bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523934; this version posted January 13, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Variation in spatial dependencies across the cortical mantle discriminates the
functional behaviour of primary and association cortex

Robert Leech?, Reinder Vos De Wael?, Frantisek Vasa?, Ting Xu3, R. Austin Benn#,
Robert Scholz>, Rodrigo M. Braga®, Michael Milham3, Jessica Royer?, Boris
Bernhardt?, Emily Jones’, Elizabeth Jefferies?, Daniel Margulies* and Jonathan
Smallwood?®

ICentre for Neuroimaging Science, King's College London, UK

2McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada

3Center for the Developing Brain, Child Mind Institute, New York, USA

4Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche
Scientifique (CNRS) and Université de Paris, Paris, France

>Max Planck School of Cognition, Leipzig, Germany

®Neurology, Interdepartmental Neuroscience Program, Northwestern University, USA
’Centre for Brain and Cognitive Development, Birkbeck College, University of London, United
Kingdom

8Department of Psychology, University of York, York, UK

‘Department of Psychology, Queens University, Kingston, Ontario, Canada


https://doi.org/10.1101/2023.01.13.523934
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523934; this version posted January 13, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Abstract

Recent theories of cortical organisation maintain that important features of
brain function emerge through the spatial arrangement of regions of cortex. For
example, areas of association cortex are located in regions of cortex furthest
from sensory and motor cortex. Association cortex is also ‘interdigitated’ since
adjacent regions can have relatively different patterns of functional
connectivity. It is assumed that topographic properties such as distance
between cortical regions constrain their functions. For example, large distances
between association and sensory and motor systems may enable these areas of
cortex to maintain differentiable neural patterns, while an interdigitated
organisation may enable association cortex to contain many functional systems
in a relatively compact space. We currently lack a formal understanding of how
spatial organisation impacts brain function, limiting the ability to leverage
cortical topography to facilitate better interpretations of a regions function.
Here we use variograms, a quantification of spatial autocorrelation, to develop
a cortex-wide profile of how functional similarity changes as a function of the
distance between regions. We establish that function changes gradually within
sensory and motor cortex as the distance between regions increases, while in
association cortex function changes rapidly over shorter distances. Subsequent
analysis suggests these differential classes of spatial dependency are related to
variation in intracortical myelin between sensory motor and association cortex.
Our study suggests primary and association cortex are differentiated by the
degree to which function varies over space, emphasising the need to formally
account for spatial properties when estimating a system’s contribution to
cognition and behaviour.
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Significance statement

The spatial arrangements of regions in the human brain are hypothesised to
underpin important features of a brain regions function. Currently, however, we
lack a formal understanding of how topography shapes brain function, limiting
our ability to leverage topographical perspectives to inform better theories of
brain function. Here we use a formal mathematical approach to establish that
in regions of association cortex function varies across the cortex more rapidly
than in sensory and motor cortex, a phenomenon linked to levels of intracortical
myelin. This result highlights how topographical features distinguish between
cortical regions with different functional profiles and provides a formal account
of how spatial differences support different features of brain function.
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Introduction

One of the most important discoveries in human neuroscience is that brain
topography plays an important role in determining how a region contributes to
cognition and behaviour (1). These topographic features can shape a region’s
function in many ways including: (i) through the influence of neighbouring
neural systems that make up the local environment within which a specific
region is embedded (2), (ii) the physical location of the network on the cortical
mantle with respect to core cortical landmarks (3), (iii) and more abstract
topographical features such as the degree to which functional activity within a
network is spatially distributed across the cortical mantle (2, 4), or, instead is
limited to adjacent regions, often within a single cortical lobe (5, 6).

Contemporary evidence suggests that local topographical properties influence
a region’s function in a complicated, interdependent manner. For example,
neural systems that are directly concerned with sensation and movement, such
as the visual or motor cortex, are spatially distant from each other, yet both of
these systems tend to be relatively spatially contiguous, and both contain
topographic features resembling maps, either of the external environment or
how the organism engages with the outside world (7-10). Other systems, such
as the default mode or frontoparietal networks, are located in regions of
association cortex, are spatially adjacent to one another, and both are spatially
distributed across cortex; yet functionally these systems appear to serve
different, often opposing roles in human cognition (11). Topography is also
important for understanding macroscale brain function, because systems that
tend to be more spatially discontinuous (e.g., the default mode network) tend
to be more distant from sensory and motor systems where spatial discontinuity
is an exception rather than the norm (e.g. sensorimotor or visual cortex) (3). In
contemporary neuroscience, macroscale topographical features provide a
useful heuristic for understanding the involvement of frontoparietal and default
mode networks in cognition. These networks are hypothesised to be at the
transmodal apex regions of a broad sensory-fugal hierarchy, allowing oversight
across broad areas of cortex (12). In contrast, mesoscale features of topography,
such as the retinotopic maps located within sensory cortex, are thought to
explain aspects of how the visual system represents and extracts features of the
environment from retinal input.

Topography at both macro and mesoscale is, therefore, a key principle of brain
organization and is crucial for understanding brain function both within specific
systems and across the cortex as a whole. Our study set out to formally examine
how this perspective can be leveraged to go beyond heuristic accounts of the
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topographic influence of a region’s contribution to cognition and behaviour. The
distance between regions, calculated as the geodesic distance between two
vertices, provides one metric to understand the influence of topography on
neural function can be approached. This measure has been used to show that
systems like the default mode and frontal parietal cortex are both distant from
the sensory input and motor output systems (13). However, a given location on
the cortical mantle may be influenced by topography in a number of ways, such
as through features of the local neighbourhood in which the region is situated,
or, whether the system is part of a distributed or localised network. Accordingly,
it is important to understand whether the way that distance between two
regions influences neural function varies across the cortex. Understanding if
there are regional differences in the way distance impacts functional
connectivity (second-order non-stationarity), enables us to leverage a
topographic perspective to better understand neural function.

In order to establish how distance between regions influences their similarity in
function, we calculated for each cortical vertex surface how the similarity of its
activity changes with all other vertices as a function of the distance between
them. This is a simplified version of the empirical variogram (14), as illustrated
schematically in the upper panel of Figure 1. Spatial variograms are expected to
show that similarity in function declines with distance until it reaches an
asymptote, the distance after which there is no longer a spatial dependency
between vertices. The empirical variogram can be summarised by fitting an
exponential function which in turn can be described by two values capturing
how similarity changes with distance for each vertex: the effective range and the
sill. The sill is the height (i.e., degree of dissimilarity between two regions) and
the range is asymptote (i.e., the spatial distance between the two regions).
Differences in the shape of the spatial variogram across regions can be used to
guantify the different ways topography influences function in different cortical
locations. For example, in regions where function is more influenced by the local
neighbourhood, the spatial variogram shows a relatively shallow decline in
similarity with distance. In contrast, in regions where function is relatively
distinct from the local environment, the variogram should increase more rapidly
with the distance.
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Figure 1. Top Panel. Schematic illustration of how spatial variograms can be used to
characterise the rate of change of functional connectivity as distance increases between brain
regions. Bottom Left. Whole-brain variograms of functional connectivity can be calculated by
comparing how the distance along the cortical surface is related to the average similarity in
brain activity between regions. Bottom Right. Whole brain variograms are shown for the left
and right cortices and can be seen to be broadly similar. The thick lines/dots are the mean
across participants, and the filled area is the standard error of the mean. The dashed lines are
the estimated location of the sill (asymptotic difference in correlation between vertices) and
range (distance in mm between vertices at which the asymptote is reached).

Results

We first quantified the spatial dependency between functional connectivity and
distance by calculating whole-brain variograms assessing how functional
connectivity affinity matrices (Pearson’s correlation) vary with distance along
the cortical surface for each hemisphere (Figure 1, lower panel). We used resting
state fMRI data from 51 participants from the Human Connectome Project for
whom there are two sessions separated by approximately six months. This
analytic choice allows us to calculate the reliability of these metrics across time
within an individual. Averaging these vertex-wise variograms across the whole
cortex, the global variogram, reveals an initially steep rise (rapidly increasing
dissimilarity with distance), with an inflection point at around 30-40 mm (Figure
1). This is followed by a continuous increase up to the limit of measurable
distance (all vertices included distances up to 150 mm; however, measurements
above this value are not present in all vertices and so become more unstable
and unduly influenced by a subset of regions). In other words, at the level of
resolution of the present data, vertices within <40 mm of each other show
similar temporal profiles of activity. The variogram for the left and right
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hemispheres show a similar pattern (see left hand panel). The landscape of
these variograms can be formally understood by comparing the observed rate
of change in function with distance with different mathematical growth
functions (e.g., sinusoidal, exponential, or gaussian). It can be seen in Figure 1
that the whole brain variogram of the human is most similar to an exponential
relationship.

For the purposes of our analyses, we can extract the two parameters used to fit
the theoretical function to the empirical variograms: (i) the sill is where the
height of the variogram reaches 95% of its asymptote; and (ii) The distance
where the sill occurs defines the range. These are both displayed in the top panel
of Figure 2. Importantly comparing the variogram calculated for each of the
participants on two resting state sessions separated by 6 months shows a high
degree of correspondence both in terms of the sill (the average difference in
correlation between vertices) and the distance (i.e., rho > 0.73; Figure 2 top
panel).
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Figure 2. Distribution of the sill and effective distance of variograms across the cortex.

Top Panel. Variograms can be formally described through comparison of the observed rate of
change between similarity in brain activity and distance with different mathematical growth
functions. We observe that the whole-brain variogram has most similarity to an exponential
function. Top Middle. Variograms can be described in two numbers, the partial sill (the height
of the curve at 95% of its asymptote) and the effective range (the distance of the sill). Top
Right. Both the partial sill and the effective range of the whole brain variogram show
reasonable similarity when measured within the same individual at two different timepoints
(> 0.73). Bottom left. The distribution of the partial sill (height of the variogram at 95% of its
asymptote) and effective distance (the distance of the sill) across the vertices of the human
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cortex. It can be seen that the sill ranges from .25 and .5 across the cortex and that in some
regions effective distance can be as long as 15 cm. Bottom right. The relationship between
the distribution of the principal gradient of intrinsic connectivity and variograms at each
vertex (as described by each vertex’s partial sill and effective distance). It can be seen that
unimodal regions tend to have variograms with low sills and long effective distances, while
transmodal regions have variograms with higher sills and shorter effective distances.

The whole-brain variograms establish that in humans, distance leads to an
increase in dissimilarity in neural function that is asymptotic exponential in
nature and that these measurements are broadly consistent within an individual
over time. This aligns with descriptions of local spatial similarity previously
reported in humans and non-human primates e.g., (15). By computing
variograms, we are able to go beyond a single description of spatial dependency
across the brain, and capture regional differences in spatial dependencies (i.e.,
second-order non-stationarity). To understand whether there are systematic
differences in how distance leads to changes in neural function across different
brain regions, we calculated separate variograms for each vertex across the
cortex. The middle panel in Figure 2 summarises how the two metrics (sill and
effective distance) vary across the cortex. It can be seen that sill (reflecting the
spatial dissimilarity in functional connectivity across the cortex) ranges between
0.25 and 0.5, and that in some regions the dissimilarity continues to increase to
the maximum range of our measurements (150 mm).

To further characterize this heterogeneity, we examined how the distribution of
the sill and the effective range varies with the principal gradient of change in
functional connectivity (3). This gradient can be derived by application of
dimensionality reduction techniques to functional connectivity data (3), and
recapitulates foundational models of the sensory-transmodal cortical hierarchy
(1). The lower panel of Figure 2 shows that regions closer to the transmodal end
of the principal gradient tend to be regions where the variograms have a
relatively high sill and short effective distance (i.e., regions where dissimilarity
shows a relatively rapid increase). In contrast, regions closer to the unimodal
end of the principal gradient have a relatively lower sill and a longer effective
distance (i.e., regions that show a slower rate of decline in function with
increasing distance). This analysis provides preliminary support that two broad
types of cortex (primary and association cortex) can be discriminated based on
how activity varies with distance.

Next, we calculated spatial dependency for each of the canonical resting state
networks to understand whether this is true of different large-scale networks
within both association and primary cortex. Figure 3 (upper panel) shows the
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average empirical variogram for each network while the lower panel shows the
average sill and effective distance of each network. Regions making up the
limbic network (Cream) have the highest sill and the shortest effective distance,
a pattern that is also seen in the transmodal networks (Default mode, Red;
Fronto-parietal network, Orange) but to a lesser degree. Regions that make up
unimodal cortex (Visual network, Purple; Motor cortex, Blue) show the reverse
profile with variograms with small sills and relatively long effective distance.
Finally, the two attention networks (Dorsal and Ventral) show intermediate
profiles both having moderate sills and effective ranges. These two systems are
distinguished from each other because the Dorsal attention network has a
longer effective distance and a short sill, and so is more similar to the unimodal
systems, whereas the Ventral attention shows the opposite profile.

We repeated this analysis in a sample of macaques to determine whether these
properties are unique to humans (using homolog networks, see Methods for
details). This analysis identified that the network profile of each species is
broadly similar. For example, in both species the Limbic network has the highest
sills and the shortest effective distances, and the visual system provides the
clearest example of the opposite profile (low sills and longer effective distance).

Variograms averaged for each network in human (solid line) and macaque monkey (dashed)
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Figure 3. Variograms calculated for each canonical resting state network (Yeo, Krienen et
al., 2011) in humans and in homolog networks in macaques. The middle panel shows the
mean variogram (FC dissimilarity by distance along the cortex) calculated across all vertices
for each Yeo network in the human Human Connectome Project data; the filled areas are the
standard errors of the mean across vertices. The bottom panel shows a similar analysis with
fMRI data averaged from 14 awake Macaque monkey as a comparison.
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The variograms stratified by resting-state network suggest that there may be a
small set of spatial dependency profiles that characterize a larger number of
networks, and that these likely correspond to the difference between
association and primary cortex. To provide an independent test of this idea, we
performed hierarchical clustering on the binned data from the vertex-wise
variograms, and display the results colored by different canonical networks. The
top panel of Figure 4 presents the dendrogram produced by this analysis.
Clustering vertices based on their variogram profiles gives rise to two groups,
one predominantly encompassing the unimodal systems (primary sensorimotor
networks as well as parts of the dorsal attention network) and the other
corresponding to limbic and transmodal systems, as well as the ventral attention
network. This analysis, therefore, highlights a broad dissociation of cortex into
two classes based on their variograms: one class of regions where the
variograms have low sills and long connectivity and a second class of regions
with higher sills and shorter effective distances. We also assessed how
consistent these results were for individuals’ variograms across different scans
(Figure 4C), to ensure the cluster structure was not a consequence of group
averaging and generalises to out-of-sample data. Comparing each individual
participant’s empirical variograms across scans showed within-cluster
correlations (cluster variograms from scan 1 correlated with cluster variograms
from scan 2 substantially higher than across clusters).
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Figure 4. Left. A: Clustering vertices based on empirical variograms. The
dendograms, are colored by the Yeo network that each vertex belongs to,
displaying the tree structure of the similarity between variograms. B: The
dendogram was used to cluster the data into two clusters (colored red and
blue) for the left and right hemispheres. The order of the clustering was
arbitrary across hemispheres and has been colored based on approximate
similarity between the left and right hemispheres. Broadly, transmodal regions
were clustered together in a separate cluster (red) to unimodal sensorimotor
regions (blue). C: Correlation of empirical variograms across vertices are
consistent within each cluster within individuals and across different MR
sessions. D: Average empirical variograms for each of the clusters within
individuals reveals that one cluster exhibits more dramatic change in functional
similarity with distance. E: The range and sill for each vertex, colored by the
cluster label for the left and right hemispheres. Top, right, F: The empirical
variograms between functional connectivity and distance split into deciles
based on vertices” myelin value (pink-greener colors correspond to higher-
myelin content). G: Individual average estimated intracortical myelin for the
two clusters. I: The estimated range and sill for each vertex, colored by
estimated myelin. The inset brain is the average distribution of estimated
cortical myelin (from the HCP group average dataset). Bottom, right, the
ranges and sills calculated across vertices activated by different cognitive
processes (taken from a large automatic meta-analysis); These are overlayed
on vertices colored by their cluster membership from E.

Given the different profiles of spatial dependencies observed across different
regions of cortex, we investigated whether the distribution of activity for
different cognitive states also reflects this. To this end, we averaged vertex-wise
estimates of the range and sill parameters for responsive vertices (defined as
those with an estimated evoked BOLD response greater than threshold) in 24
topic maps generated by an automatic meta-analysis of functional MRI tasks.
Figure 4 shows how brain regions related to different cognitive states differ in
terms of their profile of spatial dependencies. In general, more externally
focused tasks (e.g., labelled “visual” or “motor”) showed slower decrease in
similarity with distance and a lower sill; whereas cognitive tasks associated with
more abstract functions (such as “emotion”, “social”, “memory”), were
associated with the opposite pattern with shorter ranges and higher sills. We
subsequently clustered the tasks according to their sills/ranges to allow us to
easily visualise the variability in the variograms associated with each task (the
red/blue colors in Figure 4, panels A-E). This allowed us to create a composite
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task activation map for each cluster and plot the associated variograms showing
the different spatial dependency profiles.

Our final analysis examined how microstructural features of different regions of
the cortex correspond to the observed differences in spatial dependency
profiles across cortex. Given its role in signal propagation, we examined whether
myelination is linked to the shape of the variograms for different vertices. Figure
4H depicts the spatial distribution of estimated cortical myelin. We split vertices
into deciles based on their levels of cortical myelination and plotted separate
variograms for each decile. A clear separation emerges, with more highly
myelinated vertices displaying, on average, longer distance spatial
dependencies, and lower sills. This is made more explicit by plotting the range
and the sill per vertex (Figure 4) colored by the level of myelination (warm colors
indicating higher myelination).

Discussion

Given emerging evidence of the importance of topography in the mammalian
cortex (3, 12), our study set out to understand how the distance between
regions relates to their functional similarity. In particular, we examined whether
this profile of spatial dependence varies across different cortical regions (a
phenomenon known as second-order non-stationarity). Our analysis first
established whole brain variograms are reasonably consistent across
hemispheres, individuals, and within individuals measured at different time
points. When we examined these on a regional basis, we observed substantial
differences that reflect known functional divisions of brain function. Notably,
the observed differences in spatial dependence profile recapitulated the
distinction between primary sensorimotor and transmodal association cortex.
In primary sensorimotor cortices, including visual and somatosensory cortex, we
found that increasing distance is associated with a gradual change in function.
In contrast, in association cortex we found that function changed with distance
at a much faster rate. These differences between unimodal and association
cortex in humans were broadly similar to those seen in macaques suggesting
that they are conserved across the primate nervous system. We found that
these changes in how distance impacts functional variation are likely to be at
least partly related to differences in microstructure, as we found differences
between association and unimodal cortex similar to those seen when exploring
variation in intracortical microstructure approximated by the ratio of T1w/T2w
image intensity a known proxy for intracortical myeloarchitecture (16).
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These results have implications for understanding how topographic differences
influence cortical function. First, our data provides novel support for an
organisation of unimodal cortex that supports the progressive elaboration of
encoded stimulus features (17). Our analysis established that both sensorimotor
cortex and visual cortex are situated within regions in which the changes in
function over distance are some of the most gradual when the cortex is viewed
as a whole. When contrasted with association cortex, this pattern is consistent
with the view that sensory regions have a spatial organisation in which adjacent
regions encode progressively complex features of the information extracted
from sensory signals and that these compressed signals form the basis of signal
processing for the next stage in the hierarchy e.g. (18). This pattern of
progressive change is assumed to be important in regions of primary cortex,
such as visual cortex, and is captured empirically by the variograms in these
regions which show relatively small steady changes in functional properties as
the distance between two regions increases.

Our study also provides insight into theoretical perspectives on how neural
processing occurs in regions of association cortex. For example, contemporary
work highlights that regions of association cortex can have relatively unique
features both in terms of the functions they support, and in their observed
neural properties (for a similar argument see (12)). For example, both the
fronto-parietal and default mode networks are implicated in cognition in a
relatively abstract manner, highlighted by their involvement in a wide range of
tasks which despite being superficially different may draw on similar underlying
cognitive operations. For example, situations which have superficially different
features, such as the Stroop (19) or working memory (20), but show a common
reliance on executive control, tend to activate the fronto-parietal network, as
well as other task positive systems (21). Similarly, the default mode network is
often observed as contributing to situations when information from memory
may be important for organising cognition, such as during mental time travel
(22), memory processes that rely on semantic (23) or episodic knowledge (24).
Our analysis suggests that both of these large-scale systems are situated in
regions of cortex where there are fairly rapid changes in functional similarity
with increasing distance. These rapid changes in function over relatively short
distances are likely to reflect the interdigitated nature of these systems (6, 25).
These perspectives assume that a general property of associative cortex may be
a topographic organisation in which relatively different functional systems
terminate within close proximity of one another. This topographic system could
form the basis of an architecture that is hypothesised to explain why both the
fronto-parietal (26) and default mode networks (12) contribute to multiple

13


https://doi.org/10.1101/2023.01.13.523934
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523934; this version posted January 13, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

different forms of behaviour in a relatively abstract manner. These more
complex, interdigitated patterns of function are captured empirically by the
variograms which show rapid functional changes as a function of distance in
each of the large-scale networks in association cortex.

Finally, our study provides insights into the important observation that the
default mode network, a brain system located at the maximal distance from
primary landmarks like the calcarine sulcus, also has a functional profile which
is one of the most unique in the mammalian nervous system (3). Our analysis
suggests regions of cortex where the default mode network is located combine
two unique topographic properties that together explain why the distance
between these systems and the primary sensorimotor landmarks corresponds
to the primary dimension of functional differentiation with the whole brain
connectivity space (3). Our analysis suggests that the increasing distance from
primary landmarks in sensory cortex, and regions of the DMN would first lead
to increasing differences in functional similarity through the slow progressive
changes in function with distance that emerge in primary cortex. In conjunction,
with these gradual changes, our study suggests that the cortex where the DMN
is where function changes most rapidly with increasing spatial distance. Thus,
the observation that the distance between the DMN and sensory cortex
corresponds to the greatest differentiation in function (i.e. the principle gradient
of functional connectivity (3)) is inevitable because this distance combines (i) the
progressive changes in function within primary sensorimotor cortex, and (ii) the
complex interdigitated structure seen within the DMN (6). Based on our analysis
of T1w/T2w images it is possible that microstructural differences, such as
myelin content, may be an important feature in distinguishing these types of
cortex, an important question for future research to explore with more detailed
anatomical techniques (e.g., (27) than those used in the current investigation.

Although our study highlights how different types of cortex can be understood
through the emergence of functional differentiation across space, it also raises
a number of key questions for future research into how topography shapes
function. First, although our study shows that association and unimodal cortex
systematically vary in how function changes across the surface of the brain, this
metric does not discriminate between systems that are known to be distinctive
in their functions. For example, although the variograms for both the fronto-
parietal and default mode networks are similar, the situations in which these
systems contribute to cognition are different. Likewise, the variograms in motor
and visual cortex are similar, yet these systems have clear functional differences.
It is likely that the different roles that these systems play in cognition may arise,
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not from the general way that function changes with space in these areas of
cortex, but in terms of the specific location that these systems inhabit within the
broader cortical landscape. In this way our study highlights the more abstract
properties that distinguish association and unimodal cortex, but do not provide
a concrete explanation for how these systems contribute to cognition and
behaviour in a distinctive manner. Second, our study does not constrain
accounts of why association and unimodal cortex have differences in the spatial
differentiation that we observe. Our analysis highlights that microstructural
differences, via a proxy of intracortical myelination, systematically track
differences in the empirical variograms. However, there are likely to be multiple
microstructural features that track these differences, and these microstructural
properties may also vary as a consequence of experience. Therefore, it is
important for future work to examine the different genetic and experiential
changes that influence how function varies as a function of distance in both
primary and association cortex to fully understand the influences that
determine this fundamental feature of cortical organisation.

Methods

Imaging Data

The majority of the analyses were performed on the first 51 participants’ resting
state fMRI from the Human Connectome Project’s minimally pre-processed
dataset; this involved registration to a common MNI152 template, minimal
spatial smoothing and extensive filtering for slow drifts, motion and other
nuisance signals estimated using independent components analysis (28). The 4D
fMRI datasets for each participant were projected onto the Conte32k surface
and the number of faces reduced resulting in 10,000 remaining vertices (using
Matlab’s reducepatch command). Two resting-state runs (with opposite phase
encoding direction, left-to-right and right-to-left) were taken from each
participant. No further pre-processing was performed on the data.

Group averaged data from 14 macague monkeys was used from the Newcastle
cohort. Surface geodesic distance and homologous regions to the human data
were taken from (29).

The vertex-wise map of cortical myelin was the group-average map taken from
the Human Connectome Project 900-subject release; it is released in the
Conte32k surface space and reduced to the same 10,000 vertices as the fMRI
data. Similarly, the Yeo cortical parcellation (4) in Conte32k surface space was
taken from the same HCP 900 data release and was also reduced to 10,000
vertices. The 50 Neurosynth data derived topic maps were downloaded in
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MNI152 2mm space and then projected onto the mid-thickness Conte32k
surface using the Connectome Workbench (30) and then reduced to the same
10,000 vertices. Topics that were not related to cognitive tasks/states were
removed, leaving 24 topics.

Geodesic distance

Pairwise geodesic distance was calculated along the cortical surface between all
vertices (excluding the medial wall) using the Connectome Workbench tools, as
implemented through the BrainSmash toolbox (31). This was done on each
hemisphere’s mid-thickness Conte32k surface reduced to 10,000 vertices prior
to calculating the distances. The resulting vertex-wise distance matrices were
used in all subsequent analyses.

Functional connectivity

The functional connectivity affinity matrix was first calculated between all
10,000 vertices for each individual fMRI scan using Pearson’s correlation
between the BOLD time series. For group-average results, the correlation
coefficients were subsequently Fisher transformed and then for each vertex,
averaged across subjects before applying an inverse Fisher transform, resulting
in values between -1 and 1 for each edge of the functional connectivity matrix.
Using a bounded similarity metric (0 = no similarity, 1/-1 identical) aids
comparison across individuals/vertices and facilitates interpretation for the
resulting empirical variograms.

Empirical variograms

The empirical variogram was calculated by quantifying how functional
connectivity decreases in similarity as distance increases. To do this, all distances
between pairs of vertices were collapsed into 20 equally spaced bins.
Subsequently, the difference in functional connectivity (Pearson’s correlation
coefficient) between pairs of vertices was calculated and formed into equally
spaced bins using a Gaussian smoothing function (following the approach set
outin (31, 32) ). This resulted in a whole-cortex empirical variogram. For vertex-
wise variograms, the same approach was taken but repeated for every row of
the functional connectivity/distance matrix separately, resulting in a simplified
form of the empirical variogram for each vertex.

Theoretical variogram

It is common practice to fit a function to empirical variograms, this is typically
used prior to spatial regression; however, in our case, it allows us to compactly
summarise the shape of the empirical variogram with a small number of
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parameters, facilitating comparisons across datasets and vertices, and
aggregation across multiple vertices. For the reported analyses we used an
exponential function. This is motivated by a range of prior studies suggesting
exponential relationships between distance and various neural measures (e.g.,
(33)). We also performed a similar fit for two other theoretical models (a
Gaussian and a periodic model which allows for non-monotonic functions), with
qualitatively similar results. Empirical variograms were trimmed to bins between
2 and 19 (to remove bins with few sampled distances). Subsequently, non-linear
least squares was used to estimate sill and the range.

Low-dimensional embedding of functional connectivity
The principal connectivity gradient was calculated using the Brainspace toolbox
(34). This involved taking the group-average functional connectivity affinity
matrix and performing non-linear dimensionality reduction using the Laplacian
Eigenmaps approach, separately for each hemisphere.

Clustering
Agglomerative hierarchical clustering, with ward linkage and the Euclidean

distance metric was applied simultaneously to all the vertex-wise variograms
separately for each cortical hemisphere. Subsequently, SciPy’s fcluster
command was used to flatten the hierarchy into two clusters. To assess the
robustness of the resulting clusters each vertex’s variogram was correlated with
all other variograms calculated in a separate fMRI run within the same
individual. The correlation scores were Fisher transformed and then
subsequently averaged both within and across clusters.

Cognitive tasks

From the Neurosynth 50 data-derived topics dataset (35), those that did not
refer to cognitive or behavioral states were removed, leaving: cognitive,
inhibition, motor, numerical, action, conflict, spatial, emotion, empathy,
decision, pain, memory, language, semantic, face, imagery, visual, eye
movement, motion, attention, auditory, reward, social, working memory. The
corresponding map for each topic was thresholded (absolute value z>10) and
binarized, resulting in a vertex-wise mask of values that were strongly implicated
for that topic (other thresholds produced qualitatively similar results). For each
topic, the range and sill (taken from the theoretical variogram from the group
average functional connectivity analysis) for each vertex within each mask were
averaged together.

Myelin
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The estimated intracortical myelin maps derived from the ratio of T1 and T2
weighted MR images (16) from the Human Connectome Project were split into
deciles based on their estimated myelin level. The empirical variograms of
vertices within each decile were averaged. In addition, the estimated average
myelin value for each of the clusters (see above) were calculated.

Python code to reproduce the analyses is available here
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