

1 Facilitative interaction networks in experimental 2 microbial community dynamics

3

4 Hiroaki Fujita^{1*}, Masayuki Ushio², Kenta Suzuki³, Masato S. Abe⁴, Masato Yamamichi^{5,6},
5 Yusuke Okazaki⁷, Alberto Canarini¹, Ibuki Hayashi¹, Keitaro Fukushima⁸, Shinji Fukuda⁹⁻¹²,
6 E. Toby Kiers¹³, and Hirokazu Toju^{1*}

7

8 ¹Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2133, Japan

9 ²Department of Ocean Science (OCES), The Hong Kong University of Science and
10 Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China

11 ³Integrated Bioresource Information Division, BioResource Research Center, RIKEN,
12 Tsukuba, Ibaraki 305-0074, Japan

13 ⁴Faculty of Culture and Information Science, Doshisha University, Kyotanabe, Kyoto 610-
14 0321, Japan

15 ⁵School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, QLD
16 4072, Australia

17 ⁶Department of International Health and Medical Anthropology, Institute of Tropical
18 Medicine, Nagasaki University, Nagasaki 852-8523, Japan

19 ⁷Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

20 ⁸Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa 1,
21 Fukushima, Fukushima 960-1296, Japan.

22 ⁹Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan.

23 ¹⁰Gut Environmental Design Group, Kanagawa Institute of Industrial Science and
24 Technology, Kawasaki, Kanagawa 210-0821, Japan.

25 ¹¹Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575,
26 Japan.

27 ¹²Laboratory for Regenerative Microbiology, Juntendo University Graduate School of
28 Medicine, Tokyo 113-8421, Japan.

29 ¹³Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, the
30 Netherlands

31

32 **†Correspondence:** Hiroaki Fujita (fujita.h@ecology.kyoto-u.ac.jp) or Hirokazu Toju
33 (toju.hirokazu.4c@kyoto-u.ac.jp).

34

35 Running title: Facilitative networks of microbiomes

36

37

38 **Abstract**

39 Understanding potential roles of facilitative interactions between species is one of the major
40 challenges in ecology and microbiology. However, we still have limited knowledge of
41 entangled webs of facilitative interactions in ecosystems. By compiling whole-genome
42 shotgun metagenomic data of an experimental microbial community, we tested the hypothesis
43 that architecture of facilitative interaction networks could change through time. A metabolic
44 modeling approach for estimating dependence between microbial genomes (species) allowed
45 us to infer the network structure of potential facilitative interactions at 13 time points through
46 the 110-day monitoring of experimental microbiomes. We then found that positive feedback
47 loops, which were theoretically predicted to promote cascade breakdown of ecological
48 communities, existed within the inferred networks of metabolic interactions prior to the
49 drastic community-compositional shift observed in the microbiome time-series. We further
50 applied “directed-graph” analyses to pinpoint potential keystone species located at the “upper
51 stream” positions of such feedback loops. These analyses on facilitative interactions will help
52 us understand key mechanisms causing catastrophic shifts in microbial community structure.

53

54 Keywords: community stability, dysbiosis, ecosystem functions, microbe-microbe
55 interactions, metabolic modeling, microbial functions, microbiomes, mutualism, species
56 interactions

57

58 INTRODUCTION

59 In nature, species form complex webs of interactions, thereby driving various types of
60 community- and ecosystem-level phenomena (May, 1972; Ives and Carpenter, 2007; Allesina
61 and Tang, 2012). Roles of interspecific interactions in sudden shifts of community structure
62 are among the most important targets of ecological research (Scheffer et al., 2001; Scheffer
63 and Carpenter, 2003; Ratzke et al., 2020). Theoretical studies have predicted that architecture
64 (topology) of interaction networks determines consequences of ecological interactions such as
65 species coexistence or community collapse (Thébault and Fontaine, 2010; Rohr et al., 2014;
66 Levine et al., 2017). Although a number of empirical studies on plants and animals have been
67 conducted to test the theories (Olesen et al., 2007; Lever et al., 2014; CaraDonna and Waser,
68 2020), our knowledge of potential relationship between network architecture and community-
69 level consequences have been limited for microbial ecosystems.

70 In microbial ecology, estimating architecture of potential interactions itself has been
71 increasingly common (Faust and Raes, 2012; Friedman and Alm, 2012; Berry and Widder,
72 2014; Kurtz et al., 2015). Amplicon sequencing (DNA metabarcoding) of prokaryote 16S
73 rRNA gene, for example, have been frequently used to infer structure of networks depicting
74 co-occurrence patterns of microbial species (Barberan et al., 2012; Faust et al., 2012; Berry
75 and Widder, 2014). Nonetheless, those networks obtained with co-occurrence pattern analyses
76 include pairs of species that merely share environmental preferences, making it difficult to
77 investigate webs of direct facilitative/competitive interactions between species (Warton et al.,
78 2015; Toju et al., 2017; Kurtz et al., 2019; Blanchet et al., 2020). Moreover, although studies
79 on co-occurrence patterns assume bidirectional associations between species, interspecific
80 interactions in nature are not necessarily bidirectional (Sugihara et al., 2012; Ushio et al.,
81 2018; Delmas et al., 2019). Consequently, reconstructing networks consisting of not only
82 bidirectional but also unidirectional interactions between species (i.e., “directed graphs”) is an
83 essential step for advancing our understanding of microbial community processes.

84 A promising approach for investigating complex webs of microbial interactions is to
85 estimate flows of metabolites between microbial species based on metagenomic datasets
86 (Stolyar et al., 2007; Klitgord and Segrè, 2010; Zomorrodi and Maranas, 2012; Levy and
87 Borenstein, 2013). Because species’ ability to metabolize given chemical compounds is
88 encoded in their genomes, metabolic modeling has been applied to infer potential metabolic
89 interactions between microbes (Zelezniak et al., 2015; Magnúsdóttir et al., 2017). If genomic
90 information is available for a pair of species, potential dependence of a species on the other

91 species can be evaluated in terms of the list of metabolites presumably emitted by the other
92 species (Zelezniak et al., 2015; Magnúsdóttir et al., 2017). By applying such community-scale
93 metabolic modeling (Frioux et al., 2020), we will be able to gain insights into network
94 architecture of facilitative interactions (Sung et al., 2017; Hassani et al., 2018; Gralka et al.,
95 2020). Analyses on temporal shifts in such metabolic interaction network architecture, in
96 particular, are expected to enhance our understanding of processes or mechanisms causing
97 community collapse (or dysbiosis). Nonetheless, there have been, to our knowledge, no study
98 reporting changes in facilitative interaction network architecture through microbial
99 community dynamics.

100 In this study, we performed an analysis of metabolic interaction networks using the
101 whole-genome shotgun metagenomic dataset of an experimental bacterial community (Fujita
102 et al., 2022a). Across the 110-day monitoring of a co-culture system of a freshwater bacterial
103 community (Fujita et al., 2022b), the previous study examined temporal shifts in the level of
104 ecological niche overlap between species in order to infer dynamics of competitive
105 interactions (Fujita et al., 2022a). In this study, we reconstructed networks of facilitative
106 interactions based on the metabolic modeling of shotgun metagenomic data at 13 time points
107 across the time-series. We then evaluated changes in the architectural features of the directed
108 graphs through the time-series. Specifically, we tested the hypothesis that positive feedback
109 loops, which have been predicted to destabilize biological communities, existed prior to a
110 sudden community-compositional shift observed in the microbiome experiment. In addition,
111 we examined the presence of microbial species that could be located at the source or sink
112 positions within the directed graphs of metabolic flows. Overall, the preliminary application
113 of community-level metabolic modeling provides a platform for understanding relationship
114 between dynamics of interaction network architecture and ecosystem-level consequences.

115

116 MATERIALS AND METHODS

117 Time-series data of the microbial experiment

118 We used the 110-day time-series dataset of the microbial community experiment described
119 elsewhere (Fujita et al., 2022a, 2022b). In the experiment, the source microbial community
120 was sampled from a pond (“Shoubuike”) near Center for Ecological Research, Kyoto
121 University (34.974 °N, 135.966 °E). The source community was then introduced into the
122 deep-well culture system of an oatmeal broth medium [0.5% (w/v) milled oatmeal (Nisshoku

123 Oats; Nippon Food Manufacturer)] with eight replicates, kept at 23 °C for five days (Fujita et
124 al., 2022b). After the five-day pre-incubation, 200 µL out of 1,000-µL culture medium was
125 sampled from each well of the deep-well plate after mixing (pipetting) every 24 hours for 110
126 days. In each sampling event, 200 µL of fresh medium was added to each well so that the total
127 culture volume was kept constant. For the samples, amplicon sequencing of 16S rRNA was
128 conducted as reported previously (Fujita et al., 2022b). Based on the amplicon sequencing of
129 the community compositional dynamics, we selected the replicate community that showed the
130 largest community compositional changes within the time-series (Fujita et al., 2022a): a rapid
131 and substantial community compositional change occurred around Day 18 in the replicate
132 community (Fig. 1). The extracted DNA samples of the replicate community was subjected to
133 a whole-genome shotgun sequencing analysis, which targeted 13 time points across the time-
134 series (Day 1, 10, 20, 24, 30, 40, 50, 60, 70, 80, 90, 100, 110; ca. 10 Gb per sample) (Fujita et
135 al., 2022a). The analysis described below was performed by compiling the whole-genome
136 shotgun sequencing data (Fujita et al., 2022a).

137

138 **Whole-genome shotgun metagenomics**

139 The whole-genome shotgun sequencing data were processed as detailed previously (Fujita et
140 al., 2022a). Briefly, after adaptor trimming with Cutadapt (Martin, 2011) and quality filtering
141 with Fastp0.21.0 (Chen et al., 2018) [in total, the number of output sequencing reads was
142 1002.49 M (160.08 Gb)], the sequences of each time-point sample were assembled using
143 metaSPAdes 3.15.2 (Bankevich et al., 2012). Binning and quality assessing, were then
144 performed with MetaWRAP 1.3.2 (Urtskiy et al., 2018) and CheckM 1.1.3 (Parks et al.,
145 2015), respectively. The identity between MAGs were calculated with FastANI 1.33 (Jain et
146 al., 2018) and MAGs with > 99 % identity were grouped through the time-series. The read-
147 coverage calculation was then conducted using CoverM 0.6.0 (Woodcroft B, 2021).
148 Taxonomic annotation and genome annotation were conducted, respectively, with GTDB-Tk
149 1.6 (Chaumeil et al., 2020; Parks et al., 2022) and Prokka 1.14.6 (Seemann, 2014) 1.14.6. The
150 metagenome-assembled genomes (MAGs) with > 80 % completeness and < 5 %
151 contamination were used in the analyses below. The orthology numbers of Kyoto
152 Encyclopedia of Genomes (KEGG) were retrieved for respective genes using GhostKOALA
153 2.2 (Kanehisa et al., 2016) and the completeness of metabolic pathways was estimated for
154 each MAG using KEGG decoder 1.3 (Graham et al., 2018). In total, 32 MAGs belonging to

155 20 genera (16 families; 12 orders) were detected across the time-series (Supplementary Data
156 1) (Fujita et al., 2022a).

157

158 **Metabolic modeling**

159 To explore potential effects of facilitative interactions between microbes within the
160 microbiome, we performed an analyses of metabolite-exchange interaction networks based on
161 the MAGs detailed above. For each MAG, we reconstructed a metabolic model based on the
162 top-down carving approach of curated “universal models” (i.e., manually curated and
163 simulation-ready metabolic models) (Machado et al., 2018) using CarveMe 1.5.0 (Machado et
164 al., 2018). Potential metabolic interactions between microbial MAGs were then evaluated
165 based on species coupling scores indicating dependency of target species in the presence of
166 others as implemented in SMETANA 1.0.0 (Zelezniak et al., 2015). In this approach, all
167 potential exchanges of metabolites between species were mapped with the default parameters
168 as implemented in SMETANA.

169

170 **Network analysis**

171 The inferred metabolic interaction network of each time point was then analyzed based on the
172 treeness, feedforwardness, and orderability (Corominas-Murtra et al., 2013) Treeness is a
173 measure of pyramidal (top-down) network structure, in which small numbers of nodes at
174 upper layers have outward links to many other nodes at lower layers. Feedforwardness is a
175 measure of network-scale bias in the direction of links: a high feedforwardness value
176 represents strong upstream-downstream structure within a network. Meanwhile, orderability
177 represents the degree of the lack of feedback loops within directed graphs (networks). As the
178 orderability index is defined as the proportion of nodes outside feedback network loops, it
179 ranges from 0 (loop structure involving all nodes) to 1 (absence of loops).

180 To evaluate topological positions of respective microbial MAGs within the networks,
181 influence (Masuda et al., 2009) (a measure of the degree to which a focal node has influence
182 on the others within a directed graph) and PageRank centrality (Page and Brin, 1998) (a
183 measure of the degree to which a focal node has links from other nodes with many inward
184 links) were calculated.

185

186 **RESULTS**

187 **Ecosystem-level profiles**

188 After the drastic change in community structure around Day 18 (Fig. 1), the community-level
189 compositions of metabolic pathways/processes greatly changed (Fig. 2). For example, the
190 function of sulfite dioxygenase and that of $\text{NO}_2^-/\text{NO}/\text{N}_2\text{O}$ reduction pathways seemed to
191 decline by Day 30 and 40, respectively (Fig. 2). Although microbes encoding these functions
192 in their genomes might still exist at a small proportion (under detection limit of our
193 sequencing analysis), rapid alternations of major functional profiles presumably occurred in
194 the microbial ecosystem through the time-series.

195

196 **Dynamics of metabolic interaction networks**

197 Microbial MAGs belonging to different taxa were linked with each other within the network
198 of potential facilitative interactions (Fig. 3; Supplementary Data 2). In particular, microbes in
199 the class Gammaproteobacteria were inferred to provide metabolites to microbes in other
200 taxonomic groups. Likewise, *Terracidiphilus* bacteria (Acidobacteriae) had links of potential
201 metabolite supply towards some bacteria belonging to Gammaproteobacteria and
202 Alphaproteobacteria at some time points (Fig. 3). The number of detectable nodes suddenly
203 decreased between Days 20 and 30, entailing rapid decline of the inferred metabolic
204 interaction networks (Fig. 3). The microbial community then reached a quasi-stable state
205 characterized by several bacteria in the genera *Hydrotalea*, *Terracidiphilus*, *Mangrovibacter*,
206 and *Rhizomicrobium* (from Day 40 to Day 50; Fig. 3). Among them, unidirectional facilitative
207 effects from *Mangrovibacter* to other bacteria were inferred based on the metabolic modeling
208 analysis (Fig. 3). The number of detectable MAGs gradually increased from Day 60, resulting
209 in the restoration of an entangled web of potential metabolic interactions on Day 110 (Fig. 3).

210 The treeness, feedforwardness, and orderability of the network of the potential
211 metabolic interactions varied considerably across the time-series (Fig. 4). Until Day 20, the
212 network structure was characterized by low treeness, low feedforwardness, and low to
213 moderate orderability (Fig. 4b). The facilitative interaction network then showed drastic
214 architectural shift until Day 40 as characterized by the rapid increase of orderability (Fig. 4b).
215 This result indicates that the dynamics of the network architecture are characterized by the
216 presence of positive feedback loops (as represented by low orderability) early in the time-
217 series and that such feedback loops disappeared from the microbial community by Day 40

218 (Fig. 3). Through the gradual restoration of network complexity after Day 60, the presence of
219 feedback loops was inferred again on Day 110 (Fig. 3) as indicated by lowered network
220 orderability estimate on the day (Fig. 4).

221

222 **Potential keystone species**

223 Within the metabolic interaction networks (Fig. 3), some microbial MAGs belonging to the
224 class Gammaproteobacteria were located at the “upper stream” of the network, showing high
225 influence scores (Fig. 5; Supplementary Data 1). In particular, a gammaproteobacterial MAG
226 in the genus *Mangrovibacter* consistently showed the highest influence among the microbes
227 detected at most time points (Fig. 5). Meanwhile, microbes located at the sink positions
228 within the inferred metabolic interaction networks (i.e., MAGs with high PageRank scores)
229 represented diverse taxonomic groups (Fig. 5). From Day 40 to 50, through which a small
230 number of bacterial taxa represented the microbiome structure, simple source–sink
231 relationship of potential metabolite flow was observed between *Mangrovibacter* and others
232 (i.e., *Hydrotalea*, *Terracidiphilus*, and *Rhizomicrobium*; Figs. 4 and 5).

233

234 **DISCUSSION**

235 We showed preliminary results on temporal shifts in the network architecture of facilitative
236 interactions by compiling a whole-genome shotgun metagenomic dataset of experimental
237 microbiome dynamics. While ecosystem-level profiles of metabolic functions (Fig. 2) have
238 been intensively investigated (Raes and Bork, 2008), shotgun metagenomic data also allow us
239 to infer ecological processes of species interactions (Figs. 3-5). Classic theory predicts that
240 facilitative interactions basically destabilize biological communities (Allesina and Tang,
241 2012). However, recent theoretical studies suggest that such effects of facilitative interactions
242 depend on network architecture of interactions (Bastolla et al., 2009; Thébault and Fontaine,
243 2010; Fontaine et al., 2011; Morton et al., 2022). Nestedness, for example, have been
244 intensively investigated as a potential key property of facilitative interaction networks in
245 terms of species coexistence (Bascompte et al., 2003; Thébault and Fontaine, 2010; Rohr et
246 al., 2014). Meanwhile, most studies on facilitative ecological interactions have relied on the
247 assumption that all links within a network are bidirectional (i.e., mutualistic). In this study, we
248 explored ways for uncovering the structure of directed graphs of species interactions
249 (Sugihara et al., 2012; Ushio et al., 2018; Delmas et al., 2019) based on a metagenomic

250 analysis of potential metabolic interactions (Zelezniak et al., 2015). Our finding that
251 architecture of directed interaction networks could drastically change through time will fuel
252 discussion on potential roles of interaction network structure on biological community
253 dynamics and stability.

254 Among the directed-graph indices examined in this study, orderability was of particular
255 interest (Fig. 4). It has been theoretically predicted that presence of positive feedback loops in
256 facilitative interaction networks can destabilize ecological communities (Coyte et al., 2015;
257 Levine et al., 2017). Specifically, such feedback structure of dependence may magnify
258 cascades of population collapse once balance of population size among constituent species
259 fluctuates within the feedback loops. In a previous study on the examined experimental
260 microbiome, a high level of niche overlap among bacterial species was inferred to have
261 promoted community compositional shifts (Fujita et al., 2022a). In particular, niche overlap
262 within the gammaproteobacterial or alphaproteobacterial sub-community (guild) presumably
263 resulted in competitive exclusion of constituent microbial populations (Fujita et al., 2022a).
264 Such competition-driven decline of some gammaproteobacterial or alphaproteobacterial
265 species may have triggered a cascade breakdown of species (Rezende et al., 2007) through the
266 positive feedback loop observed in this study (Fig. 3). In other words, once competitive
267 exclusion occurs within an ecological guild, species depending on the metabolites of the
268 declining guilds are expected to be negatively influenced by the reduced flow of metabolites
269 through the facilitative interaction network.

270 Treeness and feedforwardness of network architecture give additional important
271 information about propagation of negative effects within networks. If a facilitative interaction
272 network has hierarchical structure represented by high treeness and feedforwardness
273 (Corominas-Murtra et al., 2013), placement of the ecological guilds from which fluctuations
274 are initiated would influence subsequent ecological processes through the network.
275 Specifically, fluctuations occurred in upstream positions may be propagated more rapidly
276 throughout the network, while those derived from downstream positions would entail minimal
277 impacts on the entire community. Albeit the potential roles of such hierarchical structure, the
278 network architecture observed early in the experimental community (until Day 20) was
279 represented by low treeness and feedforwardness (Fig. 4b). Thus, influence of hierarchical
280 network structure on community collapse remains to be examined in future studies on
281 networks with high treeness and feedforwardness.

282 In parallel with investigations on the entire network structure, directed-graphs
283 reconstructed with metagenomic data provide us with insights into species occupying
284 upstream/downstream positions within networks. Species located at upstream positions within
285 a “supply chain” of metabolites may impose greater impacts on population dynamics of other
286 species within the network than species at downstream positions. In our data, a bacterium in
287 the genus *Mangrovibacter* continued to occupy upstream positions throughout the community
288 dynamics as indicated by the analysis of network influence scores (Fig. 5). Thus, although the
289 *Mangrovibacter* bacterium was a minor component of the community (Fig. 1), it might have
290 disproportionately large impacts on the dynamics of the entire microbiome. The working
291 hypothesis can be tested by removing the *Mangrovibacter* bacterium from the experimental
292 system. Nonetheless, such selective removal of specific bacterial species from microbiomes
293 remains a challenge because the use of antibiotics often causes unexpected side-effects on
294 non-target species (Cho et al., 2012; Francino, 2016; Langdon et al., 2016). Technical
295 advances that allow selective removal of potential “keystone species” (Paine, 1966; Power et
296 al., 1996) within microbiomes are awaited.

297 Beyond the preliminary results obtained in this study, further studies based on
298 metabolic modeling approaches are required to understand dynamics and consequences of
299 facilitative interactions in ecological communities. Context-dependency of network
300 architecture, for example, needs to be examined by comparing network dynamics among
301 different experimental settings (e.g., different culture media or different temperature
302 conditions) (Zelezniak et al., 2015; Magnúsdóttir et al., 2017). It is also important to evaluate
303 to what extent network architectural properties inferred with the metabolic modeling
304 approaches are consistent with those estimated with other informatics approaches. In this
305 respect, comparison with recently developed methods for reconstructing species interactions
306 based on time-series data is of particular interest (Deyle et al., 2016; Ushio et al., 2018;
307 Suzuki et al., 2022). Furthermore, integrating information of facilitative interactions with that
308 of competitive interactions is an essential step for examining how relative balance of multiple
309 interaction types affect community stability (Bastolla et al., 2009; Fontaine et al., 2011;
310 Mougi and Kondoh, 2012; Goldford et al., 2018). Interdisciplinary studies combining
311 genomics and ecological theory will broaden our views on fundamental mechanism driving
312 microbial community dynamics.

313

314 **Data availability statement**

315 The datasets and codes used in this study can be found in online repositories. The names of
316 the repository/repositories and accession number(s) can be found below:

317 Github, <https://github.com/hiroakif93/Facilitative-interaction-networks-in-experimental->
318 [microbial-community-dynamics-](#)

319 DDBJ DRA, <https://www.ddbj.nig.ac.jp/>, DRA013382.

320

321 **Author contributions**

322 HT designed the work with HF. HF performed experiments. HF analyzed the data with HT.
323 HF and HT wrote the paper with all the authors.

324

325 **Funding**

326 This work was financially supported by JST PRESTO (JPMJPR16Q6), Human Frontier
327 Science Program (RGP0029/2019), JSPS Grant-in-Aid for Scientific Research (20K20586),
328 NEDO Moonshot Research and Development Program (JPNP18016), and JST FOREST
329 (JPMJFR2048) to H.T., JSPS Grant-in-Aid for Scientific Research (20K06820 and
330 20H03010) to K.S., and JSPS Fellowship to H.F. and A.C..

331

332 **Acknowledgements**

333 We thank Sayaka S. Suzuki and Keisuke Koba for support in the experiment.

334

335 **Conflict of Interest Statement**

336 The authors declare that the research was conducted in the absence of any commercial or
337 financial relationships that could be construed as a potential conflict of interest.

338

339 **REFERENCES**

340 Allesina, S., and Tang, S. (2012). Stability criteria for complex ecosystems. *Nature* 483, 205–
341 208. doi: 10.1038/nature10832.

342 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al.
343 (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell
344 sequencing. *Journal of Computational Biology* 19, 455–477. doi:
345 10.1089/cmb.2012.0021.

346 Barberan, A., Bates, S. T., Casamayor, E. O., and Fierer, N. (2012). Using network analysis to
347 explore co-occurrence patterns in soil microbial communities. *ISME J* 6, 343–351. doi:
348 10.1038/ismej.2011.119.

349 Bascompte, J., Jordano, P., Melia, C. J., and Olesen, J. M. (2003). The nested assembly of
350 plant-animal mutualistic networks. *Proc Natl Acad Sci USA* 100, 9383–9387.

351 Bastolla, U., Fortuna, M. a, Pascual-García, A., Ferrera, A., Luque, B., and Bascompte, J.
352 (2009). The architecture of mutualistic networks minimizes competition and increases
353 biodiversity. *Nature* 458, 1018–1020. doi: 10.1038/nature07950.

354 Berry, D., and Widder, S. (2014). Deciphering microbial interactions and detecting keystone
355 species with co-occurrence networks. *Front Microbiol* 5, 219. doi:
356 10.3389/fmicb.2014.00219.

357 Blanchet, F. G., Cazelles, K., and Gravel, D. (2020). Co-occurrence is not evidence of
358 ecological interactions. *Ecol Lett* 23, ele.13525. doi: 10.1111/ele.13525.

359 CaraDonna, P. J., and Waser, N. M. (2020). Temporal flexibility in the structure of plant–
360 pollinator interaction networks. *Oikos* 129, 1369–1380. doi: 10.1111/oik.07526.

361 Chaumeil, P. A., Mussig, A. J., Hugenholtz, P., and Parks, D. H. (2020). GTDB-Tk: A toolkit
362 to classify genomes with the genome taxonomy database. *Bioinformatics* 36, 1925–1927.
363 doi: 10.1093/bioinformatics/btz848.

364 Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). Fastp: An ultra-fast all-in-one FASTQ
365 preprocessor. *Bioinformatics* 34, i884–i890. doi: 10.1093/bioinformatics/bty560.

366 Cho, I., Yamanishi, S., Cox, L., Methé, B. A., Zavadil, J., Li, K., et al. (2012). Antibiotics in
367 early life alter the murine colonic microbiome and adiposity. *Nature* 488, 621–626. doi:
368 10.1038/nature11400.

369 Corominas-Murtra, B., Goñi, J., Solé, R. v., and Rodríguez-Caso, C. (2013). On the origins of
370 hierarchy in complex networks. *Proc Natl Acad Sci U S A* 110, 13316–13321. doi:
371 10.1073/pnas.1300832110.

372 Coyte, K. Z., Schluter, J., and Foster, K. R. (2015). The ecology of the microbiome: networks,
373 competition, and stability. *Science (1979)* 350, 663–666. doi: 10.1126/science.aad2602.

374 Delmas, E., Besson, M., Brice, M. H., Burkle, L. A., Dalla Riva, G. v., Fortin, M. J., et al.
375 (2019). Analysing ecological networks of species interactions. *Biological Reviews* 94,
376 16–36. doi: 10.1111/brv.12433.

377 Deyle, E. R., May, R. M., Munch, S. B., and Sugihara, G. (2016). Tracking and forecasting
378 ecosystem interactions in real time. *Proceedings of the Royal Society B: Biological
379 Sciences* 283, 20152258. doi: 10.1098/rspb.2015.2258.

380 Faust, K., and Raes, J. (2012). Microbial interactions: From networks to models. *Nat Rev
381 Microbiol* 10, 538–550. doi: 10.1038/nrmicro2832.

382 Faust, K., Sathirapongsasuti, J. F., Izard, J., Segata, N., Gevers, D., Raes, J., et al. (2012).
383 Microbial co-occurrence relationships in the human microbiome. *PLoS Comput Biol* 8,
384 e1002606. doi: 10.1371/journal.pcbi.1002606.

385 Fontaine, C., Guimarães, P. R., Kéfi, S., Loeuille, N., Memmott, J., van der Putten, W. H., et
386 al. (2011). The ecological and evolutionary implications of merging different types of
387 networks. *Ecol Lett* 14, 1170–81. doi: 10.1111/j.1461-0248.2011.01688.x.

388 Francino, M. P. (2016). Antibiotics and the human gut microbiome: Dysbioses and
389 accumulation of resistances. *Front Microbiol* 6, 1543. doi: 10.3389/fmicb.2015.01543.

390 Friedman, J., and Alm, E. J. (2012). Inferring Correlation Networks from Genomic Survey
391 Data. *PLoS Comput Biol* 8, 1–11. doi: 10.1371/journal.pcbi.1002687.

392 Frioux, C., Singh, D., Korcsmaros, T., and Hildebrand, F. (2020). From bag-of-genes to bag-
393 of-genomes: metabolic modelling of communities in the era of metagenome-assembled
394 genomes. *Comput Struct Biotechnol J* 18, 1722–1734. doi: 10.1016/j.csbj.2020.06.028.

395 Fujita, H., Ushio, M., Suzuki, K., Abe, M. S., Yamamichi, M., Okazaki, Y., et al. (2022a).
396 Metagenomic analysis of ecological niche overlap and community collapse in
397 microbiome dynamics. *bioRxiv*, <https://doi.org/10.1101/2023.01.17.524457>.

398 Fujita, H., Ushio, M., Suzuki, K., Abe, M., Yamamichi, M., Iwayama, K., et al. (2022b).
399 Alternative stable states, nonlinear behavior, and predictability of microbiome dynamics.
400 *bioRxiv*, <https://doi.org/10.1101/2022.08.23.505041>.

401 Goldford, J. E., Lu, N., Bajić, D., Estrela, S., Tikhonov, M., Sanchez-Gorostiaga, A., et al.
402 (2018). Emergent simplicity in microbial community assembly. *Science* (1979) 361,
403 469–474. doi: 10.1126/science.aat1168.

404 Graham, E. D., Heidelberg, J. F., and Tully, B. J. (2018). Potential for primary productivity in
405 a globally-distributed bacterial phototroph. *ISME Journal* 12, 1861–1866. doi:
406 10.1038/s41396-018-0091-3.

407 Gralka, M., Szabo, R., Stocker, R., and Cordero, O. X. (2020). Trophic interactions and the
408 drivers of microbial community assembly. *Current Biology* 30, R1176–R1188. doi:
409 10.1016/j.cub.2020.08.007.

410 Hassani, M. A., Durán, P., and Hacquard, S. (2018). Microbial interactions within the plant
411 holobiont. *Microbiome* 6, 58. doi: 10.1186/s40168-018-0445-0.

412 Ives, A. R., and Carpenter, S. R. (2007). Stability and diversity of ecosystems. *Science* (1979)
413 317, 58–62. doi: 10.1126/science.1133258.

414 Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., and Aluru, S. (2018).
415 High throughput ANI analysis of 90K prokaryotic genomes reveals clear species
416 boundaries. *Nat Commun* 9, 5114. doi: 10.1038/s41467-018-07641-9.

417 Kanehisa, M., Sato, Y., and Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG
418 Tools for Functional Characterization of Genome and Metagenome Sequences. *J Mol
419 Biol* 428, 726–731. doi: 10.1016/j.jmb.2015.11.006.

420 Klitgord, N., and Segrè, D. (2010). Environments that induce synthetic microbial ecosystems.
421 *PLoS Comput Biol* 6, e1001002. doi: 10.1371/journal.pcbi.1001002.

422 Kurtz, Z. D., Bonneau, R., and Müller, C. L. (2019). Disentangling microbial associations
423 from hidden environmental and technical factors via latent graphical models. *bioRxiv*.
424 doi: 10.1101/2019.12.21.885889.

425 Kurtz, Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J., and Bonneau, R. A.
426 (2015). Sparse and compositionally robust inference of microbial ecological networks.
427 *PLoS Comput Biol* 11, e1004226. doi: 10.1371/journal.pcbi.1004226.

428 Langdon, A., Crook, N., and Dantas, G. (2016). The effects of antibiotics on the microbiome
429 throughout development and alternative approaches for therapeutic modulation. *Genome*
430 *Med* 8, 39. doi: 10.1186/s13073-016-0294-z.

431 Lever, J. J., van Nes, E. H., Scheffer, M., and Bascompte, J. (2014). The sudden collapse of
432 pollinator communities. *Ecol Lett* 17, 350–359. doi: 10.1111/ele.12236.

433 Levine, J. M., Bascompte, J., Adler, P. B., and Allesina, S. (2017). Beyond pairwise
434 mechanisms of species coexistence in complex communities. *Nature* 546, 56–64. doi:
435 10.1038/nature22898.

436 Levy, R., and Borenstein, E. (2013). Metabolic modeling of species interaction in the human
437 microbiome elucidates community-level assembly rules. *Proc Natl Acad Sci U S A* 110,
438 12804–12809. doi: 10.1073/pnas.1300926110.

439 Machado, D., Andrejev, S., Tramontano, M., and Patil, K. R. (2018). Fast automated
440 reconstruction of genome-scale metabolic models for microbial species and
441 communities. *Nucleic Acids Res* 46, 7542–7553. doi: 10.1093/nar/gky537.

442 Magnúsdóttir, S., Heinken, A., Kutt, L., Ravcheev, D. A., Bauer, E., Noronha, A., et al.
443 (2017). Generation of genome-scale metabolic reconstructions for 773 members of the
444 human gut microbiota. *Nat Biotechnol* 35, 81–89. doi: 10.1038/nbt.3703.

445 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing
446 reads. *EMBnet J* 17, <https://doi.org/10.14806/ej.17.1.200>. doi: 10.14806/ej.17.1.200.

447 Masuda, N., Kawamura, Y., and Kori, H. (2009). Analysis of relative influence of nodes in
448 directed networks. *Phys Rev E Stat Nonlin Soft Matter Phys* 80, 1–10. doi:
449 10.1103/PhysRevE.80.046114.

450 May, R. M. (1972). Will a large complex system be stable? *Nature* 238, 413–414. doi:
451 10.1038/238413a0.

452 Morton, D. N., Keyes, A., Barner, A. K., and Dee, L. E. (2022). Merging theory and
453 experiments to predict and understand coextinctions. *Trends Ecol Evol* 37, 886–898. doi:
454 10.1016/j.tree.2022.06.004.

455 Mougi, A., and Kondoh, M. (2012). Diversity of interaction types and ecological community
456 stability. *Science (1979)* 337, 349–51. doi: 10.1126/science.1220529.

457 Olesen, J. M., Bascompte, J., Dupont, Y. L., and Jordano, P. (2007). The modularity of
458 pollination networks. *Proc Natl Acad Sci U S A* 104, 19891–19869. doi:
459 10.1073/pnas.0706375104.

460 Page, L., and Brin, S. (1998). The anatomy of a large-scale hypertextual Web search engine.
461 *Computer Networks* 30, 107–117. doi: 10.1016/s0169-7552(98)00110-x.

462 Paine, R. T. (1966). Food Web Complexity and Species Diversity. *Am Nat* 100, 65–75. doi:
463 10.1086/282400.

464 Parks, D. H., Chuvochina, M., Rinke, C., Mussig, A. J., Chaumeil, P.-A., and Hugenholtz, P.
465 (2022). GTDB: an ongoing census of bacterial and archaeal diversity through a
466 phylogenetically consistent, rank normalized and complete genome-based taxonomy.
467 *Nucleic Acids Res* 50, D785–D794. doi: 10.1093/nar/gkab776.

468 Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W. (2015).
469 CheckM: Assessing the quality of microbial genomes recovered from isolates, single
470 cells, and metagenomes. *Genome Res* 25, 1043–1055. doi: 10.1101/gr.186072.114.

471 Power, M. E., Tilman, D., Estes, J. A., Menge, B. A., Bond, W. J., Mills, L. S., et al. (1996).
472 Challenges in the quest for kestones. *Bioscience* 46, 609–620. doi: 10.2307/1312990.

473 Raes, J., and Bork, P. (2008). Molecular eco-systems biology: Towards an understanding of
474 community function. *Nat Rev Microbiol* 6, 693–699. doi: 10.1038/nrmicro1935.

475 Ratzke, C., Barrere, J., and Gore, J. (2020). Strength of species interactions determines
476 biodiversity and stability in microbial communities. *Nat Ecol Evol* 4, 376–383. doi:
477 10.1038/s41559-020-1099-4.

478 Rezende, E. L., Lavabre, J. E., Guimarães, P. R., Jordano, P., and Bascompte, J. (2007). Non-
479 random coextinctions in phylogenetically structured mutualistic networks. *Nature* 448,
480 925–928. doi: 10.1038/nature05956.

481 Rohr, R. P., Saavedra, S., and Bascompte, J. (2014). On the structural stability of mutualistic
482 systems. *Science (1979)* 345, 1253497. doi: 10.1126/science.1253497.

483 Scheffer, M., Carpenter, S., Foley, J. a, Folke, C., and Walker, B. (2001). Catastrophic shifts
484 in ecosystems. *Nature* 413, 591–596. doi: 10.1038/35098000.

485 Scheffer, M., and Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: Linking
486 theory to observation. *Trends Ecol Evol* 18, 648–656. doi: 10.1016/j.tree.2003.09.002.

487 Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. *Bioinformatics* 30, 2068–
488 2069. doi: 10.1093/bioinformatics/btu153.

489 Stolyar, S., van Dien, S., Hillesland, K. L., Pinel, N., Lie, T. J., Leigh, J. A., et al. (2007).
490 Metabolic modeling of a mutualistic microbial community. *Mol Syst Biol* 3, 92. doi:
491 10.1038/msb4100131.

492 Sugihara, G., May, R., Ye, H., Hsieh, C., Deyle, E., Fogarty, M., et al. (2012). Detecting
493 causality in complex ecosystems. *Science* 338, 496–500. doi: 10.1126/science.1227079.

494 Sung, J., Kim, S., Cabatbat, J. J. T., Jang, S., Jin, Y. S., Jung, G. Y., et al. (2017). Global
495 metabolic interaction network of the human gut microbiota for context-specific
496 community-scale analysis. *Nat Commun* 8, 1–12. doi: 10.1038/ncomms15393.

497 Suzuki, K., Matsuzaki, S., and Masuya, H. (2022). Decomposing predictability to identify
498 dominant causal drivers in complex ecosystems. *Proc Natl Acad Sci USA* 119,
499 e2204405119.

500 Thébault, E., and Fontaine, C. (2010). Stability of ecological communities and the
501 architecture of mutualistic and trophic networks. *Science (1979)* 329, 853–856. doi:
502 10.1126/science.1188321.

503 Toju, H., Yamamichi, M., Jr, P. R. G., Olesen, J. M., Mougi, A., Yoshida, T., et al. (2017).
504 Species-rich networks and eco-evolutionary synthesis at the metacommunity level. *Nat
505 Ecol Evol* 1, 0024. doi: 10.1038/s41559-016-0024.

506 Uritskiy, G. v., DiRuggiero, J., and Taylor, J. (2018). MetaWRAP—a flexible pipeline for
507 genome-resolved metagenomic data analysis. *Microbiome* 6, 158. doi: 10.1186/s40168-
508 018-0541-1.

509 Ushio, M., Hsieh, C. H., Masuda, R., Deyle, E. R., Ye, H., Chang, C. W., et al. (2018).
510 Fluctuating interaction network and time-varying stability of a natural fish community.
511 *Nature* 554, 360–363. doi: 10.1038/nature25504.

512 Warton, D. I., Blanchet, F. G., Hara, R. B. O., Ovaskainen, O., Taskinen, S., Walker, S. C., et
513 al. (2015). So many variables: joint modeling in community ecology. *Trends Ecol Evol*
514 30, 766–779. doi: 10.1016/j.tree.2015.09.007.

515 Woodcroft B (2021). CoverM: program available at <https://github.com/wwood/CoverM>.

516 Zelezniak, A., Andrejev, S., Ponomarova, O., Mende, D. R., Bork, P., and Patil, K. R. (2015).
517 Metabolic dependencies drive species co-occurrence in diverse microbial communities.
518 *Proc Natl Acad Sci U S A* 112, 6449–6454. doi: 10.1073/pnas.1421834112.

519 Zomorrodi, A. R., and Maranas, C. D. (2012). OptCom: A multi-level optimization
520 framework for the metabolic modeling and analysis of microbial communities. *PLoS
521 Comput Biol* 8, e1002363. doi: 10.1371/journal.pcbi.1002363.

522

523

524 **FIGURE 1** | Time-series data of the community structure. Through the 110-day experiment,
525 community compositions were monitored based on 16S rRNA sequencing. To quantify the
526 speed and magnitude of community shifts through time, the “abruptness” index was
527 calculated through the time-series (blue line). Specifically, an estimate of the abruptness index
528 for time point t was obtained as the Bray-Curtis β -diversity between average community
529 compositions from time points $t - 4$ to t and those from $t + 1$ to $t + 5$ (i.e., dissimilarity
530 between 5-day time-windows). An abruptness score larger than 0.5 indicates that turnover of
531 more than 50 % of community compositions occurred between the time-windows.
532 Reproduced from the amplicon sequencing data of a previous study on the microbiome
533 system (Fujita et al., 2022b).

534

535 **FIGURE 2** | Highlights of changes in community-level profiles of metabolic
536 pathways/processes through the time-series. After assembling the data of all the MAGs
537 detected on each day, community-level pathway completeness is shown for the
538 pathways/processes that exhibited temporal changes in pathway completeness. To focus on
539 the metabolic pathways/processes that varied greatly through time, the pathways/processes
540 whose metagenome-level completeness exceeded 0.9 at 12 or more time points are not shown.
541 Metabolic pathway/process profiles mentioned in the main text are highlighted.

542

543 **FIGURE 3** | Inferred network of metabolic interactions between microbes. Based on the
544 whole-genome shotgun metagenomic data, genome-scale metabolic modeling was conducted
545 at each of the target time point. The results were used to infer potential flows metabolites
546 between microbial MAGs. Positive effects inferred by metabolic modeling are shown with
547 arrows connecting donor and recipient microbial MAGs. Darker colors of arrows indicate
548 higher species coupling scores inferred in the metabolic modeling analysis.

549

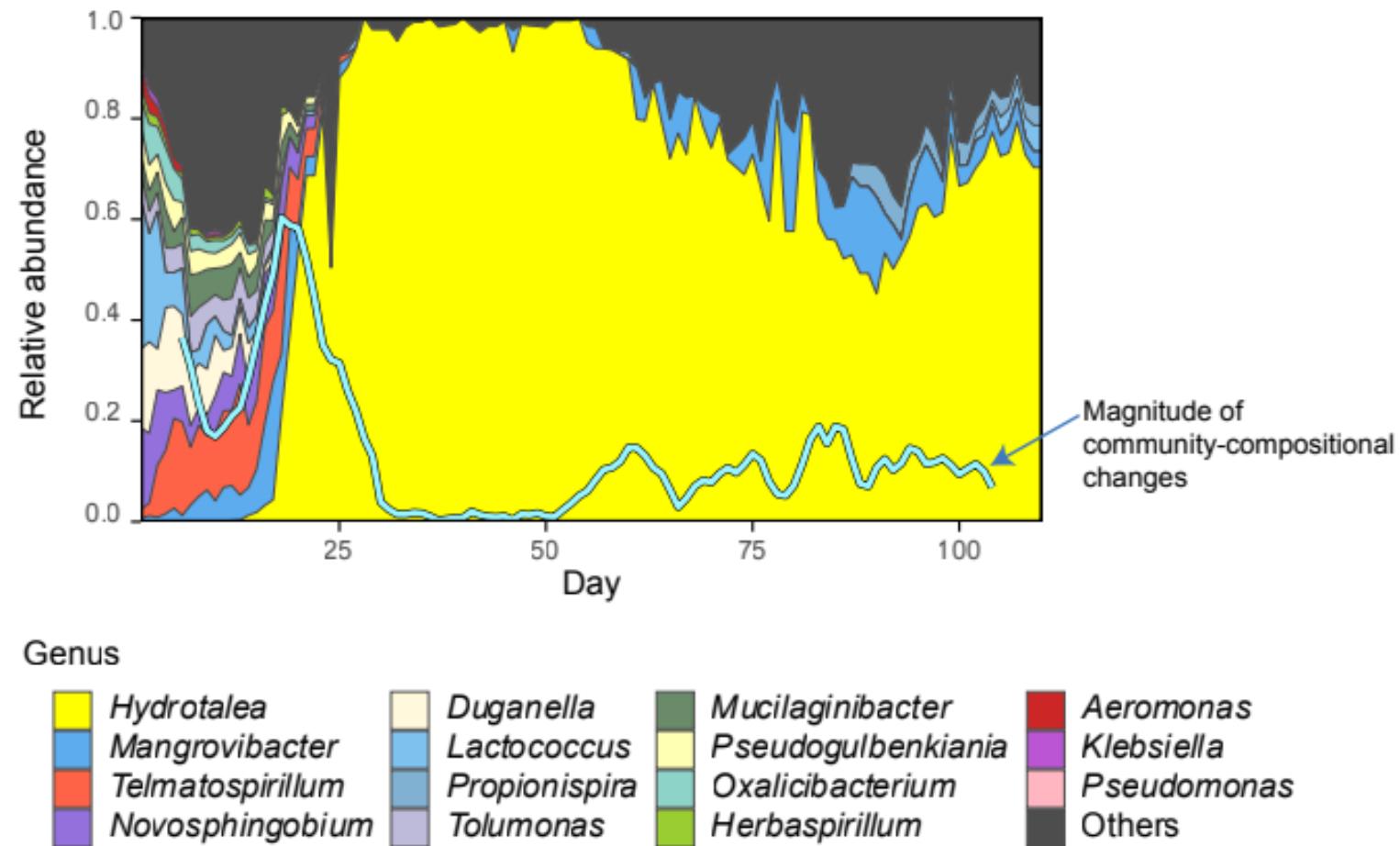
550 **FIGURE 4** | Network topology analysis. **(A)** Schema of network architectural properties.
551 Treeness and feedforwardness represent pyramidal and upstream-downstream structures of
552 directed graphs, respectively. Orderability represents lack of feedback loops within a network.
553 Along the axis of orderability, the nodes and links included in feedback loops are highlighted
554 in red. **(B)** Dynamics of network characteristics. Changes in network architectural properties

555 are shown in terms of treeness, feedforwardness, and orderability. Networks with low
556 “orderability”, by definition, contain loops of flow of metabolites, while those with maximum
557 orderability (= 1) lack feedback loops.

558

559 **FIGURE 5** | Potential keystone species/taxa within metabolic interaction networks. Within
560 each directed graph of metabolic dependence network (Fig. 4), influence (a measure of the
561 degree to which a focal node has influence on the others within a directed graph) and
562 PageRank (a measure of the degree to which a focal node has links from other nodes with
563 many inward links) measures of network centrality was calculated for each microbe.
564 *Mangrovibacter* tended to show high impacts (influence) on other bacteria within the
565 metabolic interaction networks throughout the time-series.

566



- Sulfite dehydrogenase (quinone)
- Thiosulfate/polysulfide reductase
- Sulfolipid biosynthesis
- Sulfhydrogenase
- NADP-reducing hydrogenase
- Anoxygenic type-II reaction center
- Dissimilatory sulfite < > APS
- CBB Cycle
- RuBisCo
- Biofilm PGA Synthesis protein
- Wood-Ljungdahl
- Sulfite dehydrogenase
- Sulfur dioxygenase
- Pullulanase
- NAD(P)H-quinone oxidoreductase
- Alt thiosulfate oxidation tsdA
- N_2O reduction
- NO reduction
- NO_2^- reduction
- Cytochrome c oxidase, cbb3-type
- Thiosulfate oxidation
- Type III Secretion
- Cytochrome b6/f complex
- Competence-related core components
- 4-Hydroxybutyrate/3-hydroxypropionate
- Type IV Secretion
- 3-Hydroxypropionate Bicycle
- Type II Secretion
- Serine pathway/formaldehyde assimilation
- NAD-reducing hydrogenase
- Type VI Secretion
- Polyhydroxybutyrate synthesis
- Mixed acid: Formate to CO_2 & H_2
- Type I Secretion
- Thiamin biosynthesis
- Retinal biosynthesis
- Mixed acid: PEP to Succinate via OAA, malate & fumarate
- Cytochrome c oxidase
- Anaplerotic genes

1
10
20
24
30
40
50
60
70
80
90
100
110

Day

Pathway completeness

100 %

0 %

