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The chromatin modulating NSL complex regulates genes and

pathways genetically linked to Parkinson’s disease
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Abstract

Genetic variants conferring risk for Parkinson’s disease have been highlighted through
genome-wide association studies, yet exploration of their specific disease mechanisms is
lacking. Two Parkinson’s disease candidate genes, KATS and KANSLI, identified through
genome-wide studies and a PINK1-mitophagy screen, encode part of the histone acetylating
non-specific lethal complex. This complex localises to the nucleus, where it has a role in
transcriptional activation, and to mitochondria, where it has been suggested to have a role in
mitochondrial transcription. In this study, we sought to identify whether the non-specific lethal
complex has potential regulatory relationships with other genes associated with Parkinson’s

disease in human brain.

Correlation in the expression of non-specific lethal genes and Parkinson’s disease-associated
genes was investigated in primary gene co-expression networks utilising publicly available
transcriptomic data from multiple brain regions (provided by the Genotype-Tissue Expression
Consortium and UK Brain Expression Consortium), whilst secondary networks were used to
examine cell-type specificity. Reverse engineering of gene regulatory networks generated
regulons of the complex, which were tested for heritability using stratified linkage
disequilibrium score regression and then validated in vitro using the QuantiGene multiplex

assay.

Significant clustering of non-specific lethal genes was revealed alongside Parkinson’s disease-
associated genes in frontal cortex primary co-expression modules. Both primary and secondary
co-expression modules containing these genes were enriched for mainly neuronal cell types.
Regulons of the complex contained Parkinson’s disease-associated genes and were enriched
for biological pathways genetically linked to disease. When examined in a neuroblastoma cell
line, 41% of prioritised gene targets showed significant changes in mRNA expression

following KANSLI or KATS perturbation.
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In conclusion, genes encoding the non-specific lethal complex are highly correlated with and
regulate genes associated with Parkinson’s disease. Overall, these findings reveal a potentially
wider role for this protein complex in regulating genes and pathways implicated in Parkinson’s

disease.
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CC = cellular component

ChIP = chromatin immuno-precipitation

DMEM = Dulbecco's Modified Eagle Medium
eQTL = expression quantitative trait locus
EWCE = expression weighted cell-type enrichment
FBS = foetal bovine serum

FDR = false discovery rate

GCN = gene co-expression network

GMSCA = gene multifunctionality in secondary co-expression network analysis
GO = gene ontology

GTEXx = Genotype Tissue Expression

GWAS = genome wide association study

1PSC = induced pluripotent stem cell

kb = kilobase

LDSC = linkage disequilibrium score regression
Mb = megabase

ME = module eigengene

MF = molecular function

MSL = male-specific lethal

ns = not significant

NSL = non-specific lethal

NT = non-transfected

pUb = phospho-ubiquitin

SAPE = Streptavidin R-Phycoerythrin conjugate
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siRNA = short interfering RNA

SNP = single nucleotide polymorphism

TPM = transcripts per million

WGCNA = weighted gene co-expression network analysis

UKBEC = United Kingdom Brain Expression Consortium

Introduction

An in-depth understanding of the genetic and pathophysiological mechanisms underlying
neurodegenerative diseases is necessary to develop effective disease-modifying treatments. In
the case of Parkinson’s disease, although 90-95% of cases are sporadic, historically much of
the research into its genetic basis has focused on family-based linkage studies. Indeed, the
identification of at least 23 genes with highly penetrant effects on Parkinson’s disease risk has
succeeded in elucidating multiple biological pathways involved in its pathology. In particular,
mitochondrial dysfunction and impaired protein degradation pathways are common themes.
More recently, genome-wide association studies (GWASs) have identified 90 independent risk
signals linked to Parkinson’s disease. Several of these had already appeared in familial studies,
thereby highlighting important commonalities in the processes driving both types of the

disease.!

However, a broader understanding of the molecular relationships between
Parkinson’s disease loci is still lacking. Genes causally linked to the disease and involved in
transcriptional regulation have the potential to provide such insights and shed light on key

disease-relevant gene networks.

One such transcriptional regulator with strong links to Parkinson’s disease is KATS. This gene
was first linked to the disease through the identification of a risk signal on chromosome 16
(rs14235) with subsequent expression quantitative trait loci (eQTL) analysis suggesting the
risk allele results in lower KATS mRNA levels.>® Further GWAS analyses have again
highlighted KATS8 as a candidate gene, with recent colocalization and transcriptome-wide
analyses strengthening the evidence for KATS8’s contribution to Parkinson’s disease.'*
Importantly, KAT8 functions within two multiprotein complexes that regulate its activity and

specificity, namely the male specific lethal (MSL) and non-specific lethal (NSL) complexes.’
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Although the KATS-encoded acetyl-transferase is thought to be the main catalytic driver in both
complexes, differences in lysine specificity and in the genomic regions which are targeted can
likely be attributed to subunits aside from KATS itself.® This makes the other components of
the MSL and NSL complexes of potential interest, with the latter particularly important in
Parkinson’s disease as it contains KAT8 Regulatory NSL Complex Subunit 1 (KANSL1),
another protein encoded by a Parkinson’s disease candidate gene.>’ KANSLI is contained
within the 970kb inversion polymorphism on chromosome 17q21, located within a linkage
disequilibrium (LD) block of approximately 2Mb which gives rise to H1/H2 haplotype
variation.® The H1 haplotype has well established links to neurodegenerative disease,
specifically progressive supranuclear palsy, Alzheimer’s and Parkinson’s disease.”!! The
precise mechanism underlying the link to Parkinson’s disease is disputed, with this risk
frequently attributed to the adjacent tau-encoding MAPT as well as, more recently, a putative
enhancer RNA expressed from within KANSLI. 1213 Moreover, the first GWAS of short tandem

repeats in Parkinson’s disease found the strongest signal within KANSL1.'*

Furthermore, both KAT8 and KANSL1 have been linked to mitophagy, the process by which
defective mitochondria are identified and degraded and a key pathway implicated in
Parkinson’s disease. Accumulation of mitophagy marker, phospho-ubiquitin (pUb, serine 65)
has been detected in post-mortem diseased brains, whilst deficient mitophagy has been found
in both sporadic and Mendelian patient-derived induced pluripotent stem cell (iPSC) models
and even suggested to play a direct role in a-synuclein accumulation.'>!” Proteins involved in
mitophagy, in particular PTEN-induced putative kinase 1 (PINK1) and parkin, are associated
with early-onset autosomal recessive forms of the disease through mutations in their encoding
genes, PINKI and PRKN.'®! A biological screening assay of Parkinson’s disease GWAS
candidate genes which measured PINKI-mediated mitophagy in neuroblastoma cells
demonstrated  significantly reduced pUb accumulation, parkin recruitment and
phosphorylation, as well as lysosomal localisation of mitochondria following knockdown (KD)
of both KAT8 and KANSLI, thus demonstrating an important role of the NSL complex in
mitochondrial quality control and Parkinson’s disease.**° However, there is some uncertainty
regarding the precise molecular processes linking the NSL complex to PINKI-mediated
mitophagy. There is evidence that components of the NSL complex can localise to
mitochondria, though the most established function of the complex is in the nucleus, where it
is involved in chromatin regulation.?' Thus, KAT8 and KANSLI1 could operate to regulate the

risk of Parkinson’s disease in multiple sub-cellular compartments.
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In this study, we focused on the role of the NSL complex within the nucleus and tested our
hypothesis that this complex operates as a master regulator of Parkinson’s disease risk. This
idea is supported by existing evidence implicating KAT8-dependend lysine acetylation of
primarily histone 4 in the regulation of a range of cellular processes, including DNA damage
repair, and autophagy.®???” To pursue this idea, we performed a series of in silico analyses
which successfully predicted gene regulatory relationships between the chromatin modulating
NSL complex and genes associated with Parkinson’s disease. These findings suggest a role for
the NSL complex in modulating multiple pathological pathways and provide a useful
framework for investigating potential gene regulatory mechanisms underlying disease risk

associated with loci highlighted through GWAS:s.

Materials and methods

Gene selection

We collated three lists of genes, namely the NSL genes, genes causally associated with
Mendelian forms of Parkinson’s disease and genes nominated through GWAS (Tab. 1). The
nine genes encoding the NSL complex are widely published.’ An expert-curated list of genes
linked to Mendelian forms of Parkinson’s disease and complex parkinsonism was obtained
from PanelApp.”® Supplementary data published alongside the latest Parkinson’s disease
GWAS was filtered for genes nominated by Mendelian Randomisation.! Full gene lists are
available here: https://github.com/amyrosehicks/NSL._PD_relationships (doi:
10.5281/zenodo.7525823).%

Expression weighted cell-type enrichment analysis

Expression-weighted cell-type enrichment (EWCE) analysis was used to test whether NSL
complex encoding genes are more highly expressed in specific brain-related cell types than

would be expected by chance (https://github.com/NathanSkene/EWCE.git).’® Specificity

values, representing the proportion of the total expression of a gene in one cell type compared
to others, were calculated from two independent single nucleus RNA-sequencing datasets
derived from human substantia nigra and medial temporal gyrus tissue, and were examined
using the MarkerGenes github package.’'* All data manipulation and visualisation was
performed in R (v 4.0.5; RRID:SCR_001905) wusing the packages described here:
https://github.com/amyrosehicks/NSL. PD_relationships.?
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Gene co-expression network analysis

We utilised two sources of public transcriptomic data for the generation of gene co-expression
networks (GCNs), namely the Genotype Tissue Expression (GTEx, version 6) project

(https://www.gtexportal.org/home/) and the United Kingdom Brain Expression Consortium

(UKBEC, https://ukbec.wordpress.com/) data. GTEx contains samples originating from 13

CNS regions as well as other tissues and utilises Illumina sequencing, whilst UKBEC contains

samples from 12 CNS regions assayed using Affymetrix arrays.>>-%

Tissue-specific primary GCNs were built from these datasets using weighted gene co-
expression network analysis (WGCNA), with k-means optimisation followed by functional and
cellular specificity annotation.’*37® The completed GCNs formed part of the CoExp R
package suite.* Four secondary GCNs were also examined, for which the gene
multifunctionality in secondary co-expression network analysis (GMSCA) R package was used
to remove the contribution of neuronal, microglial, astrocytic and oligodendrocytic cell types

from the expression matrix before GCN reconstruction.*’

Gene set enrichment analysis

For gene list enrichment analyses, we obtained p-values using Fisher’s Exact tests comparing
the overlap in input genes and genes contained within each module, with false discovery rate
(FDR) corrections for multiple testing.>*** GCNs were annotated with gene ontology (GO)
terms, categorized into biological process (BP), molecular function (MF) or cellular component
(CC), within the CoExp R packages. GO terms were reduced to parent terms using the Rutils
github package to aid visualization (doi: 10.5281/zenodo.6127446).*! Further analyses on gene
lists derived from reverse engineering analysis were performed using the gProfiler2 R package

(RRID:SCR_018190).4?

Reverse engineering gene regulatory network analysis

Using the Algorithm for the Reconstruction of Accurate Cellular Networks with adaptive
partitioning (ARACNe-AP, RRID:SCR_002180), we inferred regulatory relationships
between NSL complex genes and genes within specific modules of the primary GCNs.** The
original java package was adapted for use in R and executed with a p-value threshold of 1x10
8 and 10,000 bootstrap iterations. The strength of the association between regulators and

regulons is denoted by mutual information values, which were compared using quantiles.**
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Stratified linkage disequilibrium score regression

Heritability is defined as the proportion of variation in a trait that can be attributed to inherited
genetic factors.*> More specifically to this project, single nucleotide polymorphism (SNP)-
based heritability refers to the variance that can be explained by any set of SNPs, such as those
derived from a GWAS.*® We used stratified linkage disequilibrium score regression (LDSC,
v.1.0.1., https://github.com/bulik/ldsc/wiki) to evaluate the enrichment of common SNP-based

heritability for Parkinson’s disease across individual regulons derived from reverse engineering

analysis and across regulon genes grouped according to cumulative frequency. 4’8

Analysis was performed with parameters as described by Chen et al..* Briefly, the baseline
model of 97 annotations (v.2.2, GRCh37) to which annotations were added included only SNPs
with minor allele frequencies over 5%. The major histocompatibility complex region was
excluded due to its complicated LD patterns. Regression and LD reference panels utilised

HapMap Project Phase 3 (https://www.sanger.ac.uk/data/hapmap-3/) and 1000 Genomes

Project Phase 3 (https://www.internationalgenome.org/) European population SNPs

respectively.’®>! Gene coordinates were extended by 100kb up and downstream of their
transcription start and end sites to capture potentially relevant regulatory elements.>* The
resultant regression coefficients (contribution of annotation after controlling for all other

categories in the model) were used to calculate two-tailed p-values.

Cell culture and siRNA treatment

We cultured wildtype (WT) SHSYSY neuroblastoma cells (RRID:CVCL_0019) sourced from
American Type Culture Collection (ATCC, RRID:SCR_00167) in Dulbecco's Modified Eagle
Medium (DMEM, Gibco, 11995-065) containing foetal bovine serum (10%, Gibco, 10500-
064). For plating, cells were trypsinised, resuspended in culture media and counted using a

Countess Automated Cell Counter.

Three types of siRNA were purchased as pre-designed siGENOME SMARTpools and
transfected as per the manufacturer’s instructions: non-targeting/scrambled (D-001206-13),
KAT8 (M-014800-00) and KANSL1 (M-031748-00). Each siRNA was diluted in FBS-free
DMEM (final well concentration 50nM), mixed with DharmaFECT1 (Dharmacon, T-2001-
03), 25ul added per well and incubated at room temperature for 30 minutes. Cell suspensions
allowing for 12.5 x 10° cells per well in a 96-well plate were prepared in culture media and

100ul added to each well on top of the siRNA mix. Following 72 hours incubation, media was
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removed and cells were lysed as per manufacturer’s instructions (see QuantiGene section

below).

QuantiGene multiplex assay

We used the QuantiGene multiplex system to simultaneously measure the expression of
multiple genes in siRNA-treated SHSYSY cell samples.”>> Individual reagents and probe sets
were purchased from ThermoFisher. Probes were directed against: i) five housekeeping genes
used for normalisation, ii) two NSL complex genes used to quantify the KD, iii) all genes both
causally linked to Mendelian Parkinson’s disease and complex parkinsonism, and contained
within NSL regulons in the GTEx dataset, and 1v) all genes nominated through GWAS which
are expressed in brain and predicted to be regulated by at least three NSL complex genes (Tab.
2). CTSB was included as an exception, despite only appearing in two regulons, due to
extensive literature implicating it in Parkinson’s disease.>*® All GWAS-linked genes in this

final list had mutual information values in the upper 50" regulon quantile (Tab. 2).

Samples were prepared as per manufacturer’s instructions: working lysis mixture was prepared
by diluting 1ul proteinase K per 100ul lysis mixture; cells were lysed by pipetting 150ul warm
working lysis mixture per well (1:2 working lysis mixture to culture media); then plates were
snap frozen on dry ice and stored at -80°C. The remainder of the assay was performed as
indicated in the manufacturer’s protocol, with the exception that the Streptavidin R-
Phycoerythrin conjugate (SAPE) binding step was completed at 51 °C.> Plates were read using
a Magpix (Luminex). This protocol is available on protocols.io  (doi:

dx.doi.org/10.17504/protocols.io.kqdg39%ew7g25/v1).

Data analysis was performed by first subtracting the background, then normalising the signals
obtained for the genes of interest to the geometric mean of the five housekeeping gene signals.
Technical duplicates were included for each experimental repeat and outliers were identified
and excluded using the ROUT method in GraphPad Prism (version 9, RRID:SCR_002798).%’

Remaining duplicates were averaged and normalized to the SCR treated sample mean.

Data availability

Raw data used to generate specificity matrices from substantia nigra and medial temporal gyrus

are available at https://github.com/RHReynolds/MarkerGenes. Primary GCNs are available in

the CoExpNets package (https://github.com/juanbot/CoExpNets) or on the CoExp website
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(www.rytenlab.com/coexp/Run/Catalog/). Details of the construction of secondary GCNs
using the GMSCA package are available here: https://github.com/drlaguna/GMSCA. Stratified
LDSC analysis utilised the LDSCforRyten package
(https://github.com/RHReynolds/LDSCforRyten). Instructions for the use of ARACNe-AP

were utilised from here: https://github.com/califano-lab/ARACNe-AP and the java package

adapted for R is available alongside all code wused for this paper here:

https://github.com/amyrosehicks/NSL_PD _relationships.?

Results

Components of the NSL complex are highly expressed across all CNS regions

and cell types

Using transcriptomic data provided by GTEx, the expression of genes encoding the NSL
complex across the 13 CNS regions was analysed. This analysis demonstrated expression of
all nine members of the NSL complex in all CNS regions, though we noted that KAT8 and OGT
were most highly expressed in the cerebellum (median transcripts per million (TPM) = 107.8
and 181.5) (Supplementary Fig. 1a). Differences in cell type-specific expression were also
examined within two brain regions, namely the substantia nigra and medial temporal gyrus,
utilising EWCE analysis and based on single-nuclei transcriptomic data.>'*> Consistent with
expectation, the NSL complex genes displayed no overt differences in cell type-specific gene

expression when considered collectively (Supplementary Fig. 1b).

Components of the NSL complex cluster together in gene co-expression

modules derived from human frontal cortex data

Given that there was no clear specificity of expression of NSL genes in CNS tissues or, more
importantly, cell types, gene co-expression analysis was used to investigate the possibility of
regional differences in co-expression that could explain selective neuronal vulnerability in
Parkinson’s disease. This approach was based on the fact that genes with highly correlated
expression tend to share biological relationships, and so GCN analysis can reveal otherwise
hidden patterns in expression that reflect molecular and cellular processes.* With this in mind,
we used transcriptomic data generated by GTEx and covering 13 CNS regions to generate

tissue-specific GCNs. Each GCN consisted of between 10-79 gene co-expression modules
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containing an average of 530 genes per module. Module membership values ranged from 0 to
1, with higher values indicating the expression of the gene is highly correlated with the module

eigengene (ME).*®

To identify gene co-expression modules of most interest, we investigated the enrichment of
NSL genes within all 489 modules across all 13 GTEx CNS-relevant GCNs. We identified a
significant enrichment of the NSL genes within the hippocampus ‘pink’ (FDR corrected p-
value = 9.15x107°, module membership range = 0.842-0.906) and frontal cortex ‘red” modules
(FDR corrected p-value = 5.86x107, module membership range = 0.775-0.904) (Fig. 1a,
Supplementary Fig. 2). Importantly, the enrichment of NSL genes within the latter could be
replicated in the corresponding UKBEC frontal cortex GCN within the ‘black” module (FDR
corrected p-value = 3.84x10*, module membership range = 0.495-0.857) (Supplementary Fig.
3a). Given these findings, we focused on the GTEx and UKBEC frontal cortex GCNs and
analysed the correlations between modules containing NSL genes. We found that several
modules containing NSL genes, including the significantly enriched ‘red’ and ‘darkred’ (FDR-
corrected p-value = 0.205, module memberships =0.719 and 0.849) GTEx modules had highly
correlated expression, as visualised in a ME dendrogram plot (Supplementary Fig. 4a,c). Again,
this was replicated in the frontal cortex UKBEC GCN, where we noted high correlations in the
expression of significantly enriched ‘black’ and ‘darkgreen’ (FDR corrected p-value = 0.270,
module membership = 0.506) modules (Supplementary Fig. 4b,d). Taken together, these
findings suggest that genes encoding the NSL complex are significantly co-expressed in the
frontal cortex, a finding which is consistent with the importance of this brain region in

Parkinson’s disease progression and dementia.*-%>

Co-expression analysis supports a role for the NSL complex in the regulation

of both chromatin and mitochondrial function in human frontal cortex

Next, we focused on co-expression modules containing NSL complex genes to better
understand their function in human brain. This was achieved by examining GO term
enrichment within all five modules of interest in the GTEx frontal cortex GCN, but with the
primary focus being the ‘red” module. In total, these five modules were significantly enriched
for 2899 GO terms (FDR < 0.05). Following term reduction, we noted enrichments of terms
representing both the well-characterised nuclear-based and lesser-known mitochondrial-based
role of the NSL complex. Consistent with expectation, nucleus-related terms, such as

transcription coactivator activity (FDR range = 1.85x107-0.0227), were identified as enriched
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within the ‘red’ module, whilst the ‘darkred’ module was enriched for a range of mitochondria-
related terms, including cytochrome-c oxidase activity (FDR range = 2.03x10%-0.0128) and
mitochondrial inner membrane (FDR range = 1.33x107!-2.46x107) (Fig. 1b). The UKBEC
GCN was also significantly enriched for several nuclear terms in the ‘black’ module, but lacked
any mitochondrial terms (Supplementary Fig. 3b). Together these results indicated that both
the chromatin- and mitochondria-related functions of the NSL complex were captured in these

GCNs, indicating that these functions are likely to be active within human frontal cortex.

Components of the NSL complex cluster together with Parkinson’s disease-
associated genes in co-expression modules in human brain

Next, we explored the possibility that NSL genes are functionally related to genes associated
with Parkinson’s disease. Parkinson’s-related genes were divided into those causally linked to
Mendelian forms of the disease and those associated with sporadic Parkinson’s disease through
the identification of GWAS risk loci in close proximity. The GTEx GCN was then tested for
enrichment of the two disease lists. Gene set enrichment analysis revealed a significant
enrichment of GWAS genes in the ‘red” GTEx GCN module (FDR = 0.0269, module
membership range = 0.553-0.907) (Fig. 1c). These results point to the possibility that important
gene regulatory links exist between the NSL complex and genes associated with sporadic

Parkinson’s disease.

NSL complex activity in Parkinson’s disease may be most important in

neuronal cell types

Although the genes encoding the NSL complex are expressed ubiquitously across different
cell types, their gene regulatory relationships may nonetheless be cell type-specific, and only
in specific cell types might there be a relationship with Parkinson’s disease genes. We used
the GMSCA tool to test this possibility, and generated secondary GCNs, from which the
contribution of four major cell types (neurons, astrocytes, microglia and oligodendrocytes)
was removed in turn prior to network construction.*’ As might be expected, this correction
altered the clustering of NSL genes and their co-expression patterns with Parkinson’s disease-
associated genes across secondary GCN modules (Fig. 2a,c). The sporadic Parkinson’s
disease gene list was significantly enriched alongside KANSLI — as in the primary GCN —
within the oligodendrocyte-corrected ‘green’ module (FDR-corrected p-values = 4.81x107

and 5.87x107 respectively) alone, whilst each of the neuron-, microglia- and astrocyte-
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corrected networks disrupted the relationship between NSL and disease genes (Fig 2a,c). This
suggested that the relationship between these genes is likely to be active in the neurons,

microglia and/or astrocytes.

To identify which of the three cell types was most important for NSL-Parkinson's disease co-
expression, we examined the enrichment of cell type markers across all primary and
secondary GCN modules. The ‘darkred” module containing KAT8 and MCRSI was enriched
for markers of dopaminergic neuronal signalling (p-value = 3.23x107) in the GTEx primary
GCN (Fig. 2b). MCRS1 remained predominantly in modules enriched for different neuronal
markers following the correction of microglial, astrocytic and oligodendrocytic signatures (p-
value range = 3.92x107'%-7.42x10%, module membership range = 0.8452-0.8529) (Fig. 2b).
The primary GCN ‘grey60’ module containing PHF20 lacked any cell type enrichment,
contrasting to the secondary GCN ‘salmon’ and ‘greenyellow’ modules which were both
enriched for multiple neuronal cell types following the correction of microglial and
oligodendrocytic signatures respectively (p-value range = 3.99x10'1-5.11x1073, module
memberships = 0.8544 and 0.8539)(Fig. 2b). Although KANSLI-containing modules had no
cell type enrichments, these results suggest the gene regulatory links between the NSL
complex and genes associated with Parkinson’s disease may be most important in neuronal

cell types.

In silico analysis predicts the regulation of Parkinson’s disease-associated

genes by members of the NSL complex

The genetic interactions modelled in GCNs are typically undirected in that causality is
unassigned.*® However, it is already known that the NSL complex is highly important in the
regulation of gene expression, suggesting that at least a proportion of the genes co-expressed
with the NSL complex are regulated by it.> We formally tested this possibility in silico with
the tool Algorithm for the Reconstruction of Accurate Cellular Networks with adaptive
partitioning (ARACNe-AP), which uses expression data to reverse engineer gene regulatory
networks.**%* By applying ARACNe-AP, we predicted the genes most likely to be regulated
by the NSL complex amongst those contained within the ‘red’ and ‘darkred’ GTEx GCN
modules (Supplementary Table 1).** The resulting target gene lists, termed regulons, produced
by this analysis ranged from 491 genes predicted to be regulated by KANSLI, to 1788 predicted
to be regulated by WDR)5 in the GTEx dataset. As expected for genes encoding a protein

complex which regulates gene expression, regulons showed significant overlaps with each
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other. The regulons of the four NSL genes contained within the ‘red” GTEx GCN module all
significantly overlapped (FDR range = 3.53x10°%7-3.76x10*), whilst the regulon of KATS
significantly overlapped only with that of WDR5 (FDR = 2.98x10°'") (Fig. 3a).

To reduce the impact of noise and focus on genes most representative of NSL complex activity,
genes appearing in three or more regulons were collated and termed the NSL regulon (n =
1101). We then assessed this gene set for its role in Parkinson’s disease causation. Firstly, we
noted that two Mendelian disease-associated genes (ATXN2 and PLA2G6) and 12 sporadic
disease-associated genes (BIN3, CCAR2, DGKQ, GAK, GBAPI, IGSF9B, NCKIPSD, PGS],
POLR2A, QRICHI1, SETDIA, SH2B1) were contained within this dataset, though no significant
enrichment was observed (p-value = 0.843 and = 0.619 respectively). Furthermore, we used
stratified LDSC to assess the enrichment of Parkinson’s disease SNP-based heritability
amongst all genes in the NSL regulon.! Despite the relatively small gene set, we found that
the regression coefficient — a stringent measure of the contribution to SNP-based heritability
which accounts for underlying contributions of genetic architecture captured within the
baseline model — had a p-value that fell just outside significance (p-value = 0.0519,
Supplementary Tab. 2). This hinted at a link between Parkinson’s disease heritability and NSL
complex activity. Individual regulons and gene lists divided according to cumulative regulon
frequency were also tested, revealing a nominally significant enrichment of heritability within

the HCFC1 regulon (p-value = 0.0239, FDR = 0.143) (Supplementary Tab. 3).

Next, we assessed the NSL regulon for the enrichment of gene pathways of potential relevance
to Parkinson’s disease. Using gene set enrichment analysis utilising parent terms to reduce
redundancy, we found that genes contained within the NSL regulon were enriched for a range
of terms including: autophagy (GO:0006914, child term FDR range = 3.11x107'2-0.0354),
regulation of autophagy (GO:0010506, child term FDR range = 2.90x10%-0.0123), and
chromatin organisation (GO:0006325, child term FDR range = 7.50x10°-0.0483) (Fig. 3b).
Gene set enrichment analysis was also completed on individual regulons, revealing many of
the same parent terms to be enriched across different regulons (Supplementary figure 5). To
assess the association of Parkinson’s disease-relevant pathways with the regulons more
directly, we specifically asked whether our enriched gene sets overlapped with a list of 46 gene
sets genetically implicated in the disease through common genetic variation.®* This highlighted
the enrichment of five disease-linked terms, including KEGG:04142 Lysosome (FDR =
0.0321) and REAC:R-HSA-4839726 chromatin organization (FDR = 0.0242), suggesting that
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the NSL regulon in frontal cortex is enriched for genes causally implicated in Parkinson’s

disease (Fig. 3c¢).

In vitro analysis confirms the regulation of Parkinson’s disease-associated

genes by the NSL complex

Given the success of our in silico analyses, we wanted to validate some of the regulatory
relationships identified in vitro, in particular focusing on genes causally associated with
Parkinson’s disease and contained within the NSL regulon (Table 2). With this in mind, we
measured the expression of 17 genes of interest in response to KANSLI and KATS siRNA KD
in a SHSYSY cell line, a regularly used cell model for Parkinson’s disease research (Fig. 4,
Supplementary Fig. 6).* After confirming that KANSLI and KATS KDs did not affect
housekeeping gene expression levels, we found that both KDs significantly reduced PINK]
expression (p-value < 1x10™* and 0.0151), consistent with previous reports (Supplementary Fig.
6a,b).* BIN3, CTSB, DGKQ, NCKIPSD and PGSI were also significantly reduced following
KANSLI KD alone (p-value range < 1x104-0.0295), with reductions in DGKQ and NCKIPSD
following KAT8 KD also reaching significance (p-value = 4.55x107 and 4.25x107).
Interestingly, WDR45 expression followed an inverse pattern, with KAT8 KD resulting in a
significantly increase in expression(p-value = 3.31x10) (Fig. 4). Thus, seven of the 17 genes
(41.2%) predicted to be regulated by the NSL complex using in silico analyses were indeed
found to show significant changes in expression when KAT8 or KANSLI expression was

suppressed (Fig. 5).

Discussion

This project utilised publicly available transcriptomic data from human brain tissue to
characterise the expression patterns of genes encoding the NSL complex and their relationships
to genes genetically linked to Parkinson’s disease. First, NSL genes were found to cluster
together with Parkinson’s-associated genes in GCN modules annotated for both chromatin and
mitochondria-related functions. Second, these co-expression relationships appeared to be most
associated with neuronal cell types. Third, a number of Parkinson’s-associated genes predicted
to be directly regulated by multiple components of the NSL complex were subsequently

validated in a relevant cell model.
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Despite no clear specificity of expression being detected across tissues, the NSL genes showed
specific co-expression patterns across GCNs produced from different brain regions. These
results are consistent with the theory of the NSL complex having context-specific gene
regulatory functions. Within the frontal cortex GCN, NSL genes clustered within GCN
modules which were significantly enriched for nuclear GO terms, as expected for a chromatin
regulating protein complex. The enrichment of mitochondrial GO terms within modules
containing NSL genes adds supporting evidence for the less well-characterised role of the NSL
complex based at mitochondria.*?! Further, the enrichment of genes associated with sporadic
Parkinson’s disease alongside NSL genes highlights a high level of correlation in gene
expression. These results in particular support a functional interaction with the chromatin
regulating NSL complex and point to a biological link between multiple genes highlighted
through GWASs. It would be difficult to investigate such interactions in any way other than
using post-mortem tissue given that this method captures the full background of the disease.
However, this also means the results depend heavily on the numbers of samples available as
this may limit the power of analyses. Particularly in the context of Parkinson’s disease, it may
have been most interesting to investigate gene regulatory interactions within the substantia
nigra, where much of the pathophysiological features of the disease are observed®. However,
within the GTEx dataset studied here, there are only 63 substantia nigra samples compared to

108 frontal cortex.3¢

Secondary GCNs allowed us to examine the activity of the genes encoding the NSL complex
within different cell type contexts.*® Cell type enrichments annotated to modules containing
NSL genes when present were almost always neuronal. These findings support in vitro
experimental results demonstrating changes in multiple markers of mitochondrial dysfunction
following NSL KD in neuronal models.* Differences in activity in non-neuronal cell types
needs to be validated further, perhaps by examining single-cell RNA-sequencing datasets.
Published bulk RNA-sequencing data from CRISPRi-mediated KAT8 KD in THP-1 cells — a
macrophage-like cell line — indeed showed no significant change in PINK1 expression, contrary

to the aforementioned decrease detected in neuroblastoma cells.®

GCN analysis was augmented by the use of ARACNe, a method for reverse engineering gene
regulatory networks.®® By applying ARACNe-AP to members of the NSL complex, we
identified significant overlaps between the predicted regulons, increasing our confidence in
their representativeness of NSL complex function. Importantly, the NSL regulon, comprising

genes predicted to be regulated by three or more NSL genes, was enriched for multiple
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pathways genetically linked to Parkinson’s disease through common genetic variation and
almost enriched for heritability through stratified LDSC.%* This strengthens the notion that the
NSL complex acts across the genome to regulate the expression of multiple different genes
linked to Parkinson’s disease risk. eQTL analysis may be a way of testing this result more
directly, by asking whether SNPs regulating the expression of NSL genes in cis also regulate
the expression of genes relating to Parkinson’s disease in frans. However, very large sample

numbers are required to power such an analysis.

Individual genes predicted to be regulated by the NSL complex served as prioritised targets for
in vitro validation. Significant changes were detected in the expression of seven Parkinson’s
disease-associated genes following KANSLI and KAT8 KD, suggesting the NSL complex may
act as a master regulator of multiple pathways implicated in disease pathology. Furthermore,
several of these regulatory relationships have been captured in existing literature: RNA-
sequencing of THP-1 cells found a significant decrease in DGKQ expression following KATS8
KD, though the changes in NCKIPSD and WDR45 expression were not confirmed.® Similarly,
RNA-sequencing of embryonic fibroblasts from KANSLI knock-out mice also captured a
decrease in PINKI, BIN3 and DGKQ, but found contrasting increases in CSTB and
NCKIPSD.® These results support the notion that the gene regulatory activity of the NSL
complex has potential organism and cell-type specificity. Parallel assay for transposase-
accessible chromatin (ATAC)- or chromatin immuno-precipitation (ChIP)-sequencing
experiments would no doubt assist the characterisation of NSL complex activity at specific

loci.

In this study, we demonstrate the potential of in silico analyses to identify regulatory
relationships between genes highlighted in GWASs and successfully validate such interactions
in vitro. The NSL complex thus provides a potentially useful therapeutic target which could be
used to simultaneously modulate a range of molecular pathways implicated in Parkinson’s
disease, a strategy which might combat problematic compensatory responses that can occur
when individual pathway components are targeted. Chromatin regulation is already an
emerging target for the treatment of rare disorders including specific cancers and
developmental diseases, and we believe a similar approach may prove effective in

neurodegenerative disorders.%”-%
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Figure legends

Figure 1. Exploration of GTEx frontal cortex gene co-expression network. (A) NSL gene
enrichment analysis across GCN modules constructed using GTEx datasets. (B) GO BP, MF
and CC term enrichments for GCN modules containing NSL genes. Each term has been
uniformly reduced to a parent term in order to group together similar terms. Colour corresponds
to the p-value of the most significantly enriched child term within the parent term. (C)
Parkinson's disease-associated gene set enrichment analysis, filtered for GCN modules
containing NSL genes. Fishers exact test, displayed over a log scale (FDR-corrected p-values).
ns, FDR > 0.05; *, FDR < 0.05; **, FDR < 0.01; *** FDR < 0.001; **** FDR < 0.0001.
Biological process (BP), cellular compartment (CC), false discovery rate (FDR), gene co-
expression network (GCN), gene ontology (GO), Genotype Tissue Expression (GTEXx),
molecular function (MF), non-specific lethal (NSL), Parkinson's disease (PD).

Figure 2. Exploration of GTEXx frontal cortex secondary gene co-expression networks. (A)
NSL gene enrichment analysis of secondary GCN modules constructed using GTEx datasets.
(B) Cell type enrichment analysis of primary (labelled 'none') and secondary (labelled '-
corrected') GCN modules containing NSL genes. NSL genes found within modules devoid of
any cell type enrichment were not included. (C) Mendelian and sporadic Parkinson's disease-
associated gene enrichment analysis of secondary GCN modules, filtered for those containing
KATS8 and KANSLI (gene in brackets, no box indicates no genes present). Fishers exact test,
displayed over a log scale (FDR-corrected p-values). ns, FDR > 0.05; *, FDR < 0.05; **, FDR
< 0.01; *** FDR < 0.001; **** FDR < 0.0001. False discovery rate (FDR), gene co-
expression network (GCN), Genotype Tissue Expression (GTEx), non-specific lethal (NSL),

Parkinson's disease (PD).

Figure 3. Characterisation of NSL complex regulons, derived from ARA CNe-AP analysis
of 'red' and 'darkred' GTEx primary gene co-expression network modules. (A) Overlaps
of regulons of each NSL gene. (B) GO BP, MF and CC term enrichments for genes appearing
in three or more NSL regulons. Each term has been uniformly reduced to a parent term in order
to group together similar terms. Colour corresponds to the p-value of the most significantly

enriched child term within the parent term and the x-axis denotes the mean ratio of genes
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intersecting with the term to total genes within each term. (C) REACTOME and KEGG term
enrichments for genes appearing in three or more NSL regulons, filtered for those genetically
linked to Parkinson's disease. The x-axis denotes the ratio of genes intersecting with the term
to total genes within each term. Fishers exact tests, displayed over a log scale (gene set
enrichment p-values are FDR corrected). ns, FDR > 0.05; *, FDR < 0.05; **, FDR < 0.01;
*#% FDR < 0.001; **** FDR < 0.0001. Biological process (BP), cellular compartment (CC),
false discovery rate (FDR), gene co-expression network (GCN), gene ontology (GO),
Genotype Tissue Expression (GTEx), molecular function (MF), non-specific lethal (NSL),

Parkinson's disease (PD).

Figure 4. Changes in mRNA levels of Parkinson's disease-associated genes following
suppression of NSL complex genes. Measured using QuantiGene multiplex assay, normalised
to average SCR control. One-way ANOV A with Dunnett correction for multiple comparisons,
n=_8. * FDR <0.05; ** FDR < 0.01; *** FDR < 0.001; **** FDR < 0.0001. Non-specific
lethal (NSL), scrambled (SCR).

Figure 5. Regulatory relationship detected between genes encoding the NSL complex and
genes associated with Parkinson’s disease. Genes highlighted were tested using QuantiGene
multiplex assay. Colours correspond to classification of gene (blue, genes linked to Parkinson’s
disease with NSL regulation detected; grey, genes linked to Parkinson’s disease without NSL
regulation detected; lightest yellow, KATS regulation; darkest yellow, KANSLI regulation).
Non-specific lethal (NSL).

Table 1 Gene lists collated for frontal cortex gene co-expression network analysis. Genes
missing from GCNs were not included in the search. Gene co-expression network (GCN),
Genotype Tissue Expression (GTEx), non-specific lethal (NSL), United Kingdom Brain
Expression Consortium (UKBEC).

Table 2 Details of QuantiGene 24-plex assay detecting changes in Parkinson’s disease-
associated genes following NSL complex knockdown. All Mendelian disease-linked genes
appearing in NSL regulons in the GTEx dataset were included, as well as GWAS genes
expressed in brain and appearing in three or more regulons (CTSB was included as an exception
due to extensive literature implicating it in Parkinson's disease). Genotype Tissue Expression
(GTEXx), mutual information (MI), non-specific lethal (NSL), Parkinson's disease (PD), United
Kingdom Brain Expression Consortium (UKBEC).
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Supplementary Figure 1. Tissue and cell type specificity of NSL complex gene expression.
(A) Median TPM for each NSL gene in brain tissue data obtained from GTEXx protal. (B) Plot
of specificity values for NSL genes across brain-related cell types in two independent datasets,
obtained from medial temporal gyrus and substantia nigra tissue. Data was obtained from
Hodge et al., 2019 and Agarwal et al., 20203132 Genotype Tissue Expression (GTEx), non-
specific lethal (NSL), transcripts per million (TPM).

Supplementary Figure 2. NSL complex gene enrichment across gene co-expression
networks generated using GTEx data from multiple CNS regions. GCNs constructed using
GTEx datasets containing transcriptomic data from 13 CNS regions. Fishers exact test,
displayed over a log scale (FDR-corrected p-values). ns, FDR > 0.05; *, FDR < 0.05; **, FDR
< 0.01; *** FDR < 0.001; ****  FDR < 0.0001. False discovery rate (FDR), gene co-
expression network (GCN), Genotype Tissue Expression (GTEX), non-specific lethal (NSL).

Supplementary Figure 3. Exploration of UKBEC frontal cortex gene co-expression
network. (A) NSL gene enrichment analysis across GCN modules constructed using UKBEC
datasets. (B) GO BP, MF and CC term enrichments for GCN modules containing NSL genes.
Each term has been uniformly reduced to a parent term in order to group together similar terms.
Colour corresponds to the p-value of the most significantly enriched child term within the
parent term. Fishers exact test, displayed over a log scale (FDR-corrected p-values). ns, FDR
> 0.05; *, FDR < 0.05; **, FDR < 0.01; *** FDR < 0.001; **** FDR < 0.0001. Biological
process (BP), cellular compartment (CC), false discovery rate (FDR), gene co-expression
network (GCN), gene ontology (GO), molecular function (MF), non-specific lethal (NSL),
United Kingdom Brain Expression Consortium (UKBEC).

Supplementary Figure 4. Inter-module relationships within frontal cotrex gene co-
expression networks. (A-B) GCN module eigengene dendrogram, labelled as ME module:
number of genes within module. (C-D) Spearman's rank correlation plot for GCN modules,
labelled as ME module. Colour corresponds to R number and size of circle corresponds to p-
value significance of association. (A,C) describe GTEx GCNs and (B,D) describe UKBEC
GCNs. Gene co-expression network (GCN), Genotype Tissue Expression (GTEx), module
eigengene (ME), United Kingdom Brain Expression Consortium (UKBEC).

Supplementary Figure 5. Gene set enrichment analysis of individual regulons of NSL
genes, derived from ARACNe-AP analysis of ‘red’ and ‘darkred’ GTEx primary gene co-
expression network modules. (A) GO BP, MF and CC term enrichments for each NSL
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regulon. Each term has been uniformly reduced to a parent term in order to group together
similar terms. Colour corresponds to the p-value of the most significantly enriched child term
within the parent term. (B) REACTOME and KEGG term enrichments for each NSL regulon,
filtered for those genetically linked to Parkinson's disease. Fishers exact tests, displayed over
a log scale (FDR corrected p-values). ns, FDR > 0.05; *, FDR < 0.05; **, FDR < 0.01; **%*,
FDR <0.001; **** FDR < 0.0001. Biological process (BP), cellular compartment (CC), false
discovery rate (FDR), gene co-expression network (GCN), gene ontology (GO), Genotype
Tissue Expression (GTEx), molecular function (MF), non-specific lethal (NSL).

Supplementary Figure 6. Changes in mRNA levels of housekeeping, NSL complex and
Parkinson’s disease-associated genes following knockdown of NSL complex genes. (A)
Housekeeping genes, (B) Parkinson’s disease-associated genes, (C) NSL genes. Measured
using QuantiGene multiplex assay, normalised to average SCR control. One-way ANOVA
with Dunnett correction for multiple comparisons, n=8. *, p<0.05; **, p < 0.01, ***, p<0.001;
*Ex%k p<0.0001. Non-specific lethal (NSL), scrambled (SCR).

Supplementary Table 1 Summary of results from ARACNe-AP analysis of GTEx gene
co-expression network modules. Total number of targets predicted to be directly regulated by

each NSL gene. Genotype Tissue Expression (GTEx), non-specific lethal (NSL).

Supplementary Table 2 Enrichment of Parkinson’s disease SNP-based heritability within
cumulative frequencies of NSL complex regulons derived from ARACNe-AP analysis of
GTEx data. Stratified LDSC analysis generated enrichment values, representing the
proportion of heritability accounted for by the annotation after controlling for all other
categories in the model. These were used to calculate two-tailed p-values, which were FDR-
corrected. False discovery rate (FDR), Genotype Tissue Expression (GTEx), linkage
disequelibrium score regression (LDSC), non-specific lethal (NSL), single nucleotide

polymorphism (SNP).

Supplementary Table 3 Enrichment of Parkinson’s disease SNP-based heritability within
individual NSL complex regulons derived from ARACNe-AP analysis of GTEx data.
Stratified LDSC analysis generated enrichment values, representing the proportion of
heritability accounted for by the annotation, and regression coefficients, representing the
contribution of an annotation after controlling for all other categories in the model. These were

used to calculate a two-tailed p-values, which were FDR-corrected. False discovery rate (FDR),


https://doi.org/10.1101/2023.01.16.523926
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.16.523926; this version posted January 18, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Genotype Tissue Expression (GTEX), linkage disequilibrium score regression (LDSC), single

nucleotide polymorphism (SNP).
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Figure 1. Exploration of GTEx frontal cortex gene co-expression network. (A) NSL gene enrichment analysis across GCN modules
constructed using GTEx datasets. (B) GO BP, MF and CC term enrichments for GCN modules containing NSL genes. Each term has

been uniformly reduced to a parent term in order to group together similar terms. Colour corresponds to the p-value of the most

significantly enriched child term within the parent term. (C) Parkinson's disease-associated gene set enrichment analysis, filtered for
GCN modules containing NSL genes (no box indicates no genes present). Fishers exact test, displayed over a log scale (FDR-corrected
p-values). ns, FDR > 0.05; *, FDR < 0.05; **, FDR < 0.01; *** FDR < 0.001; **** FDR < 0.0001. Biological process (BP), cellular
compartment (CC), false discovery rate (FDR), gene co-expression network (GCN), gene ontology (GO), Genotype Tissue Expression

(GTEXx), molecular function (MF), non-specific lethal (NSL), Parkinson's disease (PD).
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Figure 3. Characterisation of NSL complex regulons, derived from ARACNe-AP analysis of 'red' and 'darkred' GTEx primary
gene co-expression network modules. (A) Overlaps of regulons of each NSL gene. (B) GO BP, MF and CC term enrichments for genes
appearing in three or more NSL regulons. Each term has been uniformly reduced to a parent term in order to group together similar terms.
Colour corresponds to the p-value of the most significantly enriched child term within the parent term and the x-axis denotes the mean
ratio of genes intersecting with the term to total genes within each term. (C) REACTOME and KEGG term enrichments for genes
appearing in three or more NSL regulons, filtered for those genetically linked to Parkinson's disease. The x-axis denotes the ratio of genes
intersecting with the term to total genes within each term. Fishers exact tests, displayed over a log scale (gene set enrichment p-values are
FDR corrected). ns, FDR > 0.05; *, FDR <0.05; **, FDR < 0.01; *** FDR < 0.001; **** FDR <0.0001. Biological process (BP),
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Figure 4. Changes in mRNA levels of Parkinson's disease-associated genes following suppression of NSL complex genes.
Measured using QuantiGene multiplex assay, normalised to average SCR control. One-way ANOVA with Dunnett correction for
multiple comparisons, n = 8. *, FDR < 0.05; ** FDR < 0.01; *** FDR < 0.001; **** FDR < 0.0001. Non-specific lethal (NSL),

scrambled (SCR).
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Figure 5. Regulatory relationship detected between NSL complex genes and Parkinson's disease-associated genes. Genes
highlighted were tested using QuantiGene multiplex assay. Colours correspond to classification of gene (blue, genes linked to
Parkinson's disease with NSL regulation detected; grey, genes linked to Parkinson's disease without NSL regulation detected; lightest

yellow, KATS regulation; darkest yellow, KANSLI regulation). Non-specific lethal (NSL).
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Number of genes
List Source Total | Within GTEx | Within UKBEC

GCN GCN
NSL complex | (Sheikh et al., 2019) 9 9 8
Mendelian PanelApp: Parkinson disease
Parkinson’s and complex Parkinsonism 43 42 42
disease version 1.68
Sporadic Genes nominated by
Parkinson’s Mendelian Randomisation 151 135 134
disease (Nalls et al., 2019)

Table 1. Gene lists collated for frontal cortex gene co-expression network analysis. Genes missing from GCNs were not included in
the search. Gene co-expression network (GCN), Genotype Tissue Expression (GTEXx), non-specific lethal (NSL), United Kingdom Brain

Expression Consortium (UKBEC).

. Regulon frequency | Regulon MI quantile range
Symbol | Accession number Type
GTEx UKBEC GTEx UKBEC
ATP5B NM_001686 HK - - - -
CANX NM_001746 HK - - - -
EIF4A2 NM_001967 HK - - - -
HPRT1 NM_000194 HK - - - -
PPIB NM_000942 HK - - - -
KANSL1 NM_015443 NSL - - - -
KATS8 NM_032188 NSL - - - -
PINK1 NM_032409 PD- mendelian 2 0.544-0.648
ATN1 NM_001940 PD- mendelian 1 1 0.942 0.966
ATXN2 NM_002973 PD- mendelian 4 1 0.572-0.913 0.782
PARK7 NM_007262 PD- mendelian 2 0.260
PLA2G6 NM_003560 PD- mendelian 6 0.118-0.169
WDR45 NM_007075 PD- mendelian 1 0.424
BIN3 NM_018688 PD- sporadic 4 0.457-0.754
CCAR2 NM_021174 PD- sporadic 3 0.729-0.839
CTSB NM_001908 PD- sporadic 2 0.825-0.899
DGKQ NM_001347 PD- sporadic 3 0.520-0.976
GAK NM_005255 PD- sporadic 3 0.864-0.977
NCKIPSD NM_016453 PD- sporadic 4 0.308-0.919
PGS1 NM_024419 PD- sporadic 3 0.651-0.805
POLR2A NM_000937 PD- sporadic 3 1 0.463-0.533 0.617
QRICH1 NM_017730 PD- sporadic 5 0.312-0.828
SETD1A NM_014712 PD- sporadic 4 2 0.294-0.869 | 0.0443-0.953
SH2B1 NM_015503 PD- sporadic 5 0.385-0.978

Table 2. Details of QuantiGene 24-plex assay detecting changes in Parkinson's disease-associated genes following NSL complex
knockdown. All Mendelian disease-linked genes appearing in NSL regulons in the GTEx dataset were included, as well as GWAS
genes expressed in brain and appearing in three or more regulons (C7SB was included as an exception due to extensive literature
implicating it in Parkinson's disease). Genotype Tissue Expression (GTEx), mutual information (MI), non-specific lethal (NSL),
Parkinson's disease (PD), United Kingdom Brain Expression Consortium (UKBEC).


https://doi.org/10.1101/2023.01.16.523926
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.16.523926; this version posted January 18, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
A perpetuity. It is made available under aCC-BY 4.0 International license.

Anterior cingulate cortex =

Amygdala =

Caudate =

Cerebellar hemisphere =

Cerebellum = Median TPM
200
()] Cortex =
=) 150
% Frontal cortex =
= 100
- Hippocampus =
50
Hypothalamus =
0
Nucleus accumbens =
Putamen =
Spinal cord =
Substantia nigra =
1 1 1 1 1 1 1 1 1
HCFC1 KANSL1KANSL2KANSL3 KAT8 MCRS1 OGT PHF20 WDRS5
Gene
human human
Medial temporal gyrus Substantia nigra
1.00
_-é‘ 0.75
o
=
6 0.50
() °
Q °
) 0.25 1 3 r
] ﬁ e = —— e
E ] ' EE. = == D 2 -
0.00 —
T T T T T T T T T T T T T T
@ & & @ @ o @ & o & N &
Cﬁ@ 0{@ @Q\\ Q‘OQ \3"00 & \"Q)\ <§& \°q\\ & é@ o‘oo \°Q> \3‘00
S RN @ & S 5@ O S N N N
& ® © © N < (o4 N £ © © ©
kS « O & S & S R\ S IS
S ) ) § & § ) & )
o\\g & X A & 8 O\\% X 2 &
& s oc,%‘ © X &
& & S <
N
¥ ¥
o 9
O'\\Q O'\\Q»
Cell type

Supplementary Figure 1. Tissue and cell type specificity of NSL complex gene expression. (A) Median TPM for each NSL gene in
brain tissue data obtained from GTEx protal. (B) Plot of specificity values for NSL genes across brain-related cell types in two
independent datasets, obtained from medial temporal gyrus and substantia nigra tissue. Data was obtained from Hodge et al., 2019 and
Agarwal et al., 2020. Genotype Tissue Expression (GTEx), non-specific lethal (NSL), transcripts per million (TPM).
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Supplementary Figure 2. NSL complex gene enrichment across gene co-expression networks generated using GTEx data from
multiple CNS regions. GCNs constructed using GTEx datasets containing transcriptomic data from 13 CNS regions. Fishers exact test,
displayed over a log scale (FDR-corrected p-values). ns, FDR > 0.05; *, FDR < 0.05; **, FDR < 0.01; *** FDR < 0.001; **** FDR <
0.0001. False discovery rate (FDR), gene co-expression network (GCN), Genotype Tissue Expression (GTEx), non-specific lethal (NSL).
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Supplementary Figure 3. Exploration of UKBEC frontal cortex gene co-expression network. (A) NSL gene enrichment analysis
across GCN modules constructed using UKBEC datasets. (B) GO BP, MF and CC term enrichments for GCN modules containing NSL
genes. Each term has been uniformly reduced to a parent term in order to group together similar terms. Colour corresponds to the p-value
of the most significantly enriched child term within the parent term. Fishers exact test, displayed over a log scale (FDR-corrected p-
values). ns, FDR > 0.05; *, FDR < 0.05; **, FDR < 0.01; *** FDR < 0.001; **** FDR < 0.0001. Biological process (BP), cellular
compartment (CC), false discovery rate (FDR), gene co-expression network (GCN), gene ontology (GO), molecular function (MF), non-
specific lethal (NSL), United Kingdom Brain Expression Consortium (UKBEC).
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Supplementary Figure 4. Inter-module relationships within frontal cotrex gene co-expression networks. (A-B) GCN module
eigengene dendrogram, labelled as ME module: number of genes within module. (C-D) Spearman's rank correlation plot for GCN

modules, labelled as ME module. Colour corresponds to R number and size of circle corresponds to p-value significance of association.
(A,C) describe GTEx GCNs and (B,D) describe UKBEC GCNs. Gene co-expression network (GCN), Genotype Tissue Expression
(GTEXx), module eigengene (ME), United Kingdom Brain Expression Consortium (UKBEC).
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Supplementary Figure 5. Gene set enrichment analysis of individual regulons, derived from ARACNe-AP analysis of 'red' and
'darkred' GTEx primary gene co-expression network modules. (A) GO BP, MF and CC term enrichments for each NSL regulon. Each
term has been uniformly reduced to a parent term in order to group together similar terms. Colour corresponds to the p-value of the most
significantly enriched child term within the parent term. (B) REACTOME and KEGG term enrichments for each NSL regulon, filtered
for those genetically linked to Parkinson's disease. Fishers exact tests, displayed over a log scale (FDR corrected p-values). ns, FDR >
0.05; *, FDR < 0.05; **, FDR < 0.01; *** FDR < 0.001; **** FDR < 0.0001. Biological process (BP), cellular compartment (CC),
false discovery rate (FDR), gene co-expression network (GCN), gene ontology (GO), Genotype Tissue Expression (GTEx), molecular
function (MF), non-specific lethal (NSL).
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Supplementary Figure 6. Changes in mRNA levels of housekeeping, NSL complex and Parkinson's disease-associated genes
following suppression of NSL complex genes. (A) Housekeeping genes, (B) Parkinson's disease-associated genes, (C) NSL genes.
Measured using QuantiGene multiplex assay, normalised to average SCR control. One-way ANOVA with Dunnett correction for multiple
comparisons, n = 8. * FDR < 0.05; ** FDR < 0.01; *** FDR < 0.001; **** FDR < 0.0001. Non-specific lethal (NSL), scrambled

(SCR).
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Regulon Number of
genes
HCFC1 704
KANSL1 491
OGT 617
KAT8 775
MCRS1 1584
WDR5 1788

Supplementary Table 1. Summary of results from ARACNe-AP analysis of GTEx gene co-expression network modules. Total
number of targets predicted to be directly regulated by each NSL gene. Genotype Tissue Expression (GTEx), non-specific lethal

(NSL).

Regulon Enrichment Regression coefficient
cumulative
frequency P-value FDR P-value FDR
1 or more 2.65x104 | 5.32x104 0.402 0.803
2 or more 2.16x10* | 5.32x104 0.317 0.803
3 or more 2.54x104 | 5.32x10* 0.0519 0.312
4 or more 0.0314 0.0471 0.768 0.921
5 or more 0.113 0.136 0.968 0.968
6 0.268 0.268 0.619 0.921

Supplementary Table 2. Enrichment of Parkinson's disease SNP-based heritability within cumulative frequencies of NSL
complex regulons derived from ARACNe-AP analysis of GTEx data. Stratified LDSC analysis generated enrichment values,
representing the proportion of heritability accounted for by the annotation after controlling for all other categories in the model.
These were used to calculate two-tailed p-values, which were FDR-corrected. False discovery rate (FDR), Genotype Tissue
Expression (GTEx), linkage disequelibrium score regression (LDSC), non-specific lethal (NSL), single nucleotide polymorphism
(SNP).

Regulon Enrichment Regression coefficient
P-value FDR P-value FDR
HCFC1 5.11x10+4 | 1.53x1073 0.0239 0.143
KANSL1 [ 4.03x10® | 6.38x10°3 0.270 0.540
KAT8 0.0118 0.0118 0.862 0.862
MCRS1 5.32x103 | 6.38x103 0.808 0.862
OGT 4.41x10° | 6.38x10°3 0.232 0.540
WDR5 2.82x104 | 1.53x10°3 0.463 0.695

Supplementary Table 3. Enrichment of Parkinson's disease SNP-based heritability within NSL complex regulons derived
from ARACNe-AP analysis of GTEx data. Stratified LDSC analysis generated enrichment values, representing the proportion of
heritability accounted for by the annotation after controlling for all other categories in the model. These were used to calculate two-
tailed p-values, which were FDR-corrected. False discovery rate (FDR), Genotype Tissue Expression (GTEX), linkage
disequelibrium score regression (LDSC), non-specific lethal (NSL), single nucleotide polymorphism (SNP).
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