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Abstract

Rapid computational exploration of the free energy landscape of biological molecules
remains an active area of research due to the difficulty of sampling rare state transitions
in Molecular Dynamics (MD) simulations. In recent years, an increasing number of
studies have exploited Machine Learning (ML) models to enhance and analyze MD sim-
ulations. Notably, unsupervised models that extract kinetic information from a set of
parallel trajectories have been proposed, including the variational approach for Markov
processes (VAMP), VAMPNets, and time-lagged variational autoencoders (TVAE). In
this work, we propose a combination of adaptive sampling with active learning of kinetic

models to accelerate the discovery of the conformational landscape of biomolecules. In
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particular, we introduce and compare several techniques that combine kinetic mod-
els with two adaptive sampling regimes (least counts and multi-agent reinforcement
learning-based adaptive sampling) to enhance the exploration of conformational en-
sembles without introducing biasing forces. Moreover, inspired by the active learning
approach of uncertainty-based sampling, we also present MaxEnt VAMPNet. This
technique consists of restarting simulations from the microstates that maximize the
Shannon entropy of a VAMPNet trained to perform soft discretization of metastable
states. By running simulations on two test systems, the WLALL pentapeptide and
the villin headpiece subdomain, we empirically demonstrate that MaxEnt VAMPNet
results in faster exploration of conformational landscapes compared to the baseline and

other proposed methods.

1 Introduction

Molecular dynamics (MD) simulations have become a widely-applied computational tool
to disentangle the details of nanoscopic systems relevant to a wide range of fields, from
materials engineering!? to fundamental biology.? The reason for their widespread use lies
in their ability to resolve the dynamics of molecular systems at excellent time and space
resolutions. Nonetheless, the fine-grained time steps of MD simulations also result in high
computational costs if the processes to be observed occur at long timescales. Precisely, the
time interval at which an MD simulation can update atomic positions is typically restricted
to the order of femtoseconds, whereas most molecular processes of interest take place at the
microsecond to millisecond scale. In biology, examples of such processes include transport
across transmembrane proteins,*° signal relays,®” ligand binding,®° and protein folding.'°

A myriad of approaches have emerged to tackle the long timescale challenge in atomistic
MD simulations. ! While numerous methods enhance the sampling of the system by mod-

12-14

ifying the potential function or the thermodynamic ensemble, others pursue the same

goal by selectively restarting trajectories from initial conditions that favor a sampling cri-
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terion 117

(see Adaptive Seeding section in ref. 11). Different problems have been studied
using both types of methods, sometimes in combination, with satisfactory results.®1® The
choice of a suitable method will largely depend on the nature of the problem at hand. In gen-
eral, adaptive seeding methods are well-suited to exploit the capabilities of large computer

2021 and to recover the unbiased kinetics of

clusters through massively parallel simulations
the system through statistical models, such as Markov state models (MSMs).*

For biological systems, the thermodynamic ensembles of interest are typically isothermal-
isobaric ensembles. Consequently, the probability of sampling a state decays with its energy,
following a Boltzmann distribution. For this reason, one of the challenges associated with
the long timescale problem in MD simulations is the sampling of rare or transition states,
which are characterized by high energies and low probabilities. While biased methods can
accelerate the sampling of rare states, this advantage may come at the cost of sampling an
unphysical transition. In this work, we investigate the ability of unbiased simulations to
explore a diverse conformational ensemble and therefore our proposed techniques fall under
the adaptive seeding category.

Adaptive seeding methods can be divided into weighted ensemble and adaptive sampling
techniques. ' Weighted ensemble techniques rely on the “splitting” and “merging” of tra-
jectories according to their relative importance for a sampling criterion. In these methods,
weights for each trajectory are tallied; splitting reduces the weight and merging increases it.
These weights are introduced with the goal of recovering statistically unbiased observables.??
On the other hand, adaptive sampling techniques tend to prioritize the exploration of a di-
verse set of molecular conformations by iteratively restarting short simulations from poorly
sampled states. In past approaches, these states are obtained by using some discretization
of the conformational space, such as clustering. After obtaining satisfactory coverage of the
conformational landscape, the short trajectories are statistically unbiased using, for instance,
MSMs.2* All methods presented in this study fall within the adaptive sampling category.

Machine learning (ML) is becoming critically relevant to the field of enhanced MD sim-
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ulations. In particular, ML techniques have been utilized to model force fields,?> 2" ap-

28,29

proximate optimal biasing potentials, and extract information from MD data.3® For

3132 and reinforcement learning (RL) al-

adaptive sampling in particular, manifold learning
gorithms731:33:34 have been applied in the past to guide simulations. Among ML methodolo-
gies, deep neural networks (DNNs) are especially promising thanks to their ability to learn
arbitrarily complex nonlinear functions.3?

An interesting application of ML models to MD that motivates the current study is the
extraction of kinetic information from a set of trajectories. The reason is that kinetics can
potentially be exploited to improve the selection of initial conditions for adaptive sampling.

The variational approach to Markov processes (VAMP)36:37

can discover an optimal mapping
from input features (functions of the degrees of freedom of the system) and the slow reaction
coordinates of the process. This is achieved by maximizing a variational score, often termed
the VAMP score.?” A family of DNN models that are trained to maximize the VAMP score
for a set of trajectories have also been proposed,3®3? with the simplest of them being termed
VAMPNet.3® In contrast to the linear approach used in VAMP (see Feature TCCA),37 the
DNN models can find nonlinear combinations of features and may incorporate soft state
discretization as part of their architecture.3?

A priori, it is unclear how to use the output of a DNN model that maximizes a VAMP
score to guide adaptive sampling simulations. When fitting such a model without a dis-
cretization layer, the mapping can be interpreted as a learned embedding spanned by the
slowest-changing collective variables (CVs) or reaction coordinates (RCs) of the system. This
is a dimensional reduction if the output layer is smaller than the input layer. In this case,
one may employ the DNN model in a similar way VAMP?3%37 or time-lagged independent
component analysis (tICA)%% 2 are used in adaptive sampling workflows: the model projects
the conformations along the slow processes and the state discretization and selection take

place in this learned embedding. This is expected to improve performance when it is difficult

to resolve state transitions in feature space and the number of dimensions must be reduced
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to achieve a reasonable clustering.

When incorporating the state discretization layer (usually realized as a softmax opera-
tion®) the output of these models can be interpreted as the membership probabilities of a
microstate in the kinetically metastable states. Given this probabilistic interpretation, we
propose incorporating an information theoretic metric to guide the choice of new restarting
points for adaptive sampling. Shannon entropy (see Methods) is a metric that reveals the
uncertainty of a model against the possible outcomes of an event (in this case, the uncertainty
of the model in placing a microstate into a metastable state). It has been long connected to
statistical mechanics*® and utilized to combine experimental data with MD simulations. 4446
In this study, we empirically show that selecting the microstates that maximize the Shannon
entropy of a VAMPNet leads to improved exploration in adaptive sampling, measured as the
volume of CV or tIC space observed by the generated trajectories.

We divide our study in two phases: in the initial exploratory phase, we focused on
three kinetic models available in the Python library deeptime,*” VAMP,?*” VAMPNets,?8
and time-lagged variational autoencoders (TVAEs),? and combined them with two adaptive
sampling methods: least counts (LC) adaptive sampling and multi-agent reinforcement-
learning based adaptive sampling (MA REAP).'” LC is a common baseline for adaptive
sampling; in this technique, the states are obtained by clustering and the starting structures
are selected from the clusters with the fewest members.*® In MA REAP, the states are also
obtained by clustering, but the starting structures are selected following a reward function
that depends on the deviation of the structure with respect to the mean of the data.!” We
compared these methods based on their ability to explore the conformational landscape of a
flexible pentapeptide (sequence WLALL).% Inspired by the results from these comparisons,
we introduced the entropic metric for VAMPNets in the second phase of the study, where
we showed that this last method achieves superior exploration when applied to two systems
of different complexity: the WLALL pentapeptide and a fast-folding protein subdomain, the

villin headpiece.®°
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The rest of the paper is organized as follows: the Methods section explains all the tech-
niques introduced and compared in this paper. The Results and Discussion section is divided
into three parts. In the first part, we present the results of the exploratory phase of the study.
In the second part, we introduce the Shannon entropy criterion with VAMPNets for adaptive
sampling and compare it with the techniques analyzed in the exploratory phase. Lastly, we
compare the two most promising methods in a realistic system (the villin headpiece protein)
to validate the results observed in the previous subsection. We conclude with a discussion

of the advantages and limitations of our proposed methods.

2 Methods

2.1 Coupling Adaptive Sampling and Active Learning

Adaptive sampling MD is an iterative technique where the conformational landscape of a
molecular system is progressively discovered by restarting simulations from poorly sampled
states. Typically, the iteration is divided into two steps: running trajectories and data anal-
ysis. In the first step, trajectories initiated from the specified conformations are simulated.
In the second step, the sampled points are clustered to discretize the conformational land-
scape into distinct states. Subsequently, a strategy is employed to determine which states to
initiate the simulations anew. In the next iteration, new trajectories are executed from the
selected states. This process continues until sampling is satisfactory. The selection strategy

1551 Since only

for the restarting points has a profound impact on the sampling behavior.
unbiased trajectories are typically utilized during adaptive sampling, the restarting selec-
tion strategy is the hinge point that researchers manipulate to alter the behavior of their
algorithms.

Interestingly, there is a subset of ML termed active learning® that realizes training as an

iterative process where a model is first fit to an available data set and then new data points

are queried to an oracle based on some criterion that maximally improves learning. Active
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learning has previously been used in combination with MD simulations to efficiently explore

93755 and to find model parameters.® Since both adaptive sampling and active

chemical space
learning follow a two-stage process, we can couple both techniques. In other words, the data
analysis phase of adaptive sampling becomes the learning phase of active learning. Similarly,
the MD integrator acts as the oracle, so the querying phase of active learning becomes the
simulation step in adaptive sampling. The information extracted by the ML model is used

to select the restarting points for new simulations, which in turn will be utilized to refine

the model in the next iteration. This workflow is summarized in Algorithm 1.

Algorithm 1 Coupled active learning-adaptive sampling

Input: potential V(x), machine learning model Y, reward/acquisition function R, number
of epochs E, trajectory length T', trajectories per epoch M
1: Sample initial data X° starting from V(z)
2: foreinl... E do
3 Train Y on X¢!

4 Yo=Y = V(o). . Y(@erm)] = [Yo - - - Yernd]

5. r=RY ") =[R(yo) - R(Yernr)]

6:  Let Xy = {x,,} such that {R(Y(x,,))} achieves the max-M-sum in r
7. for all x,, € X, do

8: Sample T new data starting from V' (a,,)

9: end for

10:  Concatenate new data to X! to obtain X¢

11: end for

In Algorithm 1, the function R outputs a scalar that is used to rank the conformations
according to how desirable it is to restart simulations from them. Depending on the adap-
tive sampling regime employed, an additional model might be used to optimize R.!"33 For
this reason, R can be interpreted as a reward function when the adaptive sampling regime

depends on a RL model or an acquisition function when it does not.

2.2 Combining Kinetic Models with Adaptive Sampling Regimes

For Algorithm 1 to work, we must identify a suitable model ) that is able to extract useful

37-39,42

information from the parallel trajectories. A relevant family of models is based on
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identifying the slowest processes that occur in a system. Arguably, these processes will be
rate-limiting for the state transitions. The models learn the slowest processes by finding the
transformations that maximize a variational score for a set of trajectories, which is usually
termed the VAMP score.?” In mathematical terms, for a set of trajectories { X'}, where
X = [z} ...xk], we can compute the covariance matrices Cpy and Cyy, and time-lagged

covariance matrix Cp; as follows3"3®

T—pt

N
1 1 7 % T
Opq ~ N Z T — 1 Z Xp(wt)Xq<wt+(q—p)T) (1)

t=14q1

where p and ¢ must be replaced by 0 or 1 and 7 is the lag time measured in time steps. X,
and x; are transformations from features or CVs to latent variables. It is possible to have
X, and x; be identical and these transformations can be machine-learned through stochastic
methods.®® Once these matrices have been estimated from data, they are pre-processed to

remove the mean and obtain centered covariance matrices Cyg, Cp1, and C;. Then, a version

of the VAMP score (VAMP-2)37 can be computed as

By = |[Cog* ConCit [} +1 )
where the norm F'is the Frobenius norm.

Different ML models have been proposed to find the transformations {x,, x;} and have
been implemented in deeptime.?” Namely, the models that we employ in this study are
VAMP, 3" VAMPNets,3® and TVAEs.?® By using the VAMP-2 score as the gain function,
these models learn useful mappings from the input features to the slowest-changing processes
in the system.?”3? These learned embeddings can be used to discriminate between kinetically
different states. If the output of the model has fewer dimensions than the input feature vector,
then the model performs a dimensionality reduction.

In this study we use VAMP to refer to feature time-lagged canonical correlation anal-

ysis (feature TCCA).3" Time-lagged independent component analysis (tICA)%4! and the
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variational approach to conformational dynamics (VAC)3® are subclasses of this technique.
In this case, the basis sets {x;, X1} are simply the user-defined features or CVs. VAMP
works by performing a truncated singular value decomposition on the matrix C&J% C’OlC;l% to
obtain U’KV'T. Then, the coefficient matrices U and V are computed as U = C’O_O% U’ and
V= C’l_lé V', Finally, the learned projections, i.e. the left and right singular functions, can
be found as u, X, and v, x; respectively, where u; and v; are the ith column vectors of U
and V3747

In contrast to VAMP, VAMPNets are based on DNNs. They are typically implemented
as multilayer perceptrons (MLPs), but other architectures have been proposed.®” Although
in their original form VAMPNets were designed with a softmax layer for output processing
to learn a soft discretization, they can also be utilized without one to learn the projection
from feature space onto the slow variables of the system. There exists literature that refers to
such models as “state-free” VAMPNets.*® The transformations {x,, X;} can be stochastically
learned by DNNs because the variational score in equation 2 is differentiable and thus the
update gradient is well-defined. 38

TVAEs can be conceived as extensions of VAMPNets where the DNN employed is a
variational autoencoder. This is a network that consists of an encoder, which compresses
the input at time ¢ into a small number of dimensions or latent space. Then, the decoder
reconstructs the input from the compressed dimensions at time ¢ + 7. Since this is a time-
lagged autoencoder, the encoder essentially performs a nonlinear version of TCCA.4" The
variational qualifier refers to the fact that the TVAE learns a probability distribution over
the latent space, as opposed to simply mapping inputs to fixed points on the dimensionally-
reduced coordinates. The use of variational autoencoders offers the possibility of employing
the trained model for generative tasks.*” However, as presented in Results and Discussion,
the TVAE-based sampling techniques did not perform on par with the VAMPNet-based
ones.

In the exploratory phase of this study, we asked if combining such kinetic models with
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different adaptive sampling schemes would yield better exploration performance. We tested
two adaptive sampling schemes: least counts (LC) and multi-agent reinforcement learning-
based (MA REAP) adaptive sampling. While the former is a typical baseline for adaptive
sampling, the latter utilizes a more complex reward function to select the restarting points
for simulation.

When employing LLC adaptive sampling in combination with a kinetic model, we project
the conformations onto the learned embedding and then cluster the data points into discrete
states. To seed the next round of simulations, we choose the centers of those clusters with
the fewest number of members. In other words, R is the inverse of the frame count that falls
in the same cluster as the evaluated conformation.

To combine these kinetic models with MA REAP, the first steps are identical as for LC:
project the conformations, cluster them, select cluster centers as the states, and select a
subset of candidates based on the least counts criterion. However, when employing MA

REAP, the starting structures are selected through a stakes-based reward function'”

Ry A} Aot} w0 ) = Z Z g 2t 3

Tit

where N is the number of agents and K is the number of output dimensions. y is a
cluster center or state (projected onto the embedding learned by )), and uf and of are
the mean and standard deviation of the data (as estimated up to time t) for agent a. s
represents the stake that agent a has on state y, which only becomes relevant when multiple
agents are scouting the conformational landscape. The stake essentially determines which
agent collects the data from a trajectory started at y to change its estimates of puf and o.
wj, represents the weight that is assigned to a given dimension, so if a conformation displays
a larger deviation along a latent variable with a higher weight, the reward is larger. The
inner sum of equation 3 can be interpreted as a weighted standardized Euclidean distance.
Both s, and wy are fit from the trajectories, but sg is determined at the clustering step and

w? is set to maximize R through quadratic optimization.!33

10
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One may ask if, in the multi-agent case, one distinct version of ) should be learned by
each agent given only their own data. If this were the case, the outer sum in equation 3
would lack a meaningful interpretation since the K output dimensions would differ across
agents. Therefore, we restrict all agents to use the same instance of a kinetic model. It
might be possible to modify equation 3 to accommodate the alternative design choice, but
this is out of the scope of the present study. Learning different versions of J may alter the
behavior of the algorithm by forcing agents to rely on local kinetic maps, rather than on a
global model.

Utilizing the three aforementioned kinetic models with two adaptive sampling regimes
yields six combinations, which are denominated {VAMP, VAMPNet, TVAE} + {LC, MA

REAP} according to the model and the regime employed in each case.

2.3 Maximum Entropy VAMPNets

Unlike the previously described approaches, where the model ) projects a conformation
onto the slow-changing dimensions of the system, here we are interested in VAMPNets that
perform a “fuzzy clustering” by incorporating a final softmax layer. The softmax operation

can be expressed as

o

where p;(y) can be interpreted as the probability that conformation vy is in the output

(4)

pz(y) =

state ¢ € {1,...,K}. For a VAMPNet, each output state corresponds to a kinetically
distinct state or metastable state. Due to this probabilistic interpretation, we can compute

the Shannon entropy for a given conformation,

sz Ingz ) (5>

which is maximized when the predicted probability over the K output states is uniform

11
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or pi(y) = 1/K Vi. In other words, H(y) is maximized when the model is uncertain about
what metastable state the conformation “belongs” to. H can be interpreted as a choice for
R in Algorithm 1 when the output of ) is a probability distribution.

In the active learning community, the Shannon entropy is one of the most general and pop-
ular choices of uncertainty metric.?® Nonetheless, to the best of our knowledge, uncertainty
sampling has never been used in combination with VAMPNets, including entropy-based sam-
pling. In our proposed adaptive sampling technique, after ) has been fit to the data and
the membership probabilities p;(y) have been obtained, the Shannon entropy, H (y), of each
conformation (or a representative subset when memory becomes a concern) is computed.
Then, the structures that maximize H(y) are selected to seed the next round of simulations
and the workflow of Algorithm 1 proceeds. The intuition behind this method is that the
VAMPNet will select structures that cannot be easily categorized, and therefore the confor-
mations that are poorly sampled and/or lie at the interface between metastable states will
be prioritized as starting simulation conditions. Figure 1 illustrates this selection criterion
at play on a chaotic deterministic model, termed the Lorenz system.®® Here, a two-state
VAMPNet was trained on a trajectory with initial conditions @y = (8,7,15)" and default
deeptime?” parameters for {o, 3, p, h}. When projecting the output of this VAMPNet on a
different trajectory obtained with &y = (7,8,14) ", it is clearly observed that the data points
that maximize the entropy (black dots) correspond to transitions between lobes (Figure 1B).

In the rest of the paper we refer to this method as MaxEnt VAMPNet or MaxEnt for brevity.

3 Results and Discussion

3.1 Uncertainty-Based Selection Criteria Achieve Superior Explo-

ration Performance

We begin by comparing the techniques described in Section 2.2 using a pentapeptide of

sequence WLALL.#° This model is small enough to quickly prototype and test different

12
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State 1 probability Shannon Entropy

Figure 1: Illustration of the MaxEnt VAMPNet selection criterion in the original Lorenz
system.® (A) Projection of the state 1 probabilities on the validation trajectory. Inset
shows projection on the z-y plane. (B) Projection of the Shannon entropy on the validation
trajectory. Black dots indicate the 20 data points with the highest entropy. Inset shows
projection on the z-y plane. It can be observed that the entropy maxima occur at the
interface between states.

methods, but it also contains a nontrivial number of degrees of freedom and slow variables.
For details about the simulations, refer to the Supporting Information methods.

The input features used to fit the kinetic models were all ¢ and ¢ dihedral angles (eight
features in total; ¢; and 15 are undefined). The models were used to project the confor-
mations in a two-dimensional space. For the VAMPNets, a MLP was employed with lobe
duplication.?® The dimensions of each layer were [8, 15, 10, 10, 5, 2] with rectified linear unit
(ReLu) as the activation function. These were also the dimensions of the TVAE’s encoder,
while the decoder was a MLP with dimensions [2,5,10,10,15,8]. In all cases, the lagtime
was set to 20 ps and the batch size was 1024. We do not split the collected data into training
and validation sets because our goal is to maximize the exploration rather than to validate
the quality of the kinetic model. Keeping trajectories out of the analysis would preclude
selecting starting structures from them (see Conclusions).

All simulations were started from the same two metastable structures obtained from a

13
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previous study.?® The clustering method utilized was regular space clustering (implemented
in deeptime)?” with identical parameters in all cases (max distance = .001, max centers
= 10%). For MA REAP, two agents with “equal” stakes and the “collaborative” regime®”
were used. As for other MA REAP parameters, CV weights were initialized as {wd} , =
.5, .5], 6 = 0.05, and 50 LC candidates were selected per round.3? Each round consisted of
5 trajectories of 2 ns each and 100 training epochs of the DNN-based kinetic models. We
ran all methods for 60 rounds, with 20 replicates each (total simulated time of 96 us).

Figure 2 shows the results of the comparison in terms of the volume of dihedral space
explored by each technique against the LC baseline. Figure 2A shows the results for the
methods employing a combination of LC adaptive sampling and a kinetic model, while Figure
2B shows the same for the techniques involving MA REAP. Figure 2A shows that combining
LC adaptive sampling with a VAMPNet produced a considerable advantage against the LC
baseline (100% increase in explored volume after 600 ns). On the other hand, TVAE +
LC only yielded an advantage of approximately 25%, but for ¢ < 600 ns the difference is
smaller and not statistically significant. VAMP + LC did not yield a statistically significant
advantage for the length of simulations tested. The results from Figure 2B show that MA
REAP increased the explored volume by approximately 40% after 60 rounds, but in this case
the use of the kinetic models only produced marginal gains. The difference in performance
between MA REAP and the combination of {VAMP, VAMPNet, TVAE} + MA REAP was
not statistically significant.

Figure 3 provides a visual depiction of dihedral space exploration by the baseline (LC) and
the best method (VAMPNet + LC). The figure shows the Ramachandran plots for the three
central amino acids in the WLALL peptide for the first three replicates (for all replicates see
Figures S1-S4). These plots show that the states with ¢ > 0 were not thoroughly explored
by LC, whereas most replicates for VAMPNet + LC discovered this portion of the landscape.

The first point of interest raised by these results is the success of VAMPNet + LC at

accelerating exploration, even when compared against VAMPNet + MA REAP, which uses
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Figure 2: Relative increase in dihedral space volume explored on WLALL pentapeptide
across techniques. The same baseline, LC adaptive sampling with no kinetic model, was
used in both plots (dashed line). Curves show mean for 20 replicates with a 95% CI. (A)
Comparison with { VAMP, VAMPNet, TVAE} + LC. (B) Comparison with MA REAP and
{VAMP, VAMPNet, TVAE} + MA REAP.

the same kinetic model and a more sophisticated adaptive sampling regime. This result can
be explained by the fact that the reward function in MA REAP (equation 3) relies on a
distance metric between the states and the distribution mean. Since the kinetic model is fit
with a data set that incorporates new trajectories after each round, the mapping from feature
space to latent space changes, distorting distances and, consequently, the deviations of the
states. This is likely to result in an inefficient estimation of the weights that MA REAP
utilizes to prioritize a given direction in exploration. Thus, we observe poor performance
gains from combining MA REAP and a kinetic model. Another important comparison to
make is that between VAMPNet + LC and {VAMP, TVAE} + LC. In this case, the same

adaptive sampling regime is used, but the kinetic model changes. The poor performance of
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Figure 3: Ramachandran plots for central amino acids in WLALL peptide for baseline
method (LC) and most successful method (VAMPNet + LC). Each row corresponds to
a different replicate, each column to a different amino acid. (Left) Initial states employed in
all simulations. These conformations were projected on the plots. (Center) Ramachandran
plots for LC. (Right) Ramachandran plots for VAMPNet + LC.

VAMP + LC against VAMPNet + LC arises from the fact that a linear method is inefficient
at discriminating between kinetically distinct states because the boundaries are not linear
in dihedral space. On the other hand, TVAE is also based on a DNN and the encoder can
learn a latent space that separates the metastable states. However, training a variational
autoencoder is more demanding than training a MLP, as the TVAE must learn the probability
distribution over the latent space and a decoder must be simultaneously fit. Although it
remains interesting to utilize models such as TVAEs (which allow for generative inference)
in future applications, in this study we limit ourselves to observe that they do not accelerate
adaptive sampling at a similar rate as simpler MLP-based models (VAMPNets).

Overall, in this section we showed that VAMPNet + LC achieved an advantage of ~100%
against the LC baseline and ~60% against MA REAP methods in the pentapeptide model.

This observation motivated the steps taken in the following section.
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3.2 MaxEnt Achieves Faster Discovery of the Conformational Land-
scape

Inspired by the results from the previous section, we further investigated the origin of the
large advantage displayed by VAMPNet + LC. In general, LC is better than continuous
MD simulations because it prioritizes the sampling of poorly characterized states. We hy-
pothesized that a determining factor in the success of VAMPNet + LC is the selection of
data points that lead to “informative” trajectories for the VAMPNet. In other words, LC
selected structures that resulted in better training examples for the DNN model, allowing
a productive separation of states in the latent space, and thus encouraged the discovery of
new regions of the conformational landscape in future iterations. If this is the case, then
another selection regime that queries data points to maximize learning should result in ad-
vantageous exploration, even if that regime is not related to a known adaptive sampling
technique. For this reason, we decided to utilize entropy-based sampling, which is a com-
mon choice in the active learning community (see Methods), and termed the new method
MaxEnt VAMPNet. In this method, the output of the VAMPNet is not interpreted as co-
ordinates in latent space, but rather as membership probabilities in the output states. For
this reason, we used a larger output layer (eight states) and included a softmax layer as
the final operation. The number of parameters in the hidden layers were also increased, the
new dimensions were [8,16, 32,64, 128,256, 128,64, 32,16, 8]. New runs with VAMPNet +
LC were performed with identical layer sizes to observe the effect of increasing the number
of parameters. The number of training epochs per round was kept at 100, but the batch size
was increased to 2048. Other details were identical as the previous section. The length of
trajectories, number of rounds, and number of replicates were also kept identical for a total
simulated time of 36 us.

Figure 4 shows the results from this trial. The VAMPNet + LC result from the previous
section is also plotted in Figure 4A for clarity. This plot shows that MaxEnt reached the

same level of performance improvement as VAMPNet + LC (with the smaller DNN from
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the previous section). However, the entropy-based method reached this level of advantage
after only ~150 ns instead of the ~300 ns that it took VAMPNet + LC. It is important to
observe that using a larger VAMPNet with more output dimensions harms the performance
of VAMPNet + LC. This is likely due to the fact that the quality of clustering degrades when
using eight output dimensions instead of two. This highlights an advantage of Maxknt, as
this technique does not rely on clustering and state assignment is handled directly by the
VAMPNet. For a projection of the data from all replicates of MaxEnt on Ramachandran

plots, see Figures S5-S6.

A Dihedral space exploration comparison B
WLALL pentapeptide
95% ClI (n=20
140% 6 Cl ( ) State 1
—— VAMPNet (small) + Least Counts AA2 AA3 AA4

120% A ~—— VAMPNet + Least Counts
—— MaxEnt VAMPNet
100% A

80% A
60%
40% 4
20% A

0%

State 2
AA3

Relative performance improvement
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(0.0 us) (0.1 us) (0.2 pus) (0.3 us) (0.4 us) (0.5 us) (0.6 us)
Round #

(Total time)

State 1[] State 2 O

(@]

State 5
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1.5%

Figure 4: Results for comparison involving MaxEnt VAMPNet. (A) Relative increase in
dihedral space volume explored on WLALL peptide across techniques. LC adaptive sam-
pling with no kinetic model (dashed line), was used as baseline. Curves show mean for 20
replicates with a 95% CI. (B) Projection of the three VAMPNet states with nonempty pop-
ulations on the Ramachandran plots of 1.2-A3-L4 from the first replicate of MaxEnt. (C)
Conformations that maximize the probability for the output states 1, 2, and 5 from (B).
Percentage populations are shown below each state.

Although we do not expect MaxEnt to produce a fully validated kinetic model (see
Conclusions), we inspected the output of the VAMPNet obtained by this technique. Figure

4B shows the projection on Ramachandran plots of the only three states with nonempty
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memberships obtained from the first replicate of MaxEnt. In general, we observe gradients
that indicate that the VAMPNet has learned a useful separation of states in dihedral space.
However, state 5 shows very diverse conformations, unlike states 1 and 2 (Figure 4C), showing
that the model could be lumping unrelated conformations into the same state.

In summary, in this section we showed that MaxEnt can achieve the same advantage as
VAMPNet + LC in a shorter amount of time, suggesting that the former option is a more
favorable choice of adaptive sampling regime. In the following section, we compare these
two techniques in a more realistic model to assess if the trends observed in the pentapeptide

model translate to a larger protein.

3.3 MaxEnt Shows an Advantage in a Realistic System

The villin headpiece subdomain (PDB ID: 1YRF)® is a 35-amino acid, fast-folding protein
that represents a more realistic system for MD simulations. The input features used were all
pairwise C,, distances (separated by at least two residues). Therefore, we obtain 528 features.
Since the number of features is too large to produce a reasonable clustering for LC without
applying dimensionality reduction techniques, we drop this baseline and instead use VAMP-
Net + LC as the standard to assess the performance of MaxEnt. According to the results
from the previous sections, this new baseline is significantly more demanding than vanilla LC.
In all cases, the dimensions of the VAMPNets were [528,512, 256, 128,64, 32, 16, 8|. Batch
size was set to 1024 and lobe duplication was employed. Lagtime used was 100 ps. Each
round consisted of 10 trajectories of 10 ns each and 100 training epochs for the VAMPNet.
We performed 10 replicates per method with 10 rounds per replicate (total simulated time
of 20 ps). Other details were identical to previous sections. For details about the MD
simulations, refer to the Supplementary Information methods.

Since it is impractical to compute the explored volume in a 528-dimensional space, we
pool all the data from both methods and fit a VAMP model to project the trajectories onto

a common 8-dimensional tIC space. We then compute the explored volume in this space.
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Figure 5 shows the comparison for VAMPNet 4+ LC vs. MaxEnt. We can observe that there
are no statistically significant differences between both methods until ¢ = 700 ns. After 1 us,
MaxEnt shows an average exploration advantage of ~50% with a 95% confidence interval of
approximately [20%,90%]. The volume explored by individual replicates is plotted in Figure
S7 to easily observe the distribution for each method.

Figure 6A shows the tIC1-tIC2 landscapes for the first replicate of each method and for
a single continuous trajectory of the same total length. The landscapes for all replicates
are available in Figures S8-S11. While 1 us simulations are insufficient to observe unfolding
at T = 300 K, we can observe differences in the conformational ensemble explored by
MaxEnt since it discovers an area of the landscape that remains uncharted by the continuous
trajectory and VAMPNet + LC.

tIC space exploration comparison
Villin headpiece
Baseline: VAMPNet + Least Counts
95% CI (n=10)
100%
80% - —— VAMPNet + MaxEnt

60% -
40% -
20% A
0% +
—20% 1
—40% A

Relative performance improvement

—60%

0 2 4
(0.0 us) (0.2 us) (0.4 us) (0.6 us) (0.8 us) (1.0 us)
Round #
(Total time)

Figure 5: Relative increase in tIC space volume explored for MaxEnt simulations of the
villin headpiece subdomain. VAMPNet + LC (dashed line), was used as baseline. The curve
shows the mean for 10 replicates with a 95% CI.

Figure 6B shows a representative set of conformations discovered by each technique.
State 1 represents the native folded structure, state 2 is a “closed” conformation where the
C-terminus interacts with F51 and G52, state 3 is a conformation where the N-terminal
a-helix bends perpendicularly to the plane spanned by the two other a-helices, and state 4
(often observed by MaxEnt but not by VAMPNet + LC) is an intermediate state between 2
and 3. The difference in explored area can be explained by the ability of MaxEnt to discover
state 4 with a higher chance than VAMPNet + LC.
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Figure 6: (A) tIC1-tIC2 landscapes for villin headpiece corresponding to the first replicate
of each method. (B) Representative conformations of different states discovered by each
technique.

In summary, MaxEnt showed a statistically significant advantage in exploration against
the challenging VAMPNet 4 LC baseline in a realistic system, indicating that entropy-based
sampling is likely to be a better choice between these two techniques. Due to the long

timescale of villin unfolding, ! neither method reached a denatured conformation, but this
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was expected for the simulation conditions.

4 Conclusions

In this study, we proposed new techniques involving active learning of DNN-based kinetic
models to accelerate exploration in adaptive sampling MD simulations. Our results show that
entropy-based sampling of a VAMPNet achieves fastest exploration of the conformational
landscape in both simulated systems. Besides showing a better exploration behavior, the
VAMPNet grants MaxEnt the convenience of skipping the clustering step altogether. This
eliminates design decisions because clustering parameters must be set. Using a suboptimal
set of clustering parameters in adaptive sampling can frustrate the rate of exploration or
obfuscate subsequent data analysis.

However, MaxEnt also suffers from limitations. Training a VAMPNet in each iteration of
adaptive sampling can be time consuming and computationally intensive. Nonetheless, this
task is expected to represent a small fraction of the computational expense in adaptive sam-
pling because MD simulations of large systems remain slow in comparison. Another challenge
in the use of VAMPNets for adaptive sampling is their validation. Arguably, a researcher has
a few options to validate the model at each sampling iteration: (1) set aside some trajectories
to use as an uncorrelated validation set, (2) exclude some random {a;, &, , } pairs to use as a
(correlated) validation set, or (3) use some k-fold cross validation approach. All options have
advantages and downsides. For (1), setting aside entire trajectories can harm the exploration
rate since the validation conformations cannot be selected to restart simulations. However,
this method ensures that the validation set is uncorrelated with the training set, so the vali-
dation score is more reliable. In (2), the opposite is the case. Since the validation structures
are correlated to those used in training, the user can select conformations that are similar
to those withheld, but the validation score may not be indicative of the true performance

of the model. Finally, (3) can produce an unbiased validation score if the data is divided
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into uncorrelated groups. After applying k-fold cross validation, the model can be retrained
on the entire data set to select new structures for simulation. However, this alternative is
computationally expensive in comparison to (1) or (2). Validating the model may alert the
researcher that the VAMPNet employed is underfitting or overfitting the data and, thus, the
model must be modified before proceeding. This represents an onerous effort that is not
found in other adaptive sampling algorithms. In our trials, we decided to test our techniques
without submitting the kinetic models to validation and observe if an exploration advantage
was achieved regardless. Future work will involve studying the relationship between valida-
tion scores and exploration performance. It must be noted that entropy-based sampling is
expected to provide robustness to MaxEnt because this uncertainty metric inherently makes
the least assumptions about the model’s knowledge. 52

Although it is regular practice among adaptive sampling MD practitioners to use tICA 404!
to reduce the dimensionality of the input features before applying a selection criterion to
restart simulations, our tests involving similar approaches (i.e., VAMP + {LC, MA REAP})
did not yield promising results in comparison to VAMPNet + {LC, MaxEnt}. Nonetheless,
this does not preclude that, for other systems, an advantage might be achieved by employing
VAMP or tICA in combination with LC instead of applying LC on the feature space. In
terms of applying MaxEnt in practice, the common workflow of adaptive sampling is not
radically altered. In all adaptive sampling schemes, the data must be centralized at some
point to perform the analysis step. This step can be replaced by the fitting of a VAMPNet
(or an ensemble of VAMPNets for the sake of robustness) on the collected data. Once that
the starting conformations are selected, the trajectories can be run in decentralized clusters
as usual.

Lastly, it is important to note that, to the best of our knowledge, there is no theoretical
foundation that indicates that the VAMP-2 gain function is the optimal choice to acceler-
ate adaptive sampling through entropy-based sampling. This choice is intuitive because a

VAMPNet trained to maximize this score learns to discriminate between metastable states,3®
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and therefore the conformations that maximize the Shannon entropy are more likely to be
low-probability and/or poorly-sampled structures. Moreover, there are several other active
learning approaches besides entropy-based sampling®? that have not been explored in this
work. Future studies in this direction will explore questions of the optimal choice of loss

function and active learning regime for the purposes of adaptive sampling.
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