

1 **Comparative phylogeography of Ponto-Caspian amphipods throughout the invaded Baltic
2 and native NW Black Sea donor ranges – can introduction mode affect genetic diversity?**

3
4 Denis Copilaş-Ciocianu^{1*} (<https://orcid.org/0000-0002-6374-2365>),
5 Eglė Šidagytė-Copilas¹ (<https://orcid.org/0000-0003-0336-7150>),
6 Mikhail O. Son² (<https://orcid.org/0000-0001-9794-4734>),
7 Halyna Morhun^{2,3} (<https://orcid.org/0000-0002-7888-477X>),
8 Jan Niklas Macher⁴ (<https://orcid.org/0000-0002-6116-7838>)
9 Kęstutis Arbačiauskas¹ (<https://orcid.org/0000-0001-8688-2291>)

10
11 ¹Laboratory of Evolutionary Ecology of Hydrobionts, Nature Research Centre, Vilnius, Lithuania

12 ²Department of Water Quality, Institute of Marine Biology of National Academy of Sciences of Ukraine, Odesa, Ukraine

13 ³Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Łódź, Poland

14 ⁴Naturalis Biodiversity Center, Leiden, The Netherlands

15 *corresponding author: denis.copilas-ciocianu@gamtc.lt

16
17 **Abstract**

18 The Baltic countries harbor a diverse assemblage of alien amphipods of Ponto-Caspian origin. The
19 composition of this fauna was shaped by three invasion waves: 1) pre-20th century dispersals via
20 watershed-connecting canals, 2) deliberate introductions in the 1960s, and 3) new dispersals during
21 the last decade via shipping and pre-existing canals. Given this rich invasion history, we test whether
22 genetic diversity (mitochondrial and nuclear) differs between the native and invaded ranges and
23 between the deliberately introduced species and the ones that dispersed on their own. Our results
24 show a significant decrease in mitochondrial but not nuclear genetic diversity in the invaded Baltic
25 range. We also find that in the invaded range the introduced species exhibit a higher mitochondrial
26 and nuclear genetic diversity than the species that dispersed on their own, while in the native range
27 only the nuclear diversity is higher in introduced species. Mitochondrial diversity was more
28 structured geographically in the native range and the dominant invasive haplotypes were detected in
29 the native populations of all but one species, further highlighting the utility of this marker in tracing
30 invasion sources. Our comparative approach provides important insight into the inter-range genetic
31 diversity of Ponto-Caspian invaders, highlighting the role of introduction mode.

32
33 **Keywords:** crustacea, dispersal, haplotype, introduction mode, invasive species, native, non-
34 native, range

35
36 **Statements and Declarations**

37 This study was funded by the Research Council of Lithuania (Contract No. S-MIP-20-26).

38 The authors declare no competing interests.

39
40 **Introduction**

41 The importance of genetic variation on the outcome of biological invasions has been
42 recognized for decades (Baker & Stebbins, 1965). Initially, it was thought that small founding alien
43 populations would be subjected to strong genetic drift and inbreeding, leading to severe loss of
44 genetic diversity and hampering adaptation to the novel environment by reducing fitness and
45 evolutionary potential (Estoup et al., 2016). However, it later became apparent that the loss of

46 genetic diversity is not so prevalent since the effects of bottlenecks can be overruled by various
47 factors such as high propagule pressure, admixture between invasive populations of different origin,
48 and spatially structured genetic diversity of source populations (Kolbe et al., 2007; Roman & Darling,
49 2007). Importantly, loss of variation at the commonly employed selectively neutral genetic markers
50 does not necessarily entail a reduction in variation at ecologically relevant traits that are under
51 selection (Dlugosch et al., 2015). Therefore, the so-called “genetic paradox of biological invasion” (i.e.
52 successful adaptation without genetic variation) is valid only for a few species (Estoup et al., 2016).

53 The Ponto-Caspian region has long been recognized as one of the most significant source of
54 aquatic invasive species throughout the Northern Hemisphere (Bij de Vaate et al., 2002; Copilaş-
55 Ciocianu et al., 2022b). The fauna of this area is ecologically diverse, adaptable and tolerant to large
56 salinity fluctuations, making it particularly successful at colonizing and rapidly multiplying in new
57 habitats (Reid & Orlova, 2002; Arbačiauskas et al., 2013; Šidagytė & Arbačiauskas, 2016; Hupało et
58 al., 2018; Meßner & Zettler, 2018; Paiva et al., 2018; Cuthbert et al., 2020; Copilaş-Ciocianu &
59 Sidorov, 2022). As such, Ponto-Caspian invasions are generally associated with significant ecological
60 and sometimes economic damage (Vanderploeg et al., 2002; Strayer, 2009; Haubrock et al., 2022).
61 Among this melting pot of Ponto-Caspian invaders, amphipod crustaceans seem to be the most
62 numerous, with up to 40% of the entire fauna expanding beyond the native range (Copilaş-Ciocianu
63 et al., 2022b), often with fatal consequences for the native species (Dermott et al., 1998;
64 Arbačiauskas, 2008; Grabowski et al., 2009; Rewicz et al., 2014; Soto et al., 2022).

65 The Baltic region and specifically Lithuania have a particularly rich history of Ponto-Caspian
66 amphipod invasions (Arbačiauskas et al., 2011). The first invasion wave took place well before the
67 20th century and was enabled by the construction of artificial canals that connected the Baltic and
68 Black Sea watersheds, providing a dispersal corridor for Ponto-Caspian species. Through this first
69 wave *Chelicorophium curvispinum* (Sars, 1895) and *Chaetogammarus ischnus* (Stebbing, 1899)
70 reached the area (Jarocki & Demianowicz, 1931; Jaźdżewski, 1980), although the latter does not
71 occur there anymore (Arbačiauskas et al., 2017; Copilaş-Ciocianu et al., 2022b). The second and most
72 important wave consisted of intentional introductions in the 1960s with the aim of improving fish
73 feed (Gasiūnas, 1963). Several peracarid species, including four amphipods (*C. ischnus*, *C.
74 warpachowskyi* (Sars, 1894), *Obesogammarus crassus* (Sars, 1894), and *Pontogammarus robustoides*
75 (Sars, 1894)) were initially introduced and acclimated in the Kaunas Water Reservoir (WR) in
76 Lithuania (though *C. ischnus* later went extinct) (Jaźdżewski, 1980; Vaitonis et al., 1990; Arbačiauskas
77 et al., 2017). From there they either were deliberately spread to other waterbodies and neighboring
78 countries (until the late 1980s) or dispersed on their own throughout most of the Baltic basin and
79 beyond (Arbačiauskas et al., 2011; Moedt & van Haaren, 2018; Meßner & Zettler, 2021). The sources
80 of these species’ translocations were the then newly-built Dnieper and Simferopol WRs in Ukraine
81 which were artificially populated with specimens originating from the native Dnieper-Bug estuary
82 (Arbačiauskas et al., 2017). The third and last invasion wave brought two more species
83 (*Dikerogammarus haemobaphes* (Eichwald, 1841) and *D. villosus* (Sowinsky, 1894)) in the last decade
84 which dispersed on their own via the previously built canals or the Baltic Sea (Šidagytė et al., 2017;
85 Copilaş-Ciocianu & Šidagytė-Copilas, 2022). On-going regional expansion is continuously reported in
86 all of these species throughout the Baltic region (Grudule et al., 2007; Arbačiauskas et al., 2017;
87 Minchin et al., 2019; Lipinskaya et al., 2021; Copilaş-Ciocianu & Šidagytė-Copilas, 2022).

88 The diverse history of introductions of invasive Ponto-Caspian species to the Baltic region
89 makes this area an interesting model system for comparative studies on the genetic diversity of

90 closely related invaders and how it is influenced by invasion history. As such, with this paper we aim
91 to answer two main questions outlined below.

92 **Question 1:** Do invasive populations exhibit a decrease in genetic diversity relative to the
93 donor populations? Considering the adaptability and success of Ponto-Caspian species in non-native
94 areas, one could assume that genetic diversity is not substantially reduced. Indeed, recent studies
95 have shown that invasive populations of multiple Ponto-Caspian species show comparable genetic
96 diversity with the native populations, especially at the nuclear genome (Stepien et al., 2005; Rewicz
97 et al., 2015; Audzijonyte et al., 2017; Jaźdżewska et al., 2020), although this is not always the case
98 (Cristescu et al., 2001, 2004; Rewicz et al., 2017).

99 **Question 2:** Is there a difference in genetic diversity patterns between the deliberately
100 introduced species (i.e. *C. warpachowskyi*, *O. crassus*, *P. robustoides*) and the ones that dispersed on
101 their own (i.e. *C. curvispinum*, *D. villosus*, *D. haemobaphes*)? Since multiple factors influence the
102 genetic diversity of invasive populations, we may expect noticeable differences between the
103 introduced and dispersed species. On one hand, the deliberately introduced species were released in
104 high numbers (thousands) of individuals at once, possibly retaining a significant proportion of the
105 original genetic diversity due to a less stringent effect of genetic drift. Contrastingly, species that
106 spread on their own are on the northern limit of their invaded range in the Baltic area (Copilaş-
107 Ciocianu et al., 2022b) and are possibly under stronger selective pressure due to prolonged dispersal
108 along an increasing gradient of environmental harshness. Given that these factors are known to
109 reduce genetic diversity (Hardie & Hutchings, 2010; Colautti & Lau, 2015), one could expect that the
110 species that arrived via dispersal would have a reduced genetic diversity in comparison to the
111 deliberately introduced species. On the other hand, species arriving via dispersal could harbor
112 significant genetic diversity due to a higher propagule pressure than the introduced species which
113 were transplanted only once from the native region (Roman & Darling, 2007).

114 As such, examining the genetic diversity of the invasive Ponto-Caspian amphipods among
115 ranges and introduction modes could provide important insight into their long-term persistence,
116 highlight their adaptation and evolutionary potential, and confirm their geographical origin.
117

118 Materials and methods

119 Sampling

120 Six species were targeted: three deliberately introduced in the Baltic region (*C.*
121 *warpachowskyi*, *O. crassus*, and *P. robustoides*) and three that dispersed on their own to this region
122 (*C. curvispinum*, *D. haemobaphes*, and *D. villosus*). The sampling was designed to thoroughly cover
123 both the native donor range (lagoons and estuaries throughout the NW Black Sea coast—26 sites)
124 and the invaded Baltic range (lagoons, rivers and lakes belonging to the SE Baltic Sea drainages—37
125 sites). In the native region we sampled specifically the lagoons and estuaries (Bug-Dnieper) which
126 were the initial sources, as well as the Simferopol WR in Ukraine which was artificially populated with
127 Dnieper-Bug specimens and from where the deliberately introduced species were transplanted to
128 Lithuania. Unfortunately, despite intense effort no amphipods were sampled from the Dnieper WR,
129 which was also artificially populated with Bug-Dnieper specimens that were subsequently introduced
130 to Lithuania. Adjacent regions in Romania and Bulgaria were also sampled in order to gain a better
131 understanding of the regional genetic diversity and to pinpoint the source populations of the three
132 species that dispersed on their own (Table S1, Fig. 1). In the invaded Baltic region the sampling
133 covered Estonia, Latvia and Lithuania with a special focus on the latter since it was the epicenter of
134 introductions. Additionally, we also included two sites from Poland (Vistula and Szczecin lagoons) as

135 these were also invaded from the Baltic countries by two of the deliberately introduced species (*O.*
136 *crassus*, and *P. robustoides*).

137 Animals were sampled in the late summer/early autumn in 2012, 2020, and 2021 (Table S1).
138 All possible habitats were sampled along shorelines in shallow water up to 1.5 m depth using kick
139 sampling with a hand net. Specimens were preserved in the field in 96% ethanol which was replaced
140 several times. In the laboratory the material was stored at -20°C in fresh ethanol. Specimens were
141 identified under a stereomicroscope using the latest keys (Copilaş-Ciocianu & Sidorov, 2022)

142

143 *Laboratory protocols*

144 Genomic DNA was extracted as described in Copilaş-Ciocianu et al. (2022). Briefly, a piece of
145 dorsal tissue was excised using a biopsy punch and DNA was isolated using the Quick-DNA Miniprep
146 Plus Kit (Zymo Research). Depending on the available material, between one and five individuals per
147 sampling location were used for genetic analyses. Two protein-coding markers were chosen for
148 sequencing: the mitochondrial cytochrome c oxidase subunit one (COI) and the nuclear long-wave
149 opsin (OPS). Previous studies indicated that these makers have sufficient variation to track invasion
150 pathways and explore genetic diversity of invasive Ponto-Caspian crustaceans (Audzijonyte et al.,
151 2008, 2017; Rewicz et al., 2015; Morhun et al., 2022). For *C. warpachowskyi* sequencing of OPS failed
152 and the nuclear large ribosomal subunit (28S) was sequenced instead which has a comparable level
153 of variation. The PCR protocols for COI followed Copilaş-Ciocianu et al. (2022) with primers from
154 (Astrin & Stüben, 2008), for OPS we followed (Moškrič & Verovnik, 2019) with primers from
155 (Audzijonyte et al., 2008), and for 28S we followed (Hou et al., 2007) with primers from the same
156 study. The OPS marker was heterozygous as indicated by double peaks in chromatograms. The
157 double peaks were coded using the IUPAC nucleotide ambiguity codes and haplotypes were phased
158 using PHASE (Stephens et al., 2001) implemented in DnaSP 6 (Rozas et al., 2017). Only phased OPS
159 haplotypes were used in subsequent analyses. Sequences were aligned using MUSCLE (Edgar, 2004)
160 implemented in MEGA 6 (Tamura et al., 2013). The COI and OPS sequences were subsequently
161 amino-acid translated to check for stop codons and reading frame shifts that would indicate
162 pseudogene amplification. None were detected. All the newly obtained sequences were submitted to
163 GenBank (COI accession numbers: ZZZ-YYY, OPS accession numbers: ZZZ-YYY, 28S accession numbers:
164 ZZZ-YYY) (will be provided during the revision). To the final datasets we also added 22 COI sequences
165 from a previous study (Copilaş-Ciocianu et al., 2022). See Supplementary Table S1 for further details.

166

167 *Genetic diversity and demographic analyses*

168 To explore the spatial patterns of haplotype distributions we constructed haplotype
169 networks for all markers using Haploviewer (Salzburger et al., 2011). As input we used maximum-
170 likelihood (ML) trees generated for each species individually with MEGA 6. Haplotype distribution
171 was plotted on maps using QGIS Desktop 3.22.8 (<http://www.qgis.org>).

172 Genetic diversity indices such as number of haplotypes (H_n), haplotype diversity (H_d),
173 nucleotide diversity (P_i), and the average number of nucleotide differences (K) were calculated for
174 each species and marker using the DNA polymorphism function in DnaSP 6. For comparative
175 purposes, these indices were also calculated separately for the native and invaded regions for each
176 species.

177 In order to test for signs of rapid demographic expansion throughout the invaded as well as
178 native regions, we performed several demographic tests and calculated their significance: Tajima's D
179 (Tajima, 1989), Fu's Fs (Fu, 1997), R2 (Ramos-Onsins & Rozas, 2002), and Raggedness statistic (Hri)

180 (Harpending, 1994). Tajima's D and R2 rely on the frequency of segregating sites, Fu's Fs on
181 haplotype distribution, while Hri measures the smoothness of the mismatch distribution (Ramos-
182 Onsins & Rozas, 2002). All tests were calculated in DnaSP 6. Additionally, mismatch distribution
183 analyses that examine the frequency of observed pairwise differences against an expected
184 distribution assuming population expansion were performed in DnaSP 6.

185

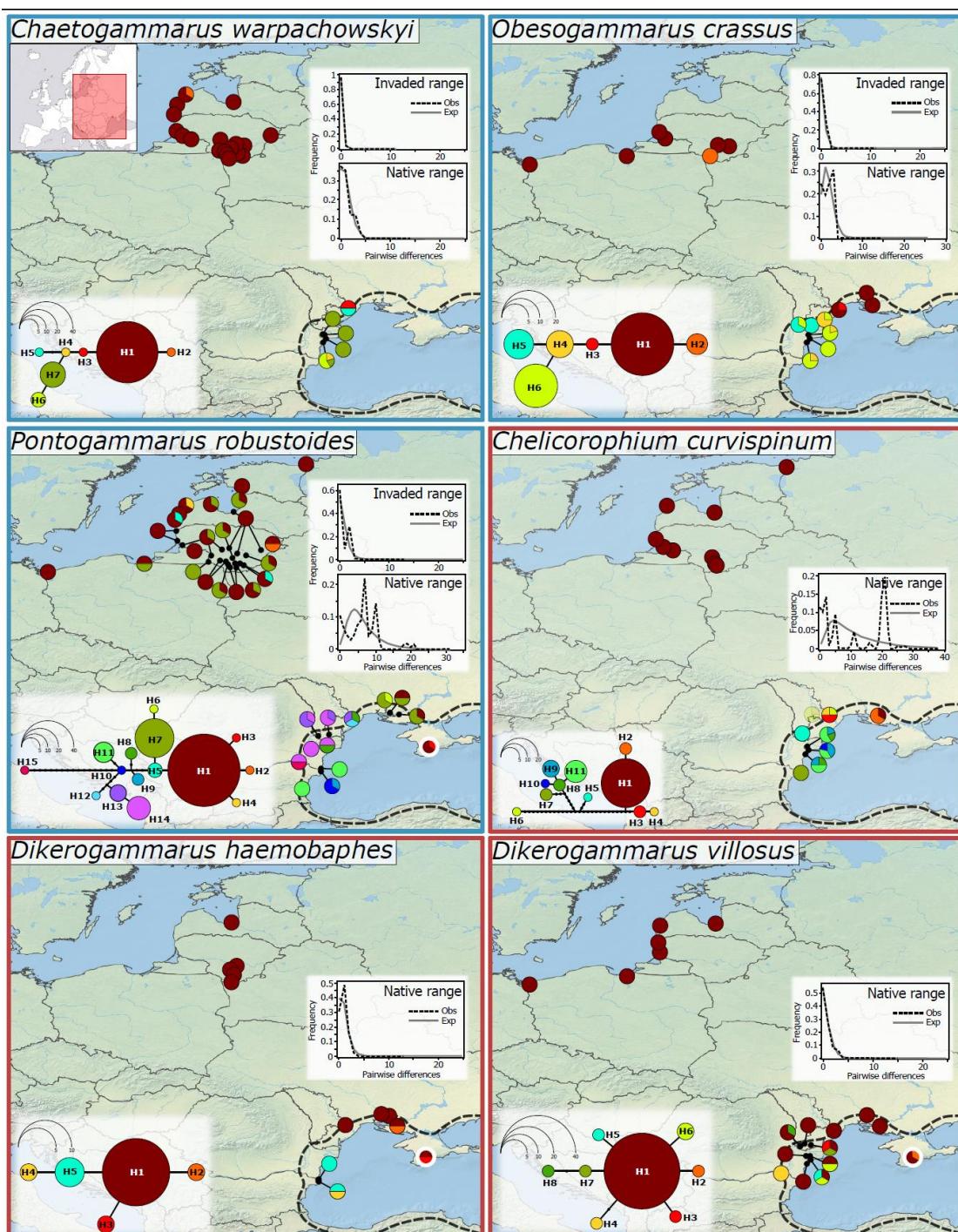
186 *Hypothesis testing*

187 To test for patterns in genetic diversity (all four indices) between invaded and native ranges
188 (question 1) and introduced vs. self-dispersed species (question 2) we fitted a linear mixed effects
189 model (LMM) for each diversity metric (four for each COI and OPS), with Range (2 levels: native,
190 invaded) and Arrival mode (2 levels: introduction, dispersal) terms as well as their interaction term as
191 fixed factors. Species term was included as a random factor. In such a model a significant interaction
192 term could be interpreted as a positive answer to our question 2 (difference in diversity change
193 slopes), while a significant Range factor could be interpreted as an overall positive answer to our
194 question 1 (reduction in diversity in the invaded range). We log-transformed the Hn, Pi, and K values
195 for COI (the latter two – after the addition of 10^{-6} due to zeroes present) as using raw data for the
196 LMMs indicated significant deviations of residuals from normality and/or homoskedasticity (tested
197 using the Shapiro-Wilk and the Levene's tests, respectively). For the OPS metrics no data
198 transformation was needed. *C. warpachowskyi* was excluded from the hypothesis testing based on
199 OPS since this marker was not amplified in his species. The LMMs were fitted and tested using the R
200 packages *lme4* (Bates et al., 2015) and *lmerTest* (Kuznetsova et al., 2017). The models were visualized
201 (Fig. S1) with the aid of the *visreg* package (Breheny & Burchett, 2017). Each LMM was followed by
202 four pairwise comparisons among groups using the multivariate t (mvt) P-value adjustment,
203 implemented in the package *emmeans* (Lenth, 2022).

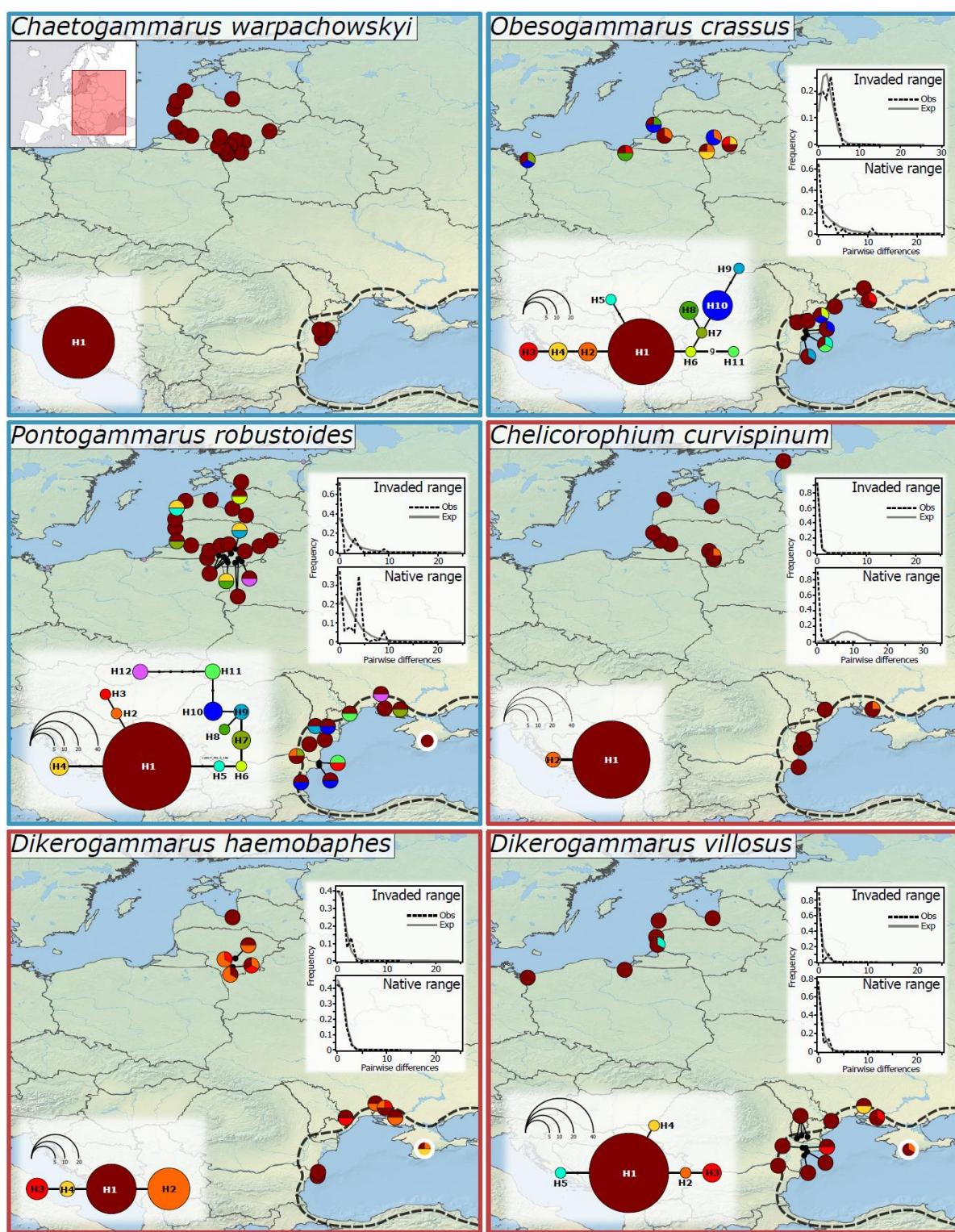
204

205 **Results**

206 In total we obtained 360 new COI (641 bp), 154 OPS (779 bp), and 27 28S (1137 bp)
207 sequences. Comparative mitochondrial haplotype distribution indicates a striking difference between
208 the invaded and native regions (Table 1, Figs. 1-2). A single dominant haplotype is present in the
209 invaded Baltic area in all species except *P. robustoides* where two dominant haplotypes are present.
210 The main invasive haplotypes were detected in the native range for all species except *C.*
211 *warpachowskyi*. Specifically, they mainly occur in the native populations of the lower Dniester and
212 Dnieper rivers and the Dnieper-Bug estuary (Fig. 1). For *C. warpachowskyi* no samples could be
213 obtained from the Dnieper, likely explaining why the invasive haplotype was not detected in its
214 native range. At the nuclear level the patterns of haplotype distribution are less pronounced, without
215 noticeable differences between the native and invaded ranges (Fig. 2). There are, however, more
216 pronounced differences among species, some exhibiting the same dominant haplotype(s) in both
217 ranges (e.g. *C. curvispinum*, *D. haemobaphes*, and *D. villosus*) while others exhibiting considerable
218 diversity in both ranges (*O. crassus* and *P. robustoides*) (Fig. 2).

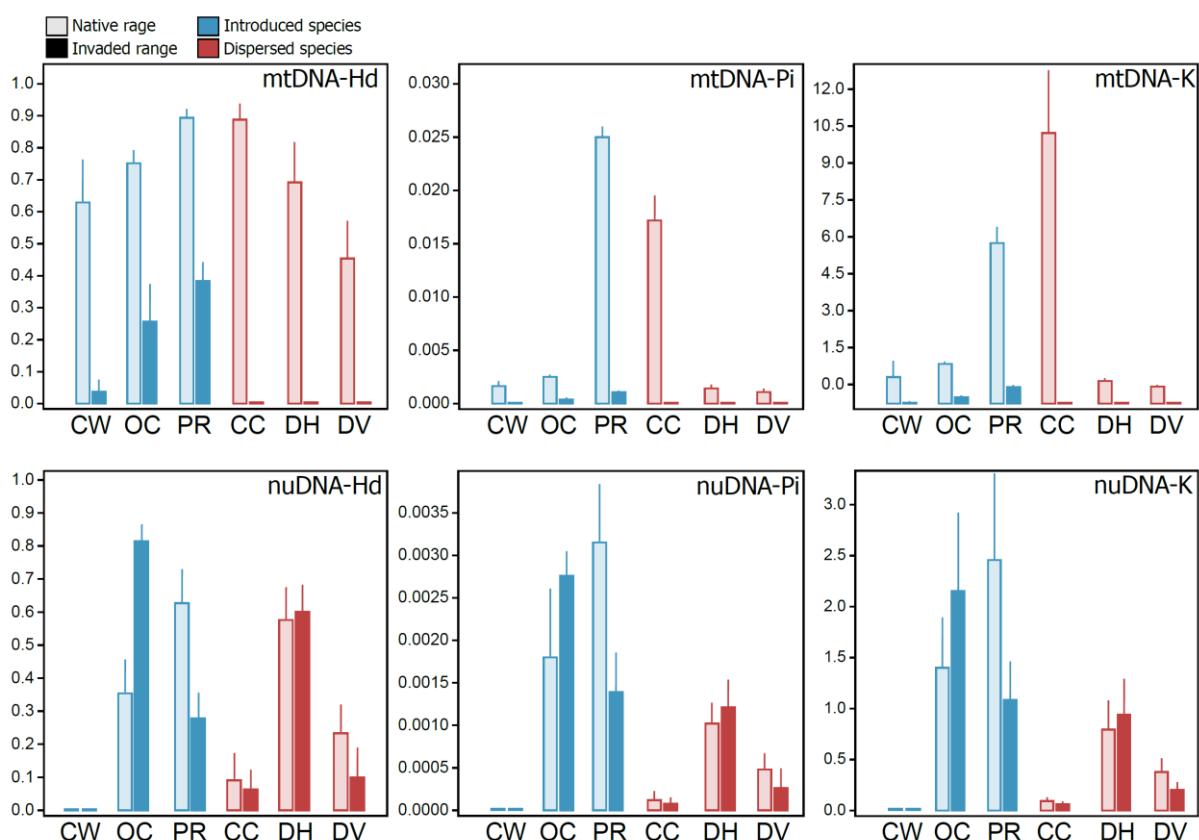

219

220 At the mitochondrial level, demographic tests and mismatch distribution analyses indicate
221 demographic expansion and genetic bottleneck in the invaded Baltic region only in *C. warpachowskyi*
222 (Fu's Fs = -1.701, p = 0.031) (Table 1). For the species that dispersed on their own these metrics could
223 not be calculated since only one haplotype was present (Table 1). Nevertheless, this drastic reduction
224 of haplotype number clearly indicates a genetic bottleneck. In the native region both
Dikerogammarus species showed signs of demographic expansion (significant Fu's Fs and R2 tests


225 and mismatch distribution) (Table 1). At the nuclear level, only *P. robustoides* and *D. villosus* showed
226 signs of demographic expansion and genetic bottlenecks in the invaded Baltic region (significant
227 Tajima's D values). In the native range, signs of rapid expansion were observed only in *O. crassus*
228 (Table 2).

229

230


231
232 **Fig. 1. Patterns of mitochondrial (COI) haplotype distribution between the native and invaded ranges.** Insets on the native range is shown with a
233 left depict haplotype networks while on the upper right are mismatch distributions. The native range is shown with a
234 dashed black line. The site indicated with a thick white outline is the Simferopol WR which lies in the native range but
235 was artificially populated. Species that were deliberately introduced and that dispersed on their own are indicated with a
236 blue and red frame, respectively.

237
238 **Fig. 2. Patterns of nuclear (OPS for all species, 28S for *C. warpachowskyi*) haplotype distribution between the native and**
239 **invaded ranges. Insets on the lower left depict haplotype networks while on the upper right are mismatch distributions.**
240 **The native range is shown with a dashed black line. The site indicated with a thick white outline is the Simferopol WR**
241 **which lies in the native range but was artificially populated. Species that were deliberately introduced and that dispersed**
242 **on their own are indicated with a blue and red frame, respectively.**

243
244
245
246

247

248

249 **Fig. 3. Metrics of genetic diversity for the mitochondrial (COI) marker (top) and nuclear (OPS for all species, 28S for C.
250 *warpachowskyi*) marker (bottom). Metric abbreviations: Hd—haplotype diversity, Pi—nucleotide diversity, K—average
251 number of nucleotide differences. Species abbreviations: CW—*Chaetogammarus warpachowskyi*, OC—*Obesogammarus*
252 *crassus*, PR—*Pontogammarus robustoides*, CC—*Chelicorophium curvispinum*, DH—*Dikerogammarus haemobaphes*, DV—
253 *Dikerogammarus villosus*.**

254

255

256

257

258

Table 1. Genetic diversity and tests for demographic expansion within the invaded (Baltic) and native (NE Black Sea) ranges among the deliberately introduced (INT) and self-dispersed (DIS) species.

Species	Arrival	Range	Hn	Hd	Hd - SD	Pi	Pi - SD	K	K - variance	Tajima's D	P	Fu's Fs	P	P	R2	P	Hri	P
<i>COI</i>																		
<i>C. warpachowskyi</i>	INT	Invaded	2	0.037	0.035	0.00006	0.00005	0.037	0.011	-1.095	0.126	-1.701	0.031	0.135	0.601	0.859	1.000	
		Native	5	0.629	0.125	0.00165	0.00052	1.086	0.570	-0.992	0.193	-1.316	0.120	0.128	0.156	0.062	0.059	
<i>O. crassus</i>	INT	Invaded	2	0.257	0.110	0.00040	0.00017	0.257	0.008	-0.133	0.320	0.341	0.335	0.129	0.172	0.302	0.595	
		Native	5	0.752	0.039	0.00252	0.00019	1.615	0.056	1.617	0.944	0.837	0.706	0.202	0.961	0.102	0.333	
<i>P. robustoides</i>	INT	Invaded	5	0.383	0.055	0.00106	0.00016	0.681	0.006	-0.260	0.447	-0.656	0.369	0.088	0.432	0.383	0.690	
		Native	12	0.894	0.025	0.02500	0.00114	6.533	0.557	-0.540	0.341	0.710	0.649	0.114	0.541	0.073	0.784	
<i>C. curvispinum</i>	DIS	Invaded	1	0	0	0	0	0	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		Native	11	0.888	0.045	0.01717	0.00277	11.004	2.253	-0.171	0.483	1.946	0.805	0.123	0.509	0.079	0.916	
<i>D. haemobaphes</i>	DIS	Invaded	1	0	0	0	0	0	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		Native	5	0.692	0.119	0.00144	0.00036	0.923	0.067	-0.964	0.191	-1.963	0.024	0.120	0.016	0.151	0.257	
<i>D. villosus</i>	DIS	Invaded	1	0	0	0	0	0	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		Native	8	0.454	0.111	0.00109	0.00036	0.701	0.019	-2.125	0.002	-5.560	<0.0001	0.063	0.046	0.112	0.146	
<i>OPS</i>																		
<i>O. crassus</i>	INT	Invaded	7	0.815	0.048	0.00276	0.00028	2.153	0.771	1.152	0.882	-0.336	0.458	0.179	0.959	0.031	0.022	
		Native	7	0.354	0.102	0.0018	0.0008	1.400	0.493	-2.254	0.002	-1.301	0.235	0.104	0.346	0.327	0.981	
<i>P. robustoides</i>	INT	Invaded	8	0.278	0.076	0.00139	0.00046	1.085	0.374	-1.974	0.006	-2.398	0.106	0.066	0.123	0.543	0.963	
		Native	8	0.627	0.101	0.00315	0.00068	2.458	0.880	-0.672	0.270	-0.729	0.377	0.117	0.411	0.294	0.999	
<i>C. curvispinum</i>	DIS	Invaded	2	0.063	0.058	0.00008	0.00007	0.063	0.022	-1.142	0.132	-1.265	0.058	0.174	0.673	0.770	0.782	
		Native	2	0.091	0.081	0.00012	0.00010	0.091	0.033	-1.162	0.147	-0.957	0.071	0.208	0.993	0.678	1.000	
<i>D. haemobaphes</i>	DIS	Invaded	3	0.601	0.080	0.00121	0.00032	0.941	0.351	0.219	0.640	0.980	0.687	0.157	0.569	0.118	0.296	
		Native	4	0.576	0.097	0.00102	0.00024	0.793	0.287	-0.031	0.488	-0.356	0.353	0.132	0.422	0.076	0.042	
<i>D. villosus</i>	DIS	Invaded	2	0.100	0.088	0.00026	0.00023	0.200	0.074	-1.513	0.047	-0.025	0.226	0.218	0.786	0.830	0.998	
		Native	4	0.233	0.086	0.00048	0.00019	0.377	0.132	-1.015	0.183	-1.639	0.059	0.075	0.109	0.472	0.776	
<i>28S</i>																		
<i>C. warpachowskyi</i>	INT	Invaded	1	0	0	0	0	0	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		Native	1	0	0	0	0	0	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

Hn—haplotype number; Hd—haplotype diversity; Pi—nucleotide diversity; K—Average number of nucleotide differences; SD—standard deviation;

259

260

261

262 With respect to ranges, all species showed a pronounced reduction of genetic diversity at the
263 mitochondrial but not nuclear marker in the invaded range relative to the native range (Tables 1,2,
264 Fig. 3). The LMEMs (Table 2, Fig. S1) indicated that mitochondrial genetic diversity was generally
265 reduced in the invaded range (significant Range effect at all metrics), but nuclear diversity was not
266 (Table 2). Moreover, the self-dispersed species also lost more mitochondrial genetic diversity than
267 the introduced ones (significant interaction effect at all metrics except Hd). While within the native
268 range no differences were observed, in the invaded range the introduced species generally exhibited
269 significantly higher mitochondrial genetic diversity than the self-dispersed species (significant
270 pairwise comparisons within the native range group for all metrics except Hd). Interestingly, the self-
271 dispersed species had an overall lower nuclear genetic diversity than the introduced ones (significant
272 Arrival effect at all metrics except Hd) within both native and introduced ranges.

273

274

275 **Table 2. Linear mixed effects models of COI and OPS markers diversity metrics: model coefficients and analysis of**
276 **variance (type III tests using Satterthwaite's approximation for denominator degrees of freedom). Significant effects (P <**
277 **0.05) are highlighted. COI metrics Hn, Pi, and K were log-transformed. Tested terms: Arrival mode (via**
278 **introduction/dispersal) and Range (native, invaded).**

Response metric	Term	COI marker			OPS marker		
		b ± SE	F	P	b ± SE	F	P
Hn	Arrival mode	0.13 ± 0.28	2.8	0.146	-4.17 ± 0.60	78.4	< 0.001
	Range	-0.90 ± 0.13	245.0	< 0.001	0.00 ± 0.45	3.0	0.144
	Arrival:Range	-1.13 ± 0.19	36.2	< 0.001	-1.00 ± 0.58	3.0	0.144
Hd	Arrival mode	-0.08 ± 0.10	3.0	0.135	-0.19 ± 0.20	2.2	0.197
	Range	-0.53 ± 0.07	132.1	< 0.001	0.06 ± 0.18	0.0	0.966
	Arrival:Range	-0.15 ± 0.11	1.9	0.217	-0.10 ± 0.24	0.2	0.688
Pi	Arrival mode	-0.45 ± 0.85	16.7	0.006	-0.00 ± 0.00	24.4	< 0.001
	Range	-2.77 ± 0.57	176.9	< 0.001	-0.00 ± 0.00	0.4	0.563
	Arrival:Range	-5.24 ± 0.81	41.9	< 0.001	0.00 ± 0.00	0.3	0.606
K	Arrival mode	-0.16 ± 0.77	86.8	< 0.001	-1.51 ± 0.39	24.4	< 0.001
	Range	-2.49 ± 0.57	441.3	< 0.001	-0.31 ± 0.43	0.4	0.564
	Arrival:Range	-11.98 ± 0.81	220.0	< 0.001	0.29 ± 0.55	0.3	0.609

279 Hn—haplotype number; Hd—haplotype diversity; Pi—nucleotide diversity; K—Average number of nucleotide differences.

280

281

282 Discussion

283 Our results revealed surprising patterns of genetic variation in relation to geographical ranges
284 (native vs. invaded) and arrival mode (deliberately introduced vs. self-dispersed species) to the non-
285 native Baltic region. We find that in all six investigated species mitochondrial but not nuclear genetic
286 diversity is reduced in the invaded range relative to the native one. Intriguingly, the deliberately
287 introduced species exhibit higher genetic diversity in the invaded range than the species that
288 dispersed on their own. Below we discuss these patterns in more detail and provide putative
289 explanations.

290 It has long been assumed that invasive species experience a drastic reduction of genetic
291 variation outside the native range due to bottlenecks (Baker & Stebbins, 1965). However, a plethora
292 of studies have indicated that this is seldom the case and often alien populations have comparable
293 genetic diversity relative to source populations due to multiple introductions and high propagule

294 pressure (Kolbe et al., 2007; Roman & Darling, 2007; Guo et al., 2015). This pattern has been
295 reported in many Ponto-Caspian taxa studied to date ranging from crustaceans to mollusks and fishes
296 (Stepien et al., 2005; Audzijonyte et al., 2009, 2017; Rewicz et al., 2015; Jaźdżewska et al., 2020). Our
297 study partially confirms these findings as we detected a decrease in genetic variation at the
298 mitochondrial but not nuclear level across all six investigated species. Such discrepancy could be due
299 to the fact that the mitochondrial genome is haploid, uniparentally inherited and lacks recombination
300 in amphipods and most other taxa. On the other hand, the investigated nuclear marker exhibited
301 high levels of heterozygosity, likely reflecting the high heterozygosity and large genomes commonly
302 encountered in amphipods (Rees et al., 2007; Kao et al., 2016; Jeffery et al., 2017). Nevertheless,
303 given that we sequenced only one nuclear marker, these patterns should be studied further using
304 reduced representation genomic approaches based on single nucleotide polymorphisms (SNPs)
305 which have been proven useful in amphipods (Hupalo et al., 2022). It is likely that a genomic
306 approach might still reveal a certain loss of nuclear genetic variation relative to the native range, but
307 not at the same magnitude as observed for the mitochondrial genome.

308 Our most significant finding is that in the invaded Baltic range the deliberately introduced
309 species have an overall higher mitochondrial and nuclear genetic diversity than the species that
310 dispersed on their own. Interestingly, in the native range this difference persists only at the nuclear
311 level, while mitochondrial diversity is comparable between the two groups. This discrepancy
312 indicates that indeed introduction mode could play a role, but other factors such as species-specific
313 genomic architecture coupled with phylogenetic effects might also be at play (see below).

314 It appears that introduction mode only affected mitochondrial diversity, since it differs
315 strongly between the introduced and self-dispersed species only in the invaded range. These patterns
316 could be explained by the fact that the introduced species were translocated in relatively large
317 amounts (hundreds to thousands of specimens) directly by air from the Simferopol and Dnieper WRs
318 to the Kaunas WR (Vaitonis et al., 1990), thus likely partially bypassing the initial genetic bottleneck.
319 Moreover, after successful acclimatization in the Kaunas WR in the 1960s, tens of thousands of
320 specimens were subsequently deliberately introduced to hundreds of waterbodies in a stepwise
321 fashion throughout Lithuania, Latvia, Estonia, and Russia until the late 1980s (Vaitonis et al., 1990;
322 Arbačiauskas et al., 2017). Such a pattern of introductions likely helped to quickly spread genetic
323 diversity before being lost to genetic drift.

324 From an ecological point of view, the deliberately introduced species are generally more
325 associated with lacustrine environments and have not spread as much on their own outside the
326 native range (Copilaş-Ciocianu & Sidorov, 2022; Copilaş-Ciocianu et al., 2022b). On the contrary, the
327 species that dispersed on their own to the Baltic region are more associated with riverine habitats
328 and have substantially dispersed outside the native range, being among the most widespread Ponto-
329 Caspian invaders (Rewicz et al., 2014; Copilaş-Ciocianu & Sidorov, 2022; Copilaş-Ciocianu et al.,
330 2022b). Their affinity for flowing water suggests a superior colonization ability and higher potential
331 for spreading via river networks and interconnecting canals. However, this colonization ability might
332 also explain their reduced genetic diversity in the Baltic area relative to the deliberately introduced
333 species. Given that this region represents the northern range limit of all three self-dispersed species,
334 they may be subjected to various range margin effects such as depleted genetic variation with
335 potential consequences on adaptive potential and persistence (Bridle & Vines, 2007; Hill et al., 2011;
336 Takahashi et al., 2016).

337 The observation that the introduced species exhibit a higher nuclear genetic diversity than
338 the self-dispersed species in both native and non-native ranges suggests that this discrepancy could

339 be explained by species-specific genomic features and evolutionary relationships. In the related
340 Baikal Lake radiations of gammaroidean amphipods there is an 8-fold variation in genome size among
341 species that is positively related to depth, body size and diversification rate (Jeffery et al., 2017).
342 Similar patterns of genomic size variation could also occur in the Ponto-Caspian taxa given that their
343 ecological and morphological diversity is reminiscent to that of the Baikalian radiations (Copilaş-
344 Ciocianu & Sidorov, 2022). Thus, it is likely that genomic size variation might be reflected in the
345 observed patterns of genetic diversity among the focal species. Furthermore, taking into account
346 phylogenetic relationships, the introduced *O. crassus* and *P. robustoides* and the dispersed *D.*
347 *haemobaphes* and *D. villosus* are more related to one another than to the other species in our study
348 (Hou et al., 2014; Copilaş-Ciocianu et al., 2022a; Morhun et al., 2022). Thus, they may share similar
349 genomic features that could drive the observed patterns. Teasing away between the effects of
350 evolutionary history and introduction mode on patterns of genetic diversity would require a larger
351 dataset in terms of species and genetic data.

352 The well-documented introduction history of the focal taxa allows us to further test the utility
353 of mitochondrial markers in tracing the origin of Ponto-Caspian invaders. Although these markers
354 have proven useful in all of the crustacean species studied to date (Cristescu et al., 2001, 2004;
355 Audzijonyte et al., 2009, 2017; Rewicz et al., 2015; Jaźdżewska et al., 2020), four of the species
356 included in our study (*C. warpachowskyi*, *C. curvispinum*, *O. crassus* and *P. robustoides*) had very
357 limited sequence data available until now, especially from the non-native range (Cristescu & Hebert,
358 2005; Hou et al., 2014; Copilaş-Ciocianu et al., 2022). Here we confirm that the main invasive
359 haplotypes (including from the Simferopol WR) can be traced to the native populations of the
360 Dnieper-Bug estuary in all species except *C. warpachowskyi* which we did not sample from this area
361 (possibly extinct). Unfortunately, we could not obtain specimens from the Dnieper WR where these
362 species were also acclimatized before being introduced to Lithuania. However, given the known
363 introduction history, these haplotypes should also be similar to the ones from the Dnieper-Bug
364 system. Furthermore, confirming the Dnieper-Bug origin of the species that dispersed on their own to
365 the Baltic region further emphasizes the importance of the Central Corridor (i.e. Dnieper–Vistula–
366 Oder–Rhine and interconnecting canals) as a dispersal pathway for Ponto-Caspian fauna (Bij de Vaate
367 et al., 2002; Copilaş-Ciocianu et al., 2022b). One remaining issue is that the rare haplotypes found at
368 single locations in the invaded range were not detected in the native range. Given the relatively short
369 time since the introduction it is unlikely that these are novel variants that appeared in the invaded
370 range. Most likely they remained undetected in the native range due to insufficient sample size or
371 are possibly extinct there.

372 With respect to the native range, we find that all species except *D. villosus* exhibit a
373 significant geographical structure of mitochondrial haplotypes with a divide between the west
374 (Danube and surroundings) and east (Dniester and Dnieper-Bug). Although this pattern was not
375 detected for *D. villosus*, which exhibits a single dominant haplotype throughout the entire region, it
376 was confirmed with nuclear microsatellites (Rewicz et al., 2015). Similar patterns of differentiation
377 across the Danube and the Dniester/Dnieper drainages have been reported for various other Ponto-
378 Caspian crustaceans (Cristescu et al., 2001, 2004; Audzijonyte et al., 2015) and are most likely a result
379 of the region's geological history (Krijgsman et al., 2019).

380

381 Conclusion

382 We highlight a significant loss of genetic diversity of alien Ponto-Caspian amphipods in the invaded
383 Baltic range relative to the donor NW Black Sea range, but only at the mitochondrial level. Overall,

384 nuclear genetic diversity did not significantly decrease in the invaded range. We also find consistent
385 evidence that deliberately introduced species have a higher mitochondrial and nuclear genetic
386 diversity than the species that dispersed on their own to the Baltic region. Furthermore,
387 mitochondrial markers have once more proven useful as they correctly traced the donor populations
388 in accordance to the known invasion history. Overall, introduction mode appears to influence genetic
389 diversity outside the native range only at the mitochondrial level. A genomic approach coupled with a
390 broader taxonomic coverage could provide more insight and control for phylogenetic relationships.
391

392 **Acknowledgements**

393 We thank Jūratė Lesutienė and Gintautas Vaitonis for help during the fieldwork in Ukraine in
394 2012. This study was supported by the Research Council of Lithuania (Contract No. S-MIP-20-
395 26).

396

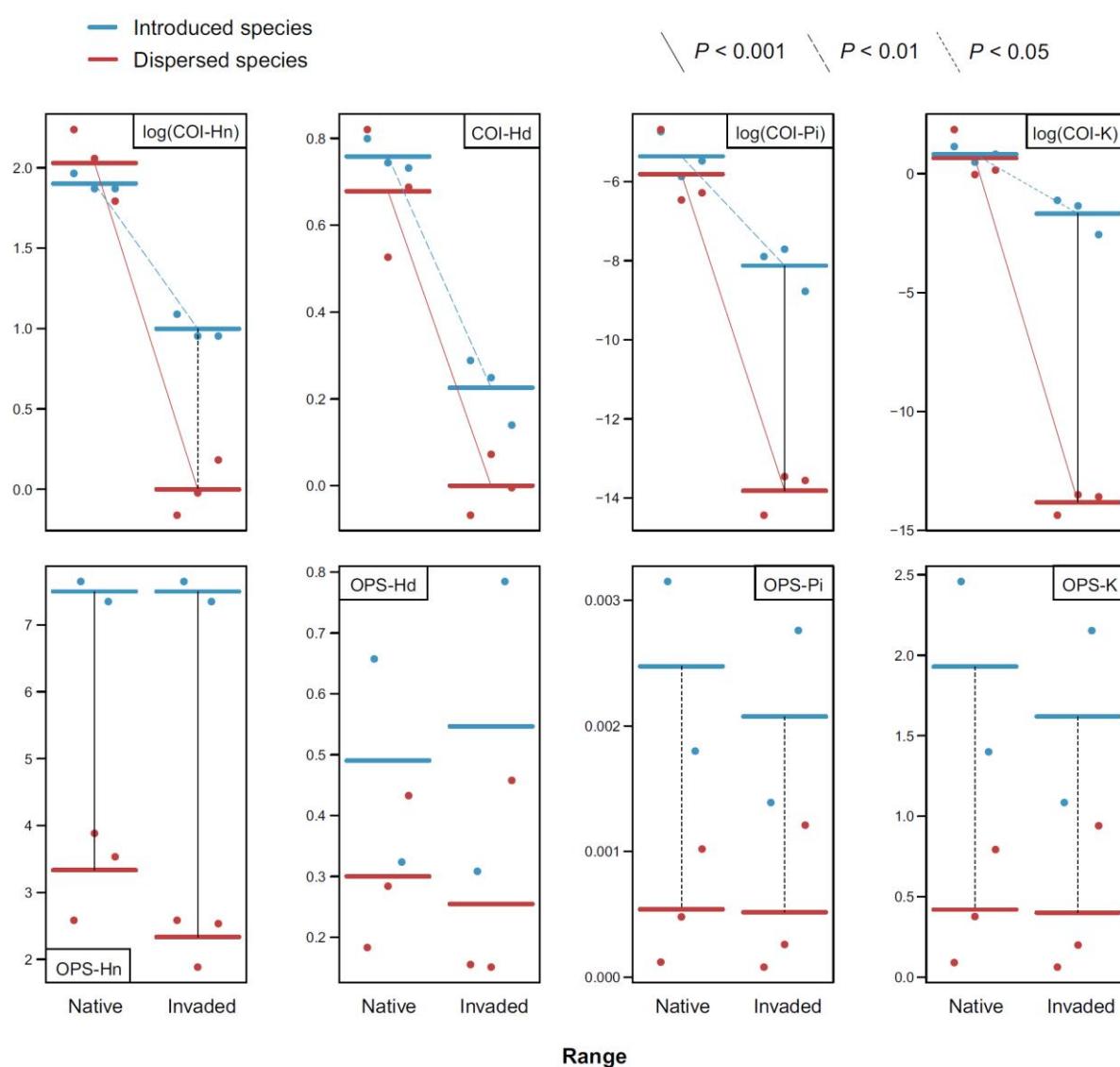
397 **References**

- 398 Arbačiauskas, K., 2008. Amphipods of the Nemunas River and the Curonian Lagoon, the Baltic Sea
399 Basin: where and which Native Freshwater Amphipods Persist?. *Acta Zoologica Lituanica* 18: 10–
400 16.
- 401 Arbačiauskas, K., J. Lesutienė, & Z. R. Gasiūnaitė, 2013. Feeding strategies and elemental composition
402 in Ponto-Caspian peracaridans from contrasting environments: can stoichiometric plasticity
403 promote invasion success?. *Freshwater Biology* 58: 1052–1068.
- 404 Arbačiauskas, K., E. Šidagytė, V. Šniaukštaitė, & J. Lesutienė, 2017. Range expansion of Ponto-Caspian
405 peracaridan Crustaceans in the Baltic Sea basin and its aftermath: Lessons from Lithuania.
406 *Aquatic Ecosystem Health and Management* Taylor and Francis Inc. 20: 393–401.
- 407 Arbačiauskas, K., G. Višinskienė, S. Smilgevičienė, & V. Rakauskas, 2011. Non-indigenous
408 macroinvertebrate species in Lithuanian fresh waters, Part 1: Distributions, dispersal and future.
409 *Knowledge and Management of Aquatic Ecosystems* 12.
- 410 Astrin, J. J., & P. E. Stüben, 2008. Phylogeny in cryptic weevils: molecules, morphology and new
411 genera of western Palaearctic Cryptorhynchinae (Coleoptera:Curculionidae). *Invertebrate
412 Systematics* 22: 503.
- 413 Audzijonyte, A., L. Baltrūnaitė, R. Väinölä, & K. Arbačiauskas, 2015. Migration and isolation during the
414 turbulent Ponto-Caspian Pleistocene create high diversity in the crustacean *Paramysis lacustris*.
415 *Molecular Ecology* 24: 4537–4555.
- 416 Audzijonyte, A., L. Baltrūnaitė, R. Väinölä, & K. Arbačiauskas, 2017. Human-mediated lineage
417 admixture in an expanding Ponto-Caspian crustacean species *Paramysis lacustris* created a novel
418 genetic stock that now occupies European waters. *Biological Invasions* 19: 2443–2457.
- 419 Audzijonyte, A., M. E. Daneliya, N. Mugue, & R. Väinölä, 2008. Phylogeny of *Paramysis* (Crustacea:
420 Mysida) and the origin of Ponto-Caspian endemic diversity: Resolving power from nuclear
421 protein-coding genes. *Molecular Phylogenetics and Evolution* 46: 738–759.
- 422 Audzijonyte, A., K. J. Wittmann, I. Ovcarenko, & R. Väinölä, 2009. Invasion phylogeography of the
423 Ponto-Caspian crustacean *Limnomysis benedeni* dispersing across Europe. *Diversity and
424 Distributions* 15: 346–355.
- 425 Baker, H. G., & G. L. Stebbins, 1965. *The Genetics of Colonizing Species*. Academic, New York.
- 426 Bates, D., M. Mächler, B. Bolker, & S. Walker, 2015. Fitting Linear Mixed-Effects Models Using **lme4**.
427 *Journal of Statistical Software* 67:.

- 428 Bij de Vaate, A., K. Jazdzewski, H. A. M. Ketelaars, S. Gollasch, & G. van der Velde, 2002. Geographical
429 patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Canadian
430 Journal of Fisheries and Aquatic Sciences 59: 1159–1174.
- 431 Breheny, P., & W. Burchett, 2017. Visualization of Regression Models Using visreg. The R Journal 9:
432 56.
- 433 Bridle, J. R., & T. H. Vines, 2007. Limits to evolution at range margins: when and why does adaptation
434 fail?. Trends in Ecology & Evolution 22: 140–147.
- 435 Colautti, R. I., & J. A. Lau, 2015. Contemporary evolution during invasion: evidence for differentiation,
436 natural selection, and local adaptation. Molecular Ecology 24: 1999–2017.
- 437 Copilaş-Ciocianu, D., T. Rewicz, A. F. Sands, D. Palatov, I. Marin, K. Arbačiauskas, P. D. N. Hebert, M.
438 Grabowski, & A. Audzijonyte, 2022. A DNA barcode reference library for endemic Ponto-Caspian
439 amphipods. Scientific Reports 12: 11332, <https://www.nature.com/articles/s41598-022-15442-w>.
- 440 Copilaş-Ciocianu, D., A. Sarmanov, N. Sergaliyev, & D. Sidorov, 2022a. *Turcogammarus aralensis*
441 (Uljanin, 1875), a relict pontogammarid amphipod crustacean from the Aralo-Caspian paleobasin:
442 redescription, phylogenetic position and biogeography. Zootaxa 5219: 101–120.
- 443 Copilaş-Ciocianu, D., & E. Šidagyté-Copilas, 2022. A substantial range expansion of alien Ponto-
444 Caspian amphipods along the eastern Baltic Sea coast. Oceanologia Elsevier B.V. 64: 227–232.
- 445 Copilaş-Ciocianu, D., & D. Sidorov, 2022. Taxonomic, ecological and morphological diversity of Ponto-
446 Caspian gammaroidean amphipods: a review. Organisms Diversity & Evolution 22: 285–315.
- 447 Copilaş-Ciocianu, D., D. Sidorov, & E. Šidagyté-Copilas, 2022b. Global distribution and diversity of
448 alien Ponto-Caspian amphipods. Biological Invasions .
- 449 Cristescu, M. E. A., & P. D. N. Hebert, 2005. The “Crustacean Seas” - An evolutionary perspective on
450 the Ponto-Caspian peracarids. Canadian Journal of Fisheries and Aquatic Sciences 62: 505–517.
- 451 Cristescu, M. E. A., P. D. N. Hebert, J. D. S. Witt, H. J. MacIsaac, & I. A. Grigorovich, 2001. An invasion
452 history for *Cercopagis pengoi* based on mitochondrial gene sequences. Limnology and
453 Oceanography 46: 224–229.
- 454 Cristescu, M. E. A., J. D. S. Witt, I. A. Grigorovich, P. D. N. Hebert, & H. J. MacIsaac, 2004. Dispersal of
455 the Ponto-Caspian amphipod *Echinogammarus ischnus*: Invasion waves from the Pleistocene to
456 the present. Heredity 92: 197–203.
- 457 Cuthbert, R. N., S. G. Kotronaki, J. T. A. Dick, & E. Briski, 2020. Salinity tolerance and geographical
458 origin predict global alien amphipod invasions. Biology Letters Royal Society Publishing 16:.
- 459 Dermott, R., J. Witt, Y. M. Um, & M. González, 1998. Distribution of the Ponto-Caspian Amphipod
460 *Echinogammarus ischnus* in the Great Lakes and Replacement of Native *Gammarus fasciatus*.
461 Journal of Great Lakes Research 24: 442–452.
- 462 Dlugosch, K. M., S. R. Anderson, J. Braasch, F. A. Cang, & H. D. Gillette, 2015. The devil is in the
463 details: genetic variation in introduced populations and its contributions to invasion. Molecular
464 Ecology 24: 2095–2111.
- 465 Edgar, R. C., 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput.
466 Nucleic Acids Research 32: 1792–1797.
- 467 Estoup, A., V. Ravigné, R. Hufbauer, R. Vitalis, M. Gautier, & B. Facon, 2016. Is There a Genetic
468 Paradox of Biological Invasion?. Annual Review of Ecology, Evolution, and Systematics 47: 51–72.
- 469 Fu, Y.-X., 1997. Statistical Tests of Neutrality of Mutations Against Population Growth, Hitchhiking
470 and Background Selection. Genetics 147: 915–925.

- 471 Gasiūnas, I., 1963. The acclimatization of fodder crustaceans (of the Caspian relict type) into the
472 reservoir of Kaunas Hydroelectric power station and the possibility of their transference into
473 other water bodies. LTSR MA Darbai, Serija C 1 30: 79–85.
- 474 Grabowski, M., K. Bacela, A. Konopacka, & K. Jazdzewski, 2009. Salinity-related distribution of alien
475 amphipods in rivers provides refugia for native species. Biological Invasions 11: 2107–2117.
- 476 Grudule, N., E. Parele, & K. Arbačiauskas, 2007. Distribution of Ponto-Caspian amphipod
477 *Pontogammarus robustoides* in Latvian waters. Acta Zoologica Lituanica 17: 28–32.
- 478 Guo, W., S. Qiao, Y. Wang, S. Shi, F. Tan, & Y. Huang, 2015. Genetic diversity, population structure,
479 and genetic relatedness of native and non-native populations of *Spartina alterniflora* (Poaceae,
480 Chloridoideae). Hydrobiologia 745: 313–327.
- 481 Hardie, D. C., & J. A. Hutchings, 2010. Evolutionary ecology at the extremes of species' ranges.
482 Environmental Reviews 18: 1–20.
- 483 Harpending, H. C., 1994. Signature of Ancient Population Growth in a Low-Resolution Mitochondrial
484 DNA Mismatch Distribution. Human Biology 66: 591–600.
- 485 Haubrock, P. J., R. N. Cuthbert, A. Ricciardi, C. Diagne, & F. Courchamp, 2022. Economic costs of
486 invasive bivalves in freshwater ecosystems. Diversity and Distributions 28: 1010–1021.
- 487 Hill, J. K., H. M. Griffiths, & C. D. Thomas, 2011. Climate Change and Evolutionary Adaptations at
488 Species' Range Margins. Annual Review of Entomology 56: 143–159.
- 489 Hou, Z., J. Fu, & S. Li, 2007. A molecular phylogeny of the genus *Gammarus* (Crustacea: Amphipoda)
490 based on mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution 45:
491 596–611.
- 492 Hou, Z., B. Sket, & S. Li, 2014. Phylogenetic analyses of Gammaridae crustacean reveal different
493 diversification patterns among sister lineages in the Tethyan region. Cladistics Blackwell
494 Publishing Inc. 30: 352–365.
- 495 Hupalo, K., D. Copilaş-Cioianu, F. Leese, & M. Weiss, 2022. Morphology, nuclear SNPs and mate
496 selection reveal that COI barcoding overestimates species diversity in a Mediterranean
497 freshwater amphipod by an order of magnitude. Cladistics in press:
- 498 Hupało, K., H. W. Riss, M. Grabowski, J. Thiel, K. Bącela-Spychalska, & E. I. Meyer, 2018. Climate
499 change as a possible driver of invasion and differential in HSP70 expression in two genetically
500 distinct populations of the invasive killer shrimp, *Dikerogammarus villosus*. Biological Invasions
501 20: 2047–2059.
- 502 Jarocki, J., & A. Demianowicz, 1931. Über das Vorkommen des ponto-kaspischen Amphipoden
503 *Chaetogammarus tenellus* (G.O.Sars) in der Wisla (Weichsel). Bull Int Acad Pol Sci Lett, Cl Math
504 Nat Ser B(II) 2: 513–530.
- 505 Jażdżewska, A. M., T. Rewicz, T. Mamos, R. Wattier, K. Bącela-Spychalska, & M. Grabowski, 2020.
506 Cryptic diversity and mtDNA phylogeography of the invasive demon shrimp, *Dikerogammarus*
507 *haemobaphes* (Eichwald, 1841), in Europe. NeoBiota Pensoft Publishers 57: 53–86.
- 508 Jażdżewski, K., 1980. Range Extensions of Some Gammaridean Species in European Inland Waters
509 Caused by Human Activity. Crustaceana. Supplement 6: 84–107.
- 510 Jeffery, N. W., L. Yampolsky, & T. R. Gregory, 2017. Nuclear DNA content correlates with depth, body
511 size, and diversification rate in amphipod crustaceans from ancient Lake Baikal, Russia. Genome
512 60: 303–309.
- 513 Kao, D., A. G. Lai, E. Stamatakis, S. Rosic, N. Konstantinides, E. Jarvis, A. di Donfrancesco, N. Pouchkina-
514 Stancheva, M. Sémon, M. Grillo, H. Bruce, S. Kumar, I. Siwanowicz, A. Le, A. Lemire, M. B. Eisen,
515 C. Extavour, W. E. Browne, C. Wolff, M. Averof, N. H. Patel, P. Sarkies, A. Pavlopoulos, & A.

- 516 Aboobaker, 2016. The genome of the crustacean *Parhyale hawaiensis*, a model for animal
517 development, regeneration, immunity and lignocellulose digestion. *eLife* 5:.
- 518 Kolbe, J. J., R. E. Glor, L. R. Schettina, A. C. Lara, A. Larson, & J. B. Losos, 2007. Multiple Sources,
519 Admixture, and Genetic Variation in Introduced *Anolis* Lizard Populations. *Conservation Biology*
520 21: 1612–1625.
- 521 Krijgsman, W., A. Tesakov, T. Yanina, S. Lazarev, G. Danukalova, C. G. C. van Baak, J. Agustí, M. C.
522 Alçıçek, E. Aliyeva, D. Bista, A. Bruch, Y. Büyükmeliç, M. Bukhsianidze, R. Flecker, P. Frolov, T. M.
523 Hoyle, E. L. Jorissen, U. Kirscher, S. A. Koriche, S. B. Kroonenberg, D. Lordkipanidze, O. Oms, L.
524 Rausch, J. Singarayer, M. Stoica, S. van de Velde, V. v. Titov, & F. P. Wesselingh, 2019. Quaternary
525 time scales for the Pontocaspian domain: Interbasinal connectivity and faunal evolution. *Earth-
526 Science Reviews*. Elsevier B.V., 1–40.
- 527 Kuznetsova, A., P. B. Brockhoff, & R. H. B. Christensen, 2017. **lmerTest** Package: Tests in Linear Mixed
528 Effects Models. *Journal of Statistical Software* 82:.
- 529 Lenth, R. v., 2022. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package
530 version 1.7.5. <https://CRAN.R-project.org/package=emmeans>. .
- 531 Lipinskaya, T., A. Makaranka, V. Razlutskij, & V. Semenchenko, 2021. First records of the alien
532 amphipod *Dikerogammarus haemobaphes* (Eichwald, 1841) in the Neman river basin (Belarus).
533 *BioInvasions Records* Regional Euro-Asian Biological Invasions Centre 10: 319–325.
- 534 Meßner, U., & M. Zettler, 2018. The conquest (and avoidance?) of the brackish environment by
535 Ponto-Caspian amphipods: A case study of the German Baltic Sea. *BioInvasions Records* 7: 269–
536 278.
- 537 Meßner, U., & M. L. Zettler, 2021. Drastic changes of the amphipod fauna in northern Germany and
538 the displacement of *Gammarus lacustris* G.O. Sars, 1864 to relict habitats/status. *Knowledge &
539 Management of Aquatic Ecosystems* 17.
- 540 Minchin, D., K. Arbačiauskas, D. Daunys, E. Ezhova, N. Grudule, J. Kotta, N. Molchanova, S. Olenin, G.
541 Višinskienė, & S. Strake, 2019. Rapid expansion and facilitating factors of the Ponto-Caspian
542 invader *dikerogammarus villosus* within the Eastern Baltic sea. *Aquatic Invasions* Regional Euro-
543 Asian Biological Invasions Centre 14: 165–181.
- 544 Moedt, S., & T. van Haaren, 2018. *Pontogammarus robustoides* (Sars, 1894), a new non-indigenous
545 amphipod in the Netherlands (Crustacea: Amphipoda). *Lauterbornia*. ,
546 <https://www.researchgate.net/publication/330384640>.
- 547 Morhun, H., D. Copilas-Ciocianu, T. Rewicz, M. O. Son, A. Khomenko, M. Huseynov, S. Utevsky, & M.
548 Grabowski, 2022. Molecular markers and SEM imaging reveal pseudocryptic diversity within the
549 Ponto-Caspian low-profile amphipod invader *Dikerogammarus bispinosus*. *European Zoological
550 Journal* Taylor and Francis Ltd. 89: 87–101.
- 551 Moškrič, A., & R. Verovnik, 2019. Five nuclear protein-coding markers for establishing a robust
552 phylogenetic framework of niphargid crustaceans (Niphargidae: Amphipoda) and new molecular
553 sequence data. *Data in Brief* 25: 104134.
- 554 Paiva, F., A. Barco, Y. Chen, A. Mirzajani, F. T. Chan, V. Laurington, M. Baltazar-Soares, A. Zhan, S. A.
555 Bailey, J. Javidpour, & E. Briski, 2018. Is salinity an obstacle for biological invasions?. *Global
556 Change Biology* 24: 2708–2720.
- 557 Ramos-Onsins, S. E., & J. Rozas, 2002. Statistical Properties of New Neutrality Tests Against
558 Population Growth. *Mol. Biol. Evol* 19: 2092–2100.
- 559 Rees, D. J., F. Dufresne, H. Glémet, & C. Belzile, 2007. Amphipod genome sizes: first estimates for
560 Arctic species reveal genomic giants. *Genome* 50: 151–158.


- 561 Reid, D. F., & M. I. Orlova, 2002. Geological and evolutionary underpinnings for the success of Ponto-
562 Caspian species invasions in the Baltic Sea and North American Great Lakes. Canadian Journal of
563 Fisheries and Aquatic Sciences 59: 1144–1158.
- 564 Rewicz, T., M. Grabowski, C. MacNeil, & K. Bącela-Spsychalska, 2014. The profile of a ‘perfect’ invader
565 – the case of killer shrimp, *Dikerogammarus villosus*. Aquatic Invasions 9: 267–288.
- 566 Rewicz, T., R. Wattier, M. Grabowski, T. Rigaud, & K. Bącela-Spsychalska, 2015. Out of the Black Sea:
567 Phylogeography of the Invasive Killer Shrimp *Dikerogammarus villosus* across Europe. PLOS ONE
568 10: e0118121.
- 569 Rewicz, T., R. Wattier, T. Rigaud, M. Grabowski, T. Mamos, & K. Bącela-Spsychalska, 2017. The killer
570 shrimp, *Dikerogammarus villosus*, invading European Alpine Lakes: A single main source but
571 independent founder events with an overall loss of genetic diversity. Freshwater Biology 62:
572 1036–1051.
- 573 Roman, J., & J. Darling, 2007. Paradox lost: genetic diversity and the success of aquatic invasions.
574 Trends in Ecology & Evolution 22: 454–464.
- 575 Rozas, J., A. Ferrer-Mata, J. C. Sanchez-DelBarrio, S. Guirao-Rico, P. Librado, S. E. Ramos-Onsins, & A.
576 Sanchez-Gracia, 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets.
577 Molecular Biology and Evolution Oxford University Press 34: 3299–3302.
- 578 Salzburger, W., G. B. Ewing, & A. von Haeseler, 2011. The performance of phylogenetic algorithms in
579 estimating haplotype genealogies with migration. Molecular Ecology 20: 1952–1963.
- 580 Šidagytė, E., & K. Arbačiauskas, 2016. Resistance to low oxygen in the Ponto–Caspian amphipod
581 *Pontogammarus robustoides* varies among lentic habitats of its northern invaded range.
582 Limnologica 61: 7–13.
- 583 Šidagytė, E., S. Solovjova, V. Šniaukštaitė, A. Šiaulys, S. Olenin, & K. Arbačiauskas, 2017. The killer
584 shrimp *Dikerogammarus villosus* (Crustacea, Amphipoda) invades Lithuanian waters, South-
585 Eastern Baltic Sea. Oceanologia 59: 85–91.
- 586 Soto, I., R. N. Cuthbert, D. A. Ahmed, A. Kouba, S. Domisch, J. R. G. Marquez, A. Beidas, G. Amatulli, J.
587 Kiesel, L. Q. Shen, M. Florencio, H. Lima, E. Briski, F. Altermatt, G. Archambaud-Suard, P. Borza, Z.
588 Csabai, T. Datry, M. Flory, M. Forcellini, J. Frugé, P. Leitner, M. Lizée, A. Maire, A. Ricciardi, R. B.
589 Schäfer, R. Stubbington, G. H. van der Lee, G. Várbíró, R. C. M. Verdonschot, P. Haase, & P. J.
590 Haubrock, 2022. Tracking a killer shrimp: *Dikerogammarus villosus* invasion dynamics across
591 Europe. Diversity and Distributions 1–16.
- 592 Stephens, M., N. J. Smith, & P. Donnelly, 2001. A New Statistical Method for Haplotype
593 Reconstruction from Population Data. The American Journal of Human Genetics 68: 978–989.
- 594 Stepien, C. A., J. E. Brown, M. E. Neilson, & M. A. Tumeo, 2005. Genetic Diversity of Invasive Species
595 in the Great Lakes Versus Their Eurasian Source Populations: Insights for Risk Analysis. Risk
596 Analysis 25: 1043–1060.
- 597 Strayer, D. L., 2009. Twenty years of zebra mussels: Lessons from the mollusk that made headlines.
598 Frontiers in Ecology and the Environment. , 135–141.
- 599 Tajima, F., 1989. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA
600 Polymorphism. .
- 601 Takahashi, Y., Y. Suyama, Y. Matsuki, R. Funayama, K. Nakayama, & M. Kawata, 2016. Lack of genetic
602 variation prevents adaptation at the geographic range margin in a damselfly. Molecular Ecology
603 25: 4450–4460.
- 604 Tamura, K., G. Stecher, D. Peterson, A. Filipski, & S. Kumar, 2013. MEGA6: Molecular evolutionary
605 genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.

- 606 Vaitonis, G., L. Lazauskienė, & A. Razinkovas, 1990. Izuchenie rezul'tatov ekonomicheskoy
 607 effektivnosti i perspektivy akklimatizacii bezpozvonochnyh v vodoemah Pribaltiki (Study of
 608 economic efficiency and prospects of acclimatization of invertebrates in water bodies of the
 609 Baltic states). Vilnius.
- 610 Vanderploeg, H. A., T. F. Nalepa, D. J. Jude, E. L. Mills, K. T. Holeck, J. R. Liebig, I. A. Grigorovich, & H.
 611 Ojaveer, 2002. Dispersal and emerging ecological impacts of Ponto-Caspian species in the
 612 Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1209–1228.
- 613

614 **Data availability**

615 The DNA sequences generated during this study are available in GenBank (COI: ZZZ-YYY, OPS: ZZZ-
 616 YYY, 28S: ZZZ-YYY) (accession numbers will be provided during the revision). List of sampling localities
 617 and associated information is provided in Table S1.

618

619
 620 **Fig. S1. Predictions and residuals of the LMEMs for the COI (top) and OPS (bottom) marker diversity metrics (see Table 2**
 621 **for model effects tests). Metric abbreviations: Hn – haplotype number, Hd – haplotype diversity, Pi – nucleotide diversity,**
 622 **K – average number of nucleotide differences. Thick lines represent estimated means. Significant multiple comparisons**
 623 **are indicated by thin connecting lines of different patterns, absence indicating results with P > 0.05.**