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Abstract

Perception is shaped by past experience, both cumulative and contextual. Serial
dependence reflects a contextual attractive bias to perceive or report the world as more stable
than it truly is. As serial dependence has often been examined in continuous report or change
detection tasks, it unclear whether attraction is towards the identity of the previous stimulus
feature, or rather to the response made to indicate the perceived stimulus value on the previous
trial. The physical and reported identities can be highly correlated depending on properties of
the stimulus and task design. However, they are distinct values and dissociating them is
important because it can reveal information about the role of sensory and non-sensory
contributions to attractive biases. These alternative possibilities can be challenging to
disentangle because 1) stimulus values and responses are typically strongly correlated and 2)
measuring response biases using standard techniques can be confounded by context-
independent biases such as cardinal bias for orientation (i.e., higher precision, but repelled,
responses from vertical and horizontal orientations). Here we explore the issues and confounds
related to measuring response biases using simulations. Under a range of conditions, we find
that response-induced biases can be reliably distinguished from stimulus-induced biases and
from confounds introduced by context-independent biases. We then applied these approaches
to a delayed report dataset (N=18) and found evidence for response over a stimulus driven
history bias. This work demonstrates that stimulus and response driven history biases can be
reliably dissociated and provides code to implement these analysis procedures.
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Introduction

Perceptual reports can be shaped by past stimuli and actions - the visual system exploits
this information to support efficient information processing. To this end, the visual system
expends less energy processing expected stimuli and can rely on priors to facilitate processing
of new sensory information (Mumford 1994; Oliver 1952; Olshausen and Field 1996). However,
even though these adaptive mechanisms support more efficient processing on average, they
also lead to a collection of perceptual biases.

For example, over developmental or evolutionary time scales perceptual processing has
adapted to represent frequently encountered stimulus features such as vertical and horizontal
orientations with greater precision than off-cardinal oblique orientations (the oblique effect).
While this resource allocation supports more efficient processing in early visual cortex, it also
gives rise to a phenomenon of cardinal bias where perceptual reports are repelled from vertical
and horizontal orientations (Girshick, Landy, and Simoncelli 2011; Wei and Stocker 2015).
Importantly, cardinal bias, as well as the oblique effect, are thought to be based on long-term
exposure to natural image statistics and are highly stable across time (Henderson and Serences
2021). Hence, we use the term context-independent biases to refer to this and related
phenomena.

In addition to these context-independent biases, dynamic perceptual biases can also
emerge based on exposure to recent stimulus features. For instance, viewing a stable image
feature for an extended period can lead to a suppressed neural response to that feature
(Dragoi, Sharma, and Sur 2000; Kohn and Movshon 2004; Patterson, Wissig, and Kohn 2013).
Given that stimuli are generally stable across time, these adaptation effects are also thought to
contribute to efficient coding as fewer neural resources (i.e., spikes) are dedicated to processing
expected stimulus features (Barlow 1961; Benucci, Saleem, and Carandini 2013; Felsen,
Touryan, and Dan 2005). However, attenuated responses in neurons tuned to the viewed
stimulus can bias neural population response profiles away from the adapting stimulus. This
neural repulsion is the likely source of perceptual repulsion effects seen in well-known
phenomena such as the waterfall illusion or the tilt after-effect (Anstis, Verstraten, and Mather
1998; He and MacLeod 2001).

Interestingly, and in contrast to typical adaptation-induced repulsive biases, the
repetition of similar stimuli can sometimes lead to an attractive or assimilative bias known as
hysteresis or serial dependence (Chopin and Mamassian 2012; Cicchini, Anobile, and Burr
2014; Corbett, Fischer, and Whitney 2011; Fischer and Whitney 2014). Typically, attractive
serial dependence emerges with briefly presented or near-threshold stimuli that are hard to
perceive, as opposed to longer exposure to high contrast stimuli that usually leads to adaptation
and perceptual repulsion (Chopin and Mamassian 2012; Cicchini, Mikellidou, and Burr 2017;
Fritsche, Mostert, and de Lange 2017; Maus et al. 2013). These attractive biases can be
explained by invoking a Bayesian prior for stimulus stability over short time scales (van Bergen
and Jehee 2019; Cicchini and Burr 2018; Fritsche, Spaak, and de Lange 2020; Pascucci et al.
2019). Given this prior for environmental stability, the precision of near-threshold stimuli can be
improved by biasing reports towards recently viewed features (Cicchini and Burr 2018; Fritsche
et al. 2020; Sheehan and Serences 2022). However, even though attractive biases are
observed across a host of stimulus/task domains, their ultimate source is still debated.


https://doi.org/10.1101/2023.01.11.523637
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.11.523637; this version posted January 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Here we address a set of key unanswered questions related to efficient information
processing in the human visual system. First, do attractive serial dependence effects depend on
the physical identity of recently seen features, or on the responses made to report the identity of
recently seen stimuli? Second, how do attractive serial dependence effects interact with
adaptation and context-independent factors like cardinal bias? Parceling out sensory and motor
contributions from these other perceptual biases is critical to better understanding the source of
the effect because these factors all jointly contribute to measured perceptual reports.

Disentangling sensory from motor/decisional contributions to attractive serial biases is
particularly challenging because most studies of serial dependence have employed delayed
recall paradigms where responses are highly correlated with the presented stimulus feature. For
example, in a typical task a participant is instructed to report the orientation of a remembered
orientation using a mouse pointer. Their response will ultimately be driven by the integration of
sensory evidence on that trial, adaptation induced by previous stimuli, context-independent
biases (e.g., cardinal bias), and random errors accumulating from other unmeasured sources.
These will cause the response to deviate from the stimulus orientation but only by a few
degrees such that even for a low performing participant, stimulus identity and the associated
responses will still be highly correlated (r.=0.63, 0=21.4° for an example continuous report
dataset which we analyze in more detail below).

Most studies of serial dependance have focused only on the influence of the previous
stimulus and claim that it is the processing or perception of the physical stimulus that induces
attractive biases (Cicchini and Burr 2018; Cicchini et al. 2017; Fischer and Whitney 2014;
Manassi et al. 2018). However, the emerging consensus is not so straightforward. One recent
study found evidence that responses are simultaneously repelled (due to adaptation) and
attracted (due to the application of Bayesian priors) to past stimuli but at different timescales,
leading to both attractive and repulsive effects (Fritsche et al. 2020). In contrast, other work
suggests that it is the previous decision, not the stimulus per se, that leads to attractive serial
biases (Pascucci et al. 2019).This finding is consistent with subsequent studies that have
simultaneously modeled the influence of both the previous response and the previous stimulus
and found that reports are simultaneously attracted to previous responses and repelled from
previous stimuli, providing an extra layer of distinction between the attractive and repulsive
effects described by Fritsche and colleges (2020) (Moon and Kwon 2022; Sadil, Cowell, and
Huber 2021).

Trying to ascribe biases to past responses is further complicated by context-independent
biases (e.g., cardinal bias) (Fritsche 2016). When sorting trials as a function of the previous
response (respw.1), the sorting variable (AR = respn.1 - stimn) is dependent on the physical
stimulus feature (stimn) in the presence of cardinal bias. This is in contrast to analyzing stimulus
biases where (for an independent stimulus sequence) the sorting variable is independent of the
physical stimulus identity As=(stimn.1 - stimn)Lstimn. As a result, any context-independent bias,
such as repulsion from the cardinal axes, can lead to a dependence of respy on AR. This
dependance may be why past studies have shown a spurious attraction to future or shuffled trial
sequences — an observation that lacks a reasonable causal explanation (Pascucci et al. 2019).
Thus, observing a spurious response bias to future or shuffled sequences raises the concern
that any measured response bias (e.g., even towards the previous trial, ARn.7) could also be
influenced by the same artifact. In Pascucci et al. (2019) and other studies that followed, this


https://doi.org/10.1101/2023.01.11.523637
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.11.523637; this version posted January 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

issue was addressed by subtracting the average context-independent bias from either
participant responses or response errors. This method of correction is reasonable, but may
actually be insufficient given other context-independent anisotropies (e.g., the oblique effect) as
noted by others (Fritsche 2016). Thus, to reconcile these seemingly paradoxical findings, an
analytic framework is needed to successfully disentangle the relative contribution of perceptual,
motor, adaptation, and context-independent factors.

To address these concerns, we created a model observer exhibiting either stimulus or
response driven biases from the previous trial. For parsimony, we will only explore orientation
stimuli that feature cardinal biases along with the oblique effect in this study, but our approach
should generalize to other stimulus types (e.qg., spatial location, numerosity, pitch). We found
that some techniques can reliably distinguish between stimulus and response biases across a
range of conditions, but that care needs to be taken to correct for context-independent biases.
We additionally apply these techniques to an orientation working memory dataset and
demonstrate that the history biases observed are primarily attributable to past responses, not to
the physical stimulus features. All data and code to implement and expand on these
simulations, including power analyses and our analyses of an empirical dataset are available at:
https://github.com/TimCSheehan/historyResponseModeling.

Methods

Generative Model

To better understand how different sources of bias will ultimately shape behavioral
responses, we built a model designed to mimic response properties of human observers. First,
we generated an independent and identically distributed (IID) stimulus sequence that uniformly
sampled a circular 0-180° feature space (e.g. orientation space). When the sequence is
encoded, Von Mises distributed perceptual variability is introduced such that the probability of
perceiving a stimulus is governed by the following distribution:

k _
Pencoding (M|, k) = e 2(;:1?((71?) = [1]

where k and y are the precision and center of the von Mises distribution respectively, and m is
the encoded orientation. lo(k) is the Bessel function of the first kind of order 0. We utilize two
types of encoding processes. The “biased encoder” features both the oblique effect, such that
precision is higher around vertical and horizontal stimuli

Koblique = Kpase (1 +COSZ(26)) [2]

where 0 is the stimulus orientation spanning [0, 1] and cardinal bias such that responses are
biased away from the cardinal orientations

Ucardinat = 0 + A - sin(40) [3]
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where A=10 is the amplitude of the bias (see Figure 1, Cardinal Bias for a depiction of both
functions). Note that both r,pique aNd Ucarainar have two peaks/cycle as the cosine function is
squared for the oblique effect. The second encoding model, termed the “uniform encoder”, has
constant precision across feature space (Kuniform=1.5-Kbase, €qualizing average precision) and is
centered on the true stimulus value (u = 6).

On each trial, a random draw from the probability distribution penceding iS Used to generate
a point stimulus estimate m, which is then used as p in either the biased or the uniform
encoding model. This p parameter, along with the concentration parameter k of the von Mises
distribution, generates a probability distribution function (PDF) that defines the stimulus
likelihood function®. This likelihood is then multiplied by a Bayesian prior centered on either the
previous stimulus (“stimulus bias”) or the previous response (“response bias”, Figure 1,
Bayesian Inference). This prior is based on measurements of natural videos and is a mixture of
a von Mises and a uniform distribution to account for both stable random changes across time
(van Bergen and Jehee 2019; Felsen et al. 2005). The relative influence of stable and random
changes is controlled by the parameter pstse such that

exp(k cos(m — p))
2mly (k)

1
Pprior (m|w, k, Dstabie) = Dstable + (1 — Dstavie) 2 [4]
where u is the stimulus or response on the previous trial and k is constant (building on previous
findings suggesting uncertainty on the previous trial does not appear to shape serial
dependence in a Bayesian manner (Ceylan, Herzog, and Pascucci 2021; Fritsche 2016;
Gallagher and Benton 2022). The maximum value of the resulting posterior

respn, = argmaxpy (pprior- pencoding) 5]

is taken as the Bayes optimal single trial estimate of the stimulus (Figure 1, Bayesian Inference,
sold line). We equate the output of the model with the “perceived” stimulus value that the
participant would indicate with a behavioral response.

Behavioral Analysis

Independent Bias Parameterization

To analyze the results from these different encoding and decoding processes, we sorted
response errors as a function of the previous stimulus (AS = stimn.1 - stimy) or as a function of
the previous response (AR = respn.1 - stimy). We visualized the resulting bias for each
participant by taking a sliding circular mean of the errors as a function of AS or AR. To simulate
typical trial counts of a psychophysics experiment, we ran experiments of 30 participants
completing 360 trials each. The magnitudes of history biases were estimated by fitting a
derivative of von Mises (DoVM) function:

"Note that here for simplicity we are equating the shape of the likelihood function, p(8]m), with the
posterior p(m|8).
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doVM(x; a,w) = awsin(x) exp(w cos(x)) / (zIy(w)) [6]

with amplitude, a, and width, w (Sadil et al. 2021). These parameters were fit to minimize the
RSS errors when x corresponds to either AS or AR. zis a normalizing constant such that the

amplitude, a, corresponds to the height of the resulting function. We additionally performed all
analyses using the more commonly utilized derivative of Gaussian function and found similar

results, but prefer the DoVM function as it is continuous at .

Long-term Bias Correction

Previous studies have attempted to account for any confounds introduced by context-
independent biases by subtracting out the average bias from either the responses (respn) or the
errors (respn - stimy) (Fritsche 2016; Moon and Kwon 2022; Pascucci et al. 2019; Sadil et al.
2021). We perform this correction by first fitting an n=6 parameter Fourier-like decomposition

N
FO arvan) = ) gBinay) (7]

. _ (sin(n); n = even 8
9(@;m an) = {cos(e(n +1)); otherwise (8]

to subjects errors as a function of stimyand subtracting this function from either the responses
(response correction: respresiqua = wWrap(respn-f(stimy) )) or from the resulting errors (error
correction: Eresiquai= wrap(respn-f(stimn) -stimn)). Note that correcting responses additionally
influences the errors as they are calculated using the modified responses. When analyzing
response biases, both corrections impact errors (y-axis) (as correcting responses also corrects
errors) while response correction additionally impacts sorting of trials (x-axis). While these two
forms of correction ultimately yield similar results, it is important to consider how response
correction procedures change the interpretation of any resulting bias (see Discussion).

One concern that arises with analyzing response biases, and a primary motivation for
this study, is the presence of ‘spurious serial dependence’ whereby sorting responses as a
function of AR can give the appearance of attractive biases to the N+1 stimulus or after shuffling
the stimulus sequence (Pascucci et al. 2019). As we do not expect the response on a future or
random trial to influence our error on the current trial, the presence of such a bias is concerning
and may suggest a bias measured relative to past/future stimuli is an artifact of the analysis
procedure. To better understand this phenomenon, we additionally consider our errors relative
to both the N+1 stimulus and relative to the N-1 stimulus of a shuffled trial sequence.

Joint Bias Parameterization

Recent studies have simultaneously modeled the impact of the previous stimulus and
previous response (Moon and Kwon 2022; Sadil et al. 2021). We implemented this by
parameterizing two DoVM functions modulated by AS and AR and optimized to minimize the
residual SSEs. Specifically, we have two vectors AS and AR which are inputs to two DoVM
functions. The resulting minimization function is
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min (E; — DoVM(AS; as,ws) — DoVM(AR; ag, wg))? [9]
Vi

where E; corresponds to the actual error, wrap(resp; - stim;), on the ith trial.

Statistical Analyses

When bias curves are visualized, we include the results of one-sample and paired two-
tailed t-tests without correction of the amplitudes of fit DoVM functions.

Power Analysis

We performed power analyses to estimate the probability of detecting a significant effect
(a<.001) for an experiment conducted with n=30 participants and defined effect sizes and trial
counts. For a given experiment, we present the probability of rejecting the null hypothesis that
stimulus or response biases are significantly greater and in addition that the magnitudes of the
two effects are different from one another.
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Figure 1: Response Generation, on each trial a stimulus is encoded by a biased or unbiased
encoder. The encoded representation is interpreted at the inference stage by introducing either a
stimulus, response, or no prior for stability. The output from this stage is the response we analyze
and used to bias future reports. Response Analysis, responses are first corrected (or not) for
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context-independent biases by fitting a Fourier-like function. We then analyze errors as a function
of either the previous stimulus, response, or both. We perform additional control analyses by
shuffling trial order or examining the influence of future responses.

Additional controls

Most experimentalists interested in studying serial dependence intentionally utilize
stimulus sequences with a roughly uniform distribution of trial-by-trial stimulus transitions (e.g.,
P(AS) is uniform). For a variety of factors including inadequate randomization due to low trial
counts or the introduction of intentional structure into the distribution, this assumption is often
violated to varying degrees (Chopin and Mamassian 2012; He et al. 2010; Maus et al. 2013). To
determine how non-uniform stimulus sequences affect measurements of serial dependence, we
additionally simulated an analysis pipeline using sequences that feature positive (+) and
negative (-) autocorrelations.

The fundamental concern that motivates including simulations with autocorrelated
stimulus sequences is that studies attempting to reveal attractive biases to past stimuli or
responses may instead only reveal artifacts of their analysis techniques where no biases are
present. To assess these concerns, we additionally generate responses where neither stimulus
or response serial dependence were implemented to provide a ground-truth case where no
biases should be observed (see Figure 1, decoding).

To account for the possibility of a repulsive bias from the stimulus itself, for some
experiments we inserted an additive DoVM repulsive bias centered on the previous stimulus
with width 1 and variable amplitude.

Psychophysical Study

18 participants completed between 192 and 488 (380 + 15.2, mean + SEM) trials of a
delayed orientation report task. All participants provided informed consent, had normal or
corrected to normal vision, and were compensated either in course credit or at a rate of
$10/hour. Participants were instructed to fixate on a black fixation cue that was present at the
center of the screen 0.5° (degrees of visual angle) and was visible throughout the entire
experiment. The trial began with a 1500 ms ITI featuring only the fixation point. Then, two
foveally presented oriented gratings subtending 1.5 to 23° degrees of visual angle were
presented in succession separated by a 1000 ms inter-stimulus-interval (I1Sl). Each stimulus had
a randomly oriented grating (2 cycles/°, 0.8 Michelson contrast) that was smoothed by a 2D
Gaussian kernel with 0=0.5°. Each stimulus was presented for 1s and reversed phase every
125 ms. Each stimulus was followed by a 250 ms filtered noise mask [fiow=0.25, fhigh=1.0
cycles/°] that changed once after 125 ms. After the second item, a retro cue (the numbers ‘1’ or
‘2’) indicated the target most likely to be probed (80% validity). On 1/6th of trials a neutral (‘X’)
was presented in lieu of a retro cue (both items equally likely to be probed). The retro cue was
followed by a blank delay period 2500 ms. Participants then controlled a black response dial
(using the “ASDF” buttons on a standard QWERTY keyboard) and they were given between
500 and 5000 ms to match the orientation of the probed stimulus. After pressing the space bar
to confirm their response or timing out, the dial disappeared, and feedback was provided for
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2000 ms by displaying the unsigned error in degrees and turning the response dial green if
participants were closer than 10° and red otherwise.

Results

Serial Dependence Without Cardinal Bias

We first analyzed responses in a model without context-independent biases featuring
either stimulus serial dependence, response serial dependence, or no serial dependence
(columns Left, Center, Right respectively, Figure 2). For this simulation, and unless otherwise
noted, we use Koase = 8 and therefore Kunitorm = 12. The first row shows biases relative to the
previous stimulus and reveals that trials with true stimulus bias (Figure 2A) show a larger
stimulus (AS, black curve) relative to response (AR, teal curve) bias. We additionally observed a
larger response bias when the underlying source of the bias is towards the previous response
(Figure 2B). Together, this suggests that, in the absence of context-independent biases, the
relative magnitudes of stimulus/response serial dependence is a good proxy for the dominant
source of the bias.

Critically, the only artifactual bias occurs when examining ARn.1 when there was a
genuine bias response bias (Figure 2E). This demonstrates that cardinal or other history
independent biases are not necessary to observe artifacts in analyzing response biases in the
presence of true response dependence and suggests that such an artifact is an indicator of a
bona fide bias in the data. We explore why this N+1 artifact arises in the next section.

The N+1 response bias artifact

Ensuring that there is no bias toward future responses (i.e. the N+1 trial) has been
suggested as a valuable control when evaluating response biases (Pascucci et al. 2019).
However, as noted above, we find an attractive bias when sorting trials by ARn.s when there is a
true response-based serial dependence effect. To understand why this bias occurs, we first
identified an important distinction between sorting trials based on the past versus future
response. Importantly, respn.s is independent of stimy and accordingly P(ARN.1)is uniform
(Figure 3A). However, respn.1is not independent of stimybecause it is influenced by a prior
centered on either stimyor respy (depending on the source of the bias) resulting in a highly non-
uniform distribution (Figure 3A, P(ARn.1)). To explore why the ARn.1 spurious bias occurs, we
considered two possible outcomes on the current trial, an error CW or CCW relative to the true
stimulus. For the purposes of this visualization, we used the average absolute error of our
unbiased observer, |E| = 7.8°. For observers exhibiting response-based history biases, these
CW/CCW errors generate distinct priors (Figure 3B) that differentially shape future responses.
These priors shift P(ARn.1) towards the current response (Figure 3C). The difference in relative
probabilities of the previous response error multiplied by the average response error (|E|)
perfectly captures the measured “spurious” response bias (Figure 3D, 2E). Thus, spurious
biases measured by examining the influence of the N+7 response are expected if the underlying
source of the bias is a prior centered on the preceding response. Because of this, examining the
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N+1 influence is not a pragmatic control analysis and researchers should instead opt for a
shuffled trial sequence which does not exhibit spurious biases when response biases are
present in a dataset.
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Figure 2: Stimulus (black) and response (teal) bias curves for all response simulations. (Left,
A,D,C) column corresponds to responses generated with an attraction towards past stimuli,
(center, B,E,H) column features responses attracted towards past responses, and (right, C,F,l)
column has no history biases. (Top, A-C) row computes A6 relative to previous trial, (middle, D-
F) row computes A8 relative to future trial, and (bottom, G-I) row computes AO relative to the
previous trial after shuffling the stimulus order. Both A and B show significant attractive biases
towards past stimuli and responses with larger attractive biases towards the underlying source of
the bias. We additionally observe an attractive bias towards the future response E that is an
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conditions; R, response bias significantly greater than stimulus bias, S, stimulus bias significantly

greater than response bias.
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Figure 3: A. P(Rn.1), gray, is uniform but P(ARn.1), magenta, shows an overrepresentation for
small changes. Additionally shown is P(ARn.1) for stimulus serial dependance (black trace). B.
hypothetical priors following a misperception of the average magnitude for our model (7.8°) in the
CW or CCW direction. C. P(ARn.1) on trials with CW or CCW misperceptions are shifted relative
to each other. This shifting does not occur when the bias source is the stimulus instead of
response (black traces) D. The average (unsigned) error multiplied by the difference in the
P(ARn.1) for CW and CCW responses captures the measured spurious bias.

11


https://doi.org/10.1101/2023.01.11.523637
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.11.523637; this version posted January 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Serial Dependence with Context Independent Biases

We next analyzed serial dependence after additionally including cardinal bias and the
oblique effect at encoding. Both the precision k and expected value y were modulated by the
stimulus identity resulting in an encoding process that showed characteristic bias and variance
patterns of cardinal bias and the oblique effect (Figure 1). The result of this biased encoding
process was then modulated by the same Bayesian prior as used in the previous section. When
analyzed, the resulting responses show an increased response bias and a substantial ‘spurious’
response bias in the absence of any history biases (Figure 4A-C) demonstrating that context-
independent cardinal biases can introduce an artifact as suggested previously (Fritsche 2016;
Pascucci et al. 2019).

This confound is more concerning than the ARn.+ bias we found in the previous section
because an attractive response bias is found even when no underlying serial dependence is
present in the generated data (Figure 4C) or when trial order is shuffled (Figure S1A). Previous
studies have tried to address this bias by regressing out the stimulus specific bias from either
the errors or the responses. This has generally been achieved by fitting either a higher order
polynomial or sinusoidal function to the raw data. For the purposes of this study, we utilized a 6-
parameter Fourier like composition of sine/cosine functions of varying frequencies which is more
flexible (see eq. 7). Our use of circular functions avoids edge effects found with polynomial fits.
We fit this function to errors and subtracted the best-fit function to correct for these biases
(Figure 4D, red dotted-line). This correction substantially reduces any trace of systematic biases
(Figure 4D, green). We opt to correct errors, but not responses, as this allows ARnw.1 to reflect
the relative location of the previous response.
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Figure 4: A-C. Response/stimulus biases computed using the raw errors results in a spurious
response bias (see Fig S1 for all bias curves) D. Context-independent biases can be corrected
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for by fitting a model to responses such that the resulting residuals are not biased as a function
of stimulus identity. The light green trace (rSD+) is the residuals when history dependent bias
(serial dependance) is present when fitting the history independent bias model. E-G
Response/stimulus biases computed using the residualized errors.

Correcting for context-independent biases in response errors appears to completely
remove the presence of spurious biases and returns the relative magnitudes of biases to what is
expected given their respective sources (Figure 4E-G, See Figure S1 for bias curves
corresponding to shuffled and N+1 trials). This is critical as this regression-based approach is
an effective way to correct for context-independent biases and ensure the presence of
measured response history biases is not just an artifact. This correction process does nothing to
account for differences in variability as a function of the stimulus (the oblique effect) but still
removes any trace of artifactual responses in the shuffled condition. We separately analyzed the
influence of autocorrelations in the sequence of stimuli presented and found no evidence that
they introduce new artifacts (Figure S2).

Cardinal biases cause spurious response biases

It is not surprising that introducing biased stimulus representations could introduce
cofounds. In a general sense, this is because Errory is dependent on stimyand furthermore AR
is no longer independent of the absolute stimulus value. Why this leads to spurious history
biases is not particularly intuitive, so we provide a brief demonstration here. First we visualize
the joint distribution P(Stimn, AR) which shows the two variables are clearly not independent
(Figure 5A). Note that we are not specifying which trial is the inducer (eg. N-1/ N+1) as this
spurious bias is unchanged even after shuffling trial order. The conditional distributions P(Stimn |
AR) for two subsets of AR reveal how dramatically P(Stimn) is interdependent on AR (Figure
5B). We can then approximate the predicted spurious bias as the dot product of the normalized
rows of P(Stimn, AR) with Ucaraina (Stimn) (Figure 5C, 4A) to get the expected bias

Spurious Bias (AR) = Z P(Stimy|AR) Ucgraina (Stimy)
Stimy
(Figure 5D, black). This process captures the “spurious” response bias from the shuffled
response distribution (Figure 5D, teal). Note that when sorting trials based on the previous
stimulus instead of responses, P(Stimn|AS), is independent and does not give rise to spurious
history bias.
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Figure 5: A. The distribution of AR is not independent of Stimn. B. We illustrate the distribution of
Stimn for the subsets of trials highlighted in (A). C. Expected error as a function of Stimn. D.
Response bias (teal+ SEM) is captured by the product of P(Stimn/AR) and u(Stim) (black).

Simultaneous modeling of stimulus and response

Two recent studies have tried to disentangle the relative contributions of stimulus and
response history biases (Moon and Kwon 2022; Sadil et al. 2021). Using this approach, the two
functions are fit simultaneously instead of fitting a single two parameter function separately to
AS and to AR. Theoretically, this should better disentangle the sources of the bias and the
approach has revealed the surprising possibility that stimuli could simultaneously be repelled
from the previous stimulus but have an even larger attraction to the previous response (Moon
and Kwon 2022; Sadil et al. 2021). This approach is interesting but may be problematic as the
two regressors are highly collinear, which poses a challenge for interpreting the fit parameters.
We applied this approach to two simulated datasets, our full model featuring cardinal bias and
correction for that bias, and a new model which introduces repulsion from the previous stimulus
(see Methods, Joint Bias Parameterization). First, we visualized the average individual fits to our
corrected errors (as presented in Figure 4C) and note that while our modeling approach
correctly captures the predominant bias source, the non-causal source is still of a similar
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magnitude (Figure 6A, left). When we apply our joint fitting procedure to the same data, we are
better able to capture the true underlying source of the bias (Figure 6A, right). To compare the
effectiveness of these alternative approaches, we conducted a power analysis for detecting
significant biases while varying trial counts and precision (see Methods). First, we note that our
power to distinguish between stimulus and response biases was higher for low precision
participants across model types (Figure 6B). Critically, however, we note that the independent
model consistently detects a significant effect of the non-inducing feature (Figure 6B, top) while
the joint model is much less likely to detect a significant non-causal effect (e.g., Figure 6B,
bottom, AS is close to 0% power for the joint model given true response serial dependance).
This suggests the joint model is better powered to avoid Type Il errors. See Figure S4 for a
power analysis further broken down by trial count.

A C Includes Stimulus Repulsion
Independent Fit Joint Fit ik . Ry AL | Nesh
gl ! ook Yes E Corrected ok
1 R+ No resp Correctgd Rk
64 1
g 3 ] :
= g 1
g4+ Sort " G-gpEmras i X g
o 22 |
3 Em AS a _, ] ! .
o 1
824
= AR -8 E Not AutoCorr :
} 1
o -90  -45 0 45 90 -90  -45 0 45 90
Stim SD Resp SD No SD Stim SD Resp SD No SD A8 (deg) A8 (deg)
B D Independent Fit E
Ind | Stim 5D Ind | Resp SD " Ind | Resp SD
S 64
100 100 2 5] 100
® Ny ¥ 2 £
n put 04 o
£ 50 £ s0 s g 5o
& £ $-3 g
o
0 ; : 0 ; ; acey R "
0 20 40 0 20 40 Resp SD No SD 0 20 40
k k —— AS o k
: . : Joint Fit
Joint | Stim SD Joint | Resp SD = AR 58 Joint | Resp SD
100 | N —— 100 A 3 | 100
® ® —— AA s 3 £
[ = 0+ [
£ 501 £ 501 s & o
£ £ £ -34 8
——— " 8 -6
0- 0 L. T 04 :
0 20 40 0 20 40 Resp SD No SD 0 20 40
K 3

k

Figure 6: A. Fit magnitudes for independent and joint model fits. B. Power analysis across a range
of k values for independent and joint models. Power is the % chance at finding a significant effect
with n=30 participants at a=.001. AA refers to direct comparison of magnitude of AS and AR
(paired t-test). C. Bias curves for an observer featuring stimulus repulsion, additional curves
Figure S3. D. Joint fit is able to capture magnitudes and signs of true biases while independent
model fails to separate the two. E. Power analysis reveals challenges in calculating bias
magnitudes when the two competing forces are of approximately equal (0 power for AR at k=8 for
independent model. Expanded power analysis presented in Figure S4.

We next applied the same approach to an observer featuring repulsion from the previous
stimulus implemented at encoding to determine how well the joint/independent models captured
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these opposing effects. This is challenging because stimulus repulsion acts to counteract the
influence of response attraction (Figure 6C, Figure S3). We found the joint model was better
able to capture the underlying bias source (Figure 6D) and generally had much better power at
distinguishing between their influences across a range of conditions (Figure 6E, bottom, Figure
S4). This power analysis revealed an interesting phenomenon that may be common in the serial
dependance field. For the independent model, particular values of k led to stimulus and
response biases that largely counteracted one another leading to 0% power (Figure 6E, top).
Importantly, the joint model was able to reliably detect response biases over this same range
(Figure 6E, bottom). This idea of opposing attractive and repulsive biases could suggest why
null or weak results are common in studies of serial dependance and may provide a new
avenue to analyze existing datasets.

Application to Empirical Data

We conclude by applying the techniques and principles developed above to an existing
unpublished dataset. Participants (N=18, 6840 trials total) viewed a sequence of two oriented
gratings presented foveally in succession and reported one of the stimuli by rotating a response
dial with the keyboard after a 3.5s delay period. This experiment included partially valid retro-
cues, the full details of which are described in the Methods and schematized (Figure 7A, Figure
S5A). We first noted that responses showed strong context-independent biases that were non-
sinusoidal (Figure 7B, gray). We first attempted to fit context-independent biases using a 6
parameter Fourier-like function as with our simulation, but found it was a poor match with large
residuals (Figure 7B, light green). To fully capture the structure, we instead opted for a 12-
parameter version which achieved a much tighter fit and smaller residuals (Figure 7B, dark
green). We then examined history biases non-parametrically for the N-1 trial with and without
shuffling trial order. For the shuffled responses, the correction procedure removes a spurious
response bias seen in the raw responses (Figure 7C, bottom). The In Order trials show strong
stimulus- and response-based biases (Figure 7C, top). We next examined stimulus and
response biases both separately and using a joint model. To improve our power, we
bootstrapped responses by randomly resampling 360 trials with replacement for 1024 surrogate
participants. Participants showed strong attractive biases when sorting by ASn.1 & ARw.1 (Figure
7D, left). Critically our correction procedure removed the context-independent bias artifact
(Figure 7C, bottom-right). Consistent with our previous simulations, we found that response
biases were inflated for all analyses and are significantly greater than 0 after shuffling when we
didn’t correct for context-independent biases (Figure S5C). When quantifying history biases
independently, both stimulus and response biases were highly significant, but response biases
were significantly stronger (Figure 7D, left, In Order). Importantly, we did not observe any
stimulus or response biases for the shuffled trial sequence (Figure 7D, left, Shuffle). When we
applied the joint fitting procedure, we found that only response bias was significantly greater
than 0 suggesting that response biases are the dominant source of attractive biases in this data
set. We thus demonstrate that our analysis procedure can be applied to empirical datasets and
that simultaneously modeling biases can lead to insights otherwise hidden by traditional
approaches.
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Figure 7: A: simplified task schematic. Participants reported 1 of 2 foveally presented stimuli
after a delay. B: Responses showed strong context-independent biases (gray). These were
corrected by fitting a 12-parameter Fourier based parameterization to the pooled errors (red)
resulting in unbiased residuals (green). C: Top, N-1, both raw and corrected responses show
larger biases when sorting by past responses than stimuli; bottom, shuffle, uncorrected
responses show a spurious response bias after shuffling trial order (left) that is eliminated after
context-independent correction (right). D: While the independent model suggests both stimulus
and response biases, joint model reveals bias is driven by responses.

Discussion

The goal of this modeling work was to provide a comprehensive exploration of methods
to dissociate stimulus and response biases in the presence of potentially confounding context-
independent biases such as cardinal bias. This work was motivated by an acute interest in
analyzing response biases combined with a concern that any bias measured could be an artifact
of the analysis procedure. We first recap the lessons from our simulations and then discuss
considerations that need to be made when analyzing such biases in empirical studies. Last, we
briefly consider the psychological implications of our own empirical findings and recent related
work.
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We first identified a spurious future bias that is found specifically when sorting by ARn.1
(Figures 2-3). This bias is only observed in the presence of true response biases and is found in
the absence of (or after correcting for) context-independent biases. This phenomenon is a
signature of response biases and may be interpreted as evidence for previous responses rather
than previous stimuli inducing a history bias (and notably this bias does not emerge under
stimulus induced biases, Figure 2D). Importantly, there is no analogous spurious future bias
after shuffling the trial order before assessing serial dependence (Figure 2H). Thus, the analysis
of ARn.1 biases should primarily be used as a confirmatory step for the presence of response
biases rather than a control for the influence of context-independent biases.

More problematic are artifacts introduced by context-independent biases (e.g., cardinal
bias). These can lead to a spurious attraction between shuffled responses (Figure 4C). In our
simulations, the spurious response biases were eliminated after regressing out this bias (Figure
4D, G). These biases emerge due to the influence of context-independent biases on all
responses which is why shuffling does not remove them (Figure 5). When applying this
correction procedure to our empirical dataset, the cardinal biases we observed were much
steeper than the sine wave used in our simulation and necessitated additional higher frequency
components to achieve truly unbiased residuals (Figure 7B). We increased the expressivity of
our correction procedure until the errors sorted by Stimy and ARsnuime were flat and unbiased
(ultimately using a model with 12 free parameters). We were then confident that any response
biases were genuine and not an artifact. Here, we observed a response bias ARn.1 that was
significantly larger than our stimulus bias ASn.1 (Figure 7D, Independent Fit).

Lastly, we found promising results utilizing a joint modeling approach that was
introduced in a pair of recent studies (Moon and Kwon 2022; Sadil et al. 2021). Our analysis of
simulated data showed that despite stimuli and responses being highly correlated, the joint
approach was generally able to capture the true source of the bias (Figure 6 A, D). The
reliability of this approach was greatly improved when participants were less precise and when
there were greater trial counts per participant (Figure 6B, E, S4). Applying this approach to our
empirical dataset revealed strong evidence for a history bias that originated from responses, not
stimuli (Figure 7D, Joint Fit). Surprisingly, this response bias continued back many trials offering
a new potential interpretation of past studies that have similarly long-acting biases (Figure S5)
(Fritsche et al. 2020; Gekas, McDermott, and Mamassian 2019). Our interpretation of this being
a response driven bias is strengthened by the fact that other metrics, including the independent
fits and the ARn.1bias, all aligned closely with metrics observed for our response-driven
simulated observer. Thus, simulated observers offer a valuable tool to infer the origin of biases
given the outputs of the various metrics we have tested.

Throughout this manuscript, we present stimulus and response driven biases as if they
are mutually exclusive. In reality, it is equally, if not more likely, that the inducing feature from
the past is the perceived stimulus (rather than the response per se). This is supported by past
work that has attempted to directly disambiguate perceived from reported orientations (Cicchini
et al. 2017) or work that has utilized change detection rather than continuous report paradigms
(Fischer and Whitney 2014; Fritsche et al. 2017; Sheehan and Serences 2022). That said,
others have shown that attraction is not generated unless a stimulus is reported and that
attraction may instead be towards the reported rather than perceived location (Pascucci et al.
2019; Sheehan, Carfano, and Serences 2022). In any case, with continuous report paradigms
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we often don’t have any means of directly accessing the identity of the perceived stimulus and
so we opt here to use the more general term of “response” throughout this paper as the
behavioral response is typically the best/only proxy for the internal perceptual representation.
Further disambiguating the physical act of responding (and the associated motor/decisional
circuits) from the perception of the stimulus will require careful experimental designs or neural
measures that can assess internal representations at different stages of information processing.
Thus, finding a bias driven by past responses (rather than physical stimulus identity) as we did
primarily suggests that attraction is toward a post-retinal representation or transformation of the
stimulus. In retrospect this claim may seem obvious, as the brain has no access to the stimulus
per se and will always be relying on internal representations that deviate from the original
stimulus feature (Eggermont 2007; Gydrgy Buzsaki 2019; Lettvin et al. 1959).

Now that there are several studies showing strong evidence for response over stimulus
driven effects (Moon and Kwon 2022; Sadil et al. 2021), the goalposts have shifted to further
disambiguate exactly which response related components are driving these effects. Change
detection paradigms or generally un-correlating responses from perception offer promising
avenues to explore this possibility further (Braun, Urai, and Donner 2018; Sheehan et al. 2022;
Zhang and Luo 2022). That said, we argue here that examining biases just as a function of the
physical identity of the previous stimulus is ignoring the important role of other biases in shaping
the perception of current and past stimuli and may lead to an under and mismatched
measurement of the true underlying bias (Pascucci et al. 2019; Sadil et al. 2021).

In the behavioral experiment we report here, there was no direct correlation between the
final response and motor action as the probe was initialized in a random location and was
controlled by button presses. Thus, we can likely rule out a purely motor origin for the attractive
biases that we observed. The nidus of the attractive effect could instead be residual traces tied
to memory maintenance, a distinct circuit directly tied to representing sensory history, or
plausibly a sensory effect tied to the response or feedback signal presented at the end of the
trial (Akrami et al. 2018; Barbosa et al. 2020). Only through additional experiments and
analyses that control for these additional possible sources of perceptual biases can we further
refine our understanding of these processes.

By demonstrating that the influence of context-independent biases can be reliably
corrected for — while simultaneously highlighting the concerns raised if they are not — we hope
to guide future endeavors to identify the true source of history biases. In our own experiment,
we found strong evidence for an attractive bias centered on the previous response rather than
the physical identity of the stimulus. We further found evidence for this attraction extending back
6 trials and separate evidence for a repulsion from the physical identity of the stimulus for trials
2, 3, 5 and 6 trials back. This pattern matches prior observations and supports the idea that the
stimulus presentation leads to a repulsive bias at encoding while more high-level decisional
representations impose a prior of stability (Braun et al. 2018; Moon and Kwon 2022;
Papadimitriou, White, and Snyder 2016; Pascucci et al. 2019; Pegors et al. 2015; Sadil et al.
2021; Sheehan and Serences 2022; Zhang and Alais 2020; Zhang and Luo 2022). Such a
framework additionally fits with general frameworks like efficient encoding and Bayesian
inference seen in perception (Wei and Stocker 2015) and pattern separation and completion
seen in various networks across the brain (Cayco-Gajic and Silver 2019).
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Figure S1: Bias curves for N+1 and shuffled distribution for corrected (A) and uncorrected (B)
errors from Figure 4.
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Figure S2: Non-independent Stimulus Sequences. We simulated the analysis of observers
where stimulus sequences were non-independent and exhibited strong positive (top left) or
negative (bottom left) autocorrelations. Despite the presence of these strong stimulus
autocorrelations, their presence alone does not introduce any additional artifacts into our

analysis procedure.
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Figure S3: All bias curves for observer with stimulus specific repulsion. Note that the left column
is an observer that is both repelled at encoding and attracted at a later Bayesian integration stage
(aligning with previously proposed models, Fritsche et al., 2020).
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Figure S4: Expanded power analysis for observers without (top) and with (bottom) stimulus repulsion
at encoding. Here we split out observers based on the number of trials completed per observer. Power
values correspond to a=.001 for an experiment run with 30 participants.
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Figure S5: A. Full task schematic from delayed report paradigm. A Probabilistic retro-cue (80%) valid
was presented immediately after the second item followed by a 100% valid probe and an untimed
continuous report task controlled via the keyboard. Probe location initialized to a random location on
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each trial. B. Expanded stimulus and response bias curves for corrected and uncorrected errors for
different number of trials back and using shuffled distribution. C. Quantified bias fits for both
independent (no outline) and joint (magenta outline) models. Correcting errors removes spurious
biases in the shuffled distribution (right, shuffle). Joint model reveals attraction to reported stimulus
going back several trials.
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