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Abstract

Understanding potential roles of facilitative interactions between species is one of the major
challenges in ecology and microbiology. However, we still have limited knowledge of
entangled webs of facilitative interactions in ecosystems. By compiling whole-genome
shotgun metagenomic data of an experimental microbial community, we tested the hypothesis
that architecture of facilitative interaction networks could change through time. A metabolic
modeling approach for estimating dependence between microbial genomes (species) allowed
us to infer the network structure of potential facilitative interactions at 13 time points through
the 110-day monitoring of experimental microbiomes. We then found that positive feedback
loops, which were theoretically predicted to promote cascade breakdown of ecological
communities, existed within the inferred networks of metabolic interactions prior to the
drastic community-compositional shift observed in the microbiome time-series. We further
applied “directed-graph” analyses to pinpoint potential keystone species located at the “upper
stream” positions of such feedback loops. These analyses on facilitative interactions will help

us understand key mechanisms causing catastrophic shifts in microbial community structure.

Keywords: community stability, dysbiosis, ecosystem functions, microbe-microbe
interactions, metabolic modeling, microbial functions, microbiomes, mutualism, species

interactions
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INTRODUCTION

In nature, species form complex webs of interactions, thereby driving various types of
community- and ecosystem-level phenomena (May, 1972; Ives and Carpenter, 2007; Allesina
and Tang, 2012). Roles of interspecific interactions in sudden shifts of community structure
are among the most important targets of ecological research (Scheffer et al., 2001; Scheffer
and Carpenter, 2003; Ratzke et al., 2020). Theoretical studies have predicted that architecture
(topology) of interaction networks determines consequences of ecological interactions such as
species coexistence or community collapse (Thébault and Fontaine, 2010; Rohr et al., 2014;
Levine et al., 2017). Although a number of empirical studies on plants and animals have been
conducted to test the theories (Olesen et al., 2007; Lever et al., 2014; CaraDonna and Waser,
2020), our knowledge of potential relationship between network architecture and community-

level consequences have been limited for microbial ecosystems.

In microbial ecology, estimating architecture of potential interactions itself has been
increasingly common (Faust and Raes, 2012; Friedman and Alm, 2012; Berry and Widder,
2014; Kurtz et al., 2015). Amplicon sequencing (DNA metabarcoding) of prokaryote 16S
rRNA gene, for example, have been frequently used to infer structure of networks depicting
co-occurrence patterns of microbial species (Barberan et al., 2012; Faust et al., 2012; Berry
and Widder, 2014). Nonetheless, those networks obtained with co-occurrence pattern analyses
include pairs of species that merely share environmental preferences, making it difficult to
investigate webs of direct facilitative/competitive interactions between species (Warton et al.,
2015; Toju et al., 2017; Kurtz et al., 2019; Blanchet et al., 2020). Moreover, although studies
on co-occurrence patterns assume bidirectional associations between species, interspecific
interactions in nature are not necessarily bidirectional (Sugihara et al., 2012; Ushio et al.,
2018; Delmas et al., 2019). Consequently, reconstructing networks consisting of not only
bidirectional but also unidirectional interactions between species (i.e., “directed graphs™) is an

essential step for advancing our understanding of microbial community processes.

A promising approach for investigating complex webs of microbial interactions is to
estimate flows of metabolites between microbial species based on metagenomic datasets
(Stolyar et al., 2007; Klitgord and Segre, 2010; Zomorrodi and Maranas, 2012; Levy and
Borenstein, 2013). Because species’ ability to metabolize given chemical compounds is
encoded in their genomes, metabolic modeling has been applied to infer potential metabolic
interactions between microbes (Zelezniak et al., 2015; Magnusdottir et al., 2017). If genomic

information is available for a pair of species, potential dependence of a species on the other
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91  species can be evaluated in terms of the list of metabolites presumably emitted by the other
92  species (Zelezniak et al., 2015; Magnusdéttir et al., 2017). By applying such community-scale
93  metabolic modeling (Frioux et al., 2020), we will be able to gain insights into network

94  architecture of facilitative interactions (Sung et al., 2017; Hassani et al., 2018; Gralka et al.,
95  2020). Analyses on temporal shifts in such metabolic interaction network architecture, in

96  particular, are expected to enhance our understanding of processes or mechanisms causing

97  community collapse (or dysbiosis). Nonetheless, there have been, to our knowledge, no study
98  reporting changes in facilitative interaction network architecture through microbial

99  community dynamics.

100 In this study, we performed an analysis of metabolic interaction networks using the

101  whole-genome shotgun metagenomic dataset of an experimental bacterial community (Fujita
102  etal., 2022a). Across the 110-day monitoring of a co-culture system of a freshwater bacterial
103  community (Fujita et al., 2022b), the previous study examined temporal shifts in the level of
104  ecological niche overlap between species in order to infer dynamics of competitive

105 interactions (Fujita et al., 2022a). In this study, we reconstructed networks of facilitative

106  interactions based on the metabolic modeling of shotgun metagenomic data at 13 time points
107  across the time-series. We then evaluated changes in the architectural features of the directed
108  graphs through the time-series. Specifically, we tested the hypothesis that positive feedback
109  loops, which have been predicted to destabilize biological communities, existed prior to a
110  sudden community-compositional shift observed in the microbiome experiment. In addition,
111  we examined the presence of microbial species that could be located at the source or sink
112 positions within the directed graphs of metabolic flows. Overall, the preliminary application
113 of community-level metabolic modeling provides a platform for understanding relationship

114  between dynamics of interaction network architecture and ecosystem-level consequences.
115

116 MATERIALS AND METHODS
117  Time-series data of the microbial experiment

118  We used the 110-day time-series dataset of the microbial community experiment described
119  elsewhere (Fujita et al., 2022a, 2022b). In the experiment, the source microbial community
120  was sampled from a pond (“Shoubuike”) near Center for Ecological Research, Kyoto

121 University (34.974 °N, 135.966 °E). The source community was then introduced into the

122 deep-well culture system of an oatmeal broth medium [0.5% (w/v) milled oatmeal (Nisshoku
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Oats; Nippon Food Manufacturer)] with eight replicates, kept at 23 °C for five days (Fujita et
al., 2022b). After the five-day pre-incubation, 200 uL out of 1,000-pL culture medium was
sampled from each well of the deep-well plate after mixing (pipetting) every 24 hours for 110
days. In each sampling event, 200 pL of fresh medium was added to each well so that the total
culture volume was kept constant. For the samples, amplicon sequencing of 16S rRNA was
conducted as reported previously (Fujita et al., 2022b). Based on the amplicon sequencing of
the community compositional dynamics, we selected the replicate community that showed the
largest community compositional changes within the time-series (Fujita et al., 2022a): a rapid
and substantial community compositional change occurred around Day 18 in the replicate
community (Fig. 1). The extracted DNA samples of the replicate community was subjected to
a whole-genome shotgun sequencing analysis, which targeted 13 time points across the time-
series (Day 1, 10, 20, 24, 30, 40, 50, 60, 70, 80, 90, 100, 110; ca. 10 Gb per sample) (Fujita et
al., 2022a). The analysis described below was performed by compiling the whole-genome

shotgun sequencing data (Fujita et al., 2022a).

Whole-genome shotgun metagenomics

The whole-genome shotgun sequencing data were processed as detailed previously (Fujita et
al., 2022a). Briefly, after adaptor trimming with Cutadapt (Martin, 2011) and quality filtering
with Fastp0.21.0 (Chen et al., 2018) [in total, the number of output sequencing reads was
1002.49 M (160.08 Gb)], the sequences of each time-point sample were assembled using
metaSPAdes 3.15.2 (Bankevich et al., 2012). Binning and quality assessing, were then
performed with MetaWRAP 1.3.2 (Uritskiy et al., 2018) and CheckM 1.1.3 (Parks et al.,
2015), respectively. The identity between MAGs were calculated with FastANI 1.33 (Jain et
al., 2018) and MAGs with > 99 % identity were grouped through the time-series. The read-
coverage calculation was then conducted using CoverM 0.6.0 (Woodcroft B, 2021).
Taxonomic annotation and genome annotation were conducted, respectively, with GTDB-Tk
1.6 (Chaumeil et al., 2020; Parks et al., 2022) and Prokka 1.14.6 (Seemann, 2014) 1.14.6. The
metagenome-assembled genomes (MAGs) with > 80 % completeness and <5 %
contamination were used in the analyses below. The orthology numbers of Kyoto
Encyclopedia of Genomes (KEGG) were retrieved for respective genes using GhostKOALA
2.2 (Kanehisa et al., 2016) and the completeness of metabolic pathways was estimated for

each MAG using KEGG decoder 1.3 (Graham et al., 2018). In total, 32 MAGs belonging to
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20 genera (16 families; 12 orders) were detected across the time-series (Supplementary Data

1) (Fujita et al., 2022a).

Metabolic modeling

To explore potential effects of facilitative interactions between microbes within the
microbiome, we performed an analyses of metabolite-exchange interaction networks based on
the MAGs detailed above. For each MAG, we reconstructed a metabolic model based on the
top-down carving approach of curated “universal models” (i.e., manually curated and
simulation-ready metabolic models) (Machado et al., 2018) using CarveMe 1.5.0 (Machado et
al., 2018). Potential metabolic interactions between microbial MAGs were then evaluated
based on species coupling scores indicating dependency of target species in the presence of
others as implemented in SMETANA 1.0.0 (Zelezniak et al., 2015). In this approach, all
potential exchanges of metabolites between species were mapped with the default parameters
as implemented in SMETANA.

Network analysis

The inferred metabolic interaction network of each time point was then analyzed based on the
treeness, feedforwardness, and orderability (Corominas-Murtra et al., 2013) Treeness is a
measure of pyramidal (top-down) network structure, in which small numbers of nodes at
upper layers have outward links to many other nodes at lower layers. Feedforwardness is a
measure of network-scale bias in the direction of links: a high feedforwardness value
represents strong upstream-downstream structure within a network. Meanwhile, orderability
represents the degree of the lack of feedback loops within directed graphs (networks). As the
orderability index is defined as the proportion of nodes outside feedback network loops, it

ranges from 0 (loop structure involving all nodes) to 1 (absence of loops).

To evaluate topological positions of respective microbial MAGs within the networks,
influence (Masuda et al., 2009) (a measure of the degree to which a focal node has influence
on the others within a directed graph) and PageRank centrality (Page and Brin, 1998) (a
measure of the degree to which a focal node has links from other nodes with many inward

links) were calculated.
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186  RESULTS
187  Ecosystem-level profiles

188  After the drastic change in community structure around Day 18 (Fig. 1), the community-level
189  compositions of metabolic pathways/processes greatly changed (Fig. 2). For example, the
190  function of sulfite dioxygenase and that of NO> /NO/N>O reduction pathways seemed to

191  decline by Day 30 and 40, respectively (Fig. 2). Although microbes encoding these functions
192  in their genomes might still exist at a small proportion (under detection limit of our

193  sequencing analysis), rapid alternations of major functional profiles presumably occurred in

194  the microbial ecosystem through the time-series.

195
196  Dynamics of metabolic interaction networks

197  Microbial MAGs belonging to different taxa were linked with each other within the network
198  of potential facilitative interactions (Fig. 3; Supplementary Data 2). In particular, microbes in
199  the class Gammaproteobacteria were inferred to provide metabolites to microbes in other

200  taxonomic groups. Likewise, Terracidiphilus bacteria (Acidobacteriae) had links of potential
201  metabolite supply towards some bacteria belonging to Gammaproteobacteria and

202  Alphaproteobacteria at some time points (Fig. 3). The number of detectable nodes suddenly
203  decreased between Days 20 and 30, entailing rapid decline of the inferred metabolic

204  interaction networks (Fig. 3). The microbial community then reached a quasi-stable state

205  characterized by several bacteria in the genera Hydrotalea, Terracidiphilus, Mangrovibacter,
206  and Rhizomicrobium (from Day 40 to Day 50; Fig. 3). Among them, unidirectional facilitative
207  effects from Mangrovibacter to other bacteria were inferred based on the metabolic modeling
208  analysis (Fig. 3). The number of detectable MAGs gradually increased from Day 60, resulting

209  in the restoration of an entangled web of potential metabolic interactions on Day 110 (Fig. 3).

210 The treeness, feedforwardness, and orderability of the network of the potential

211  metabolic interactions varied considerably across the time-series (Fig. 4). Until Day 20, the
212 network structure was characterized by low treeness, low feedforwardness, and low to

213 moderate orderability (Fig. 4b). The facilitative interaction network then showed drastic

214 architectural shift until Day 40 as characterized by the rapid increase of orderability (Fig. 4b).
215  This result indicates that the dynamics of the network architecture are characterized by the
216  presence of positive feedback loops (as represented by low orderability) early in the time-

217  series and that such feedback loops disappeared from the microbial community by Day 40
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218  (Fig. 3). Through the gradual restoration of network complexity after Day 60, the presence of
219  feedback loops was inferred again on Day 110 (Fig. 3) as indicated by lowered network
220  orderability estimate on the day (Fig. 4).

221
222  Potential keystone species

223 Within the metabolic interaction networks (Fig. 3), some microbial MAGs belonging to the
224 class Gammaproteobacteria were located at the “upper stream” of the network, showing high
225  influence scores (Fig. 5; Supplementary Data 1). In particular, a gammaproteobacterial MAG
226  in the genus Mangrovibacter consistently showed the highest influence among the microbes
227  detected at most time points (Fig. 5). Meanwhile, microbes located at the sink positions

228  within the inferred metabolic interaction networks (i.e., MAGs with high PageRank scores)
229  represented diverse taxonomic groups (Fig. 5). From Day 40 to 50, through which a small
230  number of bacterial taxa represented the microbiome structure, simple source—sink

231  relationship of potential metabolite flow was observed between Mangrovibacter and others

232 (i.e., Hydrotalea, Terracidiphilus, and Rhizomicrobium; Figs. 4 and 5).
233

234 DISCUSSION

235  We showed preliminary results on temporal shifts in the network architecture of facilitative
236  interactions by compiling a whole-genome shotgun metagenomic dataset of experimental

237  microbiome dynamics. While ecosystem-level profiles of metabolic functions (Fig. 2) have
238  been intensively investigated (Raes and Bork, 2008), shotgun metagenomic data also allow us
239  to infer ecological processes of species interactions (Figs. 3-5). Classic theory predicts that
240  facilitative interactions basically destabilize biological communities (Allesina and Tang,

241  2012). However, recent theoretical studies suggest that such effects of facilitative interactions
242 depend on network architecture of interactions (Bastolla et al., 2009; Thébault and Fontaine,
243 2010; Fontaine et al., 2011; Morton et al., 2022). Nestedness, for example, have been

244  intensively investigated as a potential key property of facilitative interaction networks in

245  terms of species coexistence (Bascompte et al., 2003; Thébault and Fontaine, 2010; Rohr et
246  al., 2014). Meanwhile, most studies on facilitative ecological interactions have relied on the
247  assumption that all links within a network are bidirectional (i.e., mutualistic). In this study, we
248  explored ways for uncovering the structure of directed graphs of species interactions

249  (Sugihara et al., 2012; Ushio et al., 2018; Delmas et al., 2019) based on a metagenomic
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analysis of potential metabolic interactions (Zelezniak et al., 2015). Our finding that
architecture of directed interaction networks could drastically change through time will fuel
discussion on potential roles of interaction network structure on biological community

dynamics and stability.

Among the directed-graph indices examined in this study, orderability was of particular
interest (Fig. 4). It has been theoretically predicted that presence of positive feedback loops in
facilitative interaction networks can destabilize ecological communities (Coyte et al., 2015;
Levine et al., 2017). Specifically, such feedback structure of dependence may magnify
cascades of population collapse once balance of population size among constituent species
fluctuates within the feedback loops. In a previous study on the examined experimental
microbiome, a high level of niche overlap among bacterial species was inferred to have
promoted community compositional shifts (Fujita et al., 2022a). In particular, niche overlap
within the gammaproteobacterial or alphaproteobacterial sub-community (guild) presumably
resulted in competitive exclusion of constituent microbial populations (Fujita et al., 2022a).
Such competition-driven decline of some gammaproteobacterial or alphaproteobacterial
species may have triggered a cascade breakdown of species (Rezende et al., 2007) through the
positive feedback loop observed in this study (Fig. 3). In other words, once competitive
exclusion occurs within an ecological guild, species depending on the metabolites of the
declining guilds are expected to be negatively influenced by the reduced flow of metabolites

through the facilitative interaction network.

Treeness and feedforwardness of network architecture give additional important
information about propagation of negative effects within networks. If a facilitative interaction
network has hierarchical structure represented by high treeness and feedforwardness
(Corominas-Murtra et al., 2013), placement of the ecological guilds from which fluctuations
are initiated would influence subsequent ecological processes through the network.
Specifically, fluctuations occurred in upstream positions may be propagated more rapidly
throughout the network, while those derived from downstream positions would entail minimal
impacts on the entire community. Albeit the potential roles of such hierarchical structure, the
network architecture observed early in the experimental community (until Day 20) was
represented by low treeness and feedforwardness (Fig. 4b). Thus, influence of hierarchical
network structure on community collapse remains to be examined in future studies on

networks with high treeness and feedforwardness.

10
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In parallel with investigations on the entire network structure, directed-graphs
reconstructed with metagenomic data provide us with insights into species occupying
upstream/downstream positions within networks. Species located at upstream positions within
a “supply chain” of metabolites may impose greater impacts on population dynamics of other
species within the network than species at downstream positions. In our data, a bacterium in
the genus Mangrovibacter continued to occupy upstream positions throughout the community
dynamics as indicated by the analysis of network influence scores (Fig. 5). Thus, although the
Mangrovibacter bacterium was a minor component of the community (Fig. 1), it might have
disproportionately large impacts on the dynamics of the entire microbiome. The working
hypothesis can be tested by removing the Mangrovibacter bacterium from the experimental
system. Nonetheless, such selective removal of specific bacterial species from microbiomes
remains a challenge because the use of antibiotics often causes unexpected side-effects on
non-target species (Cho et al., 2012; Francino, 2016; Langdon et al., 2016). Technical
advances that allow selective removal of potential “keystone species” (Paine, 1966; Power et

al., 1996) within microbiomes are awaited.

Beyond the preliminary results obtained in this study, further studies based on
metabolic modeling approaches are required to understand dynamics and consequences of
facilitative interactions in ecological communities. Context-dependency of network
architecture, for example, needs to be examined by comparing network dynamics among
different experimental settings (e.g., different culture media or different temperature
conditions) (Zelezniak et al., 2015; Magnusdoéttir et al., 2017). It is also important to evaluate
to what extent network architectural properties inferred with the metabolic modeling
approaches are consistent with those estimated with other informatics approaches. In this
respect, comparison with recently developed methods for reconstructing species interactions
based on time-series data is of particular interest (Deyle et al., 2016; Ushio et al., 2018;
Suzuki et al., 2022). Furthermore, integrating information of facilitative interactions with that
of competitive interactions is an essential step for examining how relative balance of multiple
interaction types affect community stability (Bastolla et al., 2009; Fontaine et al., 2011;
Mougi and Kondoh, 2012; Goldford et al., 2018). Interdisciplinary studies combining
genomics and ecological theory will broaden our views on fundamental mechanism driving

microbial community dynamics.
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FIGURE 1 | Time-series data of the community structure. Through the 110-day experiment,
community compositions were monitored based on 16S rRNA sequencing. To quantify the
speed and magnitude of community shifts through time, the “abruptness” index was
calculated through the time-series (blue line). Specifically, an estimate of the abruptness index
for time point ¢ was obtained as the Bray-Curtis f~diversity between average community
compositions from time points ¢ — 4 to ¢ and those from 7+ 1 to ¢ + 5 (i.e., dissimilarity
between 5-day time-windows). An abruptness score larger than 0.5 indicates that turnover of
more than 50 % of community compositions occurred between the time-windows.
Reproduced from the amplicon sequencing data of a previous study on the microbiome

system (Fujita et al., 2022b).

FIGURE 2 | Highlights of changes in community-level profiles of metabolic
pathways/processes through the time-series. After assembling the data of all the MAGs
detected on each day, community-level pathway completeness is shown for the
pathways/processes that exhibited temporal changes in pathway completeness. To focus on
the metabolic pathways/processes that varied greatly through time, the pathways/processes
whose metagenome-level completeness exceeded 0.9 at 12 or more time points are not shown.

Metabolic pathway/process profiles mentioned in the main text are highlighted.

FIGURE 3 | Inferred network of metabolic interactions between microbes. Based on the
whole-genome shotgun metagenomic data, genome-scale metabolic modeling was conducted
at each of the target time point. The results were used to infer potential flows metabolites
between microbial MAGs. Positive effects inferred by metabolic modeling are shown with
arrows connecting donor and recipient microbial MAGs. Darker colors of arrows indicate

higher species coupling scores inferred in the metabolic modeling analysis.

FIGURE 4 | Network topology analysis. (A) Schema of network architectural properties.
Treeness and feedforwardness represent pyramidal and upstream-downstream structures of
directed graphs, respectively. Orderability represents lack of feedback loops within a network.
Along the axis of orderability, the nodes and links included in feedback loops are highlighted

in red. (B) Dynamics of network characteristics. Changes in network architectural properties
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555 are shown in terms of treeness, feedforwardness, and orderability. Networks with low
556  “orderability”, by definition, contain loops of flow of metabolites, while those with maximum
557  orderability (= 1) lack feedback loops.

558

559  FIGURE 5 | Potential keystone species/taxa within metabolic interaction networks. Within
560 each directed graph of metabolic dependence network (Fig. 4), influence (a measure of the
561  degree to which a focal node has influence on the others within a directed graph) and

562  PageRank (a measure of the degree to which a focal node has links from other nodes with
563  many inward links) measures of network centrality was calculated for each microbe.

564  Mangrovibacter tended to show high impacts (influence) on other bacteria within the

565  metabolic interaction networks throughout the time-series.

566
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