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Abstract 

Recent theories of cortical organisation maintain that important features of 

brain function emerge through the spatial arrangement of regions of cortex. For 

example, areas of association cortex are located in regions of cortex furthest 

from sensory and motor cortex. Association cortex is also 8interdigitated9 since 

adjacent regions can have relatively different patterns of functional 

connectivity. It is assumed that topographic properties such as distance 

between cortical regions constrain their functions. For example, large distances 

between association and sensory and motor systems may enable these areas of 

cortex to maintain differentiable neural patterns, while an interdigitated 

organisation may enable association cortex to contain many functional systems 

in a relatively compact space. We currently lack a formal understanding of how 

spatial organisation impacts brain function, limiting the ability to leverage 

cortical topography to facilitate better interpretations of a regions function. 

Here we use variograms, a quantification of spatial autocorrelation, to develop 

a cortex-wide profile of how functional similarity changes as a function of the 

distance between regions. We establish that function changes gradually within 

sensory and motor cortex as the distance between regions increases, while in 

association cortex function changes rapidly over shorter distances. Subsequent 

analysis suggests these differential classes of spatial dependency are related to 

variation in intracortical myelin between sensory motor and association cortex. 

Our study suggests primary and association cortex are differentiated by the 

degree to which function varies over space, emphasising the need to formally 

account for spatial properties when estimating a system9s contribution to 

cognition and behaviour. 
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Significance statement 

The spatial arrangements of regions in the human brain are hypothesised to 

underpin important features of a brain regions function. Currently, however, we 

lack a formal understanding of how topography shapes brain function, limiting 

our ability to leverage topographical perspectives to inform better theories of 

brain function. Here we use a formal mathematical approach to establish that 

in regions of association cortex function varies across the cortex more rapidly 

than in sensory and motor cortex, a phenomenon linked to levels of intracortical 

myelin. This result highlights how topographical features distinguish between 

cortical regions with different functional profiles and provides a formal account 

of how spatial differences support different features of brain function.   
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Introduction 

One of the most important discoveries in human neuroscience is that brain 

topography plays an important role in determining how a region contributes to 

cognition and behaviour (1). These topographic features can shape a region9s 

function in many ways including: (i) through the influence of neighbouring 

neural systems that make up the local environment within which a specific 

region is embedded (2), (ii) the physical location of the network on the cortical 

mantle with respect to core cortical landmarks (3), (iii) and more abstract 

topographical features such as the degree to which functional activity within a 

network is spatially distributed across the cortical mantle  (2, 4), or, instead is 

limited to adjacent regions, often within a single cortical lobe (5, 6). 

 

Contemporary evidence suggests that local topographical properties influence 

a region9s function in a complicated, interdependent manner. For example, 

neural systems that are directly concerned with sensation and movement, such 

as the visual or motor cortex, are spatially distant from each other, yet both of 

these systems tend to be relatively spatially contiguous, and both contain 

topographic features resembling maps, either of the external environment or 

how the organism engages with the outside world (7310). Other systems, such 

as the default mode or frontoparietal networks, are located in regions of 

association cortex, are spatially adjacent to one another, and both are spatially 

distributed across cortex; yet functionally these systems appear to serve 

different, often opposing roles in human cognition (11). Topography is also 

important for understanding macroscale brain function, because systems that 

tend to be more spatially discontinuous (e.g., the default mode network) tend 

to be more distant from sensory and motor systems where spatial discontinuity 

is an exception rather than the norm (e.g. sensorimotor or visual cortex) (3). In 

contemporary neuroscience, macroscale topographical features provide a 

useful heuristic for understanding the involvement of frontoparietal and default 

mode networks in cognition. These networks are hypothesised to be at the 

transmodal apex regions of a broad sensory-fugal hierarchy, allowing oversight 

across broad areas of cortex (12). In contrast, mesoscale features of topography, 

such as the retinotopic maps located within sensory cortex, are thought to 

explain aspects of how the visual system represents and extracts features of the 

environment from retinal input. 

 

Topography at both macro and mesoscale is, therefore, a key principle of brain 

organization and is crucial for understanding brain function both within specific 

systems and across the cortex as a whole. Our study set out to formally examine 

how this perspective can be leveraged to go beyond heuristic accounts of the 
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topographic influence of a region9s contribution to cognition and behaviour. The 

distance between regions, calculated as the geodesic distance between two 

vertices, provides one metric to understand the influence of topography on 

neural function can be approached. This measure has been used to show that 

systems like the default mode and frontal parietal cortex are both distant from 

the sensory input and motor output systems (13). However, a given location on 

the cortical mantle may be influenced by topography in a number of ways, such 

as through features of the local neighbourhood in which the region is situated, 

or, whether the system is part of a distributed or localised network. Accordingly, 

it is important to understand whether the way that distance between two 

regions influences neural function varies across the cortex.  Understanding if 

there are regional differences in the way distance impacts functional 

connectivity (second-order non-stationarity), enables us to leverage a 

topographic perspective to better understand neural function. 

  

In order to establish how distance between regions influences their similarity in 

function, we calculated for each cortical vertex surface how the similarity of its 

activity changes with all other vertices as a function of the distance between 

them. This is a simplified version of the empirical variogram (14), as illustrated 

schematically in the upper panel of Figure 1. Spatial variograms are expected to 

show that similarity in function declines with distance until it reaches an 

asymptote, the distance after which there is no longer a spatial dependency 

between vertices. The empirical variogram can be summarised by fitting an 

exponential function which in turn can be described by two values capturing 

how similarity changes with distance for each vertex: the effective range and the 

sill. The sill is the height (i.e., degree of dissimilarity between two regions) and 

the range is asymptote (i.e., the spatial distance between the two regions). 

Differences in the shape of the spatial variogram across regions can be used to 

quantify the different ways topography influences function in different cortical 

locations. For example, in regions where function is more influenced by the local 

neighbourhood, the spatial variogram shows a relatively shallow decline in 

similarity with distance. In contrast, in regions where function is relatively 

distinct from the local environment, the variogram should increase more rapidly 

with the distance. 
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Figure 1. Top Panel. Schematic illustration of how spatial variograms can be used to 

characterise the rate of change of functional connectivity as distance increases between brain 

regions. Bottom Left. Whole-brain variograms of functional connectivity can be calculated by 

comparing how the distance along the cortical surface is related to the average similarity in 

brain activity between regions. Bottom Right. Whole brain variograms are shown for the left 

and right cortices and can be seen to be broadly similar. The thick lines/dots are the mean 

across participants, and the filled area is the standard error of the mean. The dashed lines are 

the estimated location of the sill (asymptotic difference in correlation between vertices) and 

range (distance in mm between vertices at which the asymptote is reached).  

 

Results 

We first quantified the spatial dependency between functional connectivity  and 

distance by calculating whole-brain variograms assessing how functional 

connectivity affinity matrices (Pearson9s correlation) vary with distance along 

the cortical surface for each hemisphere (Figure 1, lower panel). We used resting 

state fMRI data from 51 participants from the Human Connectome Project for 

whom there are two sessions separated by approximately six months. This 

analytic choice allows us to calculate the reliability of these metrics across time 

within an individual. Averaging these vertex-wise variograms across the whole 

cortex, the global variogram, reveals an initially steep rise (rapidly increasing 

dissimilarity with distance), with an inflection point at around 30-40 mm (Figure 

1). This is followed by a continuous increase up to the limit of measurable 

distance (all vertices included distances up to 150 mm; however, measurements 

above this value are not present in all vertices and so become more unstable 

and unduly influenced by a subset of regions). In other words, at the level of 

resolution of the present data, vertices within <40 mm of each other show 

similar temporal profiles of activity. The variogram for the left and right 
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hemispheres show a similar pattern (see left hand panel). The landscape of 

these variograms can be formally understood by comparing the observed rate 

of change in function with distance with different mathematical growth 

functions (e.g., sinusoidal, exponential, or gaussian). It can be seen in Figure 1 

that the whole brain variogram of the human is most similar to an exponential 

relationship.  

 

For the purposes of our analyses, we can extract the two parameters used to fit 

the theoretical function to the empirical variograms: (i) the sill is where the 

height of the variogram reaches 95% of its asymptote; and (ii) The distance 

where the sill occurs defines the range. These are both displayed in the top panel 

of Figure 2. Importantly comparing the variogram calculated for each of the 

participants on two resting state sessions separated by 6 months shows a high 

degree of correspondence both in terms of the sill (the average difference in 

correlation between vertices) and the distance (i.e., rho > 0.73; Figure 2 top 

panel). 

 

 
Figure 2. Distribution of the sill and effective distance of variograms across the cortex. 

Top Panel. Variograms can be formally described through comparison of the observed rate of 

change between similarity in brain activity and distance with different mathematical growth 

functions. We observe that the whole-brain variogram has most similarity to an exponential 

function. Top Middle. Variograms can be described in two numbers, the partial sill (the height 

of the curve at 95% of its asymptote) and the effective range (the distance of the sill). Top 

Right. Both the partial sill and the effective range of the whole brain variogram show 

reasonable similarity when measured within the same individual at two different timepoints 

(> 0.73). Bottom left. The distribution of the partial sill (height of the variogram at 95% of its 

asymptote) and effective distance (the distance of the sill) across the vertices of the human 
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cortex. It can be seen that the sill ranges from .25 and .5 across the cortex and that in some 

regions effective distance can be as long as 15 cm. Bottom right. The relationship between 

the distribution of the principal gradient of intrinsic connectivity and variograms at each 

vertex (as described by each vertex9s partial sill and effective distance). It can be seen that 

unimodal regions tend to have variograms with low sills and long effective distances, while 

transmodal regions have variograms with higher sills and shorter effective distances. 

 

The whole-brain variograms establish that in humans, distance leads to an 

increase in dissimilarity in neural function that is asymptotic exponential in 

nature and that these measurements are broadly consistent within an individual 

over time. This aligns with descriptions of local spatial similarity previously 

reported in humans and non-human primates e.g., (15). By computing 

variograms, we are able to go beyond a single description of spatial dependency 

across the brain, and capture regional differences in spatial dependencies (i.e., 

second-order non-stationarity). To understand whether there are systematic 

differences in how distance leads to changes in neural function across different 

brain regions, we calculated separate variograms for each vertex across the 

cortex. The middle panel in Figure 2 summarises how the two metrics (sill and 

effective distance) vary across the cortex. It can be seen that sill (reflecting the 

spatial dissimilarity in functional connectivity across the cortex) ranges between 

0.25 and 0.5, and that in some regions the dissimilarity continues to increase to 

the maximum range of our measurements (150 mm). 

 

To further characterize this heterogeneity, we examined how the distribution of 

the sill and the effective range varies with the principal gradient of change in 

functional connectivity (3). This gradient can be derived by application of 

dimensionality reduction techniques to functional connectivity data (3), and 

recapitulates foundational models of the sensory-transmodal cortical hierarchy 

(1). The lower panel of Figure 2 shows that regions closer to the transmodal end 

of the principal gradient tend to be regions where the variograms have a 

relatively high sill and short effective distance (i.e., regions where dissimilarity 

shows a relatively rapid increase). In contrast, regions closer to the unimodal 

end of the principal gradient have a relatively lower sill and a longer effective 

distance (i.e., regions that show a slower rate of decline in function with 

increasing distance). This analysis provides preliminary support that two broad 

types of cortex (primary and association cortex) can be discriminated based on 

how activity varies with distance. 

 

Next, we calculated spatial dependency for each of the canonical resting state 

networks to understand whether this is true of different large-scale networks 

within both association and primary cortex. Figure 3 (upper panel) shows the 
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average empirical variogram for each network while the lower panel shows the 

average sill and effective distance of each network. Regions making up the 

limbic network (Cream) have the highest sill and the shortest effective distance, 

a pattern that is also seen in the transmodal networks (Default mode, Red; 

Fronto-parietal network, Orange) but to a lesser degree. Regions that make up 

unimodal cortex (Visual network, Purple; Motor cortex, Blue) show the reverse 

profile with variograms with small sills and relatively long effective distance. 

Finally, the two attention networks (Dorsal and Ventral) show intermediate 

profiles both having moderate sills and effective ranges. These two systems are 

distinguished from each other because the Dorsal attention network has a 

longer effective distance and a short sill, and so is more similar to the unimodal 

systems, whereas the Ventral attention shows the opposite profile. 

 

We repeated this analysis in a sample of macaques to determine whether these 

properties are unique to humans (using homolog networks, see Methods for 

details). This analysis identified that the network profile of each species is 

broadly similar. For example, in both species the Limbic network has the highest 

sills and the shortest effective distances, and the visual system provides the 

clearest example of the opposite profile (low sills and longer effective distance). 

 

 
Figure 3. Variograms calculated for each canonical resting state network (Yeo, Krienen et 

al., 2011) in humans and in homolog networks in macaques. The middle panel shows the 

mean variogram (FC dissimilarity by distance along the cortex) calculated across all vertices 

for each Yeo network in the human Human Connectome Project data; the filled areas are the 

standard errors of the mean across vertices. The bottom panel shows a similar analysis with 

fMRI data averaged from 14 awake Macaque monkey as a comparison.   
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The variograms stratified by resting-state network suggest that there may be a 

small set of spatial dependency profiles that characterize a larger number of 

networks, and that these likely correspond to the difference between 

association and primary cortex. To provide an independent test of this idea, we 

performed hierarchical clustering on the binned data from the vertex-wise 

variograms, and display the results colored by different canonical networks. The 

top panel of Figure 4 presents the dendrogram produced by this analysis. 

Clustering vertices based on their variogram profiles gives rise to two groups, 

one predominantly encompassing the unimodal systems (primary sensorimotor 

networks as well as parts of the dorsal attention network) and the other 

corresponding to limbic and transmodal systems, as well as the ventral attention 

network. This analysis, therefore, highlights a broad dissociation of cortex into 

two classes based on their variograms: one class of regions where the 

variograms have low sills and long connectivity and a second class of regions 

with higher sills and shorter effective distances. We also assessed how 

consistent these results were for individuals9 variograms across different scans 

(Figure 4C), to ensure the cluster structure was not a consequence of group 

averaging and generalises to out-of-sample data. Comparing each individual 

participant9s empirical variograms across scans showed within-cluster 

correlations (cluster variograms from scan 1 correlated with cluster variograms 

from scan 2 substantially higher than across clusters).  
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Figure 4. Left. A: Clustering vertices based on empirical variograms. The 

dendograms, are colored by the Yeo network that each vertex belongs to, 

displaying the tree structure of the similarity between variograms. B: The 

dendogram was used to cluster the data into two clusters (colored red and 

blue) for the left and right hemispheres. The order of the clustering was 

arbitrary across hemispheres and has been colored based on approximate 

similarity between the left and right hemispheres. Broadly, transmodal regions 

were clustered together in a separate cluster (red) to unimodal sensorimotor 

regions (blue). C: Correlation of empirical variograms across vertices are 

consistent within each cluster within individuals and across different MR 

sessions. D: Average empirical variograms for each of the clusters within 

individuals reveals that one cluster exhibits more dramatic change in functional 

similarity with distance. E: The range and sill for each vertex, colored by the 

cluster label for the left and right hemispheres. Top, right, F: The empirical 

variograms between functional connectivity and distance split into deciles 

based on vertices9 myelin value (pink-greener colors correspond to higher-

myelin content). G: Individual average estimated intracortical myelin for the 

two clusters. I: The estimated range and sill for each vertex, colored by 

estimated myelin. The inset brain is the average distribution of estimated 

cortical myelin (from the HCP group average dataset). Bottom, right, the 

ranges and sills calculated across vertices activated by different cognitive 

processes (taken from a large automatic meta-analysis); These are overlayed 

on vertices colored by their cluster membership from E.  

 

 

Given the different profiles of spatial dependencies observed across different 

regions of cortex, we investigated whether the distribution of activity for 

different cognitive states also reflects this. To this end, we averaged vertex-wise 

estimates of the range and sill parameters for responsive vertices (defined as 

those with an estimated evoked BOLD response greater than threshold) in 24 

topic maps generated by an automatic meta-analysis of functional MRI tasks. 

Figure 4 shows how brain regions related to different cognitive states differ in 

terms of their profile of spatial dependencies. In general, more externally 

focused tasks (e.g., labelled <visual= or <motor=) showed slower decrease in 

similarity with distance and a lower sill; whereas cognitive tasks associated with 

more abstract functions (such as <emotion=, <social=, <memory=), were 

associated with the opposite pattern with shorter ranges and higher sills. We 

subsequently clustered the tasks according to their sills/ranges to allow us to 

easily visualise the variability in the variograms associated with each task (the 

red/blue colors in Figure 4, panels A-E). This allowed us to create a composite 
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task activation map for each cluster and plot the associated variograms showing 

the different spatial dependency profiles.  

 

Our final analysis examined how microstructural features of different regions of 

the cortex correspond to the observed differences in spatial dependency 

profiles across cortex. Given its role in signal propagation, we examined whether 

myelination is linked to the shape of the variograms for different vertices. Figure 

4H depicts the spatial distribution of estimated cortical myelin. We split vertices 

into deciles based on their levels of cortical myelination and plotted separate 

variograms for each decile. A clear separation emerges, with more highly 

myelinated vertices displaying, on average, longer distance spatial 

dependencies, and lower sills. This is made more explicit by plotting the range 

and the sill per vertex (Figure 4) colored by the level of myelination (warm colors 

indicating higher myelination).  

 

Discussion 

 

Given emerging evidence of the importance of topography in the mammalian 

cortex (3, 12), our study set out to understand how the distance between 

regions relates to their functional similarity. In particular, we examined whether 

this profile of spatial dependence varies across different cortical regions (a 

phenomenon known as second-order non-stationarity). Our analysis first 

established whole brain variograms are reasonably consistent across 

hemispheres, individuals, and within individuals measured at different time 

points. When we examined these on a regional basis, we observed substantial 

differences that reflect known functional divisions of brain function. Notably, 

the observed differences in spatial dependence profile recapitulated the 

distinction between primary sensorimotor and transmodal association cortex. 

In primary sensorimotor cortices, including visual and somatosensory cortex, we 

found that increasing distance is associated with a gradual change in function. 

In contrast, in association cortex we found that function changed with distance 

at a much faster rate. These differences between unimodal and association 

cortex in humans were broadly similar to those seen in macaques suggesting 

that they are conserved across the primate nervous system. We found that 

these changes in how distance impacts functional variation are likely to be at 

least partly related to differences in microstructure, as we found differences 

between association and unimodal cortex similar to those seen when exploring 

variation in intracortical microstructure approximated by the ratio of T1w/T2w 

image intensity a known proxy for intracortical myeloarchitecture (16). 
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These results have implications for understanding how topographic differences 

influence cortical function. First, our data provides novel support for an 

organisation of unimodal cortex that supports the progressive elaboration of 

encoded stimulus features (17). Our analysis established that both sensorimotor 

cortex and visual cortex are situated within regions in which the changes in 

function over distance are some of the most gradual when the cortex is viewed 

as a whole. When contrasted with association cortex, this pattern is consistent 

with the view that sensory regions have a spatial organisation in which adjacent 

regions encode progressively complex features of the information extracted 

from sensory signals and that these compressed signals form the basis of signal 

processing for the next stage in the hierarchy e.g. (18). This pattern of 

progressive change is assumed to be important in regions of primary cortex, 

such as visual cortex, and is captured empirically by the variograms in these 

regions which show relatively small steady changes in functional properties as 

the distance between two regions increases. 

 

Our study also provides insight into theoretical perspectives on how neural 

processing occurs in regions of association cortex. For example, contemporary 

work highlights that regions of association cortex can have relatively unique 

features both in terms of the functions they support, and in their observed 

neural properties (for a similar argument see (12)). For example, both the 

fronto-parietal and default mode networks are implicated in cognition in a 

relatively abstract manner, highlighted by their involvement in a wide range of 

tasks which despite being superficially different may draw on similar underlying 

cognitive operations. For example, situations which have superficially different 

features, such as the Stroop (19) or working memory (20), but show a common 

reliance on executive control, tend to activate the fronto-parietal network, as 

well as other task positive systems (21). Similarly, the default mode network is 

often observed as contributing to situations when information from memory 

may be important for organising cognition, such as during mental time travel 

(22), memory processes that rely on semantic (23) or episodic knowledge (24). 

Our analysis suggests that both of these large-scale systems are situated in 

regions of cortex where there are fairly rapid changes in functional similarity 

with increasing distance. These rapid changes in function over relatively short 

distances are likely to reflect the interdigitated nature of these systems (6, 25). 

These perspectives assume that a general property of associative cortex may be 

a topographic organisation in which relatively different functional systems 

terminate within close proximity of one another. This topographic system could 

form the basis of an architecture that is hypothesised to explain why both the 

fronto-parietal (26) and default mode networks (12) contribute to multiple 
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different forms of behaviour in a relatively abstract manner. These more 

complex, interdigitated patterns of function are captured empirically by the 

variograms which show rapid functional changes as a function of distance in 

each of the large-scale networks in association cortex. 

 

Finally, our study provides insights into the important observation that the 

default mode network, a brain system located at the maximal distance from 

primary landmarks like the calcarine sulcus, also has a functional profile which 

is one of the most unique in the mammalian nervous system (3). Our analysis 

suggests regions of cortex where the default mode network is located combine 

two unique topographic properties that together explain why the distance 

between these systems and the primary sensorimotor landmarks corresponds 

to the primary dimension of functional differentiation with the whole brain 

connectivity space (3). Our analysis suggests that the increasing distance from 

primary landmarks in sensory cortex, and regions of the DMN would first lead 

to increasing differences in functional similarity through the slow progressive 

changes in function with distance that emerge in primary cortex. In conjunction, 

with these gradual changes, our study suggests that the cortex where the DMN 

is where function changes most rapidly with increasing spatial distance.  Thus, 

the observation that the distance between the DMN and sensory cortex 

corresponds to the greatest differentiation in function (i.e. the principle gradient 

of functional connectivity (3)) is inevitable because this distance combines (i) the 

progressive changes in function within primary sensorimotor cortex, and (ii) the 

complex interdigitated structure seen within the DMN (6). Based on our analysis 

of T1w/T2w images it is possible that microstructural differences, such as  

myelin content, may be an important feature in distinguishing these types of 

cortex, an important question for future research to explore with more detailed 

anatomical techniques (e.g., (27) than those used in the current investigation. 

 

Although our study highlights how different types of cortex can be understood 

through the emergence of functional differentiation across space, it also raises 

a number of key questions for future research into how topography shapes 

function. First, although our study shows that association and unimodal cortex 

systematically vary in how function changes across the surface of the brain, this 

metric does not discriminate between systems that are known to be distinctive 

in their functions. For example, although the variograms for both the fronto-

parietal and default mode networks are similar, the situations in which these 

systems contribute to cognition are different. Likewise, the variograms in motor 

and visual cortex are similar, yet these systems have clear functional differences. 

It is likely that the different roles that these systems play in cognition may arise, 
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not from the general way that function changes with space in these areas of 

cortex, but in terms of the specific location that these systems inhabit within the 

broader cortical landscape. In this way our study highlights the more abstract 

properties that distinguish association and unimodal cortex, but do not provide 

a concrete explanation for how these systems contribute to cognition and 

behaviour in a distinctive manner. Second, our study does not constrain 

accounts of why association and unimodal cortex have differences in the spatial 

differentiation that we observe. Our analysis highlights that microstructural 

differences, via a proxy of intracortical myelination, systematically track 

differences in the empirical variograms. However, there are likely to be multiple 

microstructural features that track these differences, and these microstructural 

properties may also vary as a consequence of experience. Therefore, it is 

important for future work to examine the different genetic and experiential 

changes that influence how function varies as a function of distance in both 

primary and association cortex to fully understand the influences that 

determine this fundamental feature of cortical organisation.  

 

Methods 

Imaging Data  

The majority of the analyses were performed on the first 51 participants9 resting 

state fMRI from the Human Connectome Project9s minimally pre-processed 

dataset; this involved registration to a common MNI152 template, minimal 

spatial smoothing and extensive filtering for slow drifts, motion and other 

nuisance signals estimated using independent components analysis (28). The 4D 

fMRI datasets for each participant were projected onto the Conte32k surface 

and the number of faces reduced resulting in 10,000 remaining vertices (using 

Matlab9s reducepatch command). Two resting-state runs (with opposite phase 

encoding direction, left-to-right and right-to-left) were taken from each 

participant. No further pre-processing was performed on the data.  

 

Group averaged data from 14 macaque monkeys was used from the Newcastle 

cohort. Surface geodesic distance and homologous regions to the human data 

were taken from (29). 

 

The vertex-wise map of cortical myelin was the group-average map taken from 

the Human Connectome Project 900-subject release; it is released in the 

Conte32k surface space and reduced to the same 10,000 vertices as the fMRI 

data.  Similarly, the Yeo cortical parcellation (4) in Conte32k surface space was 

taken from the same HCP 900 data release and was also reduced to 10,000 

vertices.  The 50 Neurosynth data derived topic maps were downloaded in 
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MNI152 2mm space and then projected onto the mid-thickness Conte32k 

surface using the Connectome Workbench (30) and then reduced to the same 

10,000 vertices. Topics that were not related to cognitive tasks/states were 

removed, leaving 24 topics.  

 

Geodesic distance 

Pairwise geodesic distance was calculated along the cortical surface between all 

vertices (excluding the medial wall) using the Connectome Workbench tools, as 

implemented through the BrainSmash toolbox (31). This was done on each 

hemisphere9s mid-thickness Conte32k surface reduced to 10,000 vertices prior 

to calculating the distances. The resulting vertex-wise distance matrices were 

used in all subsequent analyses. 

 

Functional connectivity 

The functional connectivity affinity matrix was first calculated between all 

10,000 vertices for each individual fMRI scan using Pearson9s correlation 

between the BOLD time series. For group-average results, the correlation 

coefficients were subsequently Fisher transformed and then for each vertex, 

averaged across subjects before applying an inverse Fisher transform, resulting 

in values between -1 and 1 for each edge of the functional connectivity matrix. 

Using a bounded similarity metric (0 = no similarity, 1/-1 identical) aids 

comparison across individuals/vertices and facilitates interpretation for the 

resulting empirical variograms.  

 

Empirical variograms 

The empirical variogram was calculated by quantifying how functional 

connectivity decreases in similarity as distance increases. To do this, all distances 

between pairs of vertices were collapsed into 20 equally spaced bins. 

Subsequently, the difference in functional connectivity (Pearson9s correlation 

coefficient) between pairs of vertices was calculated and formed into equally 

spaced bins using a Gaussian smoothing function (following the approach set 

out in (31, 32) ). This resulted in a whole-cortex empirical variogram. For vertex-

wise variograms, the same approach was taken but repeated for every row of 

the functional connectivity/distance matrix separately, resulting in a simplified 

form of the empirical variogram for each vertex.  

 

Theoretical variogram  

It is common practice to fit a function to empirical variograms, this is typically 

used prior to spatial regression; however, in our case, it allows us to compactly 

summarise the shape of the empirical variogram with a small number of 
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parameters, facilitating comparisons across datasets and vertices, and 

aggregation across multiple vertices. For the reported analyses we used an 

exponential function. This is motivated by a range of prior studies suggesting 

exponential relationships between distance and various neural measures (e.g., 

(33)). We also performed a similar fit for two other theoretical models (a 

Gaussian and a periodic model which allows for non-monotonic functions), with 

qualitatively similar results. Empirical variograms were trimmed to bins between 

2 and 19 (to remove bins with few sampled distances). Subsequently, non-linear 

least squares was used to estimate sill and the range.  

 

Low-dimensional embedding of functional connectivity  

The principal connectivity gradient was calculated using the Brainspace toolbox 

(34). This involved taking the group-average functional connectivity affinity 

matrix and performing non-linear dimensionality reduction using the Laplacian 

Eigenmaps approach, separately for each hemisphere.  

  

Clustering 

Agglomerative hierarchical clustering, with ward linkage and the Euclidean 

distance metric was applied simultaneously to all the vertex-wise variograms 

separately for each cortical hemisphere. Subsequently, SciPy9s fcluster 

command was used to flatten the hierarchy into two clusters. To assess the 

robustness of the resulting clusters each vertex9s variogram was correlated with 

all other variograms calculated in a separate fMRI run within the same 

individual. The correlation scores were Fisher transformed and then 

subsequently averaged both within and across clusters.  

 

Cognitive tasks 

From the Neurosynth 50 data-derived topics dataset (35), those that did not 

refer to cognitive or behavioral states were removed, leaving: cognitive, 

inhibition, motor, numerical, action, conflict, spatial, emotion, empathy, 

decision, pain, memory, language, semantic, face, imagery, visual, eye 

movement, motion, attention, auditory, reward, social, working memory. The 

corresponding map for each topic was thresholded (absolute value z>10) and 

binarized, resulting in a vertex-wise mask of values that were strongly implicated 

for that topic (other thresholds produced qualitatively similar results). For each 

topic, the range and sill (taken from the theoretical variogram from the group 

average functional connectivity analysis) for each vertex within each mask were 

averaged together. 

 

Myelin 
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The estimated intracortical myelin maps derived from the ratio of T1 and T2 

weighted MR images (16) from the Human Connectome Project were split into 

deciles based on their estimated myelin level. The empirical variograms of 

vertices within each decile were averaged. In addition, the estimated average 

myelin value for each of the clusters (see above) were calculated. 

 

Python code to reproduce the analyses is available here 
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