

1 **Competing differentiation gradients coordinate fruit morphogenesis.**

2 Gómez-Felipe A¹., Marconi M²., Branchini E¹., Wang, B¹., Bertrand-Rakusova H¹., Stan T¹,
3 Burkiewicz J¹., de Folter S³., Routier-Kierzkowska A-L¹., Wabnik K²*, Kierzkowski D.¹*

4 ¹Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université
5 de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2 Canada

6 ²Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid, Instituto
7 Nacional de Investigación y Tecnología Agraria y Alimentaria), Pozuelo de Alarcón, Spain

8 ³Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios
9 Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CP 36824 Irapuato, Mexico

10 *Correspondence: daniel.kierzkowski@umontreal.ca, k.wabnik@upm.es

11

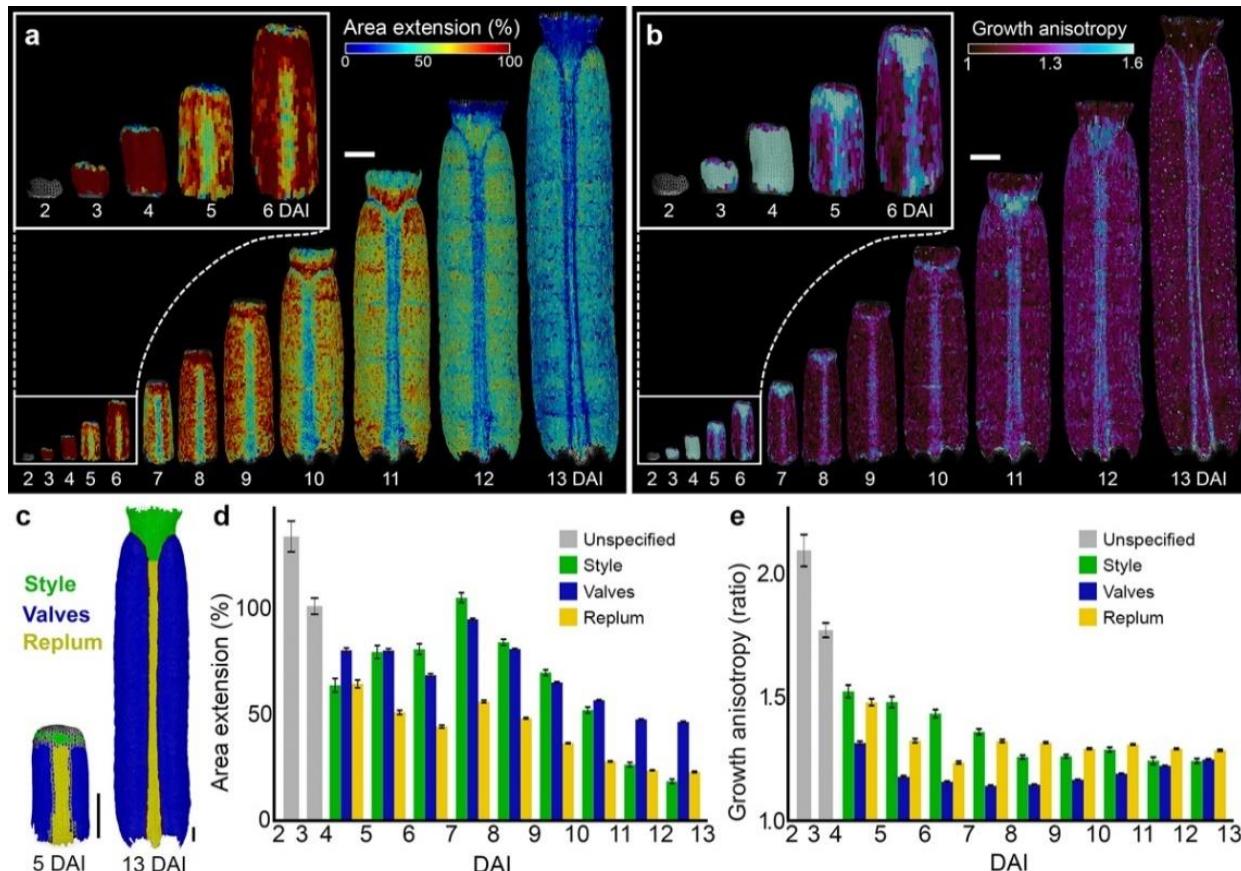
12 **ABSTRACT**

13 Morphogenesis requires the coordination of cellular behaviors along developmental axes¹. In
14 plants, gradients of growth and differentiation are typically established along a single longitudinal
15 primordium axis to control organ shaping². Here we combine quantitative live-imaging at cellular
16 resolution with genetics, chemical treatments, and modeling to understand the formation of
17 *Arabidopsis thaliana* female reproductive organ (gynoecium). We show that, contrary to other
18 aerial organs, gynoecium shape is determined by two competing differentiation gradients
19 positioned along two orthogonal axes. An early mediolateral gradient, dependent on meristematic
20 activity in the medial domain, controls the valve morphogenesis while simultaneously restricting
21 an auxin-dependent, longitudinal gradient to the style. This gradient competition serves to fine-
22 tune the common developmental program governing organ morphogenesis to ensure the
23 specialized function of the gynoecium^{3,4}.

24 MAIN TEXT

25 Morphogens provide positional information to control growth and patterning during the
26 development of multicellular organisms^{5,6}. Coordination between developmental gradients across
27 different growth axes is critical for the establishment of a proper body plan during early
28 embryogenesis and for the development of planar organs both in plants and animals^{7,8}. In aerial
29 organs of plants such as leaves, petals, or sepals, gradients of growth and differentiation are
30 typically established along the longitudinal axis of the primordium to control their shape^{2,9-11}.
31 These gradients are proposed to be controlled by global organizers or biomechanical forces that
32 coordinate cellular behaviors at the organ level¹⁰⁻¹⁴. However, what mechanisms and molecular
33 components could account for global organizers remains unclear. Additionally, new growth axes
34 can also be introduced locally through gene and hormone activities at the organ margins to produce
35 protrusions such as leaflets or serrations in the leaf^{15,16}.

36 Gynoecium, the female reproductive organ of the flower, is composed in *Arabidopsis thaliana* of
37 two carpels fused with the repla and topped with the style and stigma (Fig. 1c)^{3,4}. Gynoecium
38 morphogenesis is suggested to be governed by a global polarity field spanning the epidermis and
39 oriented parallel to the organ's longitudinal axis¹⁷. However, in contrast to other aerial organs,
40 longitudinal gradients of growth and differentiation have not been previously reported in *A.*
41 *thaliana* gynoecium^{17,18}. This remarkable exception is surprising as carpels have been shown to
42 have a leaf-like origin¹⁹. It raises the question of how a common developmental program, likely
43 governing organ shaping in plants^{16,20-22}, could be modified to control the gynoecium
44 morphogenesis to ensure its specialized function.


45 Gynoecium develops inside the enclosed floral bud, and it is very challenging to image and
46 measure its growth, thus hindering our understanding of underlying processes. To overcome this

47 limitation, we developed a new imaging method to precisely follow the cellular dynamics guiding
48 gynoecium formation in *A. thaliana* (see Methods). We recorded the cellular behavior from early
49 stages at 2 days after gynoecium initiation (2 DAI, equivalent of floral stage 7) until its final shape
50 was established at 13 DAI²³. Using MorphoGraphX software²⁴, we extracted growth dynamics for
51 all cells in the surface layer of one side of the gynoecium (from ~70 cells at early primordium to
52 ~11000 cells at anthesis) and quantified growth rates, growth anisotropy (the ratio of expansion in
53 the maximal and minimal principal directions of growth), cell divisions, and cell geometries (i.e.,
54 cell sizes) (Fig. 1a-b, and Extended Data Fig. 1a-b). We used lineage tracing¹⁶ to determine the
55 origin of main gynoecium regions (i.e., valves, style, replum) and quantified their cellular growth
56 parameters (Fig. 1c-e and Extended Data Fig. 1c-d).

57 In the early stages (from 2 to 4 DAI), cellular growth and proliferation were high, and the
58 gynoecium expanded along its longitudinal axis (Fig. 1a-b,d-e, and Extended Data Fig. 1a,c).
59 Between 4 and 5 DAI, regions that will develop into valves, replum, and style started to display
60 divergent growth behaviors. The future style continued to elongate rapidly, while cell growth in
61 the replum strongly decreased but maintained its longitudinal orientation. Valves continued to
62 grow relatively fast but transitioned to much more isotropic growth (Fig. 1a-e). Consistent with
63 previous studies^{17,18}, cell area extension within both replum and valves appeared to be relatively
64 uniform. By contrast, we observed a non-homogeneous decrease of growth in the style (from 9
65 DAI), with cells located at the tip of the style slowing down their growth earlier than at the base
66 (Fig. 1a). These findings indicate that the common basipetal (from the tip to the base) gradient of
67 growth observed in all *Arabidopsis* aerial organs is also present in the gynoecium, but it is
68 established much later during development (around 8 DAI) and is spatially-restricted to the style.

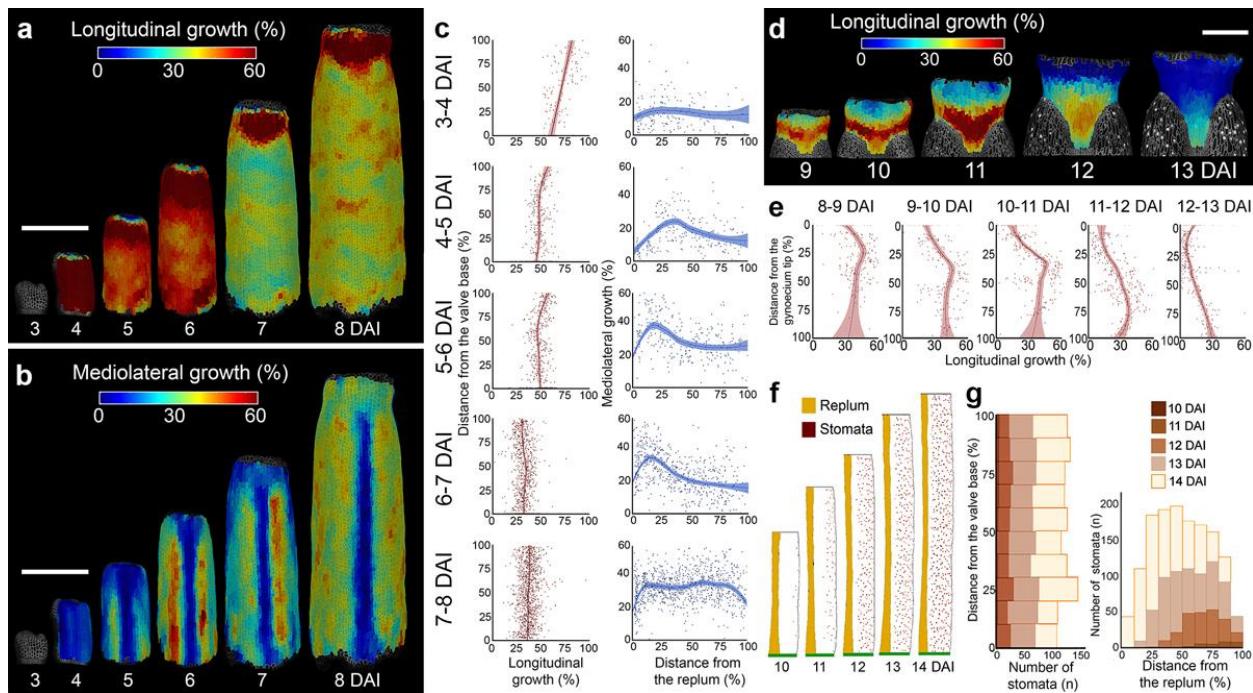
69 This restriction suggests that cellular growth may arise from local, temporal gradient activities
70 coordinated independently across different parts of the developing gynoecium.

71

72
73 **Fig. 1. Cellular growth patterns underlying gynoecium development.** a-b, Heat-maps of area extension
74 (a) and growth anisotropy (b) for the *Arabidopsis thaliana* gynoecium. c, Lineage tracing of style (green),
75 valves (blue) and replum (yellow) between 5 and 13 DAI. d-e, Quantifications of area extension (d) and
76 growth anisotropy (e) in different regions of the developing gynoecium (Three independent time lapse
77 series, n=104-10604 cells in one sample at specific time point). Error bars indicate SE. DAI: days after
78 gynoecium initiation. Scale bars, 100 μ m. See also Extended Data Fig. 1.

79

80


81 To verify this scenario, we next computed cellular growth rates in different regions of the
82 gynoecium along its longitudinal and mediolateral axes. The longitudinal growth was largely
83 homogeneous in the valves, while we observed a clear basipetal (from the tip to the base) gradient
84 of growth in the style from 7 DAI (Fig. 2a,c,d-e). Interestingly, upon valve specification at 4 DAI,
85 we noticed an unequal cellular growth along the mediolateral axis of the organ (Fig. 2b-c). In
86 particular, valve cells located close to the replum strongly increased their growth, establishing a
87 clear gradient of cellular expansion along the mediolateral axis (Fig. 2b-c). This gradient persisted
88 until 7/8 DAI when growth along the mediolateral axis equalized in the valves (Fig. 2b-c, and
89 Extended Data Fig. 2b). Interestingly, we also observed corresponding gradients of cellular
90 differentiation revealed by the appearance of the specialized cells (stomata or papilla) occurring
91 first in the more distal regions of the style and more lateral regions of the valves (Fig. 2f-g, and
92 Extended Data Fig. 1b). Our data suggest that time-shifted gradients of cellular behaviors are
93 controlled independently along longitudinal and mediolateral axes in different parts of the
94 developing gynoecium. Thus, two developmental gradients could locally tailor gynoecium
95 morphogenesis along these perpendicular growth axes at different developmental windows.

96

97

98

99

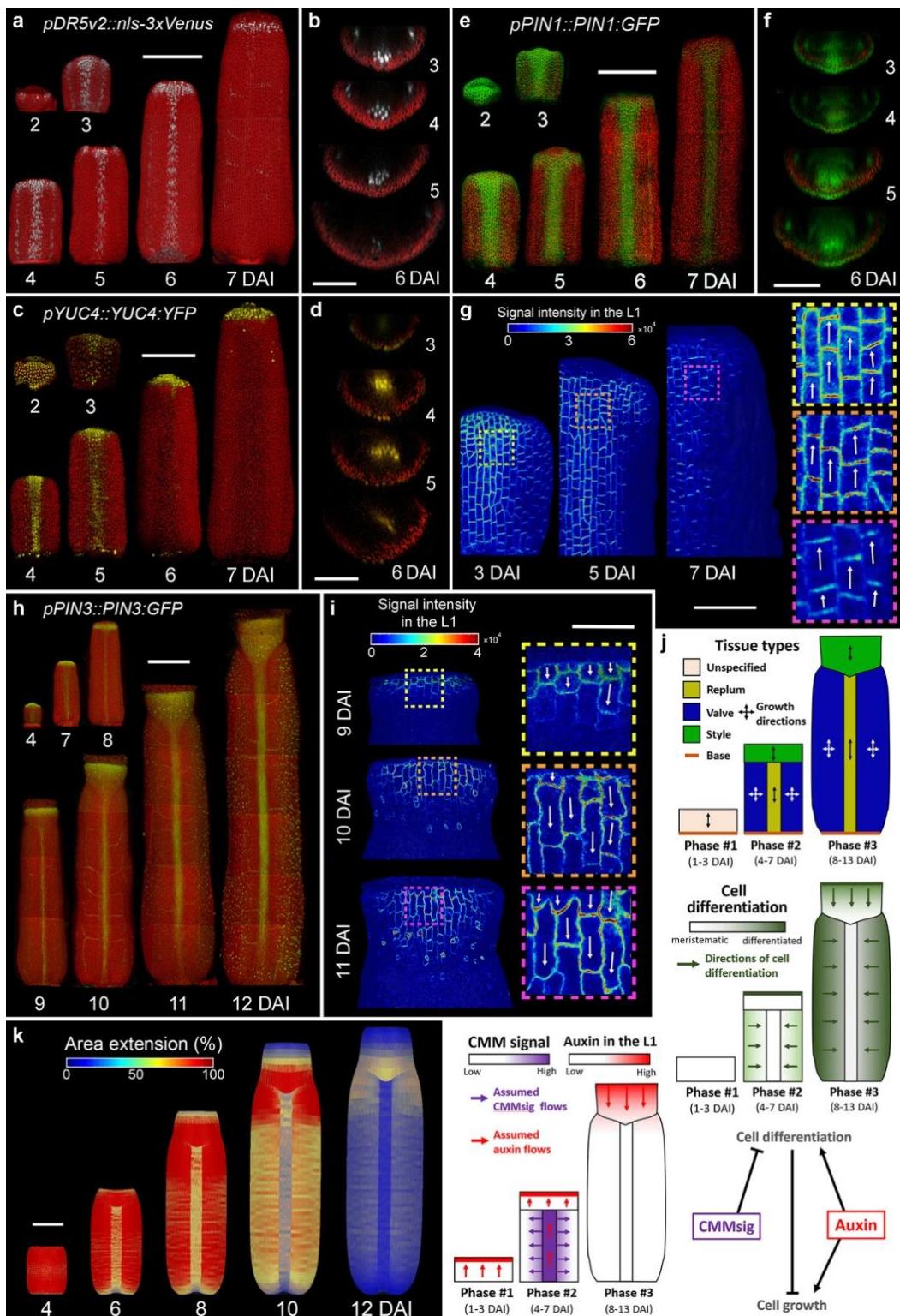
116 The molecular cues that could set these gradients are largely unknown. In theory, a longitudinal
117 gradient may emerge from a hypothetical signal diffusing from the organ base that would prevent
118 cellular differentiation in more proximal regions of the organ^{12,16}. However, this scenario is
119 unlikely in the style as the establishment of gradients in this part occurs at late developmental
120 stages (from 8-9 DAI) when the style is located far away from the base of the organ. Alternatively,
121 the longitudinal gradient could be controlled by a small molecule produced at the organ tip that
122 would stimulate cell differentiation. The phytohormone auxin is a plausible candidate for such a
123 signal, as auxin is known to control both cell growth and differentiation through concentration
124 gradients in plants^{16,25-27}. Auxin was also shown to control gynoecium patterning along its main
125 axis²⁸.

126 To test this hypothesis, we first monitored auxin responsiveness in the gynoecium using the
127 DR5v2::nls-3xVenus reporter line²⁹. DR5v2 signal in the epidermis was localized at the very tip
128 of the gynoecium until anthesis, with its intensity decreasing progressively at late developmental
129 stages from around 7-8 DAI (Fig. 3a and Extended Data Fig. 3a). Auxin synthesis monitored with
130 YUCCA4 (pYUC4::YUC4:YFP) reporter line³⁰ was initially detected in all epidermal cells (at 2
131 DAI), then became restricted to the replum (3-5 DAI) and to the very tip of the style (3-10 DAI)
132 and was finally eliminated from the epidermis at around 11 DAI (Fig. 3c, and Extended Data Fig.
133 3b). The PIN-FORMED1 (PIN1) auxin efflux carrier was present at the upper membranes in all
134 epidermal cells of the gynoecium at early stages (2-3 DAI) and later was progressively restricted
135 to the replum and the style, consistent with its involvement in the apical accumulation of auxin³¹
136 (Fig. 3e-g). Interestingly, the first signs of the establishment of the basipetal gradient of growth in
137 the style (from 8 DAI) coincided with the elimination of the PIN1 expression in the epidermis (Fig.
138 1a, Fig. 2d; Extended Data Fig. 3c). This suggests that acropetal (from the base to the tip) auxin

139 transport in the style could help restrict auxin to its tip at early developmental stages to prevent
140 precocious epidermal cell differentiation. At later stages, when PIN1 is eliminated from the
141 epidermis, auxin could move through other PINs to more proximal regions triggering the basipetal
142 gradient of cell differentiation.

143 To explore this possibility, we compared the expression of other PIN proteins involved in
144 gynoecium patterning with growth and differentiation gradients in the style. PIN3 was initially
145 (until 8 DAI) expressed at the tip of the style in a non-polarized manner consistent with its role in
146 style radialization^{31,32} (Fig. 3h). Strikingly, from 9 DAI, the PIN3 expression domain started to
147 extend toward more proximal regions of the style, tightly following the gradient of cellular growth
148 and differentiation in this region (Fig. 3h-i). Importantly, PIN3 appeared to switch its polarization
149 away from the organ tip (Fig. 3i), suggesting progressive establishment of basipetal auxin flow
150 through the style at late developmental stages. Such basal polarization was previously observed
151 only in the epidermis of the ovary after fertilization³³. Consistently, PIN7 followed a comparable
152 pattern of distribution and polarization in the style epidermis from 9 DAI (Extended Data Fig. 3d-
153 e). These data indicate that auxin originating from the gynoecium tip sets up the longitudinal
154 gradient of growth and differentiation in the style at late developmental stages.

155 Why is this longitudinal gradient restricted to the style? During early gynoecium development, a
156 carpel margin meristem (CMM) is formed along the margins at the inner side of the fused carpels.
157 The CMM gives rise to the placentae which produce ovules^{34,35} and is critical for the establishment
158 of the valves^{32,36}. The activity of CMM monitored by the ovule primordia initiation and associated
159 auxin production (YUC4 expression), auxin response (DR5v2), and PIN1-mediated auxin
160 transport, coincided with the establishment of the mediolateral gradient of growth and
161 differentiation in the valves from around 4-7 DAI (Fig. 2b; Fig. 3a,c,e; Extended Data Fig. 4)³⁷.


162 Therefore, we hypothesize that an active CMM may be a source of a putative mobile signal that
163 sets the mediolateral gradient of differentiation at early developmental stages of the gynoecium.
164 Furthermore, as the mediolateral gradient is the first to be set during gynoecium development, we
165 propose that it eventually outcompetes the latter longitudinal gradient by desensitizing valves to a
166 tip-derived signal by triggering valve cell differentiation at early stages.

167 To test this theory, we constructed a spatial-temporal computer model of the gynoecium that
168 integrates our experimentally-derived assumptions (Fig. 3j, see Methods). Briefly, the simulation
169 follows three stages representing the most relevant phases of gynoecium development (Fig. 3j).
170 Phase#1 (1-3 DAI): early gynoecium is composed of undifferentiated cells, and it grows rapidly
171 along the longitudinal organ axis. Phase#2 (4-7 DAI): new gynoecium regions (valves, replum,
172 and style) emerge, displaying divergent growth dynamics (fast and predominantly isotropic growth
173 in the valves, slow and anisotropic growth in replum, fast and anisotropic growth in the style).
174 Phase#3 (7-12 DAI): the longitudinal gradient of cell growth and differentiation is set in the style
175 and the organ achieves its final shape (Fig. 3j). The core assumptions of the model are: (1) non-
176 differentiated cells grow along the longitudinal axis of the organ; (2) Once the replum is
177 established (Phase#2), its growth is reduced and restricted to the longitudinal axis (Fig. 1a and Fig.
178 2a,b); (3) CMM is the source of a putative mobile signal (*CMMsig*) that triggers the identity of the
179 valve and inhibits differentiation in a concentration-dependent manner (Fig. 2f); (4) Auxin moving
180 through the epidermis leads to the establishment of a growth and differentiation gradient in the
181 style during Phase#3 (Fig. 3j). Valves show less competence to respond to tip derived auxin signals
182 during Phase#3 as they already started differentiating along the mediolateral axis during Phase#2.
183 With these assumptions, the computer model recapitulated general patterns of gynoecium growth
184 that were comparable to that observed experimentally (Fig. 1a, Fig. 3k, and Extended Data Fig. 5).

185 Similarly to experimental data, mediolateral growth concentrated solely in the valves and the
186 longitudinal gradient of growth was restricted to the style (Extended data Fig. 5a-b).

187

188

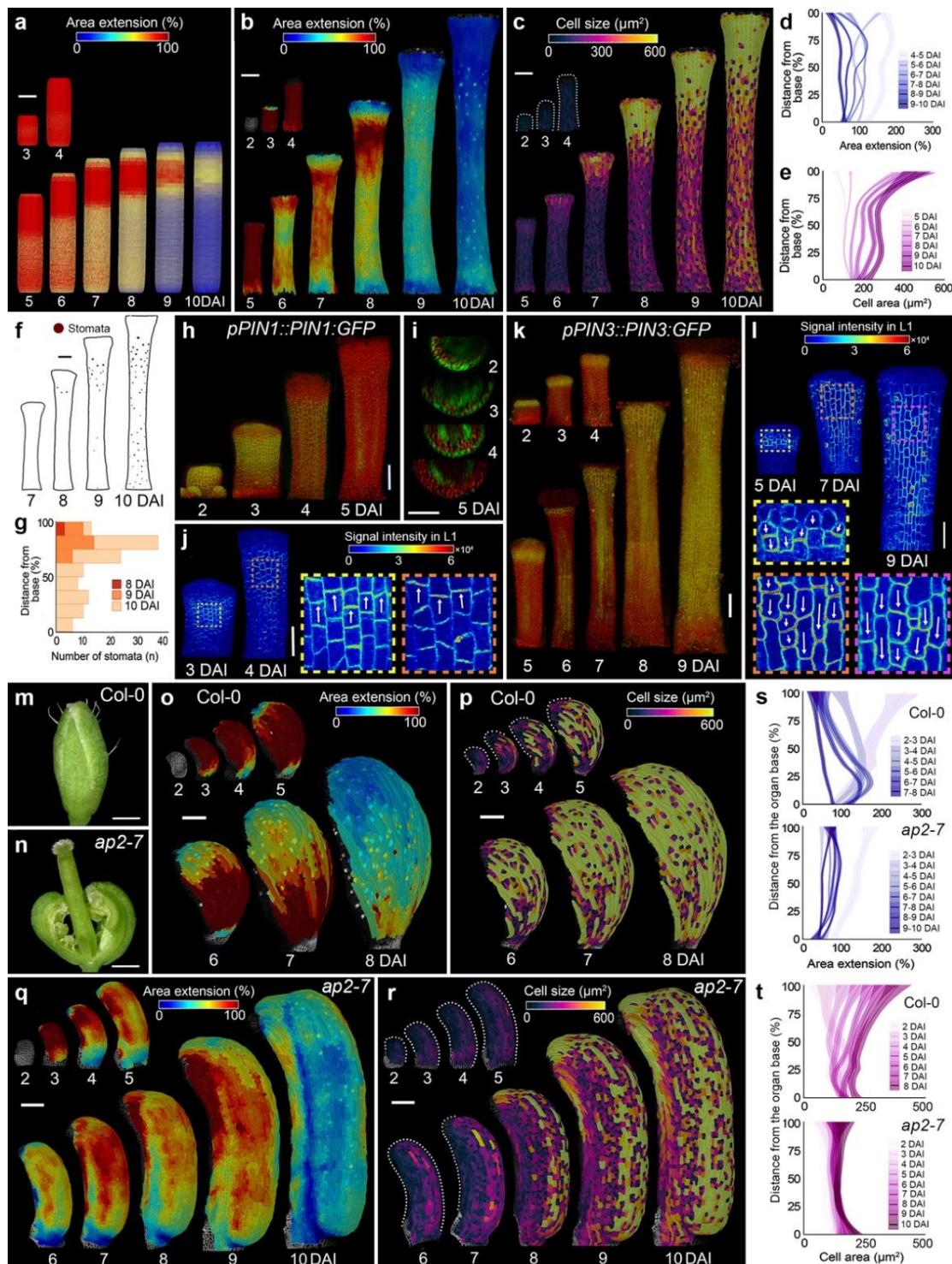
189

190 **Fig. 3. Auxin patterning and the model of gynoecium development.** a-k, Expression patterns of
 191 *pDR5v2::nls-3xVenus* (a-b), *pYUC4::YUC4:YFP* (c-d), *pPIN1::PIN1:GFP* (e-g), and *pPIN3::PIN3:GFP*
 192 (h-i) in the *A. thaliana* gynoecium. Virtual cross sections shown in (b, d, f) are located in the middle of the

193 gynoecium. **g, i**, Heat-maps represent the intensity of the *PIN1:GFP* (g) and *PIN3:GFP* (i) signal in the L1
194 epidermal layer (one side of the gynoecium tops are shown for PIN1 and the style is shown for PIN3). Insets
195 indicate membrane localization and arrows indicate orientation of PIN polarization. **j**, Model of *A. thaliana*
196 wild-type gynoecium growth. **k**, Resultant shape and distribution of growth rates predicted by the model
197 for wild-type gynoecium development. DAI: days after gynoecium initiation. Scale bars, 100 μ m in (a, c,
198 e, h, k) and 50 μ m in (b, d, f, g, i). See also Extended Data Figs. 3-5.

199

200 Our model assumes that the basipetal gradient set by auxin at later developmental stages (from 7-
201 8 DAI, Phase#3) is mainly restricted to the style by the activity of the CMM which controls the
202 establishment of the mediolateral gradient of cell differentiation in the valves during Phase#2,
203 making them less competent to respond to basipetal signal during Phase#3. Thus, removing the
204 CMM should allow the longitudinal gradient to spread to the more proximal regions of the organ
205 as they should be composed of undifferentiated cells that are now competent to respond to auxin
206 coming from the organ tip. Eliminating the CMM activity in our simulations abolished the
207 establishment of the valves resulting in the formation of radially symmetric organ instead of the
208 ovary (Fig. 4a, Extended Data Fig. 6). Importantly, since the CMM is now missing, the regions
209 that correspond to valves in wild-type scenarios are now competent to respond to the basipetal
210 signal resulting in expansion of gradients of cellular growth and differentiation (Figs. 3k and
211 4a, and Extended Data Fig. 6).


212 To experimentally test this model prediction, we removed the CMM activity using
213 naphthalphthalamic acid (NPA) treatment during gynoecium initiation. Indeed, this chemical
214 treatment led to the complete elimination of the valves and conversion of the gynoecium into a
215 radially symmetric tube-like structure^{28,36}, similar to that observed in model simulations (Fig. 4a-
216 c, and Extended Data Fig. 6). In this valveless gynoecium, the mediolateral growth was abolished

217 while the organ mainly expanded longitudinally (Extended Data Fig. 7). As in the wild-type, we
218 observed an establishment of the longitudinal gradient of growth and differentiation in the region
219 corresponding to style at later developmental stages (from 7 DAI). However, those gradients were
220 extended farther toward more proximal regions of the organ as compared to the wild-type where
221 they were mainly restricted to the very tip of the gynoecium (Figs. 1a, 4b-g, and Extended Data
222 Fig. 5a). The onset of the longitudinal gradients happened after the complete elimination of the
223 apically polarized PIN1 auxin efflux carrier from the epidermis (Fig. 4h-j, and Extended Data Fig.
224 6a). Strikingly, PIN3 that was initially (until 5 DAI) localized at the tip of the gynoecium in a non-
225 polarized manner, started (from 5-6 DAI) to polarize basally and progressively expanded its
226 expression throughout the entire epidermis at 9 DAI (Fig. 4k-l). This suggests that auxin, which
227 was initially synthesized and accumulated at the gynoecium tip (Extended Data Fig. 8b-d), was
228 likely transported through the epidermis toward the organ base to trigger the differentiation along
229 the longitudinal axis of the gynoecium. These results support the idea that an early CMM-
230 dependent establishment of the mediolateral gradient of differentiation in the valves is key to
231 preventing the tip-derived signal from setting up an organ-wide basipetal gradient of cell
232 differentiation.

233 If the presence of the CMM prevents cell differentiation from progressing along the main axis of
234 the gynoecium, the introduction of ectopic meristematic activity along the margins of other lateral
235 organs should abolish their typical basipetal gradients of growth and differentiation^{12,16,36,38}. In the
236 wild-type sepals (Fig. 4m), a clear longitudinal gradient of cellular growth and differentiation was
237 visible from around 5 DAI (Fig. 4o-p,s-t, and Extended Data Fig. 9a-c)¹¹. We then analyzed the
238 growth in the *ap2-7* mutant sepals, which develop carpeloid structures including placenta and
239 ovules along their margins (Fig. 4n,q)³⁹. In such carpelized sepals, the typical basipetal gradient of

240 cellular growth and differentiation was largely eliminated (Fig. 4q-t and Extended Data Fig. 9d-f).
241 Furthermore, cells located close to the modified margin of the *ap2-7* sepal tended to differentiate
242 later than cells further away from the margin, indicating that the meristematic activity along the
243 carpelized sepals in this mutant led to the establishment of the mediolateral gradient of
244 differentiation (Fig. 4r and Extended Data Fig. 9f). These findings confirm that the CMM activity
245 prevents the progression of basipetal cell differentiation throughout the entire organ by setting up
246 the mediolateral gradient early during development.

247

248

249 **Fig. 4. Marginal meristem activity underlies the establishment of the mediolateral developmental**
 250 **gradient. a, Resultant shape and distribution of growth rates predicted by the model of the gynoecium**
 251 **without the CMM. b-c, Heat maps of averaged area extension (b) and cell sizes (c) in *A. thaliana* gynoecia**
 252 **treated with the NPA. d-e, Quantification of cellular growth (d) and cell sizes (e) as a function of the**

253 distance from the gynoecium base after NPA treatment (three independent time-lapse series, n=219-1479
254 cells). **f-g**, Stomata distribution (f) and quantification of stomatal distribution as a function of the distance
255 from the gynoecium base (g) after NPA treatment (three independent time lapse series, n=3-100 stomata).
256 **h-l**, Expression patterns of *PIN1:GFP* (h-j) and *PIN3:GFP* (k-l) in gynoecia after NPA treatment. Heat
257 maps represent the intensity of the *PIN1:GFP* (j) and *PIN3:GFP* (l) signals in the L1 layer. Insets indicate
258 membrane localization; arrows indicate the orientation of PIN polarization. **m-n**, Wild-type (m) and *ap2-7*
259 sepal (n). **o-r**, Heat maps of averaged area extension (o,q) and cell sizes (p,r) of wild-type (o-p) and *ap2-7*
260 (q-r) sepals. **s-t**, Quantifications of area extension (s) and cell sizes (t) of wild-type sepal (three independent
261 time lapse series, n=113-1142 cells) and *ap2-7* sepal (three independent time lapse series, n=44-1478 cells).
262 For plots, the distance was normalized, lines represent the average and shaded areas represent standard
263 deviation (SD). DAI: days after organ initiation. Scale bars, 100 μ m (b-c, k-r) and 50 μ m (i-j, l). See also
264 Extended Data Figs. 5-9.

265

266 Our study revealed an underlying mechanism shaping gynoecium development, alternative to that
267 of other aerial organs. It is directed by competition between orthogonal time-shifted differentiation
268 gradients. A general delay of cell differentiation in the gynoecium is one of the critical events for
269 proper patterning of the fruit. It allows the introduction of the mediolateral gradient in the valves
270 before the onset of the basipetal cell differentiation. The mediolateral gradient in turn restricts the
271 progression of the basipetal gradient, typical for all lateral organs, to the style. From the
272 evolutionary point of view, this novel feature has contributed to the success of flowering plants
273 enabling simultaneous maturation of ovules that is critical for successful plant reproduction. Also,
274 we identified that two plausible signals control orthogonal gradients of differentiation, one likely
275 being auxin itself^{28,31-33}. The second signal could be other type of small molecules that are known
276 to act in a concentration-dependent manner including plant hormones^{40,41}. Cytokinin is particularly
277 plausible candidate for such a signal as it is active in the CMM, can diffuse through the tissue, and
278 is known to delay cell differentiation^{32,34,36,42}. Finally, the role of the mediolateral signaling is also

279 supported by recent study showing that putative signal derived from the developing seeds is critical
280 for fruit expansion after fertilization¹⁸.

281 There are interesting similarities of proposed mechanism with morphogen competition
282 mechanisms operating along single axis of growth in synthetic and natural systems^{43,44}. However,
283 unlike other studies this work highlights the importance of gradients that can act on different axes
284 of growth but also in different time windows, thus providing new insights into mechanisms of
285 spatial developmental competition during multicellular development. Our work will help expand
286 the repertoire of principles and strategies for the controllable regulation of morphogenesis through
287 spatial-temporal finetuning of morphogen gradients, thereby strengthening a foundation for
288 applications in the emerging field of synthetic developmental biology^{45,46}.

289
290 **MAIN REFERENCES**

- 291 1. Rogers, K. W. & Schier, A. F. Morphogen Gradients: From Generation to Interpretation. *292 Annu. Rev. Cell Dev. Biol.* **27**, 377–407 (2011).
- 293 2. Echevin, E. *et al.* Growth and biomechanics of shoot organs. *J. Exp. Bot.* **70**, 3573–3585
294 (2019).
- 295 3. Roeder, A. H. K. & Yanofsky, M. F. *Fruit Development in Arabidopsis. The Arabidopsis*
296 *Book* **4**, e0075 (2006).
- 297 4. Herrera-Ubaldo, H. & de Folter, S. Gynoecium and fruit development in *Arabidopsis*. *Development* **149**, dev200120 (2022).
- 299 5. Briscoe, J. & Small, S. Morphogen rules: design principles of gradient-mediated embryo
300 patterning. *Development* **142**, 3996–4009 (2015).
- 301 6. Green, J. B. A. & Sharpe, J. Positional information and reaction-diffusion: two big ideas in
302 developmental biology combine. *Development* **142**, 1203–1211 (2015).
- 303 7. Moon, J. & Hake, S. How a leaf gets its shape. *Curr. Opin. Plant Biol.* **14**, 24–30 (2011).
- 304 8. Goodrich, L. v. & Strutt, D. Principles of planar polarity in animal development.
305 *Development* **138**, 1877–1892 (2011).
- 306 9. Andriankaja, M. *et al.* Exit from Proliferation during Leaf Development in *Arabidopsis*
307 *thaliana*: A Not-So-Gradual Process. *Dev. Cell* **22**, 64–78 (2012).

308 10. Sauret-Güeto, S., Calder, G. & Harberd, N. P. Transient gibberellin application promotes
309 Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation
310 of microtubules on the outer tangential wall of epidermal cells. *The Plant J.* **69**, 628–639
311 (2012).

312 11. Hervieux, N. *et al.* A Mechanical Feedback Restricts Sepal Growth and Shape in
313 Arabidopsis. *Curr. Biol.* **26**, 1019–1028 (2016).

314 12. Kuchen, E. E. *et al.* Generation of Leaf Shape Through Early Patterns of Growth and Tissue
315 Polarity. *Science* **335**, 1092–1096 (2012).

316 13. Mansfield, C. *et al.* Ectopic BASL Reveals Tissue Cell Polarity throughout Leaf
317 Development in Arabidopsis thaliana. *Curr. Biol.* **28**, 2638-2646.e4 (2018).

318 14. Fozard, J. A. *et al.* Localization of stomatal lineage proteins reveals contrasting planar
319 polarity patterns in Arabidopsis cotyledons. *Curr. Biol.* **32**, 4967-4974.e5 (2022).

320 15. Bilsborough, G. D. *et al.* Model for the regulation of Arabidopsis thaliana leaf margin
321 development. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 3424–3429 (2011).

322 16. Kierzkowski, D. *et al.* A Growth-Based Framework for Leaf Shape Development and
323 Diversity. *Cell* **177**, 1405-1418.e17 (2019).

324 17. Eldridge, T. *et al.* Fruit shape diversity in the Brassicaceae is generated by varying patterns
325 of anisotropy. *Development* **143**, 3394–3406 (2016).

326 18. Ripoll, J.-J. *et al.* Growth dynamics of the Arabidopsis fruit is mediated by cell expansion.
327 *Proc. Natl. Acad. Sci. U.S.A.* **116**, 25333–25342 (2019).

328 19. Scutt, C. P., Vinauger-Douard, M., Fourquin, C., Finer, C. & Dumas, C. An evolutionary
329 perspective on the regulation of carpel development. *J. Exp. Bot.* **57**, 2143–2152 (2006).

330 20. Sluis, A. & Hake, S. Organogenesis in plants: initiation and elaboration of leaves. *Trends
331 Genet.* **31**, 300–306 (2015).

332 21. Runions, A., Tsiantis, M. & Prusinkiewicz, P. A common developmental program can
333 produce diverse leaf shapes. *New Phytol.* **216**, 401–418 (2017).

334 22. Whitewoods, C. D. *et al.* Evolution of carnivorous traps from planar leaves through simple
335 shifts in gene expression. *Science* **367**, 91–96 (2020).

336 23. Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. Early flower development in
337 Arabidopsis. *Plant Cell* **2**, 755–767 (1990).

338 24. Strauss, S. *et al.* Using positional information to provide context for biological image
339 analysis with MorphoGraphX 2.0. *elife* **11**, 72601 (2022).

340 25. Benková, E. *et al.* Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant
341 Organ Formation. *Cell* **115**, 591–602 (2003).

342 26. Ding, Z. & Friml, J. Auxin regulates distal stem cell differentiation in *Arabidopsis* roots.
343 *Proc. Natl. Acad. Sci. U.S.A.* **107**, 12046–12051 (2010).

344 27. di Mambro, R. *et al.* Auxin minimum triggers the developmental switch from cell division
345 to cell differentiation in the *Arabidopsis* root. *Proc. Natl. Acad. Sci. U.S.A.* **114**, E7641–
346 E7649 (2017).

347 28. Nemhauser, J. L., Feldman, L. J. & Zambryski, P. C. Auxin and ETTIN in *Arabidopsis*
348 gynoecium morphogenesis. *Development* **127**, 3877–3888 (2000).

349 29. Liao, C.-Y. *et al.* Reporters for sensitive and quantitative measurement of auxin response.
350 *Nat. Methods* **12**, 207–210 (2015).

351 30. Zhang, Z. *et al.* A WOX/Auxin Biosynthesis Module Controls Growth to Shape Leaf Form.
352 *Curr. Biol.* **30**, 4857–4868.e6 (2020).

353 31. Moubayidin, L. & Østergaard, L. Dynamic Control of Auxin Distribution Imposes a
354 Bilateral-to-Radial Symmetry Switch during Gynoecium Development. *Curr. Biol.* **24**,
355 2743–2748 (2014).

356 32. Larsson, E., Franks, R. G. & Sundberg, E. Auxin and the *Arabidopsis thaliana* gynoecium.
357 *J. Exp. Bot.* **64**, 2619–2627 (2013).

358 33. Li, X.-R. *et al.* Systems Biology Approach Pinpoints Minimum Requirements for Auxin
359 Distribution during Fruit Opening. *Mol. Plant* **12**, 863–878 (2019).

360 34. Bowman, J. L., Baum, S. F., Eshed, Y., Putterill, J. & Alvarez, J. Molecular Genetics of
361 Gynoecium Development in *Arabidopsis*. in *Curr. Top. Dev. Biol.* **45**, 155–205 (1999).

362 35. Alvarez, J. & Smyth, D. R. CRABS CLAW and SPATULA genes regulate growth and
363 pattern formation during gynoecium development in *Arabidopsis thaliana*. *Int. J. Plant Sci.*
364 **163**, 17–41 (2002).

365 36. Zuñiga-Mayo, V. M., Reyes-Olalde, J. I., Marsch-Martinez, N. & de Folter, S. Cytokinin
366 treatments affect the apical-basal patterning of the *Arabidopsis* gynoecium and resemble the
367 effects of polar auxin transport inhibition. *Front. Plant. Sci.* **5**, 191 (2014).

368 37. Yu, S.-X. *et al.* Asynchrony of ovule primordia initiation in *Arabidopsis*. *Development* **147**,
369 dev196618 (2020).

370 38. Le Gloanec, C. *et al.* Cell type-specific dynamics underlie cellular growth variability in
371 plants. *Development* **149**, dev200783 (2022).

372 39. Modrusan, Z., Reiser, L., Feldmann, K. A., Fischer, R. L. & Haughn, G. W. Homeotic
373 Transformation of Ovules into Carpel-like Structures in *Arabidopsis*. *Plant Cell* **6**, 333–349
374 (1994).

375 40. Nemhauser, J. L. & Chory, J. BRing it on: new insights into the mechanism of
376 brassinosteroid action. *J. Exp. Bot.* **55**, 265–270 (2003).

377 41. Chini, A., Gimenez-Ibanez, S., Goossens, A. & Solano, R. Redundancy and specificity in
378 jasmonate signalling. *Curr. Opin. Plant. Biol.* **33**, 147–156 (2016).

379 42. Reyes-Olalde, J. I. *et al.* The bHLH transcription factor SPATULA enables cytokinin
380 signaling, and both activate auxin biosynthesis and transport genes at the medial domain of
381 the gynoecium. *PLoS Genet.* **13**, e1006726 (2017).

382 43. Grant, P. K. *et al.* Interpretation of morphogen gradients by a synthetic bistable circuit. *Nat.*
383 *Commun.* **11**, 5545 (2020).

384 44. Vacik, T., Stubbs, J. L. & Lemke, G. A novel mechanism for the transcriptional regulation
385 of Wnt signaling in development. *Genes Dev.* **25**, 1783–1795 (2011).

386 45. Ebrahimkhani, M. R. & Ebisuya, M. Synthetic developmental biology: build and control
387 multicellular systems. *Curr. Opin. Chem. Biol.* **52**, 9–15 (2019).

388 46. Stapornwongkul, K. S., de Gennes, M., Cocconi, L., Salbreux, G. & Vincent, J.-P.
389 Patterning and growth control in vivo by an engineered GFP gradient. *Science* **370**, 321–
390 327 (2020).

391

392

393

394

395 METHODS

396 Plant material and growth conditions

397 *pUBQ10::myb:YFP*⁴⁷, *pUBQ10::PM:TDTomato*⁴⁸, *pPIN1::PIN1:GFP*⁴⁹, *pPIN3::PIN3:GFP*⁵⁰,
398 *pPIN7::PIN7:GFP*⁵¹, *pYUC4::YUC4:YFP*³⁰, and *ap2-7*³⁹ (Accession number N6241) were in
399 Columbia background and *DR5v2::nls-3xVenus*²⁹ was in Columbia/Utrecht background.
400 *pUBQ10::PM:TDTomato* and *DR5v2::nls-3xVenus* were crossed and analyzed in F3. Plants were
401 grown on soil in a growth chamber under long-day conditions (16 h illumination, 95 μmol m² s⁻¹)
402 with 60%–70% relative humidity at 22 ± 1°C.

403

404 **Live-imaging microscopy**

405 3-weeks-old flowers were dissected. Inflorescences were cut 2 cm below the apex, and the oldest
406 floral buds were removed using fine tweezers to uncover young floral primordia. Floral buds at
407 stage 7 and 8²³ were selected and initiating sepals, petals and stamens were manually removed with
408 a needle and fine tweezers to expose the early gynoecium. Dissected floral buds were transferred
409 to Ø60 mm petri dishes with 1/2 Murashige and Skoog (MS)⁵² medium supplemented with
410 vitamins, 1.5% agar (w/v), 1% sucrose (w/v), and 0.1% Plant Protective Medium (Plant Cell
411 Technologies; v/v). Dissected stems were placed horizontally in a cavity cut out in the culture
412 medium as described previously⁵³, immersed in water, and abaxial gynoecium surface was imaged
413 at 24 h intervals for up to 13 days. Between imaging, water was removed, and samples were
414 transferred to a growth chamber with standard long day conditions (16 h illumination, 95 μ mol m²
415 s⁻¹) with 60%–70% relative humidity at 22 \pm 1 °C. The images shown in Fig. 1 and 2 are derived
416 from two independent overlapping time lapse experiments (2-4 DAI and 4-13 DAI). The images
417 shown in Fig. 4b-c are derived from two independent overlapping time lapse experiments (2-5
418 DAI and 5-10 DAI). The images shown in Fig. 4q-r are derived from two independent overlapping
419 time lapse experiments (2-4 DAI and 4-10 DAI).

420

421 **Microscopy and image analysis**

422 All the confocal imaging was performed using a Zeiss LSM 800 confocal laser scanning upright
423 microscope with a 40x long-distance working, water-dipping objective (W Plan-Apochromat
424 40x/1.0 DIC VIS-IRM27). Excitation was achieved using a diode laser with 488 nm for YFP and
425 GFP, and 561 nm for TdTomato. The emission was collected at 500-550 nm for GFP, at 490-520

426 nm for YFP/Venus, and at 600-660 nm for TdTomato. Confocal stacks were acquired using a step
427 size of 0.5-1 μ m distance in z -dimension, at 16 bits image depth, and 512 x 512 pixel resolution.
428 For samples that were larger than the microscope field of view, multiple overlapping stacks were
429 acquired and stitched using MorphoGraphX^{24,54}.

430

431 **Image analysis**

432 The resulting confocal images were processed and analyzed using the MorphoGraphX
433 software^{24,54}. Stacks were manually stitched into a single file using the “combine stack” tool.
434 Surface detection was performed with the “edge detect” tool with a threshold from 8,000–10,000
435 followed by “edge detect angle” (threshold 4,000–6,000). Initial meshes of 3-5 μ m cube size were
436 created and subdivided 2-3 times before projecting the membrane signal (2-4 μ m from the mesh).
437 Segmentation was performed with the “auto-segmentation” tool, followed by manual curation and
438 segmentation of additional cells at the periphery of the mesh. Parent relations between cells of
439 successive time points were attributed manually.

440 For lineage tracking analysis, the parent relations between each of the consecutive time points
441 were combined to compute corresponding cell lineages over multiple days. The lineage data were
442 later used to compute area extension, cell growth anisotropy, and cell proliferation. Area extension
443 is calculated as the relative increase between the surface area of a mother cell and the area of its
444 daughter cell(s) at the next time point. It was expressed in percentage increase ([Total area of
445 daughter cells at T1/Area of mother cell T0-1] x 100). Heat maps of growth, growth anisotropy,
446 and cell divisions generated between consecutive time points were displayed in the second time
447 point.

448 Growth rates along the longitudinal and mediolateral axis of gynoecia were calculated using a
449 custom Bezier grid that was manually placed so that it closely followed the geometry of the organ
450 at each time point. They were expressed as percentage increase ([Total length of daughter cells at
451 T1/length of mother cell T0-1] x 100). Distance from the filament base was calculated using the
452 “Cell distance” tool, which measures the shortest path between cells following the organ surface
453 geometry.

454 Reverse lineage tracing of cells corresponding to different organ regions (style, replum and valves)
455 was performed as described previously⁵³.

456 Heat-maps of membrane localization of PIN proteins (*PIN1:GFP*, *PIN3:GFP*, *PIN7:GFP*) were
457 performed as described previously¹⁶. GFP signal was projected from 2-4 μm from the extracted
458 mesh.

459

460 **Chemical treatment**

461 For 1-N-naphthylphthalamic acid (NPA), flowers were treated for three consecutive days one week
462 after bolting with the solution containing 30 μM 1-N-naphthylphthalamic acid (Sigma) and 0.010
463 % (v/v) Silwet L-77. All treated plants were then grown under long-day conditions (16 h
464 illumination, 95 $\mu\text{mol m}^2 \text{s}^{-1}$) with 60%–70% relative humidity at $22 \pm 1^\circ\text{C}$. One week after the
465 last NPA treatment, flowers were dissected for live-imaging.

466

467 **Model description**

468 The computational model simulations were implemented using MorphoDynamX, a modeling
469 platform based on MorphoGraphX^{24,54}. MorphoDynamX is an advanced modeling framework
470 based on a geometric data structure called “Cell Complex”⁵⁵. The model’s initial template was a

471 triangulated hollow cylindrical mesh on which physical forces and chemical species are simulated.

472 The gynoecium growth was implemented using Position Based Dynamics (PBD)⁵⁶.

473 The model makes the following key assumptions:

474 (1) Gynoecium development is divided into three phases:

475 Phase#1: Early growth after initiation (1-3 DAI). The initial geometry of the primordium is a
476 hollow tube of size 50 μm in length and 100 μm in width. The early gynoecium is assumed to
477 be a homogenous tissue composed of undifferentiated cells. At this early stage, we assume
478 that growth is strongly anisotropic and distributed uniformly along the organ.

479 Phase #2: Establishment of clonally distinct regions (4-7 DAI). During this phase, we observe
480 the appearance of regions that will clonally develop into style, replum, and valves (Fig. 1C).
481 Based on our experimental observations, we assumed that cells in the valves start to
482 differentiate and slowly acquire isotropic growth, while cells in the replum and style stay
483 undifferentiated and conserve the initial longitudinal elongation. As a result, growth rates are
484 reduced in the replum while style and valves grow fast. In the model, we assume that replum
485 produces a mobile signal (*CMMsig*) promoting growth (by delaying differentiation) in the
486 neighboring valve cells. *CMMsig* induces a gradient of growth in the valves as discussed later.

487 Phase #3: The establishment of the longitudinal growth gradient in the style and the final shape
488 acquisition (7-12 DAI). During this phase, we introduced the basipetal gradient of growth in
489 the style that corresponds to the assumed auxin gradient generated by the activity of PIN3-
490 and PIN7-driven basipetal auxin movement through the epidermis (*BPsig*). Valves show less
491 competence to respond to this tip-derived auxin signal as their cells are already partially
492 differentiated. During this phase, *CMMsig* is deactivated coinciding with the cessation of

493 meristematic activity and ovules initiation. Finally, the components of the model stop growing,
494 and the gynoecium reaches its final shape.

495 (2) Global organ growth is driven by uniform internal pressure. This choice consents to replicate
496 a realistic organ shape and at the same time to abstract from single-cell local growth. However,
497 each triangle of the mesh is allowed to resist expansion depending on the concentration of the
498 chemicals, as described later. The pressure acting on every single vertex of the mesh is expressed
499 by the formula:

$$T_v = T \cdot n(f)/3 \quad (1)$$

500 T_v is the force acting on vertex v ; T is the turgor pressure force and $n(f)$ is the normal vector to
501 face f .

502 (3) Local tissue growth is regulated through the modulation of the rest length of the mesh edges
503 by chemical morphogens. The rest length is later used as a parameter for the distance constraint of
504 the PBD engine. The rest length for a given edge is updated according to the formula:

$$R_e = R_e \cdot (1 + E_e) \quad (2)$$

$$\frac{dE_e}{dt} = 0.5 \cdot \text{Max}_r \cdot \left(\frac{K^2}{k^2 + 1} \right) \sigma_e \quad (3)$$

$$\sigma_e = \frac{L_e - R_e}{R_e} \quad (4)$$

$$K = g_{CMMsig} \cdot CMMsig_f + g_{BPsig} \cdot BPsig_f \quad (5)$$

505

506 R_e is the current rest length of edge e ; E_e is the rest length update rate of edge e ; e is the strain on
507 edge e ; Max_r is the maximum update rate; K is the total morphogens contribution on edge update
508 rate; L_e is the length of edge e ; $CMMsig_f$ is the concentration of placenta signal inside face f (as
509 described later); $BPsig_f$ is the concentration of basipetal signal inside face f (as described later);
510 g_{CMMsig} is the growth promotion coefficient of CMM signal; g_{BPsig} is the growth promotion
511 coefficient of the basipetal signal.

512 (5) We assume that tissue growth is by default anisotropic in undifferentiated tissue. Local tissue
513 anisotropy is represented using an anisotropy factor. This anisotropy factor is later used as a
514 parameter for the strain constraint of the PBD engine (see below). The anisotropy factor ranges
515 from zero (full isotropy) to 1 (full anisotropy). During stage 1, the whole organ is assumed to be
516 anisotropic (as discussed before). At stage 2, valves start to acquire a more isotropic shape; this is
517 achieved by relaxing the anisotropy factor:

$$\frac{dA_f}{dt} = r_A / (1 + e^{-b_A * (A_f - Min_A)}) \quad (6)$$

518 A_f is the anisotropy factor for face f ; r_A is the anisotropy change rate; Min_A is the half-minimum
519 anisotropy factor; b_A is the anisotropy factor change rate coefficient.

520 (6) $CMMsig$ is produced in the replum and diffuses in the surrounding tissues (mainly in the
521 valves). In the valves, $CMMsig$ creates a bell-shaped mediolateral gradient of growth. In the model,
522 $CMMsig$ diffusion is not directly modeled through morphogen exchange between neighboring
523 faces as the high number of mesh elements would make this process computationally slow. Instead,

524 we calculated the distance of each mesh faces from the morphogen source (replum) and calculated
525 the morphogen concentration as a function of source expression rate and source distance:

$$CMMsig_f = b_{CMM} \cdot e^{-(d_f - m_{CMM})/s_{CMM}} \quad (7)$$

526 $CMMsig_f$ is the concentration of carpel margin meristem derived signal inside face f ; b_{CMM} is
527 $CMMsig$ maximum expression rate; d_f is the distance of face f from producer (the replum in
528 this case); m_{CMM} is the signal center of expression; s_{CMM} is the signal surface spread.

529 (7) A basipetal signal ($BPsig$) is generated along the style and is modeled in a similar fashion as
530 $CMMsig$ described before, with the source located at the very top of the organ. This signal appears
531 later in the simulation (corresponding to 7-11 DAI, Fig. 1a). The signal generates a bell-shaped
532 gradient centered in the style and induces tissue growth:

$$BPsig_f = b_{BP} \cdot e^{-(d_f - m_{BP})/s_{BP}} \quad (8)$$

533 $BPsig_f$ is the concentration of basipetal signal inside face f ; b_{BP} is $BPsig$ expression rate; d_f is
534 the distance of face f from producer (the top of the organ in this case) m_{BP} is the signal center of
535 expression; s_{BP} is the signal surface spread.

536 (8) PBD is a modeling technique that overcomes the typical limitation of force-based systems
537 (which tend to be unstable and/or computationally expensive) by omitting the velocity calculation
538 layer and the working direction of vertex positions throughout the application of physical
539 constraints. The current implementation of PBD is based on a more comprehensive adaptation
540 applied for root growth⁵⁷. The model presented here relies on two PBD constraints: the distance

541 constraint⁵⁶ which is applied to the mesh edges and regulates tissue stiffness and growth, and the
542 strain constraint, which is applied to mesh faces and regulates tissue anisotropy⁵⁸. The distance
543 constraint is regulated by two parameters: the constraint stiffness for compression/stretching (k_c/k_e ;
544 Table 1) and the rest length of the edge (described in equation 2). The strain constraint is
545 regulated by the anisotropy factor (described in equation 5), which serves as vertical constraint
546 stiffness.

547 (9) To replicate NPA treatment (Fig. 4b-c) *CMMsig* is abolished from the model, while replum
548 and valves do not acquire their identity. Hence, the gynoecium maintains the initial anisotropic
549 growth for the entirety of the simulation.

550 **Table 1. Model Parameters**

Parameter	Description	Value	Units
T	Internal pressure	100	N/ μm^2
Max_r	Maximum rest length update rate	1	$\mu\text{m}/\text{h}$
g_{BPsig}	<i>BPsig</i> growth promotion coefficient	2	1
g_{CMMsig}	<i>CMMsig</i> growth promotion coefficient	0.25	1
r_A	Anisotropy factor change rate	0.1	1
b_A	Anisotropy factor change rate coefficient	10	1
Min_A	Half-minimum anisotropy factor	0.7	1
m_{BP}	<i>BPsig</i> center of expression	20	μm

s_{BP}	$BPsig$ surface spread	80	μm
m_{CMM}	$CMMsig$ center of expression	50	μm
s_{CMM}	$CMMsig$ surface spread	60	μm
k_e	constraint stiffness for stretching	0.55	1
k_c	constraint stiffness for compression	1	1

551

552 **Data and code availability statement**

553 The confocal stacks and meshes used to extract growth parameters, all R-scripts used to analyze
554 data and the model codes are available to download from the Open Science Framework repository
555 (link to be provided).

556

557 **METHODS REFERENCES**

558 47. Willis, L. *et al.* Cell size and growth regulation in the *Arabidopsis thaliana* apical stem
559 cell niche. *Proc. Natl. Acad. Sci. U.S.A.* **113**, E8238–E8246 (2016).

560 48. Melnyk, C. W., Schuster, C., Leyser, O. & Meyerowitz, E. M. A Developmental
561 Framework for Graft Formation and Vascular Reconnection in *Arabidopsis thaliana*. *Curr.*
562 *Biol.* **25**, 1306–1318 (2015).

563 49. Heisler, M. G. *et al.* Patterns of Auxin Transport and Gene Expression during Primordium
564 Development Revealed by Live Imaging of the *Arabidopsis* Inflorescence Meristem. *Curr.*
565 *Biol.* **15**, 1899–1911 (2005).

566 50. Žádníková, P. *et al.* Role of PIN-mediated auxin efflux in apical hook development of
567 *Arabidopsis thaliana*. *Development* **137**, 607–617 (2010).

568 51. Belteton, S. A., Sawchuk, M. G., Donohoe, B. S., Scarpella, E. & Szymanski, D. B.
569 Reassessing the Roles of PIN Proteins and Anticlinal Microtubules during Pavement Cell
570 Morphogenesis. *Plant Physiol.* **176**, 432–449 (2018).

571 52. Murasnige, T. & Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with
572 Tobacco Tissue Cultures. *Physiol. Plant* **15**, 473–497 (1962).

573 53. Silveira, S. R., le Gloanec, C., Gómez-Felipe, A., Routier-Kierzkowska, A. L. &
574 Kierzkowski, D. Live-imaging provides an atlas of cellular growth dynamics in the
575 stamen. *Plant Physiol.* **188**, 769–781 (2022).

576 54. Barbier de Reuille, P. *et al.* MorphoGraphX: A platform for quantifying morphogenesis in
577 4D. *elife* **4**, e05864 (2015).

578 55. Prusinkiewicz, P. & Lane, B. Modeling morphogenesis in multicellular structures with cell
579 complexes and L-systems. *Springer Proc. Math.* **15**, 137–151 (2013).

580 56. Müller, M., Heidelberger, B., Hennix, M. & Ratcliff, J. Position based dynamics. *J. Vis.*
581 *Commun. Image R.* **18**, 109–118 (2007).

582 57. Marconi, M., Gallegi, M., Benkova, E. & Wabnik, K. A coupled mechano-biochemical
583 model for cell polarity guided anisotropic root growth. *elife* **10**, e72132 (2021).

584 58. Müller, M., Chentanez, N., Kim, T.-Y. & Miles, M. Strain Based Dynamics. *Symposium*
585 *on Computer Animation* 149–157 (2014) doi:10.2312/sca.20141133.

586

587 ACKNOWLEDGEMENTS

588 We thank Olivier Hamant and Lars Østergaard for the critical reading of the manuscript. We thank
589 Carlos Montoya for help with the sample segmentations, and Dolf Weijers, Zhengjuan Zhang, and
590 Kristoffer Jonsson for seeds of reporter lines. This work was supported by a New Initiative grant
591 from Centre SEVE to D.K. and Fonds de Recherche du Québec Nature et Technologies Team
592 Grant (2021-PR-282285) to D.K and A-L.R-K. D.K. was funded by Discovery grants from the
593 Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-05762). A-L.R-K.
594 was funded by a Discovery grants from the Natural Sciences and Engineering Research Council
595 of Canada (RGPIN-2018-04897). E.B. was funded by the Natural Sciences and Engineering
596 Research Council of Canada graduate study grant (BRPC-549453-2020). K.W. was funded by The

597 Programa de Atracción de Talento 2017 (Comunidad de Madrid, 2017-T1/BIO-5654) and
598 PID2021-122158NB-I00 (2022-2025). In the frame of SEV-2016-0672 and CEX2020-000999-S
599 funding to CBGP, M.M. was supported with a postdoctoral contract. K.W. was supported by
600 Programa Estatal de Generación del Conocimiento y Fortalecimiento Científico y Tecnológico del
601 Sistema de I+D+I 2019 (PGC2018-093387-A-I00) and I+D+I 2021 (PID2021-122158NB-I00)
602 from El Ministerio de Ciencia, Innovación y Universidades (MICIU) (to K.W.). This work has
603 been performed in the frame of the initiative “Centre of Excellence for Plant-Environment
604 Interactions (CEPEI)” between the CBGP, UPM-INIA/The Spanish National Research Council
605 (CSIC) and the IGDB and the Plant Stress Centre of the CAS. CEPEI initiative has been financially
606 supported by the "Severo Ochoa Programme for Centres of Excellence in R&D" from the Agencia
607 Estatal de Investigación of Spain [grants SEV-2016-0672 (2017 to 2021) to the CBGP]. S.D.F.
608 was supported by the Mexican National Council of Science and Technology (CONACyT) grant
609 CB-2017-2018-A1-S-10126.

610

611 **AUTHOR CONTRIBUTIONS**

612 D.K. and A.G.F., conceived and designed the experiments; K.W. and M.M. conceived and
613 designed the computational models; A.G.F. and H.B.R. performed all experiments with the help
614 from B.W.; A.G.F., E.B., B.W., T.S., and J.B. extracted data from time-lapse series with the help
615 from A-L.R-K.; A.G.F., B.W., and E.B. analyzed the data; D.K. supervised the project; A.G.F.,
616 M.M., K.W., and D.K., wrote the manuscript with input from S.D.F. and A-L-R-K; D.K., A-L.R-
617 K., and K.W. provided the funding. all the authors reviewed the manuscript.

618

619 **COMPETING INTERESTS**

620 The authors declare no competing or financial interests.

621

622

623

624

625

626

627

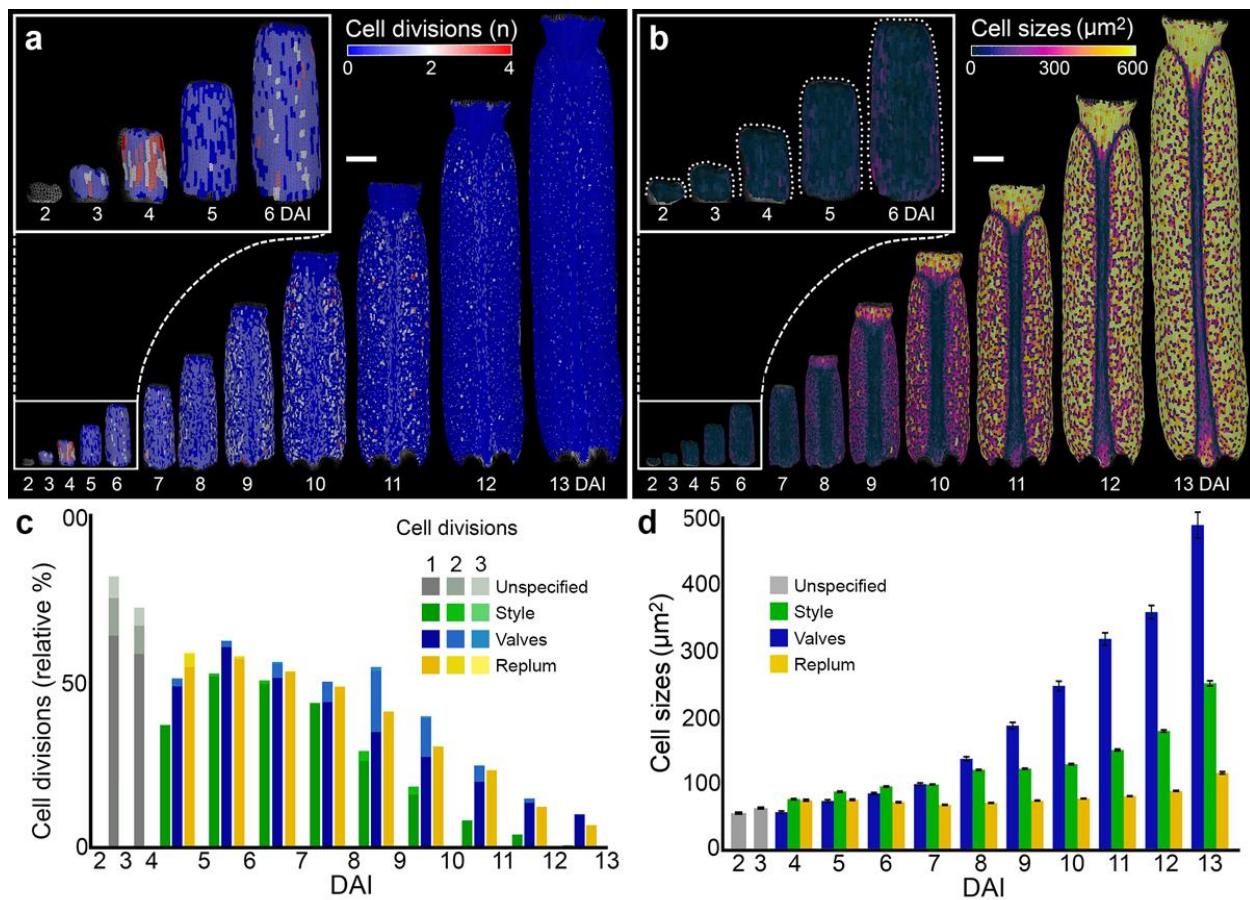
628

629

630

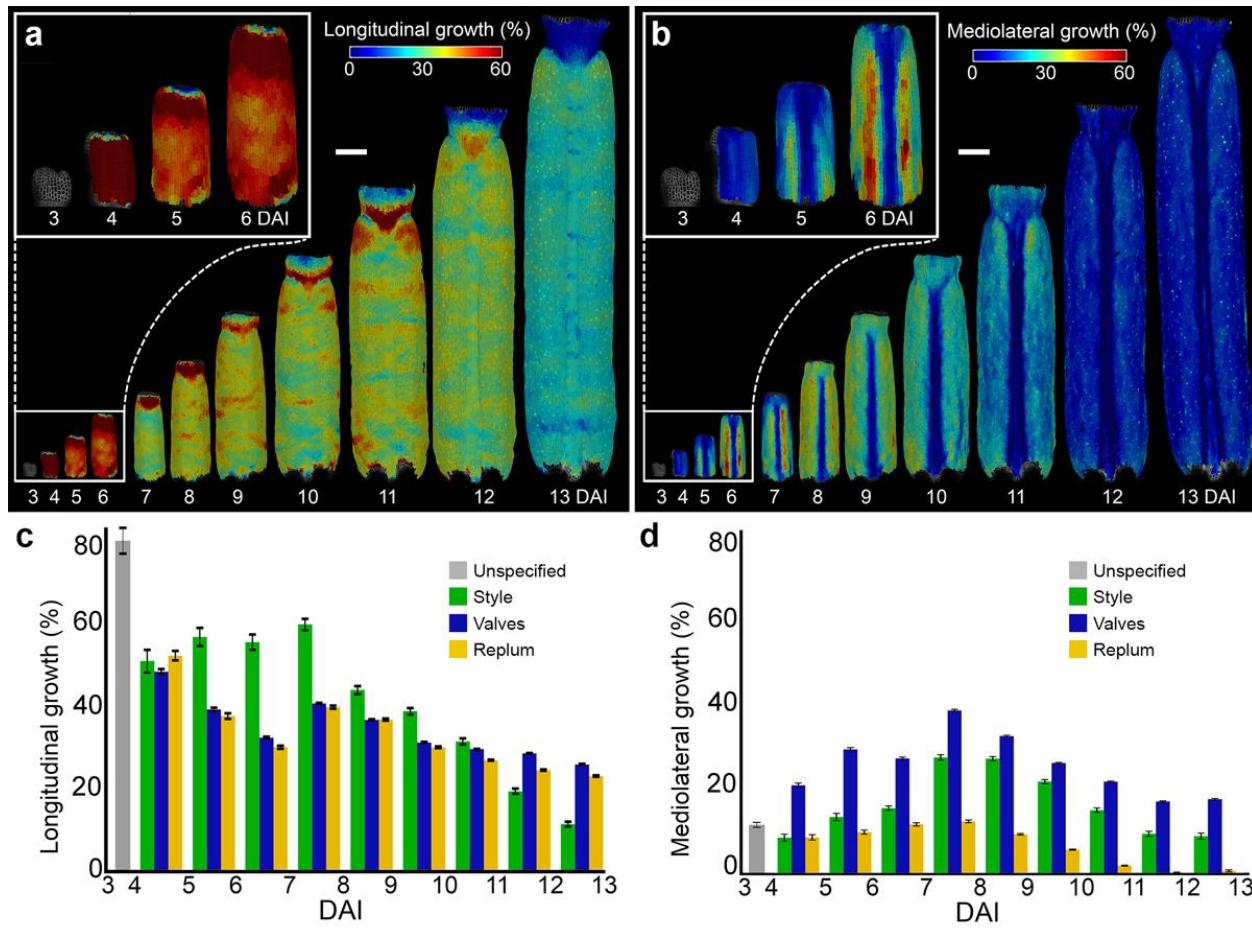
631

632

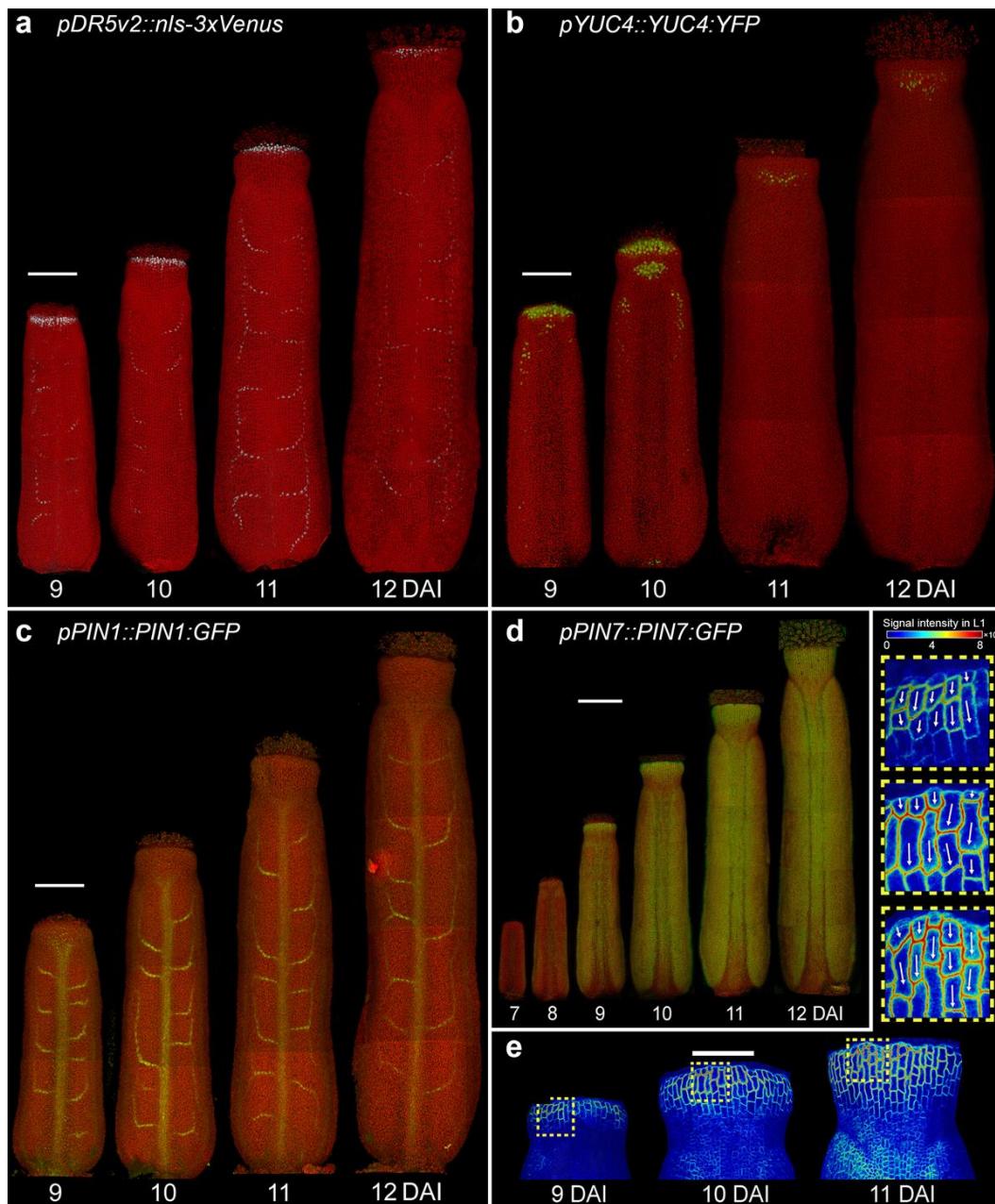

633

634

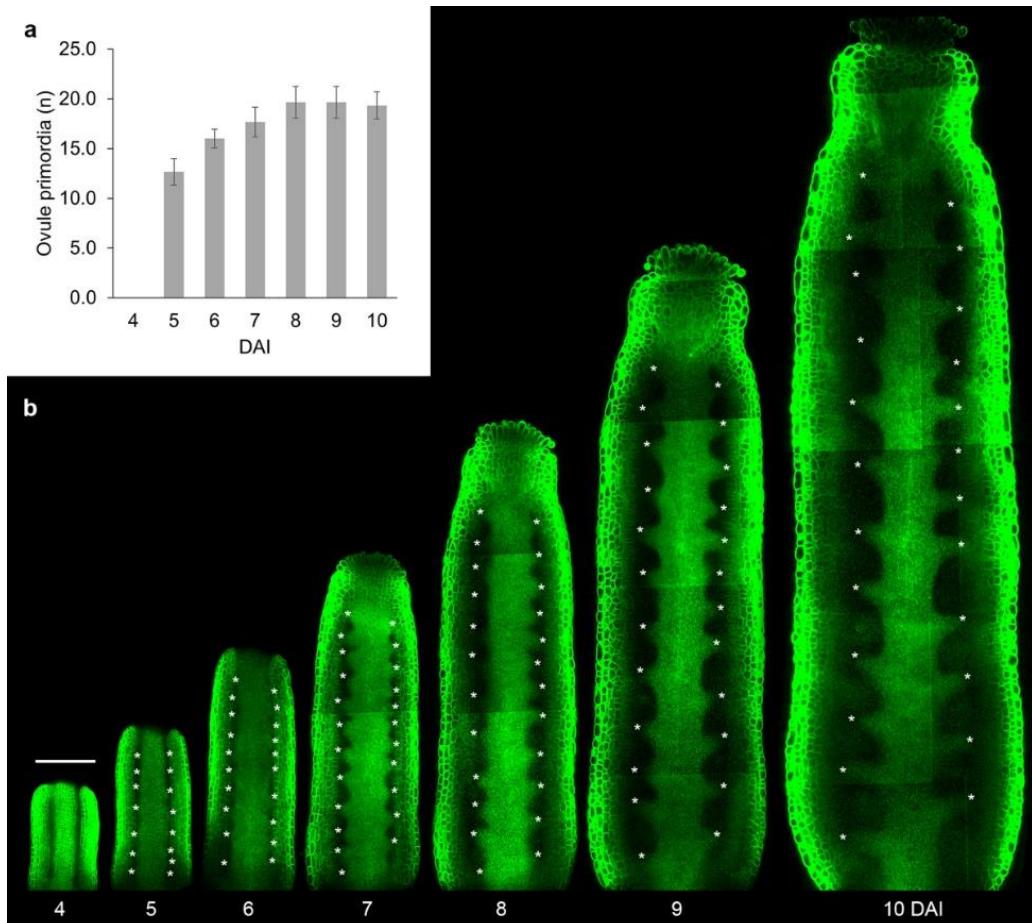
635


636

637 **EXTENDED DATA**

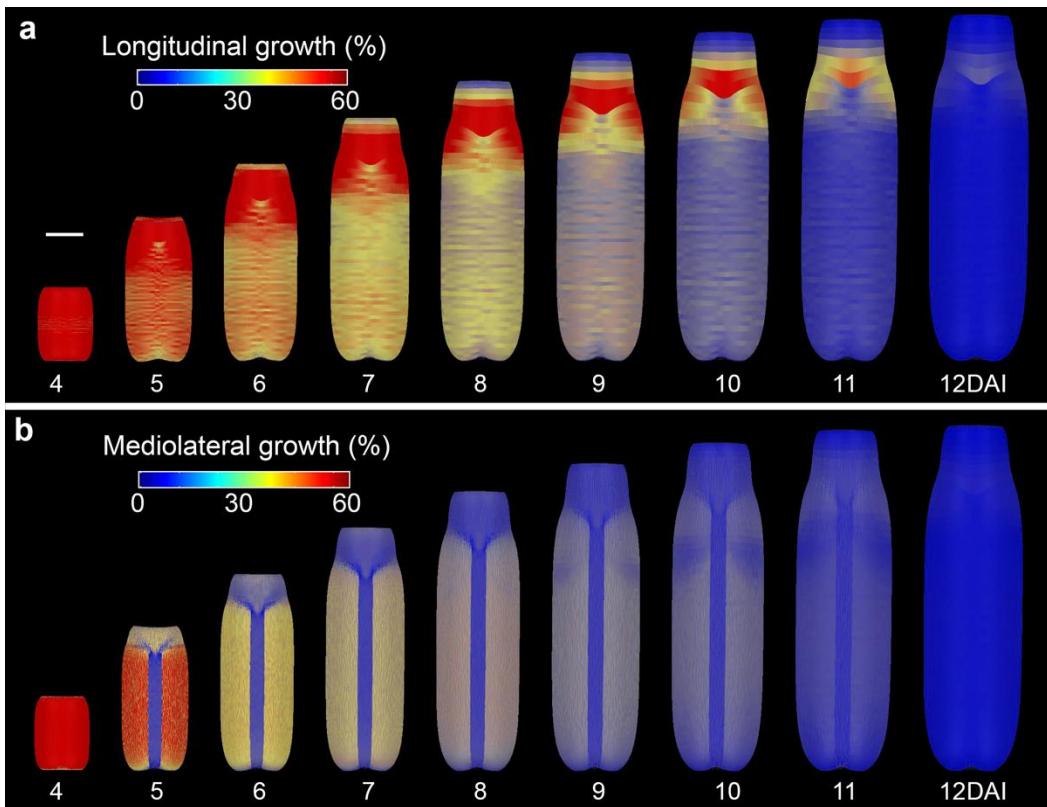

638

639 **Extended Data Fig. 1. Cellular patterns underlying gynoecium development. a-b,** Heat-maps
640 of cell divisions (a) and cell sizes (b) for the *Arabidopsis thaliana* gynoecium. **c-d,** Quantifications
641 of cell divisions (c) and cell sizes (d) in different regions of the developing gynoecium. Dotted
642 lines indicate gynoecium outlines. Three independent time lapse series, n=104-10653 cells in one
643 sample at specific time point. Error bars indicate SE. DAI indicates days after gynoecium
644 initiation. Scale bars, 100 μm . Related to Fig. 1

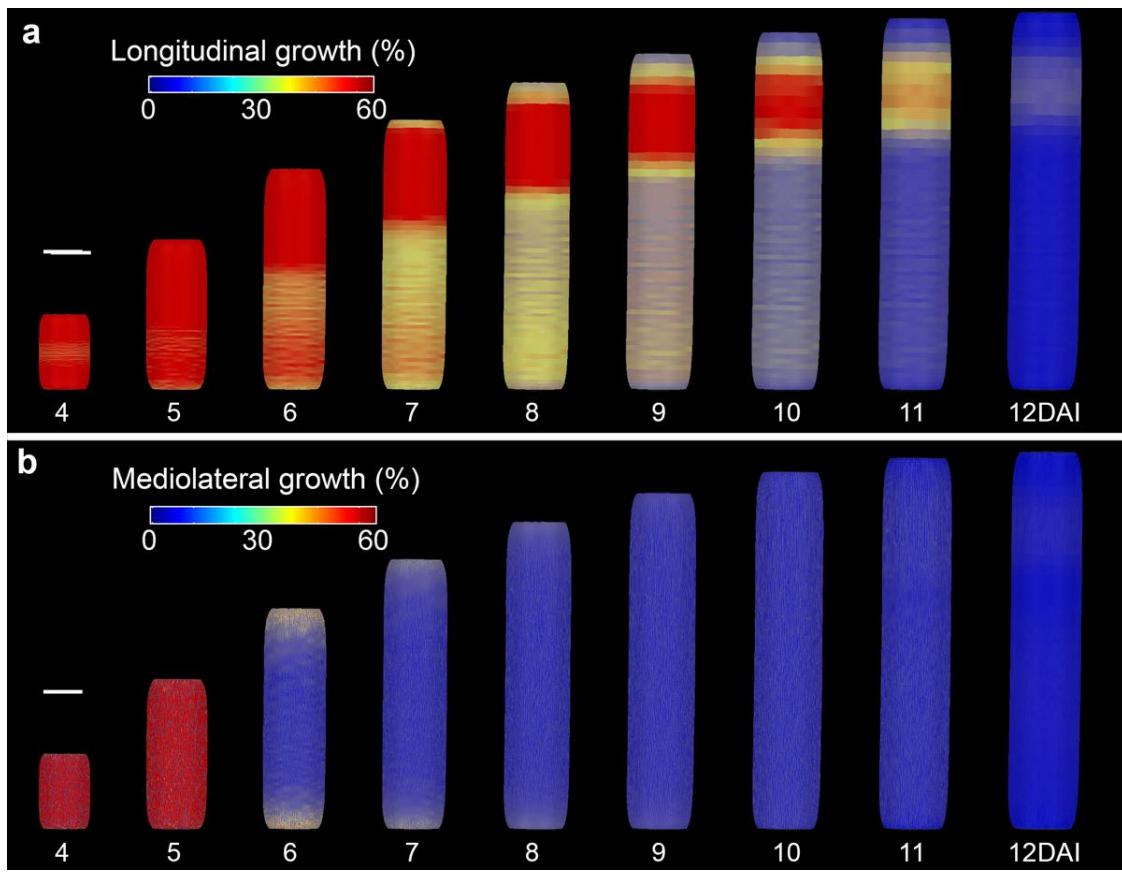


645 **Extended Data Fig. 2. Cellular growth varies along different gynoecium axes. a-b,** Heat-maps
646 of cellular growth along longitudinal (a) and mediolateral (b) axes of the gynoecium in *Arabidopsis*
647 *thaliana*. **c-d,** Quantification of cellular growth along longitudinal (c) and mediolateral (d) axes of
648 the developing gynoecium. Three independent time lapse series, n=104-10653 cells in one sample
649 at specific time point. Error bars indicate SE. DAI indicates days after gynoecium initiation. Scale
650 bars, 100 μ m. Related to Fig. 2.

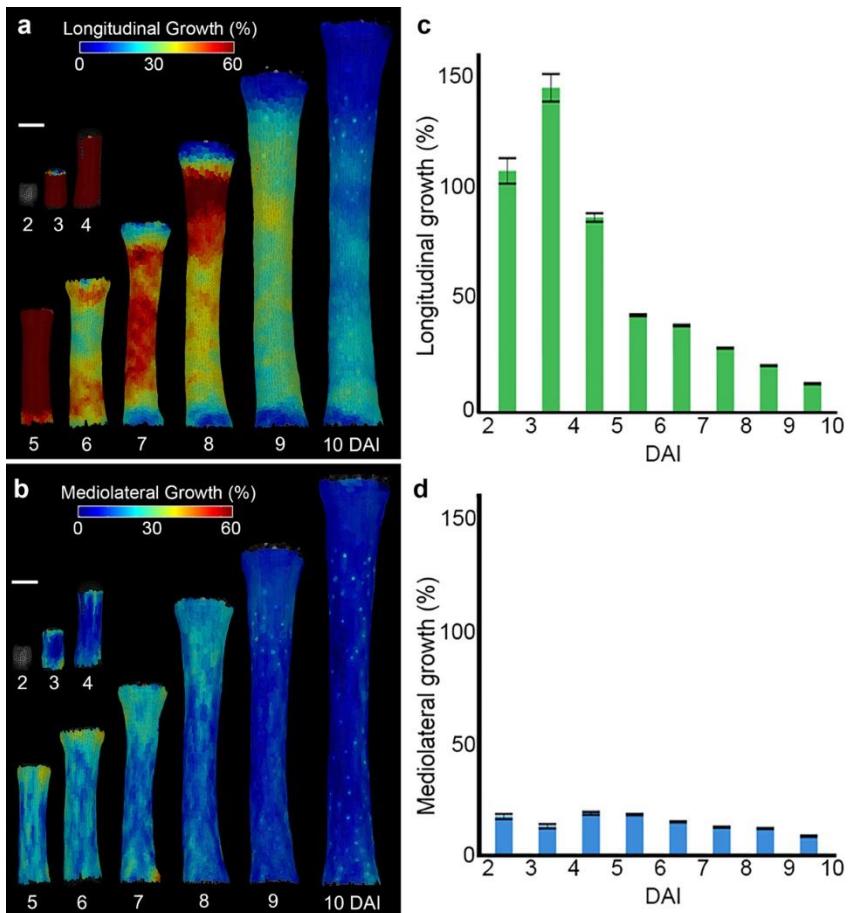
651



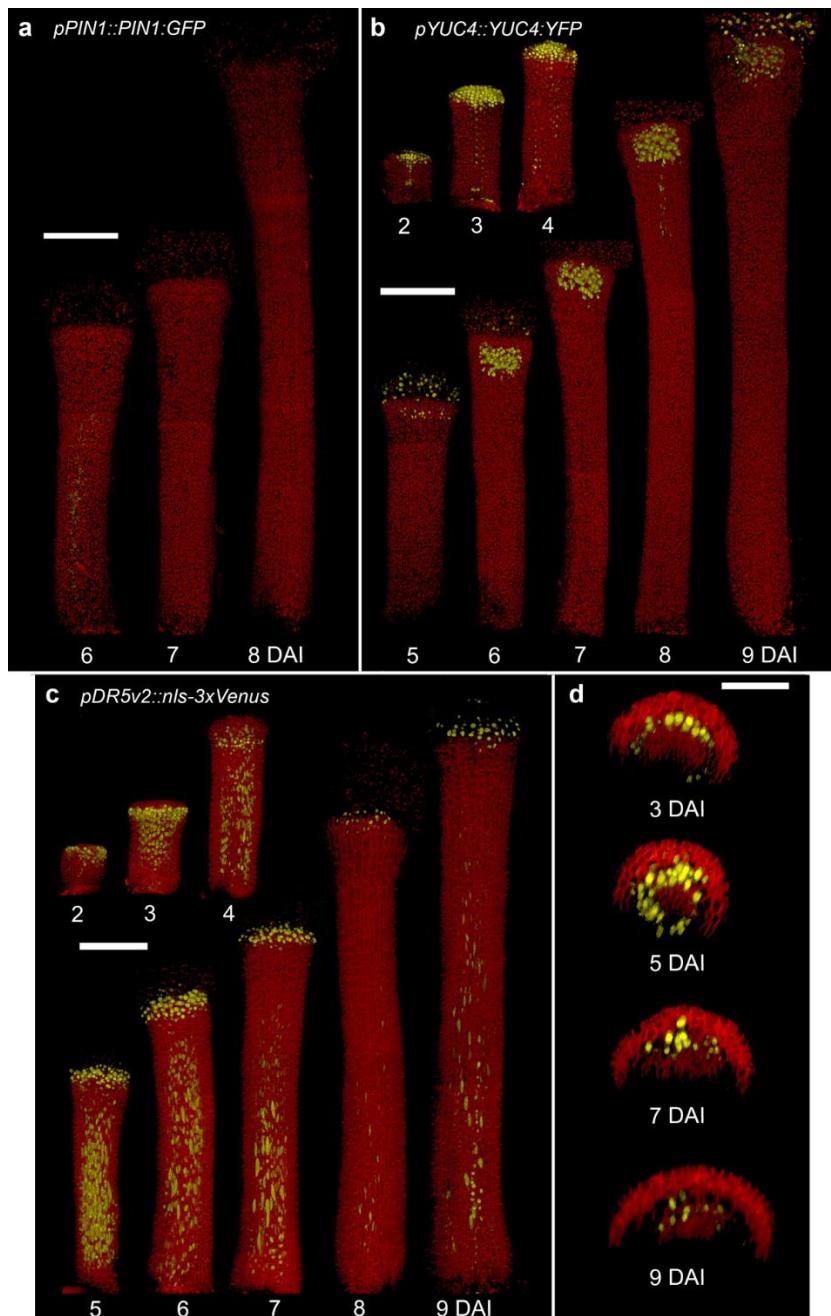
653 **Extended Data Fig. 3. Auxin patterning during gynoecium development. a-d,** Expression
654 patterns of *pDR5v2::nls-3xVenus* (a), *pYUC4::YUC4:YFP* (b), *pPIN1::PIN1:GFP* (c), and
655 *pPIN7::PIN7:GFP* (d) in the gynoecium of *A. thaliana*. e, Heat-maps of *PIN7:GFP* signal
656 intensity in the L1 epidermal layer of the style. Insets indicate membrane localization; arrows
657 indicate orientation of *PIN7* polarization. DAI indicates days after gynoecium initiation. Scale
658 bars, 100 μ m (a,b,c,d) and 50 μ m (e). Related to Fig. 3.



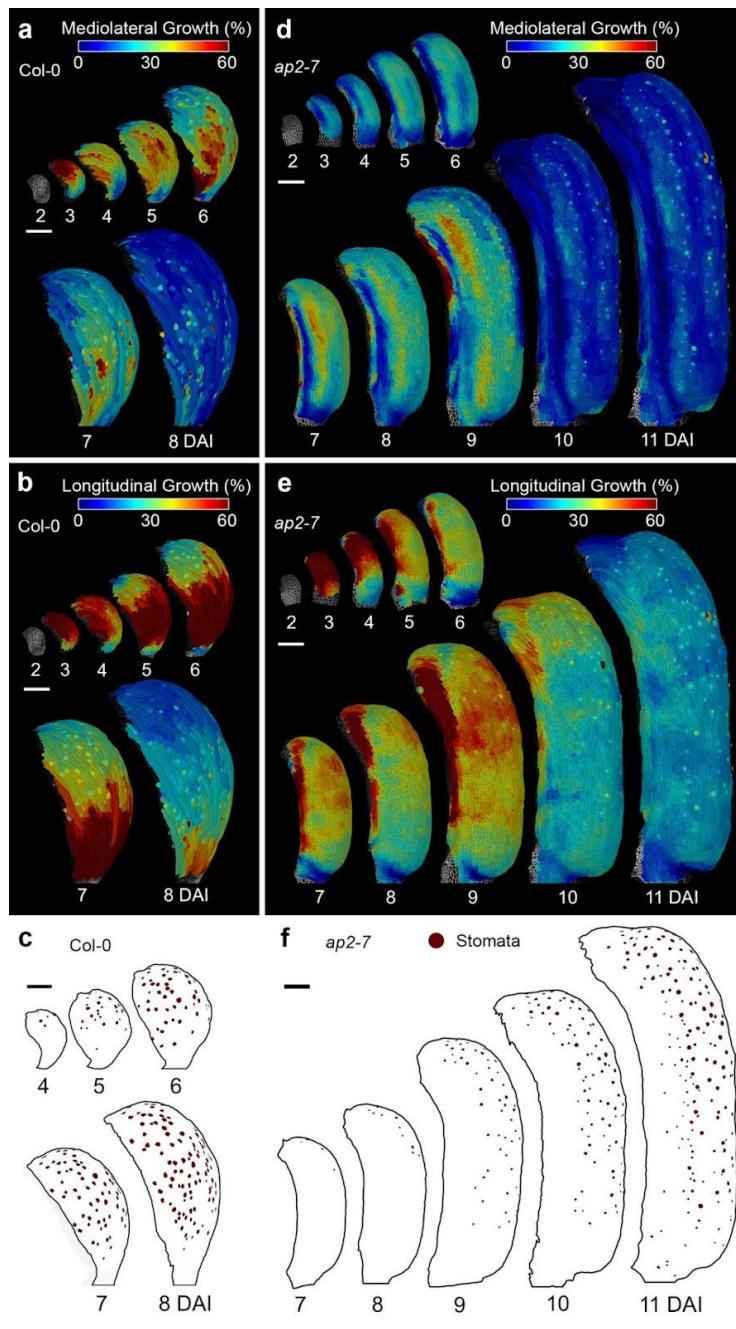
659


660 **Extended Data Fig. 4. Analysis of the initiation of ovule primordia.** **a**, Quantification of ovule
661 primordia in the digital longitudinal sections of the gynoecium of *Arabidopsis thaliana*. Error bars
662 indicate SD (Three independent time lapse series). **b**, Digital longitudinal sections through the
663 gynoecium. Asterisks mark ovule primordia. DAI: days after gynoecium initiation. Scale bar, 100
664 μm . Related to Fig. 3.

666 **Extended Data Fig. 5. Model of the wild-type gynoecium. a,** Distribution of longitudinal
667 growth rates predicted by the model of the WT gynoecium development. **b,** Distribution of
668 mediolateral growth rates predicted by the model of the WT gynoecium development. DAI: days
669 after gynoecium initiation. Scale bars, 100 μ m. Related to Fig. 3.


670
671 **Extended Data Fig. 6. Model of the gynoecium without the CMM. a,** Distribution of
672 longitudinal growth rates predicted by the model of the NPA-treated gynoecium development. **b,**
673 Distribution of mediolateral growth rates predicted by the model of the NPA-treated gynoecium
674 development. DAI: days after gynoecium initiation. Scale bars, 100 μ m. Related to Fig. 4.

675


676 **Extended Data Fig. 7. Longitudinal and mediolateral growth in NPA treated**
677 **gynoecia. a-b,** Heat maps of longitudinal (a) and mediolateral (b) average growth. **c-d,**
678 Quantification of longitudinal (c) and mediolateral (d) growth in the gynoecia after NPA treatment.
679 Three independent time-lapse series, n=219-1479 cells. DAI: days after gynoecium initiation.
680 Scale bars, 100 μ m.

681

682

683 **Extended Data Fig. 8. Auxin patterning during the development of valves gynoecium after**
684 **NPA treatment.** **a,** Expression patterns of *pPIN1::PIN1:GFP*. **b,** Expression pattern
685 of *pYUC4::YUC4:GFP*. **c-d,** Expression pattern of *pDR5v2::nls-3xVenus*. DAI: days after
686 gynoecium initiation. Scale bars, 100 μ m in (a-c) and 50 μ m in (d). Related to Fig. 3.

687

688 **Extended Data Fig. 9. Longitudinal growth, mediolateral growth and stomata distribution**

689 **in wild-type and *ap2-7* sepals. a-b,** Heat maps of mediolateral (a) and longitudinal (b) average

690 growth in WT sepals. **c,** Stomata distribution in WT sepal. **d-e,** Heat maps of mediolateral (d) and

691 longitudinal (e), average growth in *ap2-7* sepals. **f,** Stomata distribution in *ap2-7* sepal. Three

692 independent time lapse series were acquired for wild-type sepals (n=113-1142 cells) and *ap2-7*

693 sepal (n=44-1478 cells). DAI: days after gynoecium initiation. Scale bars, 100 μ m. Related to Fig.

694 4