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Abstract

Tiny ocean plankton (picoplankton) are fundamental for the functioning of the biosphere, but the
ecological  mechanisms  shaping  their  biogeography  are  partially  understood.  Comprehending
whether these microorganisms are structured by niche vs. neutral processes is highly relevant in
the context of global change. The ecological drivers structuring picoplankton communities differ
between prokaryotes and minute eukaryotes (picoeukaryotes) in the global surface ocean: while
prokaryotic communities are shaped by a balanced combination of dispersal, selection, and drift,
picoeukaryotic communities are mainly shaped by  dispersal limitation. Yet, whether or not the
relative importance of these processes in structuring picoplankton varies as we dive into the deep
ocean  was  unknown.  Here  we  investigate  the  mechanisms  structuring  picoplanktonic
communities inhabiting different ocean depths. We analyzed 451 samples from the tropical and
subtropical global ocean and the Mediterranean Sea covering the epi- (0-200m), meso- (200-
1,000m), and bathypelagic (1,000-4,000m) depth zones. We found that selection decreased with
depth possibly due to lower habitat  heterogeneity.  In turn,  dispersal  limitation increased with
depth,  possibly  due  to  dispersal  barriers  such  as  water  masses  and  bottom  topography.
Picoplankton β-diversity positively correlated with environmental heterogeneity and water mass
variability in both the open-ocean and the Mediterranean Sea. However, this relationship tended
to be weaker for picoeukaryotes than for prokaryotes. Community patterns were generally more
pronounced  in  the  Mediterranean  Sea,  probably  because  of  its  substantial  cross-basin
environmental  heterogeneity  and  deep-water  isolation.  Altogether,  we  found  that  different
combinations of ecological mechanisms shape the biogeography of the smallest members of the
ocean microbiome across ocean depths.
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Main text

Introduction

The smallest eukaryotes and prokaryotes (picoplankton, 0.2 - 3 µm) play essential roles in the
global ocean: from trophic interactions (1) to biogeochemical cycles (2, 3). They account for 57%
(~3.8 Gt  C) of  the ocean’s  biomass  (4) and are the main contributors to the taxonomic and
functional diversity of the ocean  (5–8). Therefore, understanding the mechanisms determining
their  global  biogeography  is  fundamental  to  predict  how they  will  respond  to  environmental
changes. Picoplankton abundance, diversity, and composition are relatively well described across
ocean depths  (9, 10): prokaryotes’ diversity increases with depth  (8, 11), while picoeukaryotes’
diversity sharply decreases (12). These depth-related patterns are strongly shaped by gradients
in sunlight, temperature, oxygen, and nutrients  (8, 11) as well as by physical barriers such as
water  masses, currents,  and fronts  (13–16).  However,  the ecological  processes underpinning
picoplankton biogeography are only partially understood (17, 18),  specially considering different
ocean depth zones and geographic scales. Given that the deep ocean is the largest ecosystem
on our planet and harbors a massive microbial genetic diversity (19) – responsible for essential
global ecosystem services – understanding how these processes shape the microbiota in the
understudied and vast deep ocean is particularly important.

The biogeography of organisms are the result of four high-level ecological processes that act in
different proportions: selection, dispersal, ecological drift, and diversification (20).  Selection is a
deterministic  force  emerging  from  combinations  of  biotic  and  abiotic  variables  that  lead  to
differences in  the  fitness  of  individuals  of  a  species  and,  as  a  consequence,  to  changes in
community  structure.  Selection can  either  restrict  (homogeneous  selection)  or  promote
(heterogeneous selection)  the divergence of  communities  (21).  Dispersal is  the movement of
organisms across  space  and their  establishment  in  new locations,  affecting local  community
assembly  by  adding  individuals  from  the  regional  species  pool.  Dispersal  is  considered  a
stochastic process for small plankton as they passively drift with currents (21). Microbial dispersal
rates  may  be  high  (homogenizing  dispersal),  moderate,  or  low  (dispersal  limitation)  (21),
depending on organism and population sizes, geographic scale, and the presence of physical
barriers  (18, 22, 23).  Dispersal limitation takes place when species are not present in suitable
habitats because colonizers cannot reach them (24). Thus, the relative importance of  dispersal
limitation usually increases with geographic scales (25) or barriers (22). Ecological drift (hereafter
drift) refers to random changes in community structure due to stochastic demographic events
(i.e., birth, death, immigration, and emigration) in a local community  (20).  Drift  is a stochastic
process that tends to be most important for the local extinction of low-abundant microbial taxa
with small populations (26), especially under a low dispersal scenario (23). Finally, diversification
(also referred to as ‘speciation’) is the emergence of new species by evolution (20), which occurs
more frequently for microbes than for larger organisms due to their short generation times, high
mutation rates as well as horizontal gene transfer (21, 26). Yet, diversification is expected to have
a relatively small impact on the turnover of communities that are highly connected via dispersal
(27), as is the case for ocean picoplankton (22). Diversification, as measured by the evolution of
the rRNA gene sequence, will not be further considered here, given that its impact on measured
ecological processes is likely minor considering the low evolutionary rates of this marker (28).

A recent study – using Malaspina and TARA data – found that the relative importance of these
processes differs between the components of the surface ocean picoplankton community: while
prokaryotes  are  shaped  by  a  balanced  combination  of  dispersal,  selection,  and  drift,
picoeukaryotes  are  mainly  driven  by  dispersal  limitation  (17).  However,  we  do  not  fully
understand whether these processes change across ocean depth zones. These zones display
striking  differences  in  environmental  and  geographic  features  that  may  influence  selection,
dispersal,  and  drift.  First,  environmental  heterogeneity  –  potentially  exerting  heterogeneous
selection on microbial  communities  (17,  29) –  is  higher  in  the  upper  ocean due  to  stronger
horizontal environmental gradients  (30) than in the deep ocean  (31). Second, the presence of
aerial dispersal (32) and faster oceanic currents likely increases dispersal at the surface (33, 34),
while the presence of sharper geographical barriers (e.g. water masses and bottom topography)
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may  limit  microbial  dispersal  in  the  low-turbulent  deep  ocean  (18,  35,  36).  Third,  smaller
population sizes in the deep ocean (9) may lead to reduced dispersal and increased drift (23), as
compared to the surface ocean (17, 34). Recently, using a subset of the Malaspina dataset, it has
been shown that picoplankton community assembly differed between a water layer in the surface
ocean (3 m) and a counterpart in the deep ocean (~4,000 m),  with dispersal limitation being
relatively more important in the deep layer than in the surface counterpart (18).

In  addition,  we do not know whether  these processes would  be different  in  an ocean basin
presenting strong environmental gradients and obvious geographic barriers. In this regard, the
Mediterranean Sea – the largest semi-enclosed sea on Earth – is an ideal ocean model to test
ecological hypotheses at a smaller scale (37, 38). Although the Mediterranean Sea is connected
to the adjacent Atlantic Ocean through the Strait of Gibraltar, it is so in a rather restricted way
(39). As a consequence, the Mediterranean Sea has developed unique oceanographic features in
comparison to the open ocean, such as higher temperature and salinity in deep waters as well as
a west-to-east  gradient  of  decreasing nutrient  concentration and increasing salinity in surface
waters  (11,  40).  Additionally,  the Mediterranean Sea deep (> 1,000 m) waters are physically
divided by the Sicily Strait (500 m deep) into Western and Eastern basins. These features are
expected  to  influence  the  processes  shaping  picoplankton  biogeography  and,  ultimately,  be
reflected in its community composition (11).

In  the  last  few  years,  it  has  been  found  that  different  processes  shape  prokaryotes  and
picoeukaryotes in the surface ocean (17). In addition, a recent report points to differences in the
picoplankton biogeography between specific waters layers in the surface (3 m) and deep ocean
(4,000 m) (18). However, we still lacked a broad examination of the ecological processes driving
picoplankton community assembly and biogeography across all depth zones of the global ocean
that takes into account environmental heterogeneity, potential dispersal barriers, and geography.
Here,  we  addressed  the  previous  challenge.  We  determined  the  relative  importance  of  the
ecological processes structuring picoplanktonic communities inhabiting three ocean depth zones
at the global and basin scales: epi- (0-200 m), meso- (200-1,000 m) and bathypelagic (1,000-
4,000 m). We also aimed at understanding to what extent water masses, deep-sea topography as
well as environmental heterogeneity are potentially limiting dispersal or exerting selection on the
picoplanktonic communities. To do so, we used 16S and 18S rRNA gene amplicon sequence
variants (ASV) from both prokaryotes and picoeukaryotes collected during global and regional
expeditions covering the tropical and subtropical global ocean as well as the Mediterranean Sea.
Overall, we hypothesize that the role of heterogeneous selection will decrease with depth due to
a potential decrease in habitat heterogeneity, while homogeneous selection is expected to be
higher in the bathypelagic compared to the meso- and epipelagic. In turn, the relative importance
of dispersal limitation is expected to increase with depth, given the decrease in current speed in
deep waters, the existence of geographical barriers (e.g. fronts, deep sea topography), and the
absence of aerial dispersal. We also hypothesize that these patterns should be more pronounced
in the Mediterranean Sea due to its strong environmental gradients and constrained communities
exchange in deep waters.

Results

Different ecological processes shape picoplankton communities in depth zones of the 
ocean

We analyzed picoplankton community composition in 451 samples across three ocean depth
zones: epi- (0-200 m – including the deep chlorophyll maxima, DCM), meso- (200-1,000 m), and
bathypelagic (1,000-4,000 m) using metabarcoding of the 16S and 18S rRNA genes (Fig. 1A and
SI Appendix,  Fig.  S1A;  see  Methods for details  on standard protocols).  These zones display
contrasting environmental features across the water column (Fig. 1B and SI Appendix, Fig. S1B),
reflected in  a  depth-structured  picoplankton  community  composition (Fig.  1C).  Our  data  also
makes  evident  an  inverted  diversity  pattern  between  the  two  main  components  of  the
picoplankton community: while prokaryotic diversity (richness, Shannon index, and phylogenetic
diversity) increased with depth, picoeukaryotic diversity decreased towards the deep ocean (Fig.
1D and  SI Appendix,  Fig. S2). While the Mediterranean Sea displayed higher temperature and
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salinity  as  well  as  lower  nutrients  than  the  oceanic  basins,  particularly  in  the  meso-  and
bathypelagic (Fig. 1B), the diversity patterns were similar in both ocean sets. The environmental
features, however, were reflected in differences in picoplankton community composition (Bray-
Curtis Dissimilarity) between the Mediterranean Sea and the rest of the oceanic basins (Fig. 1C).
The Mediterranean Sea was evaluated separately from the open ocean in downstream analyses
to test whether the large scale patterns are reflected at the regional scale of a smaller basin with
strong environmental gradients and sharp geographic barriers.

We  found  differences in  the  biodiversity  metrics  (βNTI,  RCBray and  β-diversity  partitioning  SI
Appendix,  Fig. S3 and Fig. S4) and, ultimately, in the balance between ecological processes
shaping  picoplankton  communities  across  depth  zones  of  the  ocean  (Fig.  2A).  Selection
explained a similar percentage of the turnover of picoeukaryotes as compared to prokaryotes in
the epi- (~37% vs. ~36%), meso- (~32% vs. ~31%) and bathypelagic (~32% vs. ~26%) of the
open ocean (Fig. 2A). Heterogeneous selection tended to increase with depth for both domains:
while for prokaryotes it increased from ~10% to ~19% and ~13% in the meso- and bathypelagic,
it  increased  from ~13%  in  the  epi-  to  ~27% and  ~31%  in  the  meso-  and  bathypelagic  for
picoeukaryotes,  respectively  (Fig.  2A).  Accordingly,  the  relative  importance  of  homogeneous
selection for prokaryotes decreased from ~26% in the epi- to ~13% in the bathypelagic. Similarly,
the relative importance of homogeneous selection for picoeukaryotes drastically decreased from
~26 % in the epipelagic to ca. 0.7% in the bathypelagic (Fig. 2A). These patterns were slightly
different in the Mediterranean Sea when compared to the tropical and subtropical open ocean.
The relative weight of selection for the prokaryote community assembly was consistently higher
than for the picoeukaryotic counterpart in the epi- (~54% vs. ~44%), meso- (~39% vs. ~25%) and
bathypelagic (~32 vs. ~6%, respectively) (Fig. 2A). The proportion of heterogeneous selection for
prokaryotes dramatically dropped from 37% in the epipelagic to ~5% in deep waters, while the
role  of  homogeneous  selection increased  from  the  epi-  (~18%)  to  the  meso-  (~34%)  and
bathypelagic  (~28%)  (Fig.  2A).  For  picoeukaryotes,  both  heterogeneous and  homogeneous
selection decreased  from  the  epi-  (33%  and  10%)  to  the  bathypelagic  (6%  and  0.2%,
respectively) (Fig. 2A). 

Dispersal limitation was a more important driver of picoeukaryotic than prokaryotic assembly in
the deep zones, especially in the mesopelagic (~60% vs. ~29%), of the open ocean. We found
that, for picoeukaryotes, the proportion of dispersal limitation increased from ~31 % in the epi- to
~60% in the meso- and to ~38% in the bathypelagic (Fig. 2A). In the Mediterranean Sea the
relative importance of dispersal limitation was much higher for picoeukaryotic than for prokaryotic
assembly  in  the epi-  (~35% vs.  ~22%),  meso- (~52% vs.  ~24%),  and bathypelagic  (~42 vs.
~15%).  Conversely,  homogenizing  dispersal had a  very  limited  role  in  the  structuring  of  the
microbiota  in  all  depth  zones  of  the  open  ocean  (<2%  for  picoeukaryotes  and  <4%  for
prokaryotes) and the Mediterranean Sea (<5% for picoeukaryotes and <8% for prokaryotes) (Fig.
2A). Drift explained a higher fraction of community turnover for prokaryotes than picoeukaryotes
in the meso- (~38% vs ~7%) and bathypelagic (~37% vs ~28%) of the open ocean (Fig. 2A). This
pattern was partially observed in the Mediterranean Sea with drift explaining a higher proportion
of community turnover for prokaryotes (~29%) and picoeukaryotes (~20%) in the mesopelagic
(Fig. 2A). While in the open ocean the percentage of turnover explained by drift increased with
depth for prokaryotes and decreased for picoeukaryotes (Fig. 2A), it sharply increased with depth
for both prokaryotes and picoeukaryotes in the Mediterranean Sea (Fig. 2A). When estimated
using a standardized sampling-size dataset (N=39 in each depth zone) with evenly-distributed
samples (SI Appendix, Fig. S5A and Fig. S6), the different ecological processes explained fairly
similar percentages of variability and the values were strongly linked (R2 ~ 0.9, p<0.001) to those
found with the complete dataset (Fig. 2).

When globally estimated (all depths together), selection was by far the most relevant ecological
process shaping both prokaryotes (~67%) and picoeukaryotes (~54%) using both datasets (SI
Appendix,  Fig.  S8).  Dispersal  limitation also  tended to  play  a  relatively  more  important  role
shaping picoeukaryotes than prokaryotes when estimated across all depth zones (SI Appendix,
Fig. S8). Due to the potential vertical connectivity between the surface and the deep ocean (see
detailed reasoning in Methods), we also estimated the ecological processes integrating all depths
(from 3 to 4,000 m) in each of the 13 vertical profile stations (Fig. 1A). We found that  selection
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was consistently the most important factor vertically shaping free-living picoplankton communities
in  the vertical  profile  stations,  explaining ~52-81% of  the prokaryotic  community  turnover (SI
Appendix,  Fig. S9) and ~24-52% of the picoeukaryotic community turnover (SI Appendix,  Fig.
S9). The role of vertical dispersal limitation ranged from 10% to 43% in prokaryotes and from 5%
to 43% in picoeukaryotes (SI Appendix, Fig. S9). The role of drift was greater in picoeukaryotes
(~15-43%) than in prokaryotes (~5-24%) across vertical profiles (SI Appendix, Fig. S9).

The relative importance of selection is ruled by differences in environmental heterogeneity
across depth zones

We also evaluated the abiotic drivers of selection across depth zones. Water temperature was
the most important environmental driver of prokaryotic community composition in the open ocean
(~16-18%) and the Mediterranean Sea (~18-32%) (Fig. 2B). Temperature explained a moderate
percentage of variance in picoeukaryotic communities inhabiting the bathypelagic (~12% in the
open ocean and ~18% in the Mediterranean Sea) (Fig. 2B). The percentages of variance in the
prokaryotic and picoeukaryotic communities explained by temperature increased from the surface
(~18%  and  ~11%,  respectively)  to  the  deep  zones  (~32%  and  ~19%,  respectively)  in  the
Mediterranean  Sea.  Salinity  explained  a  moderate  fraction  of  prokaryotic  (up  to  16%)  and
picoeukaryotic (up to 12 %) community variance in the Mediterranean Sea, but not in the open
ocean (Fig. 2B). Geography (ocean basin) could affect the structure of picoplankton communities
if it is associated with dispersal processes or to different selection regimes exerted in different
ocean basins. Geography (ocean basin) explained most of the variation in picoeukaryotes in the
open ocean and the Mediterranean Sea (Fig. 2B). Interestingly, the percentage of community
variance explained by geography in picoeukaryotes increased markedly from the surface to the
meso- and bathypelagic  in  the open ocean (Fig.  2B).  In  turn,  geography explained a limited
fraction of community variance in prokaryotes.

Environmental  heterogeneity  (average pairwise  dissimilarity  based  on  temperature,  salinity,
fluorescence, PO4

3−, NO3
−, and SiO2) was significantly higher in the epi- than in the meso- and

bathypelagic of the open ocean and the Mediterranean Sea (SI Appendix,  Fig. S10). We found
that the picoplankton communities' dissimilarity increased with environmental distance in all depth
zones  (Fig.  3).  This  positive  relationship  was  always  stronger  in  the  epipelagic  than  in  the
bathypelagic (Fig. 3). Prokaryotes displayed a stronger coupling with environmental distance than
picoeukaryotes in all depth zones of both the open ocean and the Mediterranean Sea (Fig. 3) and
this coupling was stronger in the Mediterranean Sea than in the open ocean across all zones
(Fig.  3).  When  globally  estimated  (all  depth  zones  together),  the  community  dissimilarity
correlation with environmental distance was stronger for prokaryotes than for picoeukaryotes in
both the open ocean (r=0.62 vs. r=0.46, p<0.001) and the Mediterranean Sea (r=0.69 vs. r=0.65,
p<0.001) (SI Appendix, Fig. S11). The metric used to estimate  selection (βNTI) was positively
correlated, in prokaryotic and picoeukaryotic communities, with environmental distances in both
the open ocean (r=0.55 and r=0.50, p<0.001) and the Mediterranean Sea (r=0.55 and r=0.50,
p<0.001) (SI Appendix, Fig. S11).

The role of water masses and deep sea topography in modulating picoplankton assembly

Water masses, which were determined for the meso- and bathypelagic, were vertically structured
and segregated by basins in the open ocean and the Mediterranean Sea (SI Appendix, Fig. S13).
We found that prokaryotic community composition (Bray-Curtis dissimilarity) was positively linked
with differences in water mass composition (Euclidean distances) in the meso- and bathypelagic
of the open ocean (r=0.2 and r=0.4, p<0.001) and the Mediterranean Sea (r=0.46 and r=0.33,
p<0.001) (Fig. 4). For picoeukaryotes, this coupling was generally weaker than for prokaryotes in
both the open ocean (r=0.14, p<0.001) and the Mediterranean Sea (r=0.49 and r=0.29, p<0.001)
(Fig. 4). In the Mediterranean Sea, the link between picoplankton community and water mass
composition  was  stronger  in  the  meso-  than  in  the  bathypelagic  (Fig.  4).  Strong  positive
relationships  between  the  picoplankton  community  and  water  mass’  composition  were  also
observed within most individual vertical-profile stations, with variable slopes in each station (SI
Appendix, Fig. S14).
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In  the  open  ocean,  changes  in  prokaryotic  and  picoeukaryotic  community  composition  (β-
diversity) displayed positive correlations with geographic distances (distance-decay) in four depth
zones (Fig. 5A) even though correlations were weaker for prokaryotes than for picoeukaryotes in
most of them. Prokaryotes displayed positive correlations with distances up to ~2,000 km in the
surface and 1,000 km in the deep ocean, while picoeukaryotes showed positive correlations up to
~3,000 km in the surface and ~4,000 km in the deep ocean (Fig. 5A). For picoeukaryotes, these
positive correlations were stronger in the bathypelagic (Mantel r = 0.5, p<0.05) than in the surface
(Mantel r =  0.3,  p<0.05)  (Fig.  5A).  Interestingly,  picoeukaryotes  also  displayed  negative
correlations with increasing distances up to ~ 20,000 km across the deep zones (Fig. 5A). In fact,
picoeukaryotes had a higher variation in the spatial autocorrelations than prokaryotes in the deep
ocean,  especially  in  the  bathypelagic.  When  evaluating  these  spatial  autocorrelations  at  a
regional scale as in the Mediterranean Sea, we found that prokaryotes and picoeukaryotes did
not display such contrasting correlation scores as in the open ocean (Fig. 5A). Indeed, these two
domains had similar patterns of positive correlations in the first 350-850 km of the Mediterranean
Sea (Fig. 5A). Picoeukaryotes had higher mean sequential changes in communities (β-diversity)
than prokaryotes in all depth zones (Fig. 5B). Overall, sequential community change tended to
increase with depth in picoeukaryotes, with significant differences between the surface and the
meso- and bathypelagic in picoeukaryotes, but not in prokaryotes (Fig. 5B).

Microbial abundances and activity may also work as potential regulators of dispersal limitation
and drift. Here, microbial abundances – as measured by flow-cytometry – sharply decreased with
depth in both the open ocean and the Mediterranean Sea (SI Appendix, Fig. S16A). Similarly,
prokaryotic activity – as measured by leucine incorporation rates – drastically decreased from
surface to deep ocean waters (SI Appendix, Fig. S16B), with statistically significant differences
between epipelagic (SRF and DCM) and deep zones (MES and BAT).

Discussion

Selection decreases while dispersal limitation and drift increase with depth

Our results support  our main hypothesis,  indicating that  a different  combination of  ecological
processes shapes picoplankton biogeography across ocean depth zones at global and regional
scales (Fig. 6). Selection was the most important process shaping picoplankton in the epipelagic
ocean  (see  also  SI  Appendix,  SI  Discussion),  likely  as  a  response  to  a  higher  overall
environmental heterogeneity when compared to the deep ocean. In particular, microalgal blooms
(30, 41), magnitude of the DCM (8, 42), ocean fronts and eddies (13, 16, 43, 44), and differences
in physicochemical variables (Fig. 1B), altogether increase environmental heterogeneity in the
upper ocean (Fig. 6). In the epipelagic, the higher relative importance of heterogeneous selection
in  the  Mediterranean  Sea  than  in  the  open  ocean  is  probably  linked  to  its  environmental
gradients: north-south increasing temperature  (45), west-east increasing salinity(45), and west-
east decreasing nutrient concentrations  (11). This result contradicts a previous hypothesis that
homogeneous selection should be the most important process in all ocean basins (46). Instead,
the  balance  between  ecological  processes  shaping  picoplankton  communities  will  change
depending on the analyzed environmental  heterogeneity,  circulation patterns,  and geographic
scale  (47–49).  In our study,  the overall  role of  selection decreased,  for  both domains,  when
transiting from the epipelagic into the deep waters, where there is relatively lower environmental
heterogeneity in comparison to the epipelagic (SI Appendix, Fig. S10). Moreover, the coupling
between picoplankton community differentiation and environmental distances was stronger in the
epipelagic  than in the deep ocean, further  indicating that  the relative importance of selection
raises with increasing environmental variability.  Selection was also the most important process
shaping picoplankton when ecological processes were estimated with all samples of our dataset,
which captures environmental differences from surface to deep waters. This is another evidence
that  selection is  enhanced  as  environmental  heterogeneity  is  increased.  These  findings  are
coherent  with  ecological  theory  and  other  studies  that  show  that  high  environmental
heterogeneity leads to higher selection (20) in terrestrial (27, 50) and aquatic ecosystems (29, 51,
52). Conversely, the sum of dispersal limitation and drift were overall higher in the deep than in
the surface ocean, suggesting that  factors such as microbial  abundances (i.e.  low population
sizes) (23) and physical barriers (strongly differentiated water masses and deep-sea bathymetry)
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(18) play an important role in the structuring of deep ocean picoplankton communities (Fig. 6).
Dispersal  limitation increased  with  depth  probably  because  of  decreasing  turbulence  (stable
water masses and slow currents) (31)  and the presence of straits and seamounts (53) that work
as geographical barriers for microbial dispersal in the deep ocean (Fig. 6). Other studies have
shown how strong physical barriers can limit  microbial dispersal in soils  (50), sediments  (27),
ponds (52) and, potentially, in the ocean (22).

Water mass composition affects the distribution of prokaryotic communities

Water masses may impact microbial communities in basically two ways: a) as a selective force –
since they have different temperatures and salinity (54, 55) as well as organic matter composition
(56–58) – or; b) as a physical barrier to dispersal due to sometimes strong differences in water
density (14). We found significant positive correlations between prokaryotic community structure
and water mass compositions in the open ocean, which is in line with previous studies that found
bacterial communities associated with specific water masses (13, 14, 56, 59). This relationship is
likely linked to the fact that each water mass has different types of organic matter (57, 61) that
likely select for different prokaryotes (56, 58). In turn, picoeukaryotes were only poorly correlated
with differences in water mass in the open ocean, which implies that some of them could be able
to swim across boundaries or that they are weakly linked to the composition of typical organic
matter associated with each water mass. Instead, the high dispersal limitation of picoeukaryotes
would be mainly regulated by their smaller population (9) as well as by their limited capability to
enter into dormancy when compared to prokaryotes (62). In the Mediterranean Sea, the coupling
between  community  and  water  mass  composition  was  significant  for  both  prokaryotes  and
picoeukaryotes in the meso- and bathypelagic, which agrees with previous reports (63) and it is
likely linked to the strong horizontal cross-basin physical separation imposed by the Straits of
Sicily  and  Gibraltar  (11).  Our  results  also point  out  that  differences in  both  prokaryotes  and
picoeukaryotic communities are coupled with differences in water mass composition in vertical
profiles  (SI  Appendix,  Fig.  S14).  Interestingly,  the  slope  and  strength  that  differences  in
picoplankton composition was explained by differences in water masses varied among vertical
profile  stations  (SI  Appendix,  Fig.  S14).  This  result  indicates  that  local-scale  events  (e.g.
upwelling, dense water propagation) may also regulate the impact of water mass on microbial
communities in a vertical dimension (64–66).

Picoplankton communities display weaker biogeography in the surface than in the deep 
ocean

Our  distance-decay  analysis  revealed  that  the  autocorrelation  in  community  and  geographic
distances is stronger in the deep than at the surface, which agrees with our sequential analysis
results (Fig. 5B) and suggests that there are more marked changes across space in the deep
ocean, particularly in the picoeukaryotic community. This result agrees with a recent study that
found larger eukaryotic community dissimilarity between pairs of sites in the deep than in the
surface global ocean (67). Such changes in community composition with increasing geographic
distance (that is, distance-decay) can be generated by selection and/or dispersal limitation (68).
For picoeukaryotes, the fact that changes in community composition were better explained by
geography (ocean basin) than by environmental variation (Fig. 2B) supports that the distance-
decay pattern in the deep sea is predominantly related to dispersal limitation  (18, 67). On the
other  hand,  prokaryotic  community  structure  was  predominantly  explained  by  environmental
variables rather than by geography (Fig. 2B) which indicates that, in this domain, distance-decay
is mostly driven by selection. It is important to notice that, since many prokaryotes may be in
dormant state (69), the distance-decay could have been stronger if we had analyzed measures of
the active prokaryotic community (using RNA) instead of measures of the total community (with
DNA), as previously shown for bacterial communities (69). Another important factor that could be
increasing the role of dispersal limitation and drift in the deep ocean is the decreasing microbial
population sizes from surface to deep waters. Rare species with small populations are less likely
to disperse (70) and more likely to randomly collapse than species with large populations (23). As
expected  (9), microbial abundances drastically decreased towards the deep ocean so that the
deep ocean contains only 1% of the organisms of the surface ocean  (9). Overall,  the depth-
related patterns in ecological processes were more pronounced in the Mediterranean Sea than in

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2023. ; https://doi.org/10.1101/2023.01.13.523743doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.13.523743
http://creativecommons.org/licenses/by-nc-nd/4.0/


the  open  ocean,  which  is  partially  explained  by  being  a  semi-enclosed  sea,  with  unique
oceanographic  features  such  as  limited  circulation,  sharp  geographic  barriers  and  strong
environmental gradients (11, 40).

Differences between picoplankton members in the different depth zones

A different balance of ecological processes shapes prokaryotic and picoeukaryotic communities
in several ecosystems (34, 52, 71), including the surface ocean (17, 46). Here we found that such
differences between domains persist in the deep ocean.  Dispersal limitation was always higher
for  picoeukaryotes  than  for  prokaryotes,  which  agrees  with  previous  studies  using  similar
approaches conducted  in  Antarctic  lakes  (51) and  in  basin-scale  oceanic  regions  (49).  This
contrast  between  domains  in  terms  of  dispersal  rates  is  partially  due  to  organismal  and
population size differences  (34, 70, 72). Unicellular eukaryotes are on average 3 times larger
than prokaryotes and, therefore, would be expected to be more limited by dispersal  (34, 72).
Picoeukaryotes  (~103 cells  mL-1)  have  populations  that  are  about  three  orders  of  magnitude
smaller  than prokaryotes (~106 cells  mL-1),  which decreases their  likelihood to  disperse  (70).
Homogeneous selection was in general higher in prokaryotes than in picoeukaryotes, which is in
line  with  previous  findings  in  the  Pacific  Ocean  (46).  This  supports  that  environmental
heterogeneity can act differently on prokaryotic and picoeukaryotic assembly across depths. The
reason  is  likely  due  to  different  adaptations  to  the  same  environmental  heterogeneity  of
prokaryotes  and  picoeukaryotes  (62).  For  instance,  a  given  degree  of  environmental
heterogeneity could select for a few generalist species that have wide niches or many specialist
species with narrow niches or a combination of both strategies. Moreover, the relatively higher
homogeneous selection in prokaryotes than in picoeukaryotes suggests that dormancy could be
playing an important role in modulating prokaryote assembly in the deep ocean. Dormancy is
indeed a common mechanism in prokaryotes to overcome harsh environmental conditions (73).
This mechanism has been shown to affect  metacommunity structure by dampening distance-
decay relationships and maintaining local diversity (69, 74, 75). Many prokaryotes reach the deep
ocean from the surface through vertical dispersal (76) or disperse as endospores from sediments
(77). However, DNA-based community composition data includes non-active bacterial cells (78),
likely in dormancy state, to survive the very different conditions of the dark and cold deep ocean
(77).  Therefore,  a  relatively  higher  proportion  of  dormant  bacteria  can  create  an  apparent
‘homogenization’ of prokaryotic communities in deep zones. In fact, evidence exists that bacteria
decrease their activity towards the deep dark ocean [SI Appendix, Fig. S16] (9, 79). As far as we
know, dormancy has not been reported in picoeukaryotes (62), which could partially explain the
negligible role of  homogeneous selection in  the assembly of  this  domain in the deep ocean.
Finally,  we  found  that  the  higher  spatial  turnover  (sequential  horizontal  changes)  in
picoeukaryotes than in prokaryotes in the surface ocean (17) is also observed in the deep ocean.
Furthermore, we show that this difference in spatial turnover between domains increases with
depth,  which  is  coherent  with  dispersal  limitation  being  an  increasingly  important  processes
shaping picoeukaryotic communities in deeper ocean zones.

Potential picoplankton responses to multiple environmental changes across ocean depths

The  global  ocean  is  facing  drastic  changes  in  important  environmental  drivers  such  as
temperature, pH, salinity, and nutrient concentrations (80, 81), which are very likely affecting all
domains of life, their community structure, and interactions  (82). Global climate change is also
driving changes in ocean currents due to shifts in wind patterns, heat balance, and freshwater
inflows from glacial melting  (83), which may directly affect plankton dispersal rates  (84). Water
masses have also been modified by anthropogenic changes in temperature and salinity even in
the deep ocean (85, 86), which may affect picoplankton community composition (13, 56, 60) by
changing  both  selection  and  dispersal  assembly  processes.  Our  results  suggest  that  the
prokaryotic and eukaryotic components of the ocean's smallest plankton are likely to respond
differently to environmental change as a result of the different balance of ecological processes
structuring their communities. Prokaryotes seem to be relatively more sensitive to selective forces
than picoeukaryotes (17), so that changes in important environmental drivers (e.g. temperature,
organic  matter  composition)  will  have  a  higher  potential  to  affect  prokaryotic  community
composition at a global scale (17, 58) than changes in dispersal drivers (e.g. currents, fronts). On
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the other hand, picoeukaryotic community composition at global scales would be potentially more
affected by changes in factors regulating horizontal and vertical dispersal processes – such as
current circulation (33) and thermal stratification (87) – than by environmental drivers. While here
we refer to the entire community, specific picoeukaryotic taxa might be strongly structured by
environmental  drivers  (88).  Indeed,  temperature  is  well-known  to  influence  relatively  more
heterotrophic than photosynthetic eukaryotic activity (89). For instance, cosmopolitan unicellular
picoeukaryotic  predators  (MAST-4)  display  clear  temperature-driven  niche-partitioning  in  the
ocean (90). After all, in a long timescale, no matter the dispersal rate of a given species, it will
eventually be selected and constrained by local abiotic and biotic factors (84). Thus, the relative
effect  of  projected  changes  in  environmental  selection  and  dispersal  pathways  on  microbial
communities should be evaluated together.

Most importantly, our work suggests that the microbial communities inhabiting the deep ocean
are likely to respond differently to environmental changes than those living in the surface ocean.
This  is  particularly  relevant  in  the context  of  increasing multiple stressors caused by climate
change  (warming,  acidification,  and  deoxygenation)  and  human  exploitation  activities  (i.e.:
mining,  oil  and  gas  extraction,  waste  disposal)  in  the  deep ocean  (91).  While  upper  ocean
picoplankton  communities  would  be  relatively  more  sensitive  to  changes  in  environmental
selective  forces  (e.g.  temperature  and  nutrient  concentration),  deep  ocean  picoplankton
communities  should  be  relatively  more  impacted  by  the  removal  or  creation  of  dispersal
pathways.  In  this  regard,  projected  perturbations  in  temperature,  pH,  oxygen,  and  nutrient
concentration  (80) should impact relatively more the small plankton communities inhabiting the
upper than those in the deep ocean. Yet, changes in air fluxes and ocean currents should also
affect the surface picoplankton community (92), but relatively less than selective forces. On the
other  hand,  changes in dispersion vectors should  be the main factor altering the balance of
ecological  processes assembling picoplankton communities in  the deep ocean.  For  example,
ocean  micro-  and  nanoplastic  pollution,  a  widespread  environmental  issue  (93,  94) could
represent important substrates for both prokaryotes and single-cell eukaryotes colonization and
work as efficient dispersion vectors (95), potentially altering dispersal rates across ocean depth
zones. Furthermore, changes in ocean stratification patterns are reducing nutrient exchange and
expanding oligotrophic conditions in the upper ocean (96). Our vertical profile results suggest that
this increased stratification could  affect not only  microbial selective forces,  but also dispersal
across depth zones. These changes can ultimately impact important ocean ecosystem services
such as primary productivity and nutrient cycling at a global scale (87, 97, 98).

A conceptual framework for the global biogeography of picoplankton across ocean depths

Historically, many studies have focused on the effect of  selection – also referred to as niche-
modeling or environmental filtering – on marine microbial communities  (99–101). Other studies
aimed to model how dispersal influences microbial biogeography in the global surface ocean (34,
102–104).  More  recently,  there  have  been  important  efforts  bringing  together  environmental
selection and dispersal in the ocean (18, 33, 84). Nevertheless, besides selection and dispersal,
picoplankton community  assembly is  also ruled by ecological  drift  (17,  29).  Integrating these
processes into a single framework considering organism, environmental and physical differences
between depth zones was still missing. By combining empirical evidence, we propose a novel
conceptual framework that expands the current understanding of plankton community assembly
in  environmentally  distinct  ocean  depth  zones  (Fig.  6).  It  synthesizes  how  environmental
heterogeneity,  water  mass structure,  deep-sea topography, microbial  abundance, and  activity
mediate  the  action  of  ecological  processes  assembling  the  two components  of  the  smallest
plankton  communities  (Fig.  6).  This  framework  can  be  used  to  delineate  hypothesis-driven
studies to predict how plankton assemblages will respond across depths to multiple stressors in a
changing ocean (105). For instance, based on this framework, we can expect that the balance
between determinism (selection) and stochasticity (dispersal limitation or ecological drift) would
decrease with  plankton size.  Thus, nano- (3-20 µm),  micro-  (20-200 µm),  and mesoplankton
(200-2,000  µm)  biogeography  would  be  increasingly  limited  by  dispersal  and  display  more
marked biogeography (34, 88, 106), especially in the deep ocean (Fig. 6). We can also foresee
that particle-attached prokaryotes – which are particularly relevant in the deep ocean  (107) –
should be more limited by dispersal than free-living prokaryotes. In general, the importance of
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dispersal limitation relative to that of selection should increase not only with organism and particle
sizes, as expected by the size-dispersal hypothesis  (108), but also with ocean depth. Here we
show  that  this  dispersal-selection  balance,  regulated  by  organism size,  should  be  more
pronounced in the deep than in the upper ocean.

Methods

Dataset, sampling, and analytical methods

We compiled a dataset (Fig. 1) composed of 451 samples from surface (3 m depth) to deep
waters (up to 4,800 m), covering three depth zones of the ocean: epi- (0-200 m – including DCM),
meso-  (200-1,000  m),  and  bathypelagic  (1,000-4,000  m).  This  dataset  combines  samples
obtained during two oceanographic expeditions with similar sampling strategies: i) the Malaspina-
2010 circumglobal expedition (41, 109) from which we included 263 samples collected between
December  2010 and  July  2011 in  120 stations  distributed  along  the  tropical  and subtropical
portions (latitudes between 35° N and 40° S) of the Pacific, Atlantic, and Indian oceans (Fig. 1);
and  ii) the  HotMix  trans-Mediterranean cruise  (11, 61) from which we considered 188 samples
collected between April and May 2014 in 29 stations distributed along the whole Mediterranean
Sea (from -5° W to 33° E) and the adjacent Northeast Atlantic Ocean (Fig. 1A). This dataset
therefore allows the comparison of the tropical and subtropical ocean (samples hereafter called
“open ocean”) to a semi-enclosed basin such as the Mediterranean Sea, which displays unique
features such as higher temperature and salinity as well as lower nutrient concentration than the
open ocean, particularly in the meso- and bathypelagic (Fig. 1B). The Malaspina-2010 contains
13 stations where the whole  vertical  profile  was sampled (VP stations in  Fig.  1).  A detailed
vertical distribution of the samples is available in the Supplementary Material (Fig. S1). Due to the
difference  in  the  sampling  size  between  depth  zones,  we  also  generated  subsets  with  a
standardized number of samples (n=39) evenly-distributed across space (Fig. S7 and Fig. S8).

This  dataset  comprises  a  contextual  database  with  a  total  of  6  standardized  environmental
parameters (temperature, salinity, fluorescence, PO4

3−, NO3
−, and SiO2) as well as prokaryote and

picoeukaryote abundances determined by flow cytometry and bacterial activity measurements.
Water samples were obtained with 20L (in Malaspina) or 12L (in HotMix) Niskin bottles attached
to  a  rosette  sampler  equipped  with  a  conductivity–temperature–depth  (CTD)  profiler  (except
surface samples in Malaspina, that were obtained with individual 30 L bottles, not attached to the
rosette).  Vertical  profiles  of  temperature,  conductivity,  and  fluorescence  were  continuously
recorded throughout the water column with the CTD sensors. Conductivity measurements were
converted  into  practical  salinity  scale  values.  Inorganic  nutrients  (NO3

−,  PO4
3−,  SiO2)  were

measured from the Niskin bottle samples with standard spectrophotometric protocols (110), using
a Skalar autoanalyzer SAN++, as described in  (41, 57). Missing nutrient concentration values
were extracted from the World Ocean Database (111). Prokaryotic populations and phototrophic
picoeukaryotes  abundances  were  enumerated  using  a  FACSCalibur  flow  cytometer  (BD
Biosciences, San Jose, CA, USA) as detailed elsewhere (112). Prokaryotic heterotrophic activity
was estimated using the centrifugation method and measuring 3H-leucine incorporation (113). For
deep water samples we used the filtration method with a larger volume and undiluted hot leucine.
Significant differences in microbial abundances and bacterial activity between depth zones were
tested with an analysis of variance (ANOVA), followed by a Tukey post-hoc test. 

To obtain picoplankton biomass, ~4–12 L of seawater were first pre-filtered with a 200-µm net
mesh (to  remove large  organisms and  particles).  Malaspina samples  were  then  sequentially
filtered through a 20 μm nylon mesh followed by 3-μm and 0.2-μm polycarbonate filters (47-mm
for surface and 142-mm diameter for vertical profiles, Isopore, Merck Millipore, Burlington, MA,
USA) using a peristaltic pump.  HotMix samples were sequentially filtered through 47-mm 3-μm
policarbonate filters (Isopore, Merck Millipore) and 0.2-μm Sterivex units. Filters were flash-frozen
in liquid N2 and stored at −80 °C until DNA extraction. Here, only the free-living ‘picoplankton’
size-fraction (0.2–3 μm) was used in downstream analyses. 

Nucleic acid extraction, sequencing, and bioinformatics 
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DNA  extraction  was  conducted  with  a  standard  phenol-chloroform  protocol  (114) for  the
Malaspina surface samples. DNA from the Malaspina vertical profile samples was extracted using
the Nucleospin RNAkit (Macherey-Nagel) plus the Nucleospin RNA/DNA Buffer Set (Macherey-
Nagel) procedures. HotMix DNA samples were extracted using the PowerWater Sterivex™ DNA
isolation Kit (MO BIO Laboratories). DNA extracts were quantified with Qubit 1.0 (Thermo Fisher
Scientific)  and preserved at −80 °C. The same extracts were used for both the 16S and 18S
rRNA-gene  amplification  and  all  samples  were  sequenced  with  the  same  prokaryotic  and
eukaryotic primers. The hypervariable V4–V5 (≈ 400 bp) region of the 16S rRNA gene was PCR
amplified  with  the  primers  515F-Y  (5'-GTGYCAGCMGCCGCGGTAA)  -926R  (5'-
CCGYCAATTYMTTTRAGTTT) to target prokaryotes – both Bacteria and Archaea  (115).  The
hypervariable V4 region of the 18S rRNA gene (≈ 380 bp) was PCR amplified with the primers
TAReukFWD1  (5’-CCAGCASCYGCGGTAATTCC-3’)  and  TAReukREV3  (5’-
ACTTTCGTTCTTGATYRA-3’) to target eukaryotes (116). PCR amplification was carried out with
a QIAGEN HotStar Taq master mix (Qiagen Inc., Valencia, CA, USA). Amplicon libraries were
then paired-end sequenced on an Illumina (San Diego, CA, USA) MiSeq platform (2 × 250 bp or
2  ×  300  bp)  at  the  Research  and  Testing  Laboratory  facility,  Texas,  USA
(https://rtlgenomics.com/). See details about gene amplification and sequencing in (11, 17).

Raw Illumina miSeq reads (2x250 or 2x300) were processed using DADA2 (117) to determine
amplicon sequence variants (ASVs). For the 16S rRNA gene, forward reads were trimmed at 220
bp and reverse reads at 200 bp, whilst for the 18S rRNA gene, we trimmed the forward reads at
240 bp and the reverse reads at 180 bp. Then, for the 16S, the maximum number of expected
errors (maxEE) was set to 2 for the forward reads and to 4 for the reverse reads, while for the
18S, the maxEE was set to 7 and 8 for the forward and reverse reads respectively. Error rates for
each possible nucleotide substitution type were estimated using a machine learning approach
implemented in DADA2 for both the 16S and 18S.  Unsurprisingly,  error rates increased with
decreasing quality score. Finally, DADA2 was used to estimate error rates for both the 16S and
18S genes in order to delineate the ASVs

Prokaryotic  ASVs  were  assigned  taxonomy  using  the  naïve  Bayesian  classifier  method
(118) alongside the SILVA v.132 database  (119) as implemented in DADA2, while Eukaryotic
ASVs were BLASTed  (120) against  the Protist  Ribosomal  Reference database [PR2,  version
4.11.1;  (121)].  Eukaryotes,  chloroplasts, and mitochondria were removed from the 16S ASVs
table, while Streptophyta, Metazoa, and nucleomorphs were removed from the 18S ASVs table.
Both, the 16S and 18S ASVs tables were rarefied to 20,000 reads per sample with the function
rrarefy from  the  Vegan  R  package.  To  be  consistent  with  our  previous  study  (17),  for  the
calculation of ecological processes and associated analysis, ASVs with total abundances < 100
reads across all samples were removed to avoid PCR and sequencing depth biases. This filtering
procedure removed ~5% of the total reads and ~90% of the total ASVs from both the 16S and the
18S rRNA datasets.

Computing analyses were conducted at both the MARBITS bioinformatics platform of the Institut
de  Ciències  del  Mar  (ICM;  http://marbits.icm.csic.es)  and  the  MareNostrum  (Barcelona
Supercomputing Center).  Sequences are publicly available at the European Nucleotide Archive
(http://www.ebi.ac.uk/ena)  under  accession  numbers  PRJEB23913  [18S  rRNA  genes]  &
PRJEB25224 [16S rRNA genes] for the Malaspina expedition; PRJEB23771 [18S rRNA genes] &
PRJEB45015 [16S rRNA genes] for the Malaspina vertical profiles; and PRJEB44683 [18S rRNA
genes] & PRJEB44474 [16S rRNA genes] for the HotMix expedition.

Phylogenetics 

Phylogenetic trees were built for both the 16S and 18S rRNA gene-datasets using the ASVs full
sequences. Raw ASV sequences were firstly aligned against an aligned SILVA template – for
16S rRNA – and an aligned PR2 template – for 18S rRNA – using mothur (122). Poorly aligned
regions or  sequences were then removed using trimAl  (parameters:  -gt  0.3  -st  0.001)  (123).
Aligned sequences were also visually curated with seaview v4 (124) and sequences with >=40%
of gaps were removed. Finally, phylogenetic trees were inferred from the aligned quality-filtered
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sequences using FastTree v2.1.9  (125). Additional phylogenetic analyses were carried out with
the picante R package (126).

Environmental heterogeneity, water masses characterization, and least-cost distance 
calculations

We  calculated  the  average  pairwise  dissimilarity  (EnvHt)  as  an  index  of  environmental
heterogeneity  based on the main standardized environmental  variables:  temperature,  salinity,
fluorescence, PO4

3−, NO3
− , and SiO2. We firstly computed an Euclidean distance matrix for each

depth zone using the vegan R package and then determined the dissimilarity among samples by
dividing the Euclidean distance matrix (Euc) by the maximum Euclidean distance (Eucmax) of a
given depth zone as described in (29) and summarized here: EnvHt=(Euc/Eucmax)+0.001. Finally,
the mean EnvHt (EnvHt) was calculated as an estimation of environmental heterogeneity in each
depth zone. Significant differences in environmental heterogeneity between depth zones were
tested with a Kruskal-Wallis test, followed by a Wicoxon post-hoc test.

The presence of different water masses is an important feature to properly describe the deep
dark ocean ecosystem (> 200 m depth). Water masses are well-established water bodies with
unique properties that can be characterized by their thermohaline and chemical features. A water
mass is composed of different proportions of one or more water types of a given origin  (127).
Here, the percentage of different water types contributing to the water mass composition of each
sample (from 200 m to the bottom) was calculated using an optimum multiparameter water mass
analysis (128). This method basically characterizes water types by using conservative variables
such as salinity and potential temperature (see  (61) for details). We have identified 22 and 19
water types in the open ocean and in the Mediterranean Sea, respectively. We computed the
dissimilarity  (Euclidean  distance)  between  pairwise  samples  based  on  their  water  mass
composition  (%  of  each  water  type)  to  use  in  our  downstream  analysis.  A  nonmetric
multidimensional scaling (NMDS) analysis based on these euclidean distances was conducted to
determine the differences among samples.

Least-cost geographical distances were calculated using the ‘lc.dist()’ function of the marmap R
package (129). We first computed three transition matrices (using the ‘trans.mat()’ function) with
different minimum depths, corresponding to the epi- (surface), meso- (200 m), and bathypelagic
(1,000 m). Each generated transition matrix contained the probability of transition from one cell to
adjacent cells of a given bathymetric grid. We used the high-resolution (15 arc-second) GEBCO
bathymetric  database  hosted  on  the  British  Oceanographic  Data  Centre  server
(https://www.gebco.net/).  Since the Mediterranean Sea deep waters (>400 m) are completely
separated by the Strait of Sicily, the marmap algorithm could not calculate the horizontal distance
between bathypelagic samples situated in the western and eastern Mediterranean. To deal with
this issue, we simulated the vertical trajectory needed to overcome the Strait of Sicily by simply
summing  each  sample’s  depth  to  the  geographical  distances  between ‘isolated’  stations.  To
calculate the least-cost distances, 'marmap' sets a depth limit for geographic barriers to compute
the transition matrices  (129). For example, if  the limit  is set to 0, the program calculates the
distance turning around the continents.  However,  in the case of  the Mediterranean Sea, the
western and eastern basins are completely  isolated (at  least  horizontally)  in depths down to
400m,  so the  program outputs unrealistic  very  long distances  between western and eastern
samples from the deep ocean. To deal with this issue, for these isolated samples, we computed
the  least-cost  distances  by  calculating  the  normal  geographic  distances  (geodesic)  between
samples  (not  considering  geographic  barriers)  and  then  summed  the  vertical  distances  to
theoretically overcome the Strait of Sicily. For example, a western 1,400 m depth sample (1 km
deeper than the top of the Strait of Sicily) located 200 km from an eastern 1,400 m depth sample
had a final least-cost distance of 200 km + 2x 1 km = 202 km.

Quantification of the ecological processes

The action of ecological processes (selection, dispersal, and drift) were here quantified using a
null  model  approach  (27) that  has been successfully  applied to  microbial  ecology studies  in
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diverse aquatic environments  (29, 51, 52, 130). This analysis consists of two main sequential
steps: 1) inference of selection from ASV phylogenetic turnover; and 2) inference of dispersal and
drift from ASV compositional turnover (27). Since the existence of a phylogenetic signal (131) is
an assumption of the first step of this method (27), we first tested whether closely related taxa
(based  on  the  16S  and  18S  rRNA-gene  phylogeny)  were  more  similar  in  terms  of  habitat
preferences  than  distantly  related  taxa.  Mantel  correlograms  between  ASVs  niche  and
phylogenetic distances were used to test for a phylogenetic signal in the variables that explained
the highest fraction of  community  variance in  each depth zone.  We detected a phylogenetic
signal within short phylogenetic distances, which is in line with the literature (17, 27, 29).

Having fulfilled this assumption, we determined the phylogenetic turnover using the abundance-
weighted  β-mean  nearest  taxon  distance  (βMNTD)  metric  (27),  which  computes  the  mean
phylogenetic distances between each ASV and its closest relative in each pair of communities
(pairwise comparisons). Afterward, we run null models with 999 randomizations to simulate the
community  turnover  by  chance  (βMNTDnull),  in  other  words,  without  selection influence  (27).
Finally,  the  β-Nearest  Taxon  Index  (βNTI)  was calculated  from the  differences between  the
observed βMNTD and the mean βMNTDnull values. Overall,  |βNTI| > 2 indicates that taxa are
phylogenetically  more  related  or  less  related  than  expected  by  chance,  pointing  to  a  strong
influence of selection on community assembly (27). More precisely, βNTI values higher than +2
indicate the action of heterogeneous selection, while βNTI values lower than –2 points out to the
action of homogeneous selection (27).

The β-diversity of communities that were not governed by selection (|βNTI| ≤ 2) was evaluated in
a second step, which consisted of computing ASV taxonomic turnover to calculate the influence
of either dispersal or ecological drift on community structure. To do so, we calculated the Raup-
Crick  metric  (132) based on the Bray-Curtis  dissimilarities  (RCbray)  (27).  RCbray compares the
measured β-diversity  against  the β-diversity  obtained from null  models (999 randomizations),
representing a random community  assembly (ecological  drift).  Absolute  RCbray values smaller
than (|RCbray| ≤ 0.95) indicate a community assembled by ecological drift alone (i.e., by chance).
On the  other  hand,  RCbray values  >  + 0.95  or  <  − 0.95  indicate  that  community  assembly  is
structured  by  dispersal  limitation  or  homogenizing  dispersal,  respectively  (132).  To  further
investigate  the  community  assembly  patterns  in  each  depth  zone,  we used  the  ‘betapart’  R
package (133) to calculate the partitioning of β-diversity (Jaccard, Sorensen and Bray-Curtis) into
turnover or nestedness (134).

The relative importance of ecological processes were calculated for each depth zone  subset.
Additionally, we globally calculated these processes by integrating all depths of both datasets
(Fig. S5). Since there are processes taking place along the water column (vertically) that may
impact the biogeography that we observe horizontally in each depth zone, we also estimated the
ecological processes integrating all depths (from 3 to 4,000 m) in each of the 13 vertical profile
stations (Fig. 1A; see also Fig. S1 for sample vertical distribution).

General analysis

Distance-based  redundancy  analyses  (dbRDA)  were  performed  on  community  composition
(based on Bray-Curtis dissimilarities) of both prokaryotic (16S rRNA gene) and picoeukaryotic
(18S  rRNA  gene)  samples  using  the  ‘capscale()’  function  of  the  vegan R  package  (135).
Analyses of dissimilarities were conducted using the ‘adonis2()’ function of the vegan R package
to investigate the percentage of variance in community composition explained by environmental
or geographic variables  (136).  Classic biogeographic provinces classifications  (e.g.:  Longhurst
provinces; (137)) are only applied to the upper sunlit ocean (above 200 m), while deep-oceanic
basins classifications (based on isolated water bodies) are only applied to the deep (bellow 3,500
m) (35). Therefore, we here used the classic geographic oceanic basins (South Atlantic Ocean,
North Atlantic Ocean, North Pacific Ocean, South Pacific Ocean and Indian Ocean) as a standard
categorical explanatory variable to compare the effect of geography between depth zones of the
open ocean. For the Mediterranean Sea, we used the sub-basin classification (Levantine  Sea,
Ionan Sea, Sicily Strait, Tirrenyan Sea, Sardinian Sea, Alborean Sea and Gibraltar Strait), based
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on Mediterranean internal circulation patterns  (138) as well as physico-chemical and biological
features (139).

Spearman  correlations  were  computed  between  β-diversity  (bray-curtis  and  βNTI)  and
environmental euclidean distances matrices using the ‘cor.test()’ function of the stats R package.
Spearman correlations were also carried out to test the association between community (bray-
curtis  dissimilarity)  and  water  masses  composition  (euclidean  distances)  in  the  meso-  and
bathypelagic. Mantel correlograms were carried out with the ‘mantel.correlog()’ function in Vegan
to  test  for  the  decrease  in  picoplankton  community  similarity  (β-diversity)  with  increasing
geographic distances (distance-decay). For the open ocean, we used distance classes of 1,000
km, while for the Mediterranean Sea we used distance classes of 350 km. Sequential differences
in picoplankton β-diversity (bray-curtis dissimilarity) were computed in the sampling order of each
project  (see arrow directions in Fig.  S15). Statistical  differences between zones in sequential
bray-curtis values were tested using analysis of variance (ANOVA) followed by a Tukey post-hoc
test. 

Pearson  correlation  matrices  between  diversity  metrics  and  environmental  variables  were
computed  using  the  ‘cor()’  function  and  plotted  with  the  ggcorrplot  R  package.  Nonmetric
multidimensional scaling (NMDS) based on Euclidean distances was used to visualize clustering
in water mass composition among ocean  depth zones and basins, followed by an analysis of
similarities  (ANOSIM)  to  test  for  differences  among  groups.  The  NMDS and ANOSIM were
completed  using  the ‘metaMDS()’  and  ‘anosim()’  vegan functions,  respectively.  Analysis  of
variance (ANOVA), followed by a Tukey post-hoc test, was used to test statistical differences in
β-diversity  metrics (Bray-Curtis,  βNTI  and RCbray).  Differences in  environmental  heterogeneity
values between  zones were tested using Kruskal-Wallis, followed by a Wicoxon post-hoc test.
Linear  regression  models  were  carried  out  to  investigate  the  influence  of  water  masses
(euclidean distance) on community composition (bray-curtis dissimilarity) in each vertical profile.
Spearman correlation  was used  to  test  correlation  between the  ecological  processes results
obtained with the total (unbalanced) dataset and the results found with a standardized sampling
size dataset. All statistical analyses were conducted in the R statistical environment (140) and all
plots were generated using the R package ggplot2 (141).

Data availability and resources

DNA sequences and environmental metadata are publicly available at the European Nucleotide
Archive (http://www.ebi.ac.uk/ena) under accession numbers PRJEB23913 [18S rRNA genes] &
PRJEB25224 [16S rRNA genes] for the Malaspina expedition; PRJEB23771 [18S rRNA genes] &
PRJEB45015 [16S rRNA genes] for the Malaspina vertical profiles; and PRJEB44683 [18S rRNA
genes] & PRJEB44474 [16S rRNA genes] for the HotMix expedition. R-Scripts for calculating the
β-NTI  and  the  Raup-Crick  metrics  are  available  at
https://github.com/stegen/Stegen_etal_ISME_2013.  The r-scripts  used to generate  figures and
statistical analysis are available at: https://github.com/pcjunger/EcoProc_OceanDepths
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Figures

Figure 1. The analyzed dataset covers environmentally and biologically contrasting depth
zones of the ocean. (A)  Geographic distribution of the sampled stations (N=149) from which
seawater  samples  and  environmental  data  were  collected  at  different  depth  zones  (see  SI
Appendix, Fig.  S1 for  sample  vertical  distribution)  in  the  two  cruises  used  in  this  study:
Malaspina-2010 (circumglobal expedition) and HotMix (trans-Mediterranean expedition). Stations
for which the whole vertical profile was studied in Malaspina are represented by crossed squares
(13 stations in Malaspina). Samples were separated into “open-ocean” (Malaspina-2010 + Hotmix
North Atlantic samples) and “Mediterranean Sea” (see reasoning in the  Methods). (B) Vertical
profiles of the environmental parameters: temperature, salinity, and fluorescence (Chlorophyll  a
proxy) that decrease with depth, while nutrient concentrations (NO3, PO4, and SiO2) increase with
depth. Higher temperature and salinity values and lower nutrient concentrations were observed in
the Mediterranean Sea, especially in the meso- and bathypelagic (SI Appendix, Fig. S1B).  (C)
dbRDA analyses (based on Bray-Curtis  dissimilarities)  performed on picoplankton community
composition of both prokaryotic (left) and picoeukaryotic (right) samples based on 16S rRNA and
18S  rRNA  genes,  respectively.  Both  communities  were  structured  by  depth  zones  and
segregated between the tropical and subtropical  open-ocean and the Mediterranean Sea.  (D)
Picoplankton diversity expressed as Shannon index by depth zones (SRF, surface; DCM, deep
chlorophyll  maxima;  MES,  Mesopelagic;  BAT,  Bathypelagic).  See  Fig.  S2  (SI  Appendix) for
picoplankton  phylogenetic  diversity,  gamma diversity,  ASVs  richness,  and  Pielou’s  evenness
index variation by depth zones and correlations with environmental variables.
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Figure 2. Picoplankton community assembly processes and environmental drivers across
ocean  depth  zones.  (A)  Relative  importance  of  the  ecological  processes  structuring  the
communities  in  different  depth  zones of  the  global-ocean:  Epi-  (N=240),  Meso-  (N=97),  and
Bathypelagic (N=86). The results with standard evenly-distributed sampling sizes were nearly the
same (SI Appendix, Fig. S5). The EPI results separated by SRF and DCM are available in the SI
Appendix (Fig. S7).  (B) Percentage of variance (Adonis R2) in picoeukaryotic and prokaryotic
community composition (Bray-Curtis dissimilarity) explained by each environmental variable and
ocean basin. Blank spaces depict non-significant results (p>0.05). Temp – temperature; Sal –
salinity; Fluor –  fluorescence; Basin – ocean basin.
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Figure  3.  Picoplankton  community  composition  is  positively  related  to  environmental
heterogeneity. Bray-curtis dissimilarities for all pairwise picoplankton community comparisons as
a function of environmental distance for both prokaryotes and picoeukaryotes in the epi-, meso-,
and  bathypelagic  of  the  open ocean and Mediterranean Sea.  The solid  curves  illustrate  the
nonlinear  regressions.  Spearman’s  rank  correlation  coefficients  are  depicted  on  the  panel.
Outliers  with  high environmental  distances (>10) corresponding to pairwise comparisons with
epipelagic samples from the Costa Rica Dome upwelling system were removed from the open
ocean plot (SI Appendix, Fig. S12).

Figure 4.  Picoplankton community composition is  linked to  differences in water  mass
composition. Bray-Curtis  dissimilarity  of  pairwise  picoplankton community  comparisons as a
function  water  mass  composition  dissimilarity  (based  on  euclidean  distances)  for  both
prokaryotes  and  picoeukaryotes  in  the  meso-  and  bathypelagic  of  the  open  ocean  and
Mediterranean  Sea.  The  solid  curves  illustrate  the  nonlinear  regressions.  Spearman’s  rank
correlation coefficients are depicted on the panel. N.S.= non significant.
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Figure  5. Distance-decay  and  sequential  spatial  differentiation  in  picoplankton
communities across ocean depth zones. (A) Mantel  correlograms between β-diversity and
least-cost geographic distances featuring distance classes of 1,000 km for the open ocean and
350 km for the Mediterranean Sea. Filled squares depict significant correlations (p<0.05). NS –
non-significant correlations.  (B)  Sequential Bray-Curtis dissimilarity values for prokaryotes and
picoeukaryotes in all depth zones (means were significantly different between domains [Wilcoxon
test,  p<0.05]  in  all  depth  zones,  apart  from the DCM).  The  averages were also significantly
different (ANOVA, Tukey post-hoc test;  p<0.001) between the SRF and the deep zones (MES
and BAT)  for  picoeukaryotes,  but  not  for  prokaryotes.  See  Fig.  S15  (SI Appendix) for  maps
showing  the  sequential  change  in  community  composition  across  space  in  the  surface  and
bathypelagic  ocean.  The  epipelagic  was here  separated  into  surface  and  DCM because  we
aimed at evaluating only the horizontal geographic distance in each depth.

Figure  6. Conceptual  model  synthesizing the  ecological  processes  assembling
picoplankton communities across ocean depth zones.  We used the main findings of this
study and the knowledge available in the literature to construct this conceptual model. Vertical
variation  of  biotic  and  abiotic  factors,  as  well  as  geography  (e.g.,  bathymetry),  affect  the
ecological  processes  that  generate  community  distribution  patterns.  The  model  predicts  an
increasing role of dispersal limitation with depth:  dispersal limitation is weaker in the epipelagic
than in the meso- and bathypelagic due to faster currents, and, potentially, aerial dispersal in
surface waters,  compared to more isolated deeper zones. Other mechanisms taking place in
deep waters such as a) barriers to dispersal (e.g. water mass boundaries, deep sea topography)
or  b) limited random dispersal due to low species abundances, could also explain this pattern.
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Selection is the most important process structuring picoplankton communities in the epipelagic
and displays a decreasing importance with depth due to higher habitat heterogeneity – driven by
microalgal  blooms,  magnitude  of  the  DCM and mesoscale  processes (e.g.:  ocean rings  and
fronts) – in upper than in bottom waters. The relative role of  drift increases towards the deep,
likely  because  of  decreasing  microbial  abundances  with  depth.  The  importance  of  dispersal
limitation is always higher in picoeukaryotes than in prokaryotes, given the smaller population
sizes of picoeukaryotes and their limited capability to generate dormant stages to sustain long-
range dispersal,  compared to  prokaryotes.  Thus,  a  different  balance of  ecological  processes
assembles these domains, even when they share the same ocean zones.
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