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Abstract

Nosema ceranae is an emergent microsporidia parasite of the European honey
bee (Apis mellifera), which causes serious nosemosis implicated in honeybee colony
losses worldwide. N. ceranae is an obligate intracellular eukaryotic parasite that
mainly invades the midgut of honeybees. Recent studies find that bee gut microbiota
is potentially involved in protecting against parasitism. Here, using laboratory-
generated bees mono-associated with gut members, we find that Snodgrassella alvi
inhibited microsporidia proliferation, potentially via the stimulation of host oxidant-
mediated immune response. Accordingly, N. ceranae employs the thioredoxin and
glutathione systems to defend against oxidative stress and maintain a balanced redox
equilibrium, which is essential for the infection process. We knocked down the gene
expression using nanoparticle-mediated RNA interference, which targets the y-
glutamyl-cysteine synthetase and thioredoxin reductase genes of microsporidia. It
significantly reduces the spore load, confirming the importance of the antioxidant
mechanism for the intracellular invasion of the N. ceranae parasite. Finally, we
genetically modified the symbiotic S. alvi to deliver dSRNA corresponding to the
genes involved in the redox system of the microsporidia. The engineered S. alvi
induces RNA interference and represses parasite gene expression, thereby inhibits the
parasitism by up to 99.8%. Specifically, N. ceranae was most suppressed by the
recombinant strain corresponding to the glutathione synthetase or by a mixture of

bacteria expressing variable dSRNA. Our findings extend our previous understanding
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of the protection of gut symbionts against N. ceranae and provide a symbiont-

mediated RNAi system for inhibiting microsporidia infection in honeybees.

Introduction

Honey bees (Apis mellifera) are pollinators with global economic value
responsible for pollinating ecologically and agriculturally valuable crops. For the past
decade, a phenomenon known as Colony Collapse Disorder has posed a global threat
to honeybee health. Recent studies suggest several factors involved in colony decline,
such as parasite and pathogen invasion, pesticide use, and environmental stressors.
Honeybees are susceptible to a variety of pathogens and pests, including bacteria!,
fungi?, viruses?, Varroa destructors*, and microsporidian parasites>.

The microsporidia are obligate intracellular eukaryotic parasites of honeybees
and infect the midgut epithelial cells. Honeybees are mainly infected by two species
of microsporidia that cause nosemosis, one of the most severe bee diseases
worldwide®. Nosema apis was initially described in European honeybees and was
considered the exclusive parasite species causing nosemosis. Later, another species
Nosema ceranae was discovered in the Asian honeybee, Apis cerana, which is
presumed to be the original host, and it may transfer to A. mellifera during the past
decades’. It appears that N. ceranae displaces N. apis in A. mellifera, and the
prevalence studies found that N. apis infections are becoming rarer than N. ceranae®.

N. ceranae transmit via the fecal-oral route and the ingestion of spores from the

contaminated hive materials®. It can suppress the immune defense mechanism of
3
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honeybees, ensuring the infection of epithelial cells'® !!. The parasitic infection
reduces the lifespan and colony populations of A. mellifera and affects host
physiology and behaviors'> 13,

Honeybees rely on innate immunity to defend against infectious agents, which
operate through cellular and humoral mechanisms'#. The humoral immune system
consists of antimicrobial peptide production, which provides defense primarily against
bacterial pathogens. For intracellular parasites, insects can clear invading parasites by

eliciting oxidative stress!> 1617

. The intestinal epithelial and macrophage cells
produce reactive oxygen species (ROS)'8, including superoxide anion (O2), hydrogen
peroxide (H202), and hydroxyl radical (HO¢). While there is no evidence that ROS is
effective in clearing microsporidia, the infection of N. ceranae may disrupt the
oxidative balance of the honeybee gut'®.

Host ROS production can be modulated by the gut microbiota to eliminate
opportunistic pathogens'8. Although it is unclear whether the microbiota inhibits the
parasitism, N. ceranae infection perturbs the native gut composition, which may
enhance the intensity of the parasitic microsporidia?®. The honeybee gut microbiota
typically contains five core bacterial members?!. It has been shown that the bee gut
bacteria influence bee health by modulating host immune responses. Specifically,
Snodgrassella alvi and Lactobacillus apis protect honeybees from opportunistic
22,23

bacterial pathogens by inducing host immune response and AMPs production

Furthermore, the native gut bacteria can be engineered to better improve honeybee
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health?*. Leonard et al. recently genetically modified S. alvi, refining a system to
induce RNAI1 within hosts. By expressing dsRNA to interfere gene expression of
Varroa mite and DWYV, the genetically engineered strains repress DWV and Varroa
infection?. This symbiont-mediated RNAi provides a promising strategy for
improving bee resistance against stressors.

Here, we investigate the effect of honeybee gut members on the inhibition of
N. ceranae invasion. Specifically, S. alvi upregulated the expression of host genes
related to the ROS-associated immune response and significantly repressed the
proliferation of N. ceranae. Then, we evaluated the role of the antioxidant system of
N. ceranae in the adaptation and reproduction in the midgut epithelia. We found that
N. ceranae mainly employed the thioredoxin and glutathione systems to relieve the
intense oxidative stress from the host for parasitism. Finally, we constructed
recombinant S. alvi to continuously produce dsRNA corresponding to the thioredoxin
and glutathione system-related genes of N. ceranae, significantly inhibiting the N.

ceranae proliferation in the midgut cells.

Results

Gut bacteria aid in the clearance of the pathogenic N. ceranae
We first determined whether the core gut members prevent the invasion of N.
ceranae in vivo. Gnotobiotic bees mono-associated with different gut bacteria,

Bifidobacterium choladohabitans W8113, Bombilactobacillus mellis W8089,
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84  Lactobacillus apis W8172, Gilliamella apicola B14384H2, and Snodrgrassella alvi
85  MO0351, were generated in the lab. Microbiota-free honeybees were fed with pure
86  cultures of bacterial strains. After allowing the colonization of symbiotic strains in the
87  gut for seven days, each bee individual was manually infected with N. ceranae cell
88  suspensions of 10* spores by oral feeding (Fig. 1A). On Day 17, we quantified the
89  absolute abundance of N. ceranae spores in the midguts. It showed that the spore load
90  was significantly lowered in bees mono-colonized with S. alvi, while bees colonized
91 by other gut members did not show a significant reduction of N. ceranae (Fig. 1B).
92 Insects can clear parasites from invasion by eliciting oxidative stress,
93  primarily by producing ROS in gut epithelia®® ?’. Thus, we assessed whether S. alvi
94  stimulated the production of ROS in the gut, which may fight against invading
95  intracellular N. ceranae parasite. In the honeybee, the production of ROS is mainly
96 regulated by the Nox/Duox NADPH oxidases, as in other insects?®. We found that the
97  expression of genes encoding Duox and Nox were upregulated in the midgut of bees
98 24 h post-colonization by S. alvi M0351 (Fig. 1C, D). Correspondingly, both the
99 intracellular ROS signal tested by the fluorogenic sensor and the production of
100  hydrogen peroxide (H2032) increased in the midgut following the colonization by S.
101 alvi (Fig. 2E, F). These results indicate that the colonization of the core gut member,
102 8. alvi, triggered the redox response involved in gut immunity, which may inhibit the

103 N. ceranae infection in the honeybees.
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Fig. 1. Snodgrassella strains protect against N. ceranae via the ROS-
associated immune response in the honeybee gut. (A) Schematic illustration
of experimental design. Microbiota-free (MF) bees were colonized with B.
choladohabitans W8113, B. mellis W8089, L. apis W8172, G. apicola
B14384H2, and S. alviM0351 for seven days and then orally infected with N.
ceranae. (B) Absolute abundance of N. ceranae spores in the midgut 10 days
post-infection with N. ceranae. (C-D) The expression level of the Duox and

Nox genes in the midgut following S. alvi M0351 colonization. (E)


https://doi.org/10.1101/2023.01.13.524015
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.524015; this version posted January 14, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

113 Fluorescence staining for ROS signal within the midgut cells of MF and mono-
114  colonized bees with S. alvi. (F) H202 concentration in the midgut of MF and
115 mono-colonized bees with S. alvi. Scale bars = 250 um. Statistical analysis

116  was performed by using multiple two-tailed t-test.

117  N. ceranae employs antioxidant systems to adapt and reproduce in the midgut
118  epithelium

119 We have shown that ROS produced by the bees is implicated in the defense
120 against N. ceranae, and typically, the parasites employ endogenous antioxidant

121  systems to relieve intense oxidative stress?”>3*. To examine the pathways used by N.
122 ceranae to resist honeybee gut oxidative stress during infection, we reanalyzed an
123 RNA-seq dataset that documents the changes in gene expression of N. ceranae when
124 colonizing the bee gut’!. De novo synthesis of reduced glutathione synthesized by y-
125  glutamyl-cysteine synthetase (yGCS) and glutathione synthetase (GS) is crucial in the
126  antioxidant defense of N. ceranae (Fig. 2A). By following the time-series gene

127  expression profiles, we found that both the expression of YGCS and GS of N. ceranae
128  increased along with the infection (Fig. 2B, C). Moreover, glutathione can be further
129  catalyzed by the Glutathione peroxidases (GPx) to reduce H202*2. We identified that
130  N. ceranae possessed two genes encoding GPx in the genome of N. ceranae, GPx-

131  1(AAJ76_3500027152) and GPx-2 (AAJ76_3500027978). Interestingly, the
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132 expression of GPx-1 increased during the first 3 days of infection, but GPx-2 was

133  downregulated during invasion (Fig. 2D, E). In addition, N. ceranae also possesses a
134 complete thioredoxin system, consisting of the key enzymes of thioredoxin reductase
135  (TrxR, AAJ76_5800012528) and thioredoxin peroxidase (TPx, AAJ76_280004776),
136  in defense against oxidative stress (Fig. 2F). We found that the expression of TrxR
137  and TPx genes of N. ceranae were elevated from day 2 post-infection (Fig. 2G, H).
138 To further validate the importance of the thioredoxin and glutathione redox
139 systems for the N. ceranae invasion, we knocked down yGCS from the glutathione
140  system and TrxR from the thioredoxin system, respectively. Here, we used the

141 nanoparticle-mediated dsRNA delivery system to improve RNAI efficiency?’. By

142 feeding the nanoparticle-mediated dSRNA, the mRNA transcript levels of N. ceranae
143 yGCS and TrxR genes were reduced by ~80% on Day 10 and Day 15 after

144 inoculation. Microscopic observation confirmed that the proliferation of N. ceranae
145  was significantly depressed by both dsyGCS and dsTrxR silencing in the midgut.

146  Altogether, these results indicate that N. ceranae probably maintains the redox state
147 by employing the thioredoxin and glutathione systems to relieve the oxidative stress
148  from the host and to adapt and reproduce in the midgut epithelium3*. This also implies
149  that host ROS-associated immunity is responsible for the defense against intracellular

150  parasitism in honeybees.
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Fig. 2. The thioredoxin and glutathione systems of N. ceranae are significant
for the proliferation in the epithelial cells. (A) The glutathione system forms
glutathione by y-glutamyl-cysteine and glutathione synthetases in N. ceranae.
(B-E) The expression level of the yGCS, GS, GPx-1, and GPx-2 genes over
the infection process. (F) N. ceranae possesses a complete thioredoxin
system consisting of the thioredoxin reductase and thioredoxin peroxidase.
(G) The expression level of the TrxR and TPx genes over the infection
process. (H) Knockdown of N. ceranae yGCS and TrxR gene expression by
feeding nanoparticle-mediated dsRNA. (K-L) Relative expressions of the
yGCS and TrxR genes of N. ceranae before and after RNAi on Days 10 and
15. (M) The load of N. ceranae spores was quantified by microscopy using a

hemocytometer. (N-O) Silencing of yGCS and TrxR genes inhibited Nosema
10
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infection levels. Scale bars = 0.025mm. Statistical analysis was performed by

the Mann-Whitney U test.

Inhibition of N. ceranae infection by engineered S. alvi

Since the antioxidant defense is crucial for N. ceranae parasitism, we next
engineered S. alvi strain M0351 to produce dsSRNA targeting microsporidian genes.
First, we transformed strain M0351 with a stable plasmid pBTK519 expressing GFP
from the Bee Microbiome Toolkit platform ?* and tested whether it could re-colonize
bee gut robustly. The engineered strain M0351 was inoculated into newly emerged
bees treated with ampicillin to eliminate native microbiota (Fig. 3A)%. We inoculated
bee individuals with ~10° CFU of GFP-tagged S. alvi. They grew to ~8.0 x 107
CFU/bee after five days of colonization and persisted stably throughout the 15-day
experiments (Fig. 3B). The majority of engineered S. alvi cells (~80%) remained
functional with a high density of fluorescent signal, while some bacterial cells lost the
fluorescence in the guts at the endpoint (Day 15; Fig. 3C). While Snodgrassella
preferentially colonizes the ileum, they also distribute in all compartments of the bee
gut®. The confocal microscopy showed that 15 days after colonization, the
engineered M0351 effectively colonized both the ileum and midguts of 10 inspected
bees, showing the same spatial distributions as the wild-type strain (Fig. 3D-F) .

Thus, our results showed that the engineered S. alvi could persistently colonize the

11
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honeybee ileum and midgut, and the plasmid pBTKS519 functioned reliably in strain

MO0351 throughout the experiments.
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Fig. 3. The engineered S. alvi M0351 showed stable colonization and function
in bee guts. (A) Newly emerged bees were colonized with S. alvi transformed
with a plasmid expressing a green fluorescent protein. The colonization level
was checked on Days 5, 10, and 15. (B-C) Engineered S. alvi M0351 stably
colonized and expressed GFP continuously over time. Each dot represents an
individual bee sample. (D) Engineered S. alvi M0351 colonized both the
midgut and ileum of bees. Scale bars = 200 um. Statistical analysis was

performed by the Mann-Whitney U test.
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We have shown that S. alvi-treated honeybees prevent N. ceranae infection by
triggering ROS production (Fig. 1), and N. ceranae employed the thioredoxin and
glutathione system to relieve the intense oxidative stress (Fig. 2). Thus, we engineered
S. alvi M0351 using plasmid pBTKS519 to express dsRNA targeting the glutathione
and thioredoxin systems of N. ceranae. Target sequences from the yGCS, GS, GPx-1,
GPx-2, TrxR, and TPx genes were designed and amplified from the cDNA of N.
ceranae (Fig. 4A; Fig. S1). Using the Bee Microbiome Toolkit, we assembled
plasmids with an inverted arrangement of two promoters (pBTK150, pPBTK151) and
other previously designed parts for the production of dsSRNA?* 37, We built six
complete dSRNA-producing plasmids targeting different genes and transformed these
plasmids into S. alvi M0351 by conjugation. We inoculated newly emerged
honeybees with ~10° cells of S. alvi bearing different plasmids that expressed dSRNA
corresponding to the GFP coding sequence (pDS-GFP) or those expressed target
sequences. Then, the bees were challenged by oral feeding with N. ceranae spores
(10* spores/bee), and 10 days later, we tested whether the Snodgrassella-produced
dsRNA could inhibit the proliferation of N. ceranae.

We first extracted the RNA of N. cerana to confirm the depression of targeted
pathways. Compared to the pDS-GFP off-target control, a significantly lower
expression of target genes from N. cerana was identified (Fig 4B—G). Expression of
all targeted genes is decreased by 50-86% in N. ceranae with different recombinant

strains, suggesting that the dsRNA is delivered from the engineered S. alvi to allow

13
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diffusion to the parasite. After 10 days of dsRNA silencing, we evaluated the
inhibitory capacity of various engineered S. alvi strains by quantifying the spore load
with microscopic observation. First, both the wild-type S. alvi and the pDS-GFP
provided protection compared with the controls without symbiont inoculation (Fig.
4H), confirming the role of S. alvi in defending against N. ceranae. Engineered S. alvi
strains expressing YGCS, GPx-1, GPx-2, TrxR, or TPx dsRNA had a 99%, 96%,
96.5%, 97.9%, and 98.2% decrease in N. ceranae spore load, respectively. Notably,
pDS-GS targeting the glutathione synthetase of the glutathione system showed the
highest inhibition (99.7%) of the microsporidia spore invasion. Moreover, we also
evaluated the effect of mixing engineered strains, and the inhibitory effect by a
mixture of bacteria delivering all six dSRNA was better than the colonization with

single strains.
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227
228  Fig. 4. Recombinant S. alvi M0351 strains engineered to deliver dsRNA inhibit

229 the infection of N. ceranae. (A) Schematic illustration of the Golden Gate

230 assembly strategy for constructing plasmids expressing targeted dsRNA. (B-
231 Q) Engineered S. alvi strains to produce dsRNA targeting genes of the

232 thioredoxin and glutathione systems inhibited the gene expression of N.

233 ceranae in the midgut. (H) Inhibition of N. ceranae infection by engineered S.
234 alviM0351 strains. Each dot represents the spores number of an individual
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bee in the midgut. Letters above each bar stand for statistical differences
between sampling sites (least-significant difference (LSD) test, P < 0.05). The
median number of spores of each treatment group and the percent inhibition

(inhibition %) of spore load relative to the non-colonized control are indicated.

Discussion

Nosema ceranae is a microsporidian parasite initially identified from the Apis
cerana in the 1990s% and later detected in different honeybee species worldwide,
becoming a globally distributed pathogen?’. In this study, we found that N. ceranae
employs the thioredoxin and glutathione system to relieve oxidative stress from the
host for the adaptation in the midgut epithelium (Fig. 5). We showed that the core gut
bacteria, S. alvi, triggers the redox response involved in honeybee gut immunity,
which inhibits the proliferation of N. ceranae by up to 85.5%. Moreover, we
successfully constructed engineered S. alvi M0351 based on the Bee Microbiome
Toolkit and the Functional Genomics Using Engineered Symbionts procedure
(FUGUES) to continuously produce dsRNA for critical genes of the N. ceranae
thioredoxin and glutathione systems. Engineered S. alvi can stably re-colonize bees
and repress the parasite’s thioredoxin and glutathione system-related gene expression.
The yGCS and GS of the glutathione system are the most effective targeted genes for
N. ceranae inhibition. Furthermore, the inhibitory effect by the mixture of all six

engineered S. alvi strains showed the highest inhibition (99.8%).
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256  Fig. 5. Graphical summary of the N. ceranae inhibition by the engineered S.
257  alviMO0351 strains. By triggering Duox and Nox genes, S. alviinduces ROS
258  production in the midgut of honeybees, which may kill N. ceranae via

259  perturbation of redox homeostasis. N. ceranae may employ the thioredoxin
260  and glutathione antioxidant systems to relieve the intense oxidative stress for
261 intracellular proliferation. Engineered S. alvi M0351 expressing the dsRNA
262  corresponding to the genes of the oxidation-reduction systems of N. ceranae

263  can significantly inhibit parasitism in the honeybee gut.

264 The microsporidia N. ceranae is an obligate intracellular parasite that develops
265  in the ventricular epithelia of A. mellifera, and the spores can spread the infection

266  quickly across epithelial cells*®. The concept that the immune activation of honey
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bees plays a role against N. ceranae is not new, but the exact mechanism remains
unclear. In all invertebrates, including insects, the adaptive system is missing, and
hence, defense is entirely ensured by the innate immune system. The innate immune
system provides organisms with a rapid, non-specific first line of defense against
colonization by pathogenic microorganisms*’. Honeybees’ cell-mediated innate
immune system consists of hemocytes, which produce ROS essential for cell
signaling and pathogen clearance*'. ROS are produced during the recognition and
phagocytosis response against the foreign bodies inside the cells*?. In insects, ROS
was shown to be particularly important in the fight against parasites and pathogenic
bacteria in the gut*”-#3. The production of ROS has been observed following the
infection of Aedes aegypti mosquito by different microsporidian species**. In
honeybees, genes involved in the production of ROS are overrepresented in the
midgut upon the spore infection, suggesting that the increased ROS level is an
immune response against intracellular parasitism'®. Our results confirmed that the
ROS-associated immune response in the epithelial cells is indispensable for
preventing microsporidia infection in bees.

Two ROS-producing enzymes, the NADPH oxidases Duox and Nox, are
identified in A. mellifera, similar to Drosophila. Here, we found that the expression of
both Duox and Nox genes was activated in the midgut of bees post-colonization by S.
alvi. It has been documented that S. alvi protects honeybees from the opportunistic

pathogen Serratia marcescens by triggering the Toll and Imd pathway to upregulate
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the expression of host antimicrobial peptides abaecin, apidaecin, and
hymenoptaecin®. S. alvi colonizes the honeybee gut in contact with the gut epithelia
and forms a dense biofilm, which may stimulate pattern recognition receptors such as
Toll-like receptors of bees®. Interestingly, the activation of Toll-like receptors
possibly conjugates the NADPH oxidases, which are involved in the ROS production
on the membranes of the endosome of cells*®. Notably, bees mono-colonized with S.
alvi strain inhibit the proliferation of N. ceranae by up to 85.5%. In contrast, bees
colonized by other gut members did not show a significant reduction of N. cerana.
Thus, the ROS immune response may be activated by S. alvi by regulating the Toll
signaling and the NADPH complex. The ROS system is also a gut-immune immune
response involved in gut-microbe homeostasis'®. In honeybees, the N. ceranae
infection can perturb the gut composition, and a normal microbiota is required for
host resistance to N. ceranae*’-*3. The bore gut members of honeybees, including the
S. alvi and Lactobacillus apis, have been shown to activate the humoral innate
immune system to produce antimicrobial peptide (AMP), which protects against

22,23

pathogens~> =°. Our data shows that the bee gut bacteria also plays a pivotal role in

controlling microsporidia invasion by inducing de novo generation of ROS!'3.

To protect itself against host defenses of ROS, the parasite may have an
internal antioxidant system to maintain a normal redox state. For example,
Plasmodium falciparum scavenges ROS from hosts by employing antioxidant

systems, including the NADPH-dependent thioredoxin and the glutathione system 3%
19
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4 We found that N. ceranae also possesses balanced redox pathways, including the
thioredoxin and glutathione systems, which may be necessary for counteracting ROS
attacks from the host. Analyzing the time series of gene expression of N. ceranae
colonizing the bee gut, we found significant upregulation in the expression of
thioredoxin and glutathione system genes, suggesting that the maintenance of the
normal redox state is significant in the invasion process of N. ceranae. Previous
studies that used RNAI targeting on variable N. ceranae genes, such as the polar tube
protein 3 (ptp3) and the spore wall protein (SWP), reduce parasite load and improve
the physiological performance of honeybees” 3!, Our results showed that the delivery
of dsRNA corresponding to YGCS and TrxR led to a significant reduction in spore
load by 82% and 85%, respectively, indicating that the endogenous antioxidant
enzymes of N. ceranae provide a novel therapeutic target for the control of the

parasitic invasion in honeybees.

Although RNAI is widely used, it is expensive for application in agricultural
fields, and its efficiency is also unsatisfactory. Recently, researchers have engineered
host-associated bacterium to produce dsRNA as a novel delivery modality. Taracena
et al. used engineered Escherichia coli to produce dsSRNA to control the Rhodnius
prolixus parasite, a vector of the Chagas disease®”. Although laboratory E. coli is easy
to be engineered, the symbiotic bacteria with minimal fitness cost and stable
association with the host are more promising for in vivo treatment >3. Recently,

Leonard et al. have designed the Functional Genomics Using Engineered Symbionts
20
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(FUGUES) procedure for engineering the native bacterial species of honeybees®. The
engineered S. alvi produces dsSRNA to inhibit parasitic Varroa by inducing mite RNA1
response’’. It documents that the RNA produced by the recombinant strains can be
transported to the gut, hemolymph, and head of bees, which alters host physiology
and behavior. N. ceranae infects and proliferates intracellularly in the epithelial cells
of the midgut*®. While Snodgrassella mainly localizes to the ileum region of the
hindgut, it also colonizes the midgut intensively®. Our results illustrated that the
recombinant S. alvi strain stably re-colonizes both ileum and midgut post-inoculation,
and the plasmid exhibit a robust expression in vivo. Thus, the dsSRNA produced by the
symbiotic S. alvi may enter into the midgut cells and destroy the redox homeostasis of
N. ceranae. Here, we targeted all six genes involved in the glutathione and
thioredoxin systems of the microsporidia. Interestingly, the repression of the GS gene
showed the highest inhibition efficiency. GS is not subject to feedback inhibition by
GSH and is important in determining overall GSH synthetic capacity, specifically
under pathological conditions>*. In addition, the inhibition of a mixture of the
recombinant strains is more significant than the single-targeting strains, suggesting a
more effective perturbation of the parasitic antioxidant system. S. alvi and other bee
gut bacteria can be naturally transmitted within the colony via social contact, and
engineered S. alvi strains are transferred between co-housed bees, which suggests that
the use of native gut bacteria can facilitate the treatment of individual bees from an

entire colony?’. Although gene escape is a major ethical issue for the application of
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engineered bacteria, honeybee symbiotic bacteria are generally restricted to the bee
gut environment?!. Moreover, S. alvi shows even more strict host specificity that only
specific strains are associated with different bee species or even individuals within the
colony”. Thus, symbiont-mediated RNAi provides a new tool to improve resilience

against current and future challenges to honey bee health.

Materials and Methods

Generation of microbiota-free and mono-colonized honeybees

Honeybees (A. mellifera) used in this study were from colonies maintained in
the experimental apiary of the China Agricultural University. Pupae and newly
emerged bees used in all the experiments were obtained from brood frames taken
from the experimental hives and kept in an incubator at 35 °C, with a humidity of
50%. All honeybee gut bacterial strains used in this study are listed in Table S1.
Snodgrassella alvi M0351, Bifidobacterium choladohabitans W8113, and Gilliamella
apicola B14384H2 isolated from honeybee guts were grown on HIA supplemented
with 5% (vol/vol) sterile sheep blood (Solarbio). Bombilactobacillus mellis W8089
and Lactobacillus apis W8172 were grown on MRS agar plates (Solarbio)
supplemented with 0.1% L-cystine and 2.0% fructose.

Microbiota-free (MF) bees were obtained as described by Zheng et al.>®. In
brief, we manually removed pupae from brood frames and placed them in sterile

plastic bins. Newly emerged MF bees were kept in axenic cup cages with sterile
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sucrose syrup for 24h. For each mono-colonization setup, 20—25 MF bees were placed
in a cup cage and fed bacterial culture solutions for 24 hours. Colonization levels
were determined by colony-forming units from dissected guts, as described by Kwong
et al>% 1 mL of 1xPBS was combined with 1 mL of sucrose solution and 0.3 g of
sterilized pollen for the MF group. For the mono-colonization bees, glycerol stock of
bee gut strains was resuspended in 1 mL 1xPBS at a final concentration of ~108
CFU/mL and then mixed with 1 mL sterilized sucrose solution with 0.3 g of sterilized

pollen. The bees were incubated at 35°C and RH 50% until Day 7.

N. ceranae spore purification

N. ceranae spores were isolated from worker honeybees collected from
heavily infected colonies in the summer of 2022. After immobilizing bees by chilling
them on ice, the guts were removed from individual bees with forceps. The midguts of
infected honeybees were homogenized in distilled water and filtered using Whatman
filtering paper. The filtered suspension was centrifuged at 3,000xg for 5 minutes, and
the supernatant was discarded. The re-suspended pellet was purified on a
discontinuous Percoll (Sigma-Aldrich, St. Louis, MO) gradient of 5 ml each of 25%,
50%, 75%, and 100% Percoll solution. The spore suspension was overlaid onto the
gradient and centrifuged at 8,000 x g for 10 minutes at 4°C. The supernatant was
discarded, and the spore pellet was washed by centrifugation and suspension in
distilled sterile water’’. The number of spores was quantified using a Fuchs-Rosenthal

hemocytometer. The identity of the isolated N. ceranae or N. apis was determined by
23
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amplifying the ribosomal RNA gene sequences with species-specific primers (Table

S3)38.

Bees mono-colonized with gut symbionts challenged with N. ceranae

To accurately control the number of N. ceranae cells infecting each bee
individual, bees were orally fed the same amount of N. ceranae spores. Each bee was
starved for 2 hours and given 2 pl of a 50% sucrose solution containing 10* N.
ceranae spores. After 10 days, the number of spores in the intestinal specimen of
infected bees was quantified as described by Huang et al.*’. The midguts were
dissected, resuspended in 500 pl of double-distilled water, and then subjected to
vortex mixing. The suspension was put onto the hemocytometer for microscopic

observation.

Honeybee gut RNA extraction and quantitative PCR

Each dissected gut was homogenized with a plastic pestle, and total RNA was
extracted from individual samples using a Zymo Quick-RNA Tissue/Insect Microprep
Kit (Zymo Research, #R2030). RNA was eluted into 50 pL of RNase-free water and
stored at —80 °C prior to reverse transcription. cDNA was synthesized using the
HiScript III All-in-one RT SuperMix Perfect for gPCR (Vazyme). Quantitative real-
time PCR was performed using the ChamQ Universal SYBR qPCR Master Mix
(Vazyme) and QuantStudio 1 Real-Time PCR Instrument (Thermo Fisher Scientific,

Waltham, MA, USA) in a standard 96-well block (20-ul reactions; incubation at
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95 °C for 3 min, 40 cycles of denaturation at 95 °C for 10 s, annealing/extension at

60 °C for 20 s). The primers for the genes of Duox (LOC551970) and Nox
(LOC408451) of A. mellifera were designed with IDT qPCR PrimerQuest Tool
(https://www.idtdna.com/pages/tools/primerquest) (Table S3). The actin gene of A.
mellifera was used as the control, and the relative expression was calculated using the

2-8ACT method °.

In vivo detection of reactive oxygen species

Three days after inoculation, the midguts of the honeybees mono-colonized
with S. alvi M0351 and the MF bees were dissected in PBS containing 50 uM
intracellular ROS-sensitive fluorescent dye dihydroethidium (Invitrogen, #C10422).
The tubes were placed in the dark for 10 min at room temperature. Then, the midguts
were washed twice with a fresh dye-free PBS, and the tissues were immediately
transferred to an u-Dish?> ™™ high microscope dishes (Ibidi, #81156). We imaged the

gut tissues on a Zeiss 910 Laser Scanning Confocal microscope with a 20x objective.

Measurement of the H20O:2 production

The generation of H2O2 was determined using the Hydrogen Peroxide Assay
Kit (Beyotime Biotech). In this assay, H2O2 converts Fe?* to Fe3*, which then reacts
with xylenol orange dye to become purple with a maximum absorbance at 560 nm.
The midguts were homogenized in 200 pL lysis buffer and centrifuged at 12,000 x g

at 4 °C for 5 min, and the supernatant was collected. Aliquots of 50 uL of
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supernatants and 100 uL of test solutions from the Hydrogen Peroxide Assay Kit were
incubated at room temperature for 20 minutes and measured immediately with a
spectrometer at a wavelength of 560 nm. The measurement was repeated three times

for each sample.

RNA isolation of N. ceranae

To extract the RNA of N. ceranae, the honeybee gut was individually
transferred into 2 ml tubes. Each tube contained 100 pL sterile 1.4-mm zirconium
silicate grinding beads (Quackenbush). One milliliter of TRIzol reagent (Ambion)
was added to the tube, disrupting the samples using the FastPrep. The samples were
treated with DNase I (Invitrogen) to remove genomic DNA contamination. The purity
and quantity of RNA samples were determined using a NanoDrop 8000
spectrophotometer (Thermo Fisher Scientific). cDNA was synthesized using the
HiScript III All-in-one RT SuperMix Perfect for gPCR (Vazyme) and stored at —

20°C.

Nosema inoculation and Nanocarrier-mediated dsRNA feeding assay

To produce the double-stranded RNA of the yGCS (AAJ76_1100057370) and
TrxR (AAJ76_5800012528) genes, the coding regions of the genes were amplified
from N. ceranae cDNA with forward and reverse primers containing the T7 promoter

sequence at their 5'ends (5'-TAATACGACTCACTATAGGGCGA-3"). The partially

amplified segments of the genes were cloned into the pCE2-TA-Blunt-Zero vector
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(Vazyme, China) and verified by Sanger sequencing. The fragment was amplified
from the plasmid using specific primers with a T7 promoter and then used for dSRNA
synthesis using the T7 RNAi Transcription Kit (Vazyme, China). The fragment
amplified from the GFP gene (MH423581.1) was used as the control. The sequences
of the primers are given in Table S3. Here, we used the star polycation as a gene
nanocarrier to protect dSSRNA molecules from enzymatic degradation and promote
their translocation across cell membranes®. The nanocarrier was mixed with yGCS
and TrxR dsRNA gently at a mass ratio of 1:1. (The final concentration for both SPc
and dsRNA was 100 ng/uL.) The final concentrations for dsSRNA + nanocarrier, and
sucrose were 100 ng/ul and 50% (wt/vol), respectively. Newly emerged bees were
removed from the frames and kept without food for at least 2 h before the subsequent
N. ceranae inoculation. Individual bees were fed 2 pL of spores suspensions prepared
by mixing purified spores into 50% sucrose (~10* spores/uL). From the day after N.
ceranae inoculation, honeybees from each treatment were fed on different dSRNA
mixtures in an incubator at 35°C The dsRNA mixture was supplied daily, and each
bee ingested about 10 pg of dSRNA per day.

The treatment effect of dsSRNA was determined by comparing the spore
production rate for individual honey bees. The N. ceranae spore production rate was
measured by counting the spores from the extracted midgut of live honey bees 15
days after inoculation. To investigate the effect of dSRNA treatment on the expression

of each target gene of Nosema, QRT-PCR was performed after 15 days of dsRNA
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473  treatment. After extracting the midguts from honeybees treated with Nosema and
474  dsRNA, the total RNA was extracted. cDNA was synthesized using the HiScript 111
475  All-in-one RT SuperMix Perfect for gPCR (Vazyme). Each gene-specific primer is
476  given in Table S3. The B-tubulin gene of the N. ceranae was used as the control, and

477  relative expression was analyzed using the 22T method °.

478  Vector construction to express dsRNA expression and S. alvi M0351

479  egineering

480 All the plasmids and MFDpir were kindly donated by the Moran Lab and

481  Barrick Lab (University of Texas at Austin). We designed dsRNA-producing plasmid
482  parts based on the previously published Bee Microbiome Toolkit and functional

483  genomics using engineered symbionts procedure (FUGUES) (Fig. 4A)%. First, PCR is
484  used to amplify the knockdown region yGCS, GS, GPx-1, GPx-2, TrxR, and TPx

485  from the cDNA of N. ceranae and append Bsal cut sites to each end. Following PCR,
486  amplicons are purified and cloned into a dsSRNA expression vector. We combined
487  previously designed parts pYTKO002 (Type 1), pPBTK150(Type 2), pBTK151(Type 4),
488  pYTKO72 (Type 5), pBTK301 (Type 6-7), and pBTK401 (Type 8) (Addgene_65109,
489  Addgene_183127, Addgene_65179, Addgene_183126, Addgene_110593,

490  Addgene_110597), and dsRNA target sequence (Type 3) to assemble complete

491  plasmids that express dsRNA of the target sequence?®’. Golden Gate assembly

492  reactions were performed as previously described?*, and enzyme Bsal-HFv2 (New

493  England Biolabs) was used to increase assembly efficiency.
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Assemblies were transformed into electroporated into E. coli donor strain
MFDpir. The plasmids were verified with Sanger sequencing. MFDpir cells with the
dsRNA expression vector and S. alvi cells are grown, washed, and combined to
initiate conjugation. Then, this mixture is plated on media containing 0.30 mM DAP.
The next day, cells are scraped, washed, and plated on media containing 100 pug/mL
ampicillin but without DAP to select for S. alvi cells that have acquired the plasmid
and against MFDpir cells. Transconjugant S. alvi colonies are passaged onto a second
plate containing 100 pg/mL ampicillin. These transconjugants can be confirmed to be
pure S. alvi cultures by performing 16S rRNA sequencing to ensure no unexpected
contaminants have been introduced during the conjugation process.

After 2-3 d of growth, we scraped the engineered S. alvi grown on the plates into
PBS. These cells were spun in a centrifuge (3824 x g, 5 min) and then resuspended in
500 puL PBS. Engineered S. alvi was diluted in 500 uL. 1xPBS at a final concentration
of ~108 CFU/mL and combined with 500 uL of a 1:1 sucrose: water solution
supplemented with 200 pg/mL ampicillin. We fed engineered S. alvi solutions to age-
controlled newly emerged worker bees for 24 h (pDS-yGCS, pDS-GS, pDS-GPx-1,
pDS-GPx-2, pDS-TrxR, pDS-TPx) and non-targeted (pDS-GFP) served as a negative
control group. The next day, each bee was given 2 ul of a 50% sucrose solution
containing 10* N. ceranae spores. After ten days, honeybee gut was collected to
quantify the number of N. ceranae spores, and gene knockdown was validated using

gPCR on the cDNA of N. ceranae synthesized as described above.
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To test whether engineered S. alvi robustly colonizes bees, we inoculated bees
with S. alvi transformed with a plasmid expressing GFP. Firstly, we transformed
strain M0351 with a stable plasmid pPBTK519 expressing GFP from the Bee
Microbiome Toolkit platform 2* and inoculated bees with S. alvi M0351::pBTK519
(~10°cfu/bee). After every five days, we dissected bees, homogenized their whole
guts in 500 uL PBS, and plated dilutions onto HIA plates with a final concentration of
100 pg/mL ampicillin to estimate CFUs of S. alvi in the gut. The number of
fluorescent and non-fluorescent colonies on the plates was quantified to track the
stability of engineered strains over time. After 15 days, we dissected the guts and

imaged them on a Laser Scanning Confocal microscope.
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763  Fig. S1. Design of N. ceranae targets. This diagram shows the overall gene
764  organization for N. ceranae y-glutamyl-cysteine synthetase (A), glutathione
765  synthetase (B), Glutathione peroxidases-1 (C), Glutathione peroxidases-2 (D),
766  thioredoxin reductase (E), and thioredoxin peroxidase (F). The targeted region
767  in each gene is denoted, and the designed target sequences are listed in

768  Table S4.
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769

770  Table S1. List of bacterial strains.

771
Species and strain Source
E. coli MFDpir 24
E. coliDH5a Vazyme
Snodgrassella alvi M0351 This study
Bifidobacterium choladohabitans W8113 This study
Bombilactobacillus mellis W8089 This study
Lactobacillus apis W8172 This study
Gilliamella apicola B14384H2 This study
Snodgrassella alvi M0351 This study

772
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773  Table S2. Plasmid list.

774
Name Use Source
pBTK519 Constitutive GFP 2
pYTK002 Type 2 YTK/BTK connector sequence part plasmid 2
pYTKO72 Type 5 YTK/BTK connector sequence part plasmid 2
pBTK301 Type 6-7 BTK bridge connector sequence part plasmid 2
PBTKA401 ngg)aed?hzrsig_i;rc:;;egrlgs?;ion and origin of transfer plasmid, rsf1010 24
pBTK150 Type 2 BTK part: terminator, CP25 promoter, no RBS 87
pBTK151 Type 4 BTK part: reverse CP25 promoter, terminator, no RBS 87
pYTKO01_T1T2 Insulated part vector with flanking terminators &
pDS-GFP Control dsRNA GFP 87
pDS-yGCS dsRNA target yGCS This Study
pDS-GS dsRNA target GS This Study
pDS-GPx-1 dsRNA target GPx-1 This Study
pDS-GPx-2 dsRNA target GPx-2 This Study
pDS-TrxR dsRNA target TrxR This Study
pDS-TPx dsRNA target TPx This Study

775
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Table S3. Primer list.

Purpose Gene Source  Forward Reverse

gPCR B-tubulin(N. ceranae) &1 AGAACCAGGAACGATGGAGA TCCTTGCAAACAATCTGCAC

gPCR Duox (A.mellifera) 62 CCCTAATAGCCCTCGTGAAC 3 GAGCATTCTCATAACGTGTG

gPCR Nox (A.mellifera) Thisstudy ACCTGCTCTGTTTGGTCTCG ACATCCACCACGTCGAACAA

gPCR Glutamate-cysteine ligase catalytic subunit(N. ceranae) This study ~AACAGGCGAGGGAAGAAACC CAACCCATACCTTGGCCCAT

gPCR Glutathione synthetase (N. ceranae) This study TGGGAGTTTAATCGTTCTTGATGG TCTAAACCGCCATTGCCAGA

gPCR Gilutathione peroxidase (N. ceranae) This study ~ GGCAAATCCACATGTAGAAGC TCTGCTATAGACTACAAAGACAAGA

gPCR Gilutathione peroxidase (N. ceranae) This study TGCAGTTGATTCAAAACAGTCAC AGGCCTTTGTCATAAAATTCGTCT

gqPCR Thioredoxin reductase (N. ceranae) Thisstudy GTGGTCCTGCAGCCTATTCT TACTTCCTACCATCCCGCCT

gqPCR Thioredoxin peroxidase (N. ceranae) Thisstudy  TGATTTTACTTTTGTGTGTCCAACT CACCGTCCTGTCTTGGGAG

RNAI_Type3  Glutamate-cysteine ligase catalytic subunit (N. ceranae) This study  cGGTCTCatatgCCAAAAAGCAGGTGTTCTCCA tGGTCTCaggatGGGAGTTGCTTGCATTTCCAT

RNAI_Type3  Glutathione synthetase (N. ceranae) Thisstudy cGGTCTCatatgGCTAGAGCGGTGGGTTTAGT tGGTCTCaggatACCAAATGATACAAAACACTGTGAA
RNAI_Type3  Gilutathione peroxidase (N. ceranae) This study  cGGTCTCatatgGCGCACTTCTAGACGATCTCC tGGTCTCaggatACATGTGGATTTGCCAAGAGT

RNAI_Type3  Gilutathione peroxidase (N. ceranae) This study  cGGTCTCatatgTTCCTTGTTCGCAATTTTTAAACCA tGGTCTCaggatATAACCTCTGTTGGTCCATATCGC
RNAI_Type3  Thioredoxin reductase (N. ceranae) This study  cGGTCTCatatgAGGAGGAGACTCTGCTATGGA tGGTCTCaggatCGCAGTCGTACAATCCTCGT

RNAI_Type3  Thioredoxin peroxidase (N. ceranae) Thisstudy  cGGTCTCatatgyACGTTGTCAGTGATAGGAAGGA tGGTCTCaggatACACATGATCCATTGCGTCCA

ds_RNAi Glutamate-cysteine ligase catalytic subunit (N. ceranae) Thisstudy TAATACGACTCACTATAGGGTTGGATTTCTGGGCAACGGT TAATACGACTCACTATAGGGCGAACCTCGTCAGCAAAAGG
ds_RNAi Thioredoxin reductase (N. ceranae) This study  TAATACGACTCACTATAGGGAGGAGGAGACTCTGCTATGGA TAATACGACTCACTATAGGGCGCAGTCGTACAATCCTCGT
N. apis rRNA (N. apis) s CCATTGCCGGATAAGAGAGT TATATTTATTGTATTGCGCGTGCT

N. ceranae rRNA (N. ceranae) 58 AGAAACTACAACAGCATCACTGGGA AGTGAATATTCCAATTCCCAACGACTT

40
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Table S4. Target sequences of dsRNA.

ID Use Length (bp) GC % Sequence Source

pDS-yGCS yGCS knockdown 339 35 This Study

CCAAAAAGCAGGTGTTCTCCATTTGATTTATTTATTTCTAATGACGCTAGAAATTTAGACAAGTACAACGATACAAATCCACCG
ATCCACGTGCCGATTTTTAATAAATTAATAAAGAAAGGTGTTGATGAAAAATTGTCGCGACATGTAGCATCTTTATTTATTCGC
GATCCTATAGTCTCATATGACGAAACAGATGAAAGCACATTTGACGATTTTGAAAACATACAAAGTTCAAATTGGAGATCTGTA
AGGTTTAAAGTACCAACAGAAAGTTCTGATAAAGATTTAAGAGGATGGAAAGTTGAAGTTCGTCCTATGGAAATGCAAGCAAC
TCCC

pDS-GS GS knockdown 330 27 This Study

GCTAGAGCGGTGGGTTTAGTAAATCCATCTACAGGAAACATACTAAATATAACTATAAGACCCTCTAAAATATCAAGATTACAT
TTTTTATCGATAAAAAATTTACAATTAAAACTTAATTTACTGTACTACAATCTAAGCAAAGACTTAGATTCATACACTTTTGATGA
ACCAATGTACAAATTTTTGCACTCGATTTACACTGAAAAAAAAATGGTAAAAAAAGACAATATAGTAGCACTTTATATTAGATCT
GATTATTTATTAGACGGTGACCAATATAAACAAGTAGAAATTAATACTATTTCACAGTGTTTTGTATCATTTGGT

pDS-GPx-1 GPx-1 knockdown 348 28 This Study

ACATGTGGATTTGCCAAGAGTAATCTTTCTATACTAGCTGATATTATGACACTGTATAAAGAATATGGCCTTAAAATATTGATC
TTTCCTTGTCTGCAATATTCAAAAGATGATACTGATTTACTTAAAAAGATGTATAACTTAATAACAGAATATTCTGATGATTTTA
CAGTATTTAGTGATATTAATTTGGTCGGTAAAAATATACATCCTGTTTATAAGCATATTGTAAGGTATAGAAAAGAGTTTGTAG
GAGATTTTATAAAATGGAATTTCGCAAAATTTATTGTTAATGAATACGGTGAAATAGTAAAAATTTTTGAACCAGGAGATCGTC
TAGAAGTGCGC

pDS-GPx-2 GPx-2 knockdown 250 30 This Study

TTCCTTGTTCGCAATTTTTAAACCAGGAATCTGGTGATATTGAAACTATTCGCAATTATGCGCATTCTATTTCTGATAAATTTAT
CGTATTTGACAAAGTTAATGTATTTGGATCTCAAAAAGATCCTGTTTTTAAGTATTTAACAGACAACAGTTCAGAAAGTTTTTIT
AAGTTTGTAAAATGGAACTTTACAAAATGGGTTGTTAAAGATGGAAAGATTTTAAAGCGATATGGACCAACAGAGGTTAT

pDS-TrxR TrxR knockdown 349 28 This Study

AGGAGGAGACTCTGCTATGGAAGAAGTCTTATTTTTATCTAAAATATGTTCTAAAGTTTATTTAATTCATCGAAGAAATGAATTT
AGAAGCAGGAAGGATAAATTAGAAGAAGTAAAGAAGACAAAAAATATAGTTATAGTTACACCATATAATCTAAAATCTGCCCAT
GGAATTGATAAATTAGAATATATTATCCTTGAAAATGGGGCAGAAACTAAAAAATTAGAAGTAGATGGATTGTTCTTTGGTATC

GGTCATACACCTAATACTCAATTTTTAGAAGAAAATTTTTTACATGTTTTAGACAAAGATAAGTTTATTAAAGTAAACGAGGATT
GTACGACTGCG
pDS-TPx TPx knockdown 330 37 This Study

ACGTTGTCAGTGATAGGAAGGAAGAGTTTATTAAACGCAATGTTGTTGTGTTTACAATTTCTAAAGATTCCGCATACAATCATC
AAGCATGGGCTAAACTCCCAAGACAGGACGGTGGCGTAGAAGGAATACAATGGCCAATGTTGGCAGATAAGAATGCTCGTT

TAAGTCGACAGTTTGGTTTGTATGATGATGAGGAAGATATCACCAAAAGGGCTACTGTAATGATTGATGTTTCTGGAAATGTG
TTTAATATTTCTATCTATCATGAAAAAATAGGAAGAAATGTTGATGAAATTTTGAGGTTATTGGACGCAATGGATCATGTGT
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