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Abstract
Imputation techniques provide means to replace missing measurements with a value and are

used in almost all downstream analysis of mass spectrometry (MS) based proteomics data

using label-free quantification (LFQ). Some methods only impute assuming the limit of detection

(LOD) was not passed and therefore impute missing values with too low or too high intensities,

potentially leading to biased results in downstream statistical analysis. Here we test how self

supervised deep learning models can impute missing values in the context of LFQ at different

levels: precursors, aggregated peptides or protein groups. We demonstrate how collaborative

filtering, denoising autoencoders, and variational autoencoders can be used to reconstruct

missing values and can make more relevant features available for downstream analysis

compared to current approaches. Additionally, we show that deep learning approaches can

model data in its entirety for imputation and offer an approach for controlled evaluation of

imputation approaches. We applied our method, proteomics imputation modeling mass

spectrometry (PIMMS), to an alcohol-related liver disease (ALD) cohort with blood plasma

proteomics data available for 358 individuals. We identified 49 additional proteins (+23.6%) that

are significantly differentially abundant across disease stages compared to traditional methods

and found that some of these were predictive of ALD progression in machine learning models.

We, therefore, suggest the use of deep learning approaches for imputing missing values in

MS-based proteomics and provide workflows for these.

Introduction
Proteomics is a technology for the identification and quantification of proteins to answer a broad

set of biological questions1 and together with RNA and DNA sequencing offers a way to map the

composition of biological systems. It is widely applied across many fields of research including

identification of biomarkers and drug targets for diseases  such as alcoholic liver disease

(ALD)2, ovarian cancer3 and Alzheimer's disease4. Different workflows have been developed for

analysis of body fluids, cells, frozen tissues and tissue slides, and are rapidly evolving. Recent

technological advancements have enabled proteome analysis at the single cell or single

cell-population level5,6, allowing the selection of single cells using image recognition7. However,

for most approaches, missing values are abundant due to the semi-stochastic nature of

precursor selection for fragmentation and need to be replaced for at least some parts of the data

analysis. Currently, imputation of missing values in proteomics data usually assumes that the
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protein abundance was below the instrument detection limit or the protein was absent. However,

not all missing values are due to this mechanism, and by assuming the limit of detection as the

reason for missingness will lead to potentially wrong imputations and subsequently to biased

statistical results that are limiting the conclusion from data.

Various acquisition methods have been developed including data-independent acquisition (DIA),

BoxCar and PASEF to alleviate the “missing value” problem in data-dependent acquisition

(DDA) methods8–10. Advances in informatics solutions have also greatly improved data analysis

of mass spectra acquired by these acquisition methods and consequently proteome depth and

data completeness11. However, missing value imputation remains a recurring task for most

applications. The noise in data generation is most abundant for label-free quantification

proteomics in DDA with missingness ranging from 10-40%12, but for instance, blood plasma

measured using DIA in a study of ALD still contained 37% missing values across all samples

and protein groups before any filtering. Independent of the proteomics setup, once data is to be

analyzed, the remaining missing values between samples have to be imputed for most

methods. Therefore, how they are handled will influence the downstream results.

An often-used approach is to impute data at the protein group level by using random draws from

a down-shifted normal (RSN) distribution. The mass spectrometry (MS) signal comes from ions

and most people are interested in the summary of ions through peptide spectrum matches to

groups of proteins. The protein intensities, stemming from aggregation of the precursor and/or

fragment ion values in MS1 and MS2 scans, are assumed to be normally distributed after log

transformation, i.e. entirely determined by their mean and variance. Replacements are then

drawn using a normal distribution with a mean shifted towards the lower detection limit with a

reduced variance, assuming that proteins are missing due to absence or lower abundance in

the sample than the instrument detection limit, which means that the data is left-censored. In

this line of thought, several studies focus on determining what works best for different causes of

missing values12,13. Other studies focus their analysis on post-translational modifications14, the

best combination of software tools, data sets and imputation method15, normalization and batch

effects correction16 or downstream analysis17. Other methods have been developed to handle

specific missing mechanisms, for instance, random imputation, fixed value imputation such as

limit of detection or x-quantile of feature, model-based imputation using k-nearest neighbor,

linear models12 or tree-based models18. These either impute using a global minimum, a statistic

calculated on a single feature or a few features, with the need to iteratively consider each
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feature at a time. The single cell community in proteomics has not yet developed their own

methods to our knowledge, but cannot fall back to established ones for discrete count based

single cell RNA data19,20 for intensity based label-free quantified proteomics data. Finally,

approaches such as DAPAR and Prostar offer several methods for imputing left-censored data,

e.g. the widely used drawing from a normal distribution around the lower detection limit where

the Gaussian mean and variance are estimated using quantile regression, abbreviated

QRILC13,21,22.

Most previous work on developing methods for imputation of MS proteomics data focus on small

scale setups where they for instance evaluate two separate groups in three replicates15,23. Other

studies prefer to reduce the number of initial missing values by transferring identification from

one run to the next using e.g. Match Between Run implemented in MaxQuant or

cross-assignment by Proline24,25. Alternatively, an established laboratory method to tackle

variability in small-scale setups is to use replicates of samples to have complementary

measurements, in order to transfer identifications between runs26. The specific evaluation

strategy varies between the setup of the data and the missing values simulation approach, but

to our knowledge, no scalable workflows are provided to run the evaluation on a new dataset

and a generic and flexible approach to imputation is not yet established.

We turn to machine learning for imputation as it offers the possibility to learn from the data itself.

Deep Learning (DL) has been used to improve over existing machine learning models in a

variety of biological data problems27–29. DL has been successfully applied to predict peptide

features such as retention times, collisional cross-sections and tandem mass spectra, significantly

boosting the peptide identifications and precision of MS-based proteomics30–35. To apply DL

methods to imputation of MS-based proteomics data, we considered three types of models that

process the inputs slightly differently. First, we considered a collaborative filtering (CF)

approach, where each feature and each sample is assigned a trainable embedding. Second, we

considered an autoencoder with a deterministic latent representation - a denoising autoencoder

(DAE). Third, we considered a variational autoencoder (VAE) as a generative model that

encodes a stochastic latent representation, i.e. a high-dimensional Gaussian distribution. The

training objectives, complexity, and therefore capabilities of the models are different which led

us to evaluate their performance in comparison to each other. The CF and autoencoder

objective only focuses on reconstruction, whereas the VAE adds a constraint on the latent

representation. Furthermore, the first two modeling approaches use a mean-squared error
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(MSE) reconstruction loss, whereas the VAE uses a probabilistic loss to assess the

reconstruction error.

Here we used large (N≈450) and smaller (N≈50) MS-based proteomics data sets of HeLa cell

line tryptic lysates acquired on a single machine (Q Executive HF-X Orbitrap) over a period of

roughly two years. We applied the DL models described above (CF, DAE, VAE) which create

feature representation holistic for the entire distribution in a given dataset prior to any

normalization. For evaluation, we developed a workflow that allowed comparison between the

three DL models and two heuristic approaches, which could potentially be extended by other

methods. Finally, we applied the VAE to a study of ALD patients and found 49 (+23.6%) more

significantly differential abundant protein groups and showed that additional protein groups

could be leveraged for predicting disease. We termed our set of models and workflows

proteomics imputation modeling mass spectrometry (PIMMS) and made the workflows, code,

and example configs available at https://github.com/RasmussenLab/pimms. To enable

reproducibility and adaptation to new data and strategies, we share our Python code along

snakemake workflows.

Results

Evaluating self-supervised models for imputation of MS data

We assessed the capability of three unsupervised models for proteomics data imputation. First,

we considered modeling proteomics data using CF assigning each sample and each feature an

embedding vector and using their combination to predict intensity values. Second, we

considered a standard autoencoder, training it using a denoising strategy that has to learn to

reconstruct masked values making it a DAE. Third, we applied a VAE with a stochastic latent

space (Fig. 1a). The two autoencoder architectures used all data to represent a sample in a low

dimensional space, which was used to reconstruct the original data. In contrast, the CF model

had to learn both a latent embedding space for the samples and features. We compared these

to two currently used heuristic-based approaches, median imputation per feature across

samples and interpolation of missing features by close replicates. While the DL methods and

median imputation are able to impute all missing values, interpolation does not replace missing

values in case a value is missing in all replicates. Furthermore, interpolation involves repeated

measurements of the same samples.
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Our development data set initially consisted of 2,481 HeLa cell samples analyzed on five Q

Executive HF-X Orbitrap over roughly 3 years, generated during continuous quality control of the

mass spectrometers in two different labs. We initially investigated the structure of the data sets

using uniform manifold approximation and projection (UMAP)36 and found that the 2,481 HeLa

proteomes on the log-transformed protein groups level clustered according to time (Fig. 1b).

The median prevalence per protein group, i.e. the median number of samples where a protein

group was detected, was 2,275 samples [min: 347, max: 2,481], and samples had a median of

3,663 protein groups [min: 1,815, max: 4,185] (Fig. 1c). We ran an imputation comparison

based on data from each machine and reported results from the instrument 6070, which had the

highest number of samples (566 samples). We used sets of consecutive samples as replicates

for the imputation of missing values through interpolation (see Methods), i.e. the samples were

ordered by date and three consecutive samples were used as replicates to transfer intensities to

missing values. Both heuristic comparison approaches, median imputation per feature across

samples and interpolation, did not condition their imputation on the value of other features in a

given sample. Validation and test data were drawn according to the entire data distribution from

all samples.
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Figure 1: Overview of workflow for downstream analysis tasks and HeLa dataset. a) Results taken from MS

data analysis software (search and quantification) were used as input for downstream analysis. Here we used

MaxQuant for data dependent acquisition to analyze raw MS data. We compared three different self-supervised DL

approaches with two heuristic ones on the development data set: median imputation and replicate interpolation. b)
UMAP of the five machines with most runs of HeLa data sets from the years of 2017 to 2020 consisting of a total of

2,481 samples, ranging from 396 to 566 samples per instrument. c) Summary statistics of 2,481 samples from 5

instruments of HeLa measurement shown in b) for protein groups. Most protein groups associated with a single gene

were quantified in thousands of samples. We used a cutoff of 25% feature prevalence across samples to be included

into the workflow shown in (a). Samples were then filtered in a second step by their completeness of the selected

features (Fig. S1, Table S1).
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Imputing precursors, aggregated peptides, and protein group data

We applied the imputation methods to a subset of the development data set consisting of 541

samples for protein groups using our selection criteria (Supp. Fig. S1). We ran several

configurations using a grid search to find the best configurations using simulated missing values

in a validation and test split (see Methods). As the interpolation approach relied on at least one

quantified feature in a set of replicates, there could be missing values remaining in cases where

all values were missing in a given set. Therefore we restricted the comparison to a subset of

imputed simulated missing values by all five approaches: 97,010 of 100,449 for the protein

group measurements, 568,397 of 618,711 for the aggregated peptides and 604,377 of 663,028

for the precursors for measurements in the test set for our development dataset of instrument

6070 (Table S2). When investigating the performance of the imputation methods we used the

mean absolute error (MAE) on the log2 scaled intensities between predicted and true measured

intensity values on our simulated missing values. We found the DL approaches to have half of

the median imputation MAE. This was consistent across the entire distribution of protein group

intensities. Interpolation of samples across HeLa cell line measurements had a MAE of 0.76 and

the self-supervised models had MAEs of 0.42, 0.43 and 0.42 for CF, DAE and VAE, respectively.

Therefore, the median imputation and interpolation models were roughly 1.8-2.4 times worse in

comparison to the self-supervised models. Comparing the performance between levels of data

aggregation (Fig. 2a,c,e,f, Supp. Data 1,2), we found similar patterns as with the protein groups

where the self-supervised models reduced the MAE by 42-44% compared to interpolation.

Furthermore, we found the overall performance to be the worst for the protein-level data, better

for aggregated peptides, and best for precursors. This is in line with previous results of Lazar

and co-workers that show better performance for lower levels of aggregations13. We omitted

imputation by RSN as it is not able to model the entire data distribution (see Methods).

Additionally, the grid search results showed that the models can be trained without prior

normalization and were able to fit the data using many hyperparameter configurations (Supp.
Fig. S2). Furthermore, we found that the DAE was less stable than the VAE for a wide range of

configurations. In summary, this indicated that on an unnormalized, intensity varying data set

from a single machine the models were able to capture patterns between detected features to

impute values (Supp. Fig. S3a) and that the self-supervised models had improved performance

for imputing missing values.
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Imputation was consistent across feature prevalence

We investigated whether there was a difference in the accuracy of the imputation based on how

often a protein group was observed. Here we found that the MAE varied between 0.6 and 0.8

for proteins observed in 25-80% of the samples, whereas for proteins observed in more than

80% of the samples the MAE decreased to below 0.4 (Fig. 2b). We observed a similar trend

when analyzing a smaller data set of only 50 samples (Fig. 2d). Importantly, the MAE for the

two heuristic-based approaches, the median and interpolation imputation, was consistently

higher as well as following the same pattern. This indicated that some protein groups were

harder for all the methods to impute than others, but also that improvement of the CF, DAE, and

VAE approaches were not only achieved for some protein groups but consistent across the

protein groups. We found similar results for the two other levels of data, aggregated peptides

and precursors (Supp. Fig. S4). We, therefore, concluded that self-supervised models were

able to fit the data holistically for imputation purposes.

Improved within-sample and feature-wise between-sample correlation

We evaluated performance without a specific distance measure by evaluating Pearson

correlations of simulated missing values to the truth (Fig 2g,h). The median Pearson correlation

between samples was around 0.91 for all self-supervised models and thus by 0.26 higher than

the interpolation-based one with 0.65. For features that had less than three observations in the

test split, the between-sample correlation was removed. We could not determine correlations for

the median imputation as this yields a constant value. The correlation between features within a

sample was higher in general, with a median correlation of around 0.97 for all three

self-supervised models compared to 0.94 and 0.95 for median imputation and interpolation,

respectively. This showed that the ordering within a sample was better than the correlation of

protein groups between samples as the overall abundance level of single protein groups vary

across samples. Both correlation comparisons, therefore, indicated that the three

self-supervised models were able to model the data well without prior normalization of the data.
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Figure 2: Different levels of MS-based proteomics data can be imputed using self-supervised DL models. a)
Performance of imputation methods at the level of protein groups, aggregated peptides, and precursors for MaxQuant

outputs. Mean averaged error is shown on the y-axis. Blue: median, yellow: interpolation, green: CF, red: DAE,

purple: VAE. The DL methods perform better in comparison to the heuristic-based models. Performance is similar for

all three models on each data level and less aggregated data, i.e precursors and aggregated peptides perform better

compared to protein groups. b) Rolling average error by training data feature frequency for protein groups data (4,491

protein groups, rolling average with the window size of 89). c) As (a) but showing a decrease in performance for a

subset of the data with only 50 samples. The CF adapts better to smaller sample sizes. d) As (b) for protein groups of

the smaller data set showing that even few training samples yield good results (3,672 protein groups, rolling average

with the window size of 73). e) Performance of best average model across data levels, showing nearly identical

performance to best models for each data level. Light blue: protein groups, blue: aggregated peptides, green:

precursors. f) As (e) but showing the smaller dataset. g) Boxplot of correlation across samples for each protein group.

h) Boxplot of correlation across protein groups for each sample, showing that heuristic imputation can also obtain

good correlations for protein groups within a sample when there is high variation in the median intensities of protein

groups across samples.
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Performance of PIMMS on simulated missing values in real use case

To assess the impact of imputation on a large real-world DIA dataset, we applied PIMMS to 455

blood plasma proteomics samples from a cohort of ALD patients and healthy controls2. After

imputation we again compared how well PIMMS imputed simulated missing values in the ALD

data and found that median imputation was only 17% (0.48 vs. 0.41 MAE) worse compared to

the best VAE (Fig. 3a). This can be explained by the relatively stable measurements of the

dataset (Fig. S3b) and indicates that most protein groups are stable across patients as the

simulated missing values are from the entire distribution of the data. As drawing random

replacements from a shifted normal distribution was used in the original study, we add this to our

comparison here. However, both the RSN and the interpolation are not really informative for the

comparison on the simulated data as basic assumptions are not met. The simulated values are

representative of the entire data, and therefore not all low abundant. Similarly, the data does not

contain replicates of the same sample, so the interpolation strategy is not entirely sound. In

contrast to common practice, the RSN performance shown is on a per feature basis, i.e. using

the mean and standard deviation of each feature across samples. If we used the common per

sample basis, i.e. using the mean and standard deviation of all features in a sample, the

comparison was 4 to 5 times worse on the simulated data. Similarly, the correlation within

samples and between samples was best for the self-supervised models. The correlation across

samples for each protein group (Fig. 3c, Supp. Data 3) was lower for the ALD data in

comparison to the heterogeneous measurements of HeLa cell line data for the self-supervised

models (median; CF: 0.50, DAE: 0.60, VAE: 0.59). The correlation within samples (Fig. 3b,
Supp. Data 4) was overall best for the self-supervised models with median correlations of 0.98

(median: NA, CF: 0.98, DAE: 0.98, VAE: 0.98). This, thus, matched the overall results from the

HeLa data analysis.

More differentially abundant proteins when using PIMMS

Then we investigated the number of differentially abundant protein groups as well as the ability

of the plasma proteome to predict the fibrosis status of the individuals. The fibrosis status was

based on liver biopsy, and individuals with all scores ranging from zero to four could be

included. By using PIMMS-VAE for imputation of missing data we were able to perform the

analysis for 377 protein groups (ANCOVA, Benjamini-Hochberg multiple testing correction,

p-value≤0.05) compared to only 313 protein groups when using the RSN imputation approach

as originally applied in Niu et. al (2022)2. Both methods replaced missing values with a
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distribution shifted towards the lower abundance region. However, the maximum intensity for

missing values was higher for the VAE with a value of 21 compared to the RSN with a value of

15 for protein groups imputed by both approaches (Supp. Fig. S5c). Translating the overall shift

in distribution by the VAE to the RSN idea, the intensity distribution was shifted by one standard

deviation and the variance was shrinked by 0.7 in comparison to 1.6 standard deviations and

0.3 shrinkage in the ALD-RSN setup. This difference underlies a fundamental difference in the

approaches. Whereas the RSN always assumes missing values due to low abundance, the VAE

assigns some missing values a higher intensity if other protein groups in the same sample

suggest that the missing value occurred rather due to a missed detection than low abundance.

When performing differential analysis we found that 208 of the 313 protein groups were

significantly differentially expressed using the RSN approach, and 257 of 377 in the

PIMMS-VAE setup, this means an increase by 23.6% (see Methods and Supp. Data 5-8). We

found that using the two imputation approaches, 295 decisions from the differential expression

analysis were the same for the 313 shared protein groups. When using the VAE for imputation

three protein groups that were significant using RSN were not significant, whereas 15 protein

groups were significant using the VAE imputation, but not using RSN (Fig. 3d), partly with

extremely diverging q-values (Table 1). Few relatively non-prevalent protein groups, i.e. here

below 70% prevalence (320/455) of quantified samples, showed a strong difference in

differential analysis testing between the VAE and the RSN imputation. For instance, the protein

group associated with the gene F7 was clearly not significant using the VAE, but passed the

statistical thresholds when using RSN imputation. On the other hand, a relatively rarely

quantified protein A0A0D9SG88 (gene CFH) was significant using VAE imputation, but not RSN

(Fig. 3d, Supp. Data 6). It could, therefore, be good scientific practice to check the effect of

imputation on differential analysis before a single protein group is selected for further analysis.

Then, expanding the analysis to the 64 additional protein groups imputed by the VAE, we

found 37 of them to be significantly differentially abundant. Therefore, apart from the difference

from the shared protein groups, which yielded 12 more significant hits, imputation using the VAE

allowed us to identify 37 additional protein groups that were not considered for statistical

analysis in the original study. We then investigated if these protein groups could be associated

with disease using the DISEASES database37 and found that 39 of the 64 novel proteins had an

association entry to fibrosis. Of the 37 new significant protein groups 20 had an association

entry to fibrosis, with six having a confidence score greater than two (Supp. Data 5, 9). For

example, the protein P05362 from gene ICAM1 had the highest disease-association with a

score of 3.3. It was found to be significantly dysregulated in the liver data and missing in the
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plasma data in the original study. Following this reasoning, the second highest scoring protein

group was composed of P01033 and Q5H9A7 (gene TIMP1). This indicated that the novel

protein groups found when using the VAE for imputation could be biologically relevant. In

summary, more significant hits were found of which nine had associations with a score greater

than 2 in the DISEASE database indicating the potential relevance of these in ALD.

Protein
group

Gene Q-Value
VAE

Q-Value RSN UNIPROT – DISEASES
(+/- liver disease listed)

F5H8B0;
P08709;
P08709-2

F7 0.942 0.047 Coagulation factor VII (+)

P43121 MCAM 0.119 0.029 Cell surface glycoprotein MUC18
(+)

A0A0G2JRQ6 - 0.000 0.538 Ig-like domain-containing protein (-)

I3L0A1;
J3KPA1;
P54108;
P54108-2;
P54108-3

CRISP3 0.002 0.522 Cysteine-rich secretory protein 3 (-)

Table 1. Examples of diverging decisions between imputation methods. Based on comparison of multiple testing
corrected decisions using shared protein groups of RSN and VAE imputation. All see Supp. Data 6.

The additional protein groups were predictive of fibrosis

In the work by Niu et al., the authors trained machine learning models to predict clinical

endpoints such as fibrosis from the MS plasma protein groups. To assess the impact on the

machine learning model, a logistic regression, we used the data from the differential analysis

above. We replicated the workflow performed by Niu et al., and evaluated the model using the

ALD cohort for individuals with histology-based fibrosis staging data available (N=358). Using

minimum redundancy, maximum relevance (MRMR) approach we selected the most predictive

set of features of each subset of features38. The AUC-ROC values for models trained on all

available features using the VAE model (AUC: 0.894) performed as good or slightly better than

the one used in the original ALD study (AUC: 0.893). Of the nine predictive protein groups found
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using the ALD study approach eight overlapped with the predictive protein groups identified

using the PIMMS approach (Supp. Data 10).

When performing the analysis using only the 64 additional protein groups identified using

the PIMMS approach, we found five additional protein groups as predictive for fibrosis (Fig.
3e,f). A model trained on only these five protein groups achieved an AUC of 0.753. Three of the

new protein groups were also part of the set of protein groups using all VAE-imputed protein

groups which showed that some new features selected for prediction were uncorrelated to the

original study features. Therefore, we concluded that the additional protein groups identified

when using PIMMS compared to RSN were likely relevant protein groups and had high

correlation to fibrosis. Retaining more features can allow users to find candidates other

researchers might overlook or which have additional predictive power in comparison to already

included ones - without compromising on performance.

Figure 3: Using PIMMS retains more features with predictive capabilities when applied to a dataset of ALD. a)
Performance for protein groups of plasma proteome data on simulated missing values. Interpolation of non-replica

was worse than median imputation. Median imputation of simulated test missing values on relatively homogenous

data works fairly well. RSN is the worst based on its assumption with regard to missingness. b) Within sample

Pearson correlation coefficient for imputation of features with simulated missing values. c) Between sample Pearson

correlation coefficient for imputation of features with simulated missing values. d) Comparison of q-values between
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shared imputed features when using RSN imputation per sample (x-axis) and the VAE model (y-axis). e) ROC-AUC

for prediction of fibrosis in ALD patients from plasma proteomics. Blue: original as done by Niu et al., 2022, yellow:

using all VAE imputed data, green: using features that were identified additionally when using VAE imputation. f) As

(e) but showing precision-recall.

Discussion
Imputation is an essential step for many analysis types in proteomics, which is often done

heuristically. Here we tested three models using a more holistic approach to imputation. We

showed that a CF model, a DAE and a VAE reached a similar performance on simulated

missing values that represented the entire distribution of the data - including low abundant

features. For all comparisons done in this study, the performance of the self-supervised models

was better than heuristic approaches, which included median, interpolation or shifted normal

distribution imputation. Further, we investigated the effect of the imputation method on a

concrete analysis, using DIA data from 348 liver patients. Here we found that missing values

were imputed by the models towards the lower end of the distribution but less pronounced as

when using a heuristic RSN imputation which shifts all replacements towards the limit of

detection (LOD). We think that this is due to the lowest abundant features limiting the learned

data distributions (Fig. S2) and that some features are not set towards the LOD by the model

due to being missing at random. We therefore argue that our holistic model based imputations

are more conservative than e.g. the RSN imputations and that the three self-supervised DL

models offer a more sensible approach to proteomics imputation. Finally, we offer a workflow to

reproduce the comparison done here using any other data provided by the user.

A limitation of the model-based approach is that the models should only be used for imputation

if the samples are related. Therefore, the best imputation strategy will be dependent on the

experimental setup. We showed that the models can learn to perform imputation on plasma

samples from a diverse set of clinical phenotypes ranging from healthy to liver cirrhosis.

However, the models would not perform well when imputing for instance one liver proteome

together with ten plasma proteomes. In such a case the model would not have any other liver

proteomes to learn from. If replicas on a small number of samples are the study design,

interpolation can be a good remedy or using a set of tests which among others capture

missingness23. For highly varying features in a complex experimental setting with many differing

samples, a holistic model trained with all features can capture dependencies between features -

such as the ones implemented in PIMMS.
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In general, the modeling approaches here are restricted to the samples in a particular study and

models are retrained for each new dataset. However, transfer of models between data sets can

be envisioned. The potential to fine-tune a model trained on one dataset to a new dataset for a

fixed set of features is possible without further efforts for autoencoders. For CF it would need to

find the closest training samples in the case where samples are separated strictly into train,

validation and test set. However feature embeddings could be transferred and extended easily.

Therefore, all models could potentially be envisioned in a clinical setup, where models are

re-trained with the latest samples. This could be implemented by the use of similar cohorts, e.g.

for the same tissue and similar patients, which is then the basis to build a database of tissue

specific models - or by incorporating tissue embeddings as an additional source of information.

To ensure reproducibility and further extension we offer an evaluation workflow for simulated

missing values of the entire data distribution instead of only reporting results on our specific

data sets. Everything is available on GitHub, including the workflows, which allows for additional

methods to be added to our comparisons. This includes comparison on simulated missing

values of the entire data distribution which can be extended to further holistic models. The

potential extensibility of the workflow allows for comparison of different ideas on different data

sets, including the downstream analysis.

We evaluated imputation on different levels of proteomics features and found that lower-level

data was easier to learn due to being less aggregated39. Therefore, it would be great to assess

further if machine learning models can be trained on lower-level data. Alternatively, one could

assess if imputed features on lower-level data can be reaggregated to protein groups, e.g using

ideas from Sticker and coworkers40. Additionally, the three self-supervised DL models could also

be employed for denoising of samples, especially the generative VAE, or by adding diffusion

models as they are trained by adding noise to the data41. Furthermore, one could also use the

model to get assignments of values as missing completely at random (MCAR) or missing not at

random (MNAR)42. Additionally, the self-supervised learning setup can be transferred to different

omics.

Finally, an interesting application will be single cell proteomics. This community in proteomics

has not yet developed their own methods to our knowledge, but cannot fall back to the ones

established for discrete count-based single cell RNA data19,20 for intensity based label-free
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quantified proteomics data. In conclusion we suggest that holistic models such as the ones

implemented in PIMMS can improve imputation for proteomics and that our evaluation workflow

allows further experimentation leading to more robust imputation.

Methods

Description of the HeLa proteomics dataset

The HeLa cell lines were repeatedly measured as maintenance (MNT) and quality control (QC)

of the mass spectrometers at Novo Nordisk Foundation Center for Protein Research (NNF CPR)

and Max Planck Institute of Biochemistry. The samples were run as QC samples during the

measurement of cohorts or as MNT samples after instrument cleaning and calibration using

different column lengths and liquid chromatography methods. The cells were lysed by different

protocols, which are expected to include digestion using trypsin, but on a per sample basis the

exact protocol was not annotated. The injection volume ranges from one to seven microliter.

Therefore, a single machine dataset contains repeated measures of similar underlying biological

samples and can be used to explore general questions of applicability of self-supervised

learning to proteomics data. Most samples were single-shot DDA runs, but there were also a

few DIA or fractionated measurements available. In order to stratify the raw files into single

machine data sets, we created a workflow to extract the raw file metadata using

ThermoRawFileParser43,44. This approach gave us five data sets for training with similar

machine setup from five Q Exactive HF-X Orbitrap instruments (Fig. 1b).

Description of raw file processing of HeLa proteomics dataset

We collected 50,521 raw files of quality and maintenance runs of HeLa cell lines, ranging from a

few megabytes to several gigabytes in size. We processed all of these in a Snakemake43

workflow as single runs in MaxQuant 1.6.12 (ref.24) yielding single abundances for precursor,

aggregated peptide and protein group intensities using LFQ. As FASTA file/Library the

UNIPROT human reference proteome database 2018 release, containing 21,007 canonical and

72,792 additional sequences, was used for the DDA analysis. Contaminants were controlled

using the default contaminants fasta shipped with MaxQuant.

Of the 50,521 files we were able to process 11,062 of these one by one with MaxQuant yielding

0 to 54,316 thousand peptides identified. We then selected runs with at least 15,000 identified
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peptides, which gave us 7,484 runs with a minimum raw file size of 0.618 GB. The resulting

7,484 selected runs could then be grouped by instrument. The hyperparameter plots in Fig. 2
were based on the data of a single machine, instrument 6070, from this data. For extracting

metadata information we processed a total of 50,100 raw files using

ThermoFisherRawFileParser. There were a total of 66 unique instruments in the entire dataset

based on the instrument name, attribute and serial number, of which 19 had at least 1,000 raw

files assigned to them. Note though that the dataset contained fractionated measurements

which increased the amount of raw files for some instruments. Among the 7,484 raw files

included with a minimum of 15,000 identified peptides there were a total of 37 unique

instruments with quantified runs, of which 3 have at least 500 quantified runs. From the

MaxQuant summary folder we then used the evidence.txt for precursor quantifications,

peptides.txt for aggregated peptides and proteinGroups.txt for protein groups. The full dataset

will be described in a companion paper.

Feature selection strategy for quantified runs in MaxQuant

We applied a two-step procedure for feature and sample selection (Fig. S1). We used a cutoff of

25% feature prevalence across samples to be included into the workflow. Samples were then

filtered in a second step by their completeness of the selected features. To be included a

sample had to have 50% of the selected features. To handle the large amount of files we

iteratively created a curated dataset. First we counted the available features based on the 7,484

quantified runs. Based on these counts, features with a prevalence of 25% across these runs

were selected to be used from single MaxQuant output files. Although we have data from 2010

and onwards, we restricted the training to newer models from the year 2017 to 2020, especially

as most runs were available for this period. Then for each file from these years, the selected

features were extracted according to the procedure for each data level. For the precursors, i.e.

evidence.txt files, we dropped potential contaminant entries, dropped zero intensity entries as

they provided no quantification for an identified feature, used the “Intensity” column for the LFQ

intensities, used “Sequence” and “Charge” as identifiers, and finally selected the entry with

maximum intensity for non unique combinations of “Sequence” and “Charge” as this normally

corresponds to the best Andromeda score. It would have been good to include modifications in

the selection as this should make the entries unique most of the times, although in rare cases

entries are repeated with wide ranging retention times. For aggregated peptides, i.e. peptides.txt

files, we used the “Intensity” column for LFQ intensities and used “Sequence” as unique

identifiers. Finally, for protein groups, i.e. proteinGroups.txt files, we dropped
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“Only_identified_by_site”, “Reverse” and “Potential_contaminent” entries, dropped entries

without a “Gene name”, used “Gene name” as identifier and selected entries with a maximum

“Intensity” if one gene is set for more than one proteinGroup. The resulting features per data

level are given in Table S1.

Data splitting for an experiment

In order to create train, validation and test splits, a data set was split in the long-data view,

where a row consists of a sample name, feature name and its quantification. We divided 90% of

the data into training data, 5% into validation and 5% into the test split, adhering to the overall

feature frequency. This ensured that the validation and test data were representative of the

entire data. The validation cohort was only used for early stopping and the performance on the

validation and test data was therefore expected to be similar. On a few hundred sample data

sets, the number of sampled quantifications for both validation and test split is quickly in the

order of hundred thousand for protein groups and several hundred thousands for

peptide-related measurements (Supp. Table S2).

GALA-ALD dataset

The clinical data consisted of a cohort of patients with liver disease2. 457 plasma samples were

measured in data-independent acquisition (DIA) and processed using Spectronaut v.15.445 with

the libraries as described in detail in Liu and coworkers2. Peptide quantification was extracted

from “PEP.Quantity” - representing the stripped peptide sequence. Data for downstream

analysis was selected with the same two-step procedure as described for the HeLa data. 3,048

aggregated peptides were available in at least 25% of the samples of a total of 4,345

aggregated peptides being present at least once. Protein group quantifications were extracted

from “PG.Quantity”, dropping filtered-out values. Here 11 genes had more than one protein

group assigned and were kept in the data. 377 protein groups were available in at least 25% of

the samples of a total of 506 protein groups being present at least once. We used a fibrosis

marker (kleiner46 score ranging from zero to four, N=358) to compare the effects of different

imputation methods on the application. In the original ALD study the features were further

selected based on QC samples where a maximum coefficient of variation of 0.4 on the non log

transformed qualifications per feature was used as cutoff for inclusion. This step was omitted in

the comparison with the original study results in Fig. 3c-e as we wanted to have a standardized

workflow applicable also to approaches without interspersed QC samples. In numbers this
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means that we retained 313 protein groups instead of 277 omitting the selection criteria on QC

samples.

Self-supervised DL models

All models used self supervision as their setup, i.e. the data itself is used as a target in a

prediction task. CF builds on the idea to combine a sample representation with a feature

representation to a target value of interest47–49. The simplest implementation is to combine

embedding vectors of equal length using their scalar product to the desired outcome, here the

log intensity value assigned by a proteomics software program. The approach is flexible to the

total number of samples and features, and uses only the non-missing features the model is

trained on. The loss function is the mean squared error.

A DAE is at inference time a plain autoencoder. During training its input values were partly

masked and needed to be reconstructed. For each mini-batch the error was used to update the

model so that the model learned better to reconstruct the data50,51. The loss was the mean

squared error:

𝐿
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sample and is the predicted and observed label-free quantification intensity value. Missing𝐼
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features in a sample, which were not missing due to the training procedure of masking intensity

values, were not used to calculate the loss. This training procedure is also known as contrastive

learning and believed to be less stable for training. VAE introduces a different objective and

model the latent space explicitly, here and as most often done as a standard normal

distribution52,53. The latent space of a VAE has two components that are used for the first part of

the loss function, the regularization loss:

𝐿
𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

=
𝑖

𝐼
𝐵

∑
𝑙

𝐿

∑ 𝑚𝑎𝑥 0,  0. 5 * µ
𝑙,𝑖
𝑧 +  𝑒

υ
𝑙,𝑖
𝑧

 − 1 −  υ
𝑙,𝑖
𝑧⎰

⎱
⎱
⎰( )

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2023. ; https://doi.org/10.1101/2023.01.12.523792doi: bioRxiv preprint 

https://paperpile.com/c/BwwViB/PBu6+eLcx+fBkU/?locator_label=page,page,chapter&locator=,,8
https://paperpile.com/c/BwwViB/50SL+9CKS
https://paperpile.com/c/BwwViB/y6Jj+Tarv
https://doi.org/10.1101/2023.01.12.523792
http://creativecommons.org/licenses/by-nc/4.0/


where is the mean and the log variance parameters of the isotropic multivariate Gaussianµ
𝑙,𝑖
𝑧 υ

𝑙,𝑖
𝑧

with dimensions of the encoder output, i.e. the latent representation. The reconstruction loss𝐿

was based assuming a normal distribution for the decoder as output53,54, leading to
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isotropic multivariate Gaussian distribution of the decoder outputs, i.e. of the modeled feature

distribution. Training of the VAE55 was augmented by masking input values as in the denoising

autoencoder (dropout), although this is not strictly necessary due to the stochastic nature of the

latent space. For inference, missing values are predicted using both the mean of the encoder

and decoder output. The models were implemented using a variety of software including numpy

(v.1.20)56, pandas (v.1.4.)57,58, pytorch (v.1.10)59 and fastai (v.2.5)48.

Heuristic reference approaches

We used three heuristic approaches which did not require training a model. First we used

interpolation of replicates26 based on the HeLa cell line measurements being repeated over

time. The only parameter to set was how many neighboring samples should be used as

replicates. We used three replicates as this was found to be the best setting by Poulous and

coauthors26, which is also the most widely encountered replication number used in the field.

Using interpolation for imputation, some missing values were not imputed, if for a set of three

replicates all values were missing. The set of three replicates for a sample was always the

sample measured before and afterwards in time on the same machine. For the first and last

sample the closest two samples after or before were taken. Second, we used a simple median

calculation for each feature across samples. This requires estimating one parameter per

feature. For features that did not vary a lot, this strategy should yield robust estimates for

missing values. Third, we considered the random shifted normal (RSN) distribution for

imputation. We did not use it for simulated missing values as it assumes missingness due to low

abundance of features, and is used in software as Perseus60 or Prostar21. It has as parameters a

global mean shift and scaling factor for standard deviation, as well as a mean and standard

deviation for each unit of interest, i.e. all quantified features of a sample or for a feature all
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quantification of that feature across samples. Using an RSN distribution allows imputing all

missing values.

Hyperparameter search using simulated missing values

In order to find good configurations for the self-supervised models a grid search was performed

on three data levels on the development dataset. Sampling simulated missing values from the

dataset, i.e. 5% for validation and 5% for testing. The training procedure and architecture of

models was refined using the validation data. The performance of the best performing models

on the validation data were then reported using the test data. We found that test performance

metrics matched validation metrics up to the second decimal. Performance was compared

between the three semi-supervised models to improve performance during model development.

In the article all results were reported based on the simulated missing values in the test data

split. Different latent representation dimension, namely 10, 25, 50, 75 and 100 dimensions were

connected to a varying dimension and composition of hidden layers with a leaky rectified linear

activation: (256), (512), (1024), (2056), (128, 64), (256, 128), (512, 256), (512, 512), (512, 256,

128), (1024, 512, 256), (128, 128, 128), (256, 256, 128, 128) - for the encoder and inverted for

the decoder. The total number of parameters using these combinations ranged from a couple of

ten-thousands in the case of the CF models to tens of millions for the autoencoder

architectures. Besides the best models we reported results using three other plots. The rolling

average plots were created with a window size of the number of features divided by 50 for the

development dataset over the mean absolute error per feature. The features were ordered by

their prevalence in the development dataset and the MAE was calculated for all intensities for a

given feature in the split. The best average setup (Fig. 2e,f) was determined by finding the best

average for a combination of hyperparameters over three data levels, i.e protein groups,

aggregated peptides and precursors. The correlation plots were based on Pearson correlation

of predicted intensities and their original values. The Pearson correlation was calculated for a

feature across all predictions of all samples, denoted “per feature correlation”, or for all

predictions within one sample, denoted “per sample correlation”. Finally, we did not include

imputation by randomly drawing replacements from a shifted normal distribution, short RSN

imputation, as it would always perform worse by design because the underlying assumption for

RSN imputation is that measurements are not present as they are below the limit of detection

(LOD). However, the selection of measurements by the entire data distribution of features into

the validation and test data splits will lead to many being not from the lower range of intensity

values.
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Evaluation, imputation and differential expression in GALA-ALD dataset

We used the same splitting approach of the data as for the development dataset for evaluation.

We evaluated using a dimension of 10 for CF’s sample and feature embeddings, and the DAE

and VAE latent spaces. The Autoencoders were composed of one hidden layer with 64 neurons

both for the encoder and decoder, leading to a total number of parameters between 9,174  and

74,462 for the three models. The imputation for the missing values in the original ALD study was

done on a per sample basis, i.e. mean and standard deviation for each sample. Using the

two-step procedure with defaults as in the original study this yielded 313 protein groups for

comparison (see ALD data description). Using a filtering of 25% for feature prevalence prior to

imputation with the VAE (Fig. S1) we increased the share of missing values to 14% for the

selected 377 protein groups in comparison to roughly 5% for the 313 features using the

selection approach as in the original study2. Protein group data matrices were imputed using

PIMMS-VAE or RSN prior to differential analysis (DA). The VAE had one hidden layer in the

encoder and decoder with 64 latent neurons connecting a ten dimensional hidden layer. The

differential analysis was done using an analysis of covariance (ANCOVA) procedure using

statsmodels (v.0.12) and pingouin (v.0.5)61,62. We used a linear regression with the original

kleiner score46 as the stratification variable of interest for the patient’s cirrhosis disease stage to

predict protein quantifications, controlling for covariates. Therefore, effects for each protein

group were based on an ANCOVA controlling for age, BMI, gender, steatosis, and abstinence

from alcohol as well as correcting for multiple testing as done in the original study. The multiple

comparison corrections (q-values) were based on 313 protein groups in the original data

imputed using RSN, and on 377 protein groups retained using the PIMMS-VAE. Correction for

multiple testing correction was done using Benjamini-Hochberg’s correction63 based on a

varying number of tests. The q-values of each DA were then compared for the overlapping 313

protein groups (Supp. Data 7).

Machine learning in GALA-ALD dataset

In order to assess the predictive performance of newly retained features, we evaluated a logistic

regression using different feature sets for the binary target of a fibrosis score greater than one

(F2 endpoint in the original study). The feature sets were: the features retained using the

selection approach with settings as in the ALD study; all features available when using PIMMS

selection approach; and the difference between both feature sets termed “new feat”. We used

maximum relevance, minimum redundancy using the F-test based implementation, in detail the
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F-test correlation quotient (FCQ)38,64 to select a set of features to be used in the logistic

regression. Using cross validation we selected the best set of up to 15 features for each of the

three sub data sets. Then, the model was retrained on a final 80-20 percent training-testing data

split of samples for each subdataset. Areas under the curve (AUC) for the receiver operation

(ROC) and precision recall (PRC) curves were compared between these three sub data sets.

The shown graphs and reported metrics were calculated on the test split61,65,66.
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