on community collapse remains to be examined in future studies on 280 

networks with high treeness and feedforwardness.  281 
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 In parallel with investigations on the entire network structure, directed-graphs 282 

reconstructed with metagenomic data provide us with insights into species occupying 283 

upstream/downstream positions within networks. Species located at upstream positions within 284 

a <supply chain= of metabolites may impose greater impacts on population dynamics of other 285 

species within the network than species at downstream positions. In our data, a bacterium in 286 

the genus Mangrovibacter continued to occupy upstream positions throughout the community 287 

dynamics as indicated by the analysis of network influence scores (Fig. 5). Thus, although the 288 

Mangrovibacter bacterium was a minor component of the community (Fig. 1), it might have 289 

disproportionately large impacts on the dynamics of the entire microbiome. The working 290 

hypothesis can be tested by removing the Mangrovibacter bacterium from the experimental 291 

system. Nonetheless, such selective removal of specific bacterial species from microbiomes 292 

remains a challenge because the use of antibiotics often causes unexpected side-effects on 293 

non-target species (Cho et al., 2012; Francino, 2016; Langdon et al., 2016). Technical 294 

advances that allow selective removal of potential <keystone species= (Paine, 1966; Power et 295 

al., 1996) within microbiomes are awaited.  296 

 Beyond the preliminary results obtained in this study, further studies based on 297 

metabolic modeling approaches are required to understand dynamics and consequences of 298 

facilitative interactions in ecological communities. Context-dependency of network 299 

architecture, for example, needs to be examined by comparing network dynamics among 300 

different experimental settings (e.g., different culture media or different temperature 301 

conditions) (Zelezniak et al., 2015; Magnúsdóttir et al., 2017). It is also important to evaluate 302 

to what extent network architectural properties inferred with the metabolic modeling 303 

approaches are consistent with those estimated with other informatics approaches. In this 304 

respect, comparison with recently developed methods for reconstructing species interactions 305 

based on time-series data is of particular interest (Deyle et al., 2016; Ushio et al., 2018; 306 

Suzuki et al., 2022). Furthermore, integrating information of facilitative interactions with that 307 

of competitive interactions is an essential step for examining how relative balance of multiple 308 

interaction types affect community stability (Bastolla et al., 2009; Fontaine et al., 2011; 309 

Mougi and Kondoh, 2012; Goldford et al., 2018). Interdisciplinary studies combining 310 

genomics and ecological theory will broaden our views on fundamental mechanism driving 311 

microbial community dynamics.  312 

 313 
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FIGURE 1 | Time-series data of the community structure. Through the 110-day experiment, 524 

community compositions were monitored based on 16S rRNA sequencing. To quantify the 525 

speed and magnitude of community shifts through time, the <abruptness= index was 526 

calculated through the time-series (blue line). Specifically, an estimate of the abruptness index 527 

for time point t was obtained as the Bray-Curtis b-diversity between average community 528 

compositions from time points t 3 4 to t and those from t + 1 to t + 5 (i.e., dissimilarity 529 

between 5-day time-windows). An abruptness score larger than 0.5 indicates that turnover of 530 

more than 50 % of community compositions occurred between the time-windows. 531 

Reproduced from the amplicon sequencing data of a previous study on the microbiome 532 

system (Fujita et al., 2022b). 533 

 534 

FIGURE 2 | Highlights of changes in community-level profiles of metabolic 535 

pathways/processes through the time-series. After assembling the data of all the MAGs 536 

detected on each day, community-level pathway completeness is shown for the 537 

pathways/processes that exhibited temporal changes in pathway completeness. To focus on 538 

the metabolic pathways/processes that varied greatly through time, the pathways/processes 539 

whose metagenome-level completeness exceeded 0.9 at 12 or more time points are not shown. 540 

Metabolic pathway/process profiles mentioned in the main text are highlighted. 541 

 542 

FIGURE 3 | Inferred network of metabolic interactions between microbes. Based on the 543 

whole-genome shotgun metagenomic data, genome-scale metabolic modeling was conducted 544 

at each of the target time point. The results were used to infer potential flows metabolites 545 

between microbial MAGs. Positive effects inferred by metabolic modeling are shown with 546 

arrows connecting donor and recipient microbial MAGs. Darker colors of arrows indicate 547 

higher species coupling scores inferred in the metabolic modeling analysis. 548 

 549 

FIGURE 4 | Network topology analysis. (A) Schema of network architectural properties. 550 

Treeness and feedforwardness represent pyramidal and upstream-downstream structures of 551 

directed graphs, respectively. Orderability represents lack of feedback loops within a network. 552 

Along the axis of orderability, the nodes and links included in feedback loops are highlighted 553 

in red. (B) Dynamics of network characteristics. Changes in network architectural properties 554 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2023. ; https://doi.org/10.1101/2023.01.19.524804doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.19.524804
http://creativecommons.org/licenses/by/4.0/


 

 21 

are shown in terms of treeness, feedforwardness, and orderability. Networks with low 555 

<orderability=, by definition, contain loops of flow of metabolites, while those with maximum 556 

orderability (= 1) lack feedback loops. 557 

 558 

FIGURE 5 | Potential keystone species/taxa within metabolic interaction networks. Within 559 

each directed graph of metabolic dependence network (Fig. 4), influence (a measure of the 560 

degree to which a focal node has influence on the others within a directed graph) and 561 

PageRank (a measure of the degree to which a focal node has links from other nodes with 562 

many inward links) measures of network centrality was calculated for each microbe. 563 

Mangrovibacter tended to show high impacts (influence) on other bacteria within the 564 

metabolic interaction networks throughout the time-series.  565 

 566 
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