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Abstract
Polyploidy, resulting from whole genome duplication (WGD), is widespread across
diversity, including plants, fungi, and fish. While some WGD lineages indeed thrive, WGD is

often fatal due to meiotic challenges and changes in cell physiology. Polyploid adaptation
may be facilitated by increased access to allelic variation resulting from gene flow with
parental diploid and related tetraploid lineages, as well as elevated mutation rates due to
doubled chromosomes. In this study, we aimed to deconstruct the composition and
evolutionary origins of the haplotypes displaying the strongest selection signals in
independent polyploid lineages. Specifically, we sought to investigate whether polyploid
lineages utilize their greater diversity of allelic sources by assembling mosaic haplotypes
from multiple such sources. We use two sister diploid/autotetraploid species (within-species
polyploids, Arabidopsis lyrata and Arabidopsis arenosa), first demonstrating the existence of
four independent autotetraploid lineages in these species. In each of these we see strong
signatures of selection on the same set of 17 candidate genes involved in cell cycle, meiosis,
and transcription. Interestingly, candidate adaptive haplotypes of these genes were
completely absent in their natural diploid progenitors. Instead, our analysis of 983
Arabidopsis individuals (2924 haploid genomes in 504 diploids and 479 autotetraploids)
found that these alleles were made up of fine-scaled mosaics of variants from remarkably
diverse evolutionary sources, including primarily reassortments of trans-specific
polymorphism from diploids, novel mutations, and inter-species hybridization. We speculate
that such acquisition flexibility and re-shuffling of alleles enabled tetraploids to rapidly adapt

to polyploidization, and may further promote their adaptation to environmental challenges.

Significance statement

Polyploidy, the result of genome doubling, is a massive mutation. Despite this, it is
found in many species, showing that some can rapidly adapt to this challenge. To fuel such
adaptation, polyploids may access and maintain adaptive alleles more efficiently than
diploids, acting as 'allelic sponges'. In two Arabidopsis plant species, we discovered four
different polyploid lineages that showed repeated changes in likely adaptive traits and
signatures of selection on the same set of genes. The candidate adaptive haplotypes for
these genes were not present in their diploid relatives, but instead were a mosaic assembled
from diverse allelic sources. We speculate that such increased input of alleles helped
polyploids to adapt to the process that caused this increase — polyploidy — and may also help

them adapt to external environments.
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Introduction

Whole genome duplication (WGD) is a dramatic mutation, widespread across
eukaryotes, especially in plants. It comes with significant costs, such as meiotic instability
and cell cycle changes, both of which require immediate adaptation (Doyle and Coate 2019;
Bomblies 2020). Recent work has shown that within-species WGD lineages (autopolyploids)
occasionally adapt to specific challenges involving meiotic crossover organization by
evolutionary shifts in meiosis genes (Yant et al. 2013; Bray et al. 2020; Bohutinska,
Handrick, et al. 2021; Bohutinskd, Alston, et al. 2021). Additionally, cyclin genes have been
observed to mediate tolerance to tetraploidization in WGD tumours and in proliferating
Arabidopsis tissues (Imai et al. 2006; Sterken et al. 2012; Potapova et al. 2016; Crockford et
al. 2017). While some genes mediating adaptation to WGD have been revealed and their
function has begun to be studied (Morgan et al. 2020; Morgan et al. 2022), we still lack the
evolutionary context of such variation: what are the sources of the adaptive genetic variation
and how do these variants assemble into positively selected haplotypes.

From a genetic point of view, polyploids may enjoy enhancement of particular
characteristics to aid rapid adaptation. Across studies of adaptive alleles, primary sources
include gene flow/hybridization, de novo mutation and ancestral standing variation (Fig. 1A).
Recent work points to enhancement of all of these sources after WGD (Fig. 1B). First,
polyploid lineages have reduced hybridization barriers (Marhold and Lihova 2006; Lafon-
Placette et al. 2017; Schmickl and Yant 2021), leading to increased interspecific allelic
exchange (Arnold et al. 2016; Marburger et al. 2019). Polyploids can also acquire additional
diploid alleles via introgression from their diploid sisters, whereas introgression in the
opposite direction is much less likely due to the nature of the diploid-tetraploid barrier (Te
Beest et al. 2012; Baduel et al. 2018; Morgan et al. 2021). Second, polyploids have an
elevated mutation input, due to the doubled number of chromosomes in a population of a
given census size, leading to more novel mutations per generation (Selmecki et al. 2015).
Finally, polyploids can maintain allelic diversity more efficiently due to increased masking of
recessive alleles (Ronfort 1999; Monnahan et al. 2019) providing a broader pool of standing
variation. As a consequence, polyploids may generate and maintain genetic variability at
increased rates compared to their diploid progenitors and possibly use multiple sources of
genetic variability to adapt (Fig. 1).

Beneficial alleles of a particular gene are most commonly envisioned as originating from
a single allelic source (as shown in Fig. 1 (Lee and Coop 2019)), such as introgression,
standing variation, or de novo mutation (Oziolor et al. 2019; Bohutinska, VICek, et al. 2021,
Kone€na et al. 2021; Wang et al. 2021). However, recent evidence suggests that adaptive
polymorphisms can accumulate over time in a genomic region to form a finely tuned
haplotype (McGregor et al. 2007; Archambeault et al. 2020; Seear et al. 2020; Roberts
Kingman et al. 2021). This indicates that such adaptive haplotypes may be the result of
multiple allelic sources, rather than just one. Here, we ask if polyploids use their expanded
allelic sources to construct particularly fine-scaled mosaic WGD-adaptive haplotypes.

The sister species Arabidopsis arenosa and Arabidopsis lyrata have emerged as
premiere models for understanding adaptation to WGD as they naturally exhibit variation in
ploidy (Yant and Bomblies 2017). Recent studies in A. arenosa and A. lyrata showed that
both species adapt via a similar set of genes to WGD, conspicuously genes involved in
meiosis (Yant et al. 2013; Marburger et al. 2019; Seear et al. 2020; Bohutinsk4, Handrick, et
al. 2021). Yet, limited sampling in these studies had not permitted a comprehensive
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investigation of the evolutionary origin of adaptive alleles across all involved species,
lineages and loci. While previous work revealed provocative indications that adaptive alleles,
taken as entire evolutionary units, may have originated in one source population or another
(Marburger et al. 2019), or that allelic chimerism may be involved in the construction of
adaptive alleles (Seear et al. 2020), they suffered from limited sampling (52 (Seear et al.
2020) or 92 (Marburger et al. 2019) individuals from a fraction of each species range) and no
consideration of trans-specific polymorphism (i.e. ancient genetic variants whose origin
predates speciation events, resulting in shared alleles) across Arabidopsis species. We thus do
not know to which extent de novo vs. pre-existing variation served as a source of adaptive
variation and, in particular, to which extent those processes may be jointly involved in
adaptation via assembly of mosaic adaptive haplotypes.

Here, we overcome this by utilizing an exhaustive dataset of 983 sequenced individuals
encompassing all known lineages of natural autotetraploids in European Arabidopsis,
backed by genome-wide diversity of all diploid outcrossing Arabidopsis species. Apart from
the tetraploid A. lyrata lineage from the eastern Austrian Forealps (‘Austria’ hereafter;
(Schmickl and Koch 2011; Marburger et al. 2019)), we newly analysed two tetraploid
lineages of A. lyrata from Central Europe: south-eastern Czechia (‘Czechia’ hereafter) and
Harz in Germany (‘Germany’ hereafter). We performed a joint analysis of these three A.
lyrata tetraploid lineages and tetraploid A. arenosa, which derived from a single WGD event
(Arnold et al. 2015). We used this exhaustive sampling of four independent polyploid
lineages, estalished which genes and cellular processes have been repeatedly under
selection and what are the sources of adaptive alleles in these lineages (introgression,
standing variation, de novo mutations). Using this knowledge we asked to which extent are
haplotypes, which were repeatedly selected in tetraploids, formed from a fine-scale mosaic
of multiple allelic sources.
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Fig. 1: Hypotheses about sources of adaptive alleles in a diploid-polyploid system. A: As compared to
diploids, polyploid lineages may acquire alleles via increased introgression potential, increased population-
scaled mutation rate, and higher level of retainment of ancestral polymorphism, thus behaving as ‘allelic
sponges’. For the left scenario, we show two diploid species (red), each of which gave rise to an
autotetraploid (blue) lineage (right scenario). B: Higher variability in the possible sources of adaptive alleles
suggests that adaptive polyploid haplotypes might be more likely to form from a mosaic of allelic sources
(right scenario), in contrast to the typically assumed homogeneous (single-source) scenario (left scenario).
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Results and discussion

Hybridization among tetraploid lineages of A. lyrata and A. arenosa

To be able to reconstruct allelic sources involved in adaptation to whole genome
duplication, we compiled a collection of published and newly sequenced individual-level
whole genome sequencing data of 818 individuals from 46 diploid and 61 tetraploid
populations of A. lyrata and A. arenosa, as well as 165 individuals from outgroups. Our new
sampling focused on Central European A. lyrata in order to cover all regions possibly
harbouring the tetraploid cytotype (Ansell et al. 2010; Schmickl and Koch 2011; Marburger et
al. 2019; Seear et al. 2020) as well as representative sampling of all European diploid
outcrossing Arabidopsis species. We determined ploidy using flow cytometry (Dataset S1)
and observed that autotetraploids (‘tetraploids’ hereafter) occur at geographically distinct
locations throughout the A. lyrata species range (Fig. 2). To obtain comparable and
representative samples of the Central European A. lyrata and A. arenosa populations for
selection scans, we first analyzed 154 individuals from 17 proximal diploid and tetraploid
populations (Fig. 2). First, we estimated the population structure and potential admixture of
these populations (Fig. 2). Using bootstrapped allele covariance trees (TreeMix; Fig. 2B, C),
neighbour-joining networks and Bayesian clustering (FastStructure; Fig. S1), we showed that
tetraploids consistently cluster with nearby diploid populations within each species. We
observed a single Central European tetraploid lineage in A. arenosa, in line with previous
studies (Arnold et al. 2015; Monnahan et al. 2019). We newly found that A. lyrata formed
three diploid-tetraploid lineages located in distinct regions — in Austria, Czechia, and
Germany. This suggests either independent formation and establishment of tetraploid
populations in each region or a single origin of autotetraploid A. lyrata followed by a
vicariance event and, possibly, local introgression from parapatric diploid lineages. Both
species and cytotypes maintained high genetic diversity (A. arenosa: mean nucleotide
diversity over four-fold degenerate sites (4d-1) = 0.026 / 0.024 for diploids / tetraploids; A.
lyrata: mean 4d-1t = 0.012 / 0.016 for diploids / tetraploids, respectively; Table S1). Although
Central European A. lyrata has a more scattered distribution and slightly lower nucleotide
diversity than A. arenosa, it did not show signatures of bottlenecks (Tajima’s D < 2; mean
Tajima’s D in A. arenosa = 0.01 / 0.20 for diploids / tetraploids; mean Tajima’s D in A. lyrata
=0.27 / 0.23 for diploids / tetraploids; Table S1). Altogether, our analyses found three
different tetraploid lineages in Central European A. lyrata, in addition to the previously well-
described tetraploid lineage in its sister species A. arenosa.

Next, we tested for introgression between both species using D statistics (ABBA-BABA,
(Martin et al. 2013)). While insignificant among diploids, we identified evidence of
introgression (D between = 0.106 — 0.108; Fig. 2D) between tetraploids of A. arenosa and
each of the three tetraploid A. lyrata lineages. These results are in line with previous
experimental studies: while diploids of both species exhibit strong postzygotic barriers,
polyploidy-mediated hybrid seed rescue enables hybridization between tetraploid A. arenosa
and A. lyrata (Lafon-Placette et al. 2017).

In summary, we identified four distinct tetraploid lineages in Central European
Arabidopsis, consistent with two to four independent WGD events (one in each species and
possibly up to two additional WGD events in A. lyrata). These WGD events reduced
between-species hybridization barriers, leading to interspecific gene flow between
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tetraploids. This makes hybridization among polyploid lineages a plausible source of
tetraploid-adaptive alleles in this system.
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Fig. 2: Evolutionary relationships and genomic signatures of repeated positive selection in tetraploid
populations of A. lyrata and A. arenosa. A: Locations of 17 most proximal populations of diploid and
tetraploid A. lyrata (AL Austria, AL Czechia, and AL Germany) and A. arenosa (AA CEur) in Central
Europe. Red and blue dashed lines show the ranges of diploid and tetraploid A. lyrata, respectively;
tetraploids of A. arenosa occur throughout the entire area. B, C: Phylogenetic relationships among the focal
populations of A. arenosa (B) and A. lyrata (C) inferred by TreeMix analysis. Asterisks show bootstrap
support = 100. D: Introgression among tetraploid but not diploid populations of both Arabidopsis species.
ABBA-BABA analysis demonstrating excess allele sharing between tetraploids (bottom tree), but not
diploids (top tree), of A. arenosa and each of the three A. lyrata tetraploid lineages. P1 is BDO, the earliest
diverging and spatially isolated diploid population of A. arenosa (Kolar, Fuxova, et al. 2016) and outgroup is
A. halleri from Austria. E: Using PicMin, we identified a set of 14 unlinked genes showing significant
evidence (p < 0.01) of positive selection in tetraploids (positively selected genes, PSGs). Additional three
genes, SDS, HEI10 and SYN1, were identified using a screen for candidate SNPs. F: Functional
characterisation of PSGs by STRING analysis. The network shows predicted protein-protein interactions
among the 17 PSGs. The width of each line corresponds to the confidence of the interaction prediction.
PSGs were annotated into four processes, each represented by a bubble of different colour. The 12 PSGs
with names written in bold had a sufficient number of candidate SNPs for the reconstruction of tetraploid
haplotypes (see the main text).

Genome-wide signatures of repeated adaptation to whole genome duplication

To reconstruct allelic sources required for adaptation to whole genome duplication in our
four polyploid lineages, we first needed to identify a reliable set of genes exhibiting repeated
signals of positive selection. To do so, we compared our four pairs of diploid and tetraploid
A. lyrata and A. arenosa populations (Fig. 2B, C). We identified candidate genes using
PicMin, a novel method that leverages repeated adaptation to identify robust signatures of
selection (Booker et al. 2022). We identified 54 significantly differentiated windows (PicMin
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FDR-corrected g-value < 0.01; Dataset S2), overlapping 14 unlinked candidate genes (Fig.
2E, Table S2). PicMin assumes that selection signatures affect entire genomic windows.
Therefore, to cover narrower peaks of differentiation we also performed a dedicated search
for genes harbouring highly differentiated SNPs found repeatedly in different lineages (see
methods). Such a ‘candidate SNP’ approach is able to identify genes experiencing positive
selection in tetraploids on a subset of SNPs while the evolution of the rest of the gene
sequence is constrained. It confirmed all 14 PicMin candidate genes (Table S2) and
identified three additional candidate genes (HEI10, SYN1 and SDS with three, three and two
candidate SNPs differentiated in all four tetraploid lineages, respectively; Dataset S3). Thus,
in total, we identified 14 plus three candidate positively selected genes (PSGs), exhibiting
strong signals of repeated selection in the tetraploid lineages. We note that these loci do not
cluster in regions with extreme values of recombination rate per gene, suggesting low bias
due to the recombination landscape (Fig. S2 (Burri 2017)).

To understand in which molecular processes are the 17 PSGs involved, we predicted
protein-protein interactions among them using STRING analysis (Szklarczyk et al. 2015). We
retrieved two interconnected clusters: cell cycle regulation by cyclins, and chromosome
pairing and segregation during meiosis (p < 0.001, Fisher's exact test; Fig. 2F). Despite the
high overall functional connectivity, six of the 17 PSGs were not connected in this interaction
network. Interestingly, after manual annotation using the TAIR database (Berardini et al.
2015), four of these six genes were found to be related to mRNA transcription via RNA
polymerase Il (Fig. 2F). The fifth tetraploid PSG (AT4G18490) encodes an unknown protein
which is strongly expressed in young Arabidopsis thaliana flower buds (Klepikova et al.
2016) and was reported to be co-expressed with CYCA2;3 (STRING database, last
accessed 12/21/2021). The sixth gene, AGC1.5, was not connected to any of the above-
mentioned processes, but regulates pollen tube growth (Zhang et al. 2009). We provide
further functional interpretations in Supplementary Text 1 and Fig. S3.

To summarise, the 17 tetraploid PSGs mediate processes of homologous chromosome
pairing during prophase | of meiosis, cell cycle timing and regulation of endoreduplication via
different classes of cyclins, and mRNA transcription via RNA polymerase Il. This is
consistent with results of cytological studies reporting stable meiotic chromosome
segregation in established tetraploids of A. arenosa and A. lyrata, compared to neo-
tetraploids of A. arenosa, which suggests a compensatory shift in the meiotic stability
phenotype (Yant et al. 2013; Marburger et al. 2019; Morgan et al. 2020; Seear et al. 2020;
Morgan et al. 2022). Further, we used flow cytometry and found significant phenotype
compensation in the cell cycle trait endoreduplication (Supplementary Text 2, Fig. S4, S5).
Thus, the highly interacting meiosis and cell cycle regulation PSGs likely mediate beneficial
phenotypic shifts resulting in the establishment of tetraploid lineages.

Mosaic tetraploid haplotypes are assembled from diverse allelic sources

Recent evidence suggests that polyploids may access a broader spectrum of sources of
adaptive alleles than diploids (Ronfort 1999; Selmecki et al. 2015; Arnold et al. 2016;
Monnahan et al. 2019). Here we inquired if these sources vary over fine genomic scales,
possibly resulting in polyploid haplotypes representing a mosaic of different allelic sources
(Fig. 1B).

We used our broad dataset of 2,924 sampled haploid Arabidopsis genomes (including
exhaustive sampling of all known diploid lineages; Fig. 3A, Dataset S1) to deconstruct these
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haplotypes and identify the specific allelic sources for every candidate tetraploid SNP in our
PSGs. Removing five PSGs with insufficient variation (less than five candidate SNPs), we
analysed 12 genes and 232 candidate SNPs (Dataset S4). For each gene, we reconstructed
major diploid and tetraploid ‘candidate haplotypes’ (haplotypes hereafter) using these SNPs
as haplotype markers (following (Bohutinska, Handrick, et al. 2021)). We also validated the
haplotypes using PacBio HiFi reads from five diploid and five tetraploid individuals of A.
arenosa (Dataset S4 — S6). We identified a single major tetraploid-specific haplotype for
each of the 12 candidate genes that was shared across both A. lyrata and A. arenosa
tetraploids (92-98% of their populations; Table S4). Based on estimates of the age of the
tetraploids, which range from approximately 20,000 to 230,000 generations (Arnold et al.
2015; Marburger et al. 2019), this suggests that the major tetraploid haplotype quickly
spread throughout Europe. We further identified two major diploid haplotypes for each gene,
one specific to A. lyrata and one specific to A. arenosa (Fig. 3B). Other haplotypes were of
minor frequency (Fig. 3B).

The tetraploid haplotypes for the 12 candidate genes were found at high frequency in
tetraploid populations of both species, reinforcing the evidence that they have undergone
strong selective sweeps (mean frequency = 0.62 across 61 populations; Fig. 3B, Table S4).
Interestingly, none of these 12 tetraploid haplotypes were present in any diploids, despite
exhaustive sampling including the putative source lineages of the polyploids. This indicates
that they likely assembled upon the establishment of tetraploids rather than preexisting as
standing variation in diploids.

A Locations of populations B Haplotypes in populations

shared tetraploid haplotype
A. arenosa diploid haplotype
A. lyrata d|p|0|d haplotypé
othér haplotype

N =61 pops, 479 indiv, 1916 haplotypes

il

N = 26 pops, 218 indiv, 436 haplotypes

In tetraploids

S o

N =20 pops, 121 indiv, 242 haplotypes

o™ Q 3
5E3 2
- m
$g8 g
o = =~
< <

Fig. 3: Distribution of candidate haplotypes in diploids and tetraploids of A. lyrata and A. arenosa.
A: Geographic distribution of populations used in this analysis (504 diploids and 479 tetraploids).
Arabidopsis outgroups are A. halleri, A. croatica, A. cebennensis and A. pedemontana. B: Frequency
of shared tetraploid (blue), A. arenosa diploid (light red), and A. lyrata diploid (red) haplotypes in each
of the 12 candidate genes. All other haplotypes present in the populations (including possible
recombinants of the above ones) are highlighted in grey.
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While every complete tetraploid haplotype was missing in diploids, the sources of
constitutive SNPs that made up these haplotypes were widespread within the diploids at
both the species-level and often in multiple species (Fig. 4). We therefore investigated the
possibility that the tetraploid haplotypes might be assembled from multiple allelic sources. To
do this, we determined the likely source for each candidate SNP forming these haplotypes.
Considering the extent of adaptive trans-specific polymorphism in Arabidopsis (alleles found
in diploids of multiple Arabidopsis species (Novikova et al. 2016)), we worked with the full
dataset of A. arenosa, A. lyrata and all other diploid Arabidopsis outcrossers (A. halleri, A.
croatica, A. cebennensis and A. pedemontana) (Dataset S1). Using the phylogenetic
relationships among these species (Novikova et al. 2018) and the presence/absence
information about each SNP across all 504 diploid individuals, we determined the most likely
allelic source of each of the 232 haplotype-marking SNPs (Fig. 4, Dataset S7). Surprisingly,
65.5% of the SNPs forming tetraploid haplotypes were sourced from trans-specific
polymorphism, segregating in diploids of multiple Arabidopsis species (Fig. 4A, scenarios 1-
4). Note that this number can be still underestimated if the allele remained unsampled or
went extinct in some (ghost or existing) diploid lineage. This supports the growing
recognition of the role of trans-specific standing polymorphism in adaptation (Guggisberg et
al. 2018; Marques et al. 2019)). Only 6.9% of the candidate SNPs came as standing
variation from a single diploid progenitor (A. arenosa or A. lyrata; Fig. 4A, scenarios 5, 6),
and the remaining 27.6% of SNPs possibly accumulated de novo in tetraploids or remained
unsampled in our dataset (absent in any of the 504 diploid individuals; Fig. 4A, scenario 7).
We further quantified that 35.8% of the SNPs forming the tetraploid haplotypes were likely
contributed from diploid A. arenosa (present in this species and possibly in diploids of other
species, but not A. lyrata; Fig. 4A, scenarios 2, 5), while 3.4% likely came from diploid A.
lyrata (Fig. 4A, scenarios 3, 6). Finally, during the accumulation of SNPs in tetraploids via
these source scenarios, 71.1% of SNPs were likely shared among all four tetraploid lineages
through interspecific hybridization (note that this scenario is nested with others; Fig. 4A,
scenarios 2-7). This was suggested by their presence in tetraploids and maximum one of the
diploid progenitors (diploid A. arenosa or A. lyrata) and is in line with signatures of
hybridization among tetraploids (Fig. 2D, (Marburger et al. 2019)).

The different allelic sources forming tetraploid haplotypes varied genome-wide (when
analysing all 12 PSGs together; Fig. 4A), but also within individual tetraploid haplotypes (3 —
6 scenarios per haplotype, median = 4; out of 7; Fig. 4B, C, Fig. S6). This suggests that
tetraploid haplotypes represent a combination of reuse of species-specific as well as trans-
specific SNPs, with additional input of de novo mutations after WGD (Fig. S6). Such
composite 'mosaic' haplotypes were likely spread among tetraploid lineages by
introgression. The rearrangement of diverse allelic sources into mosaic tetraploid haplotypes
may be facilitated by high recombination rates reported for these Arabidopsis species
(Hamala and Savolainen 2019; Duki¢ and Bomblies 2022) and the observation of enhanced
recombination rates in neo-tetraploid A. arenosa and A. thaliana (Pecinka et al. 2011;
Morgan et al. 2021). The mosaic scenario was further supported by reticulation in neighbour-
joining networks of the 12 PSGs (Fig. S7), in which tetraploids form a single lineage that is
connected by multiple splits to two or more diploid Arabidopsis lineages. We provide
hypotheses about the spatio-temporal context of the origin of these mosaic haplotypes in
Supplementary Text 2.
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To conclude, our deconstruction of variants forming tetraploid haplotypes suggests that
polyploids source alleles from diverse source pools, combine them during post-WGD
adaptation, and further redistribute this variation by gene flow among polyploid lineages. Our
findings indicate that interspecific introgression plays a role in shaping genome-wide
adaptive variability in polyploid species complexes, a complementary evidence to earlier
studies (reviewed in (Marhold and Lihova 2006; Schmickl and Yant 2021)).
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Fig. 4: Mosaic allelic sources of tetraploid haplotypes. A: Candidate SNPs forming tetraploid haplotypes were
categorized into one of the seven source scenarios based on their allele distribution in the 983 samples. The
most parsimonious origin of each pattern is provided in italics. Four of them (outlined by the orange frame)
involve trans-specific standing variation shared among diploids of at least two Arabidopsis species. Six of
them (outlined by a blue frame) require introgression between tetraploid lineages. Boxes ‘min 1’ show that the
tetraploid standing variation is present in at least one outgroup species. Phylogenetic relationships according
to (Novikova et al. 2018). B, C: Example alignment of inferred diploid and tetraploid haplotypes. B:
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Endoreduplication gene CYCAZ2;3. Shown are the 19 candidate SNPs used as markers to detect the
haplotype (distributed over 5371 bp). Alleles defining the haplotype are shown in capitals, two letters at a
position mark the presence of an alternative minor allele. Upper lines give position relative to the transcription
start site and gene model, with coding sequences shown as boxes (only elements overlapping with candidate
SNPs are depicted). Bottom line shows SNP assignment into its source scenario from panel A. Possible
recombination breakpoints needed to assemble the haplotype from the mosaic of sources are shown as
asterisks. C: Meiosis gene PDS5b. Shown are candidate SNPs marking the 8904 bp-long haplotype.
Description same as in panel B.

Conclusions

Here, we focused on the role of evolutionary scenarios governing the availability of
genetic variation in polyploids, leveraging our exhaustive sampling of all extant outcrossing
Arabidopsis species in Europe. Through genomic analysis of four distinct polyploid lineages,
we identified a set of genes involved in cell cycle, meiosis, and transcription that repeatedly
exhibit the strongest signals of selection. We found that for all these candidate positively
selected genes, all four tetraploid lineages of both species brought the same haplotypes to
fixation. By deconstructing the evolutionary origins of the independent SNPs forming these
haplotypes, we revealed that each haplotype reflects a fine-scale mosaic of allelic sources:
trans-specific and species-specific polymorphisms in ancestral and sister diploid species as
well as likely de novo mutations in tetraploids. Once formed in the young tetraploids, these
‘evolutionary mosaic' haplotypes were shared by introgression among the tetraploids, and
spread across Europe.

In sum, we demonstrated that widespread re-shuffling of trans-specific, species-specific
and novel variation was rapidly leveraged in response to severe intracellular challenges
accompanying WGD. Our case illustrates how polyploid lineages can use their increased
capacity to accumulate genetic variation from different sources to rapidly and efficiently
create new adaptive haplotypes. This haplotype assembly process, however, is not
exclusive to polyploids, as accumulation of multiple adaptive changes into finely tuned
haplotypes was also reported for diploids (McGregor et al. 2007; Archambeault et al. 2020;
Roberts Kingman et al. 2021). Yet, the tetraploid Arabidopsis case is exceptional by its
magnitude, as we found mosaic selected haplotypes for an entire suite of functionally and
often physically interacting genes. Recent research in various plant and animal species has
already shown that there is a significant variability in the extent to which standing,
introgressed, and de novo allelic sources contribute to repeated adaptation at the level of
entire genes (Bohutinska, VICek, et al. 2021; Konecna et al. 2021; Wang et al. 2021; Moran
et al. 2022). The magnitude of the mosaic haplotypes found in tetraploid Arabidopsis
suggests that evolutionary pathways to adaptation may be even more variable if the
assembly of individual variants into haplotypes is taken into account.
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368 Methods
369 Sampling
370 The genus Arabidopsis, including the most researched plant model A. thaliana and

371 multiple other model species, is primarily diploid. However, autotetraploids were found in A.
372 arenosa and A. lyrata at several places throughout their natural range in Central Europe.
373  While diploids and tetraploids of A. arenosa are widespread and form large populations, A.
374 lyrata occupies a narrow, refugial ecological niche in Central Europe (Schmickl and Koch
375 2011). It was proposed that introgression between tetraploids of A. arenosa and A. lyrata
376 enabled tetraploids of A. lyrata to increase the genetic differentiation from their diploid

377 progenitors and escape this narrow niche (Schmickl and Koch 2011; Marburger et al. 2019).
378 Here, we sampled and re-sequenced genomes of diploid as well as adjacent tetraploid
379 populations from all known diploid-tetraploid lineages in Central European Arabidopsis. In
380 total, we sequenced genomes of 73 diploid and tetraploid individuals of both species and
381 complemented them with additional 910 published (Novikova et al. 2016; Hamala et al.

382 2017; Mattila et al. 2017; Novikova et al. 2017; Guggisberg et al. 2018; Hamala et al. 2018;
383 Marburger et al. 2019; Monnahan et al. 2019; Preite et al. 2019; Bohutinskd, VICek, et al.
384 2021; Konec€na et al. 2021) whole genome sequences of these species and outgroup

385 species, totaling 983 individuals and 129 populations (Dataset S1, Dataset S7). Ploidy of
386 each sequenced individual was checked using flow cytometry following (Kolé¥, Lu¢anova, et
387 al. 2016).

388 Population genetic structure

389 Samples were sequenced on lllumina HiSeq X Ten, mapped to the reference genome of
390 A. lyrata (Hu et al. 2011), and processed following (Monnahan et al. 2019; Bohutinska,

391 VICek, et al. 2021).

392 We inferred relationships between populations using allele frequency covariance graphs
393 implemented in TreeMix v. 1.13 (Pickrell and Pritchard 2012). A. arenosa was rooted with
394 the diploid Pannonian population BDO and A. lyrata with the diploid Scandinavian population
395 LOM. To obtain confidence in the reconstructed topology of A. arenosa and A. lyrata trees
396 (Fig. 1B, C), we bootstrapped the trees, choosing a bootstrap block size of 1000 bp,

397 equivalent to the window size in our selection scans (see below), and 100 replicates.

398 Further, we used the model-based method FastStructure (Raj et al. 2014). We randomly
399 sampled two alleles per tetraploid individual, using a custom script. This approach does not
400 appear to bias clustering in autotetraploid samples based on (Stift et al. 2019). Finally, we
401 displayed genetic relatedness among individuals using principal component analysis (PCA)
402 as implemented in adegenet (Jombart 2008). We calculated genome-wide four-fold

403 degenerate (4d) within-population metrics (nucleotide diversity (11) and Tajima’s D (Tajima
404 1989)) using the python3 ScanTools_ProtEvol pipeline (available at

405 github.com/mbohutinska/ScanTools_ProtEvol, (Bohutinskd, VICek, et al. 2021)).

406 To test for introgression, we used the ABBA-BABA test as described in (Martin et al.

407 2013) and in an associated pipeline (available at

408 github.com/simonhmartin/tutorials/tree/master/ABBA_BABA_whole_genome).

409 Only four-fold degenerate sites genotyped by an individual read depth >8 were

410 considered, and sites genotyped in fewer than 80% of individuals were excluded, resulting in
411 a dataset of ~75,000 genome-wide SNPs. We tested for introgression from tetraploid A.

412 arenosa to each A. lyrata tetraploid lineage separately. For P1 (the putative non-admixed

12
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population), we used the early diverging and spatially isolated diploid Pannonian lineage of
A. arenosa (Kolaf, Fuxova, et al. 2016), population BDO. Allele frequencies were polarised
using the diploid outgroup A. halleri, population GUN.

Genome-wide scans for positive selection

To identify candidate genes that underwent positive selection in tetraploids (positively
selected genes, PSGs), we used two selection scan methods based on population allele
frequencies and applicable to both diploid and autopolyploid populations (Booker et al. 2022;
Bohutinské et al. 2023).

First, we used the PicMin software (available at github.com/TBooker/PicMin) to analyze
population genomic data for all four tetraploid lineages, calculating Fst (Hudson et al.

1992) between diploid and tetraploid population pairs in 1 kb windows across the genome.
We performed PicMin on all windows that had data for at least three lineages (86,249
windows in total). We then applied a genome-wide false discovery rate correction to the
resulting p-values, with aadp set to 0.05, considering windows with FDR-corrected p-values
of 0.01 and lower as significant. If a selection sweep spanned multiple adjacent windows, we
retained only the window with the lowest p-value and highest overall Fst.

Second, we used a ‘candidate SNP’ approach. We calculated SNP-based Fst between
diploid and tetraploid population pairs within each lineage, and used the 1% outlier threshold
to identify the most ploidy-differentiated SNPs genome-wide. Then we calculated the density
of such candidate SNPs per gene, using A. lyrata gene models (Rawat et al. 2015). We
identified the upper quartile of genes with the highest density of outlier SNPs as candidate
genes, and used Fisher's exact test (SuperExactTest (Wang et al. 2015) package in R) to
identify repeatedly selected candidates.

All genes identified with PicMin were also identified using the candidate SNP approach
and showed distinct peaks of increased differentiation in the genome. Further, they were not
biased towards regions with low recombination rate, as estimated based on the available A.
lyrata recombination map (Hamala et al. 2018). This corresponds well with outcrossing in
both species and high nucleotide diversity that aids adaptive gene detection (Yant and
Bomblies 2017).

Functional annotation

To infer functions significantly associated with tetraploid PSGs, we performed gene
ontology (GO) and UniProt Keywords enrichment analyses using the STRING database
(https://string-db.org/, last accessed 12/21/2021, (Szklarczyk et al. 2015)). We used A.
thaliana orthologs of A. lyrata genes. Only categories with FDR < 0.05 were considered. We
also manually searched for functional descriptions of each gene using the TAIR database
and associated literature (Berardini et al. 2015). Finally, to identify potential protein-protein
interactions among our 17 candidate genes, we used the "multiple proteins" search in the
STRING database (Szklarczyk et al. 2015), including text mining, experiments, databases,
co-expression, neighbourhood, gene fusion, and co-occurrence as information sources. We
retained only 1st shell interactions (proteins directly associated with the candidate protein).

Haplotype analysis

We searched for the presence of diploid and tetraploid haplotypes in A. lyrata and A.
arenosa populations using a procedure from (Bohutinska, Handrick, et al. 2021). Briefly, this

13


https://github.com/TBooker/PicMin
https://doi.org/10.1101/2023.01.11.523565
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.11.523565; this version posted March 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

made available under aCC-BY-NC 4.0 International license.

involved reconstructing lineage-specific haplotypes and their allele frequencies for a set of
linked candidate SNPs within each tetraploid PSG (subsetted to genes with five or more
candidate SNPs; 12 genes with 232 candidate SNPs in total). For each PSG, with n
candidate SNPs in the dataset of 218 / 121 diploids of A. arenosa and A. lyrata, respectively,
and 479 tetraploids, we defined Mi to be the major allele frequency at the candidate SNP /.
Given that the sample consists of 1916 tetraploid haplotypes and 436 / 242 diploid
haplotypes, this major allele frequency corresponds to the tetraploid allele, thus we define
the derived (i.e. tetraploid) haplotype frequency as minimum over n allele frequencies
(HAFd=min{Mi}), and consequently, we define the ancestral (i.e. either A. arenosa or A.
lyrata diploid) haplotype allele frequency as HAFa=1 — max{Mi}. We further define the
frequency of all other haplotypes, which result from recombination of the two previous, as
HAFr=1-HAFa-HAFd. All calculations were performed using our in-house R script (available
at github.com/mbohutinska/repeatedWGD, section "Haplotype AF").

We used this allele frequency-based approach because standard phasing procedures
were not reliable with our short read data and tetraploid samples (Kyriakidou et al. 2018).
We also verified our haplotype analysis using long read assemblies of the 12 PSGs from five
diploid and five tetraploid samples. The sequences of 12 PSGs (Dataset S5) were extracted
from newly produced diploid and tetraploid assemblies by performing a BLASTn v2.10.0 on
each assembly. Extracted diploid and tetraploid haplotype sequences were aligned using
MUSCLE and visualised with IGV v2.11.9 to proceed with haplotype analysis. Further, long
reads were aligned to the assemblies to validate if diploid and tetraploid candidate SNP
alleles are physically linked on the same read, as determined by our short read-based
analysis. Indeed, diploid and tetraploid haplotypes assembled from long reads were
consistent with the diploid and tetraploid haplotypes combined based on allele frequencies at
candidate SNPs (Dataset S4 — S6).

Allelic sources of tetraploid haplotypes

To determine whether the tetraploid haplotypes in our study originated from a mosaic of
allelic sources or from a single source, we used two approaches: (i) reconstructing the allelic
sources of tetraploid SNPs across the ancestral diploid lineages (Novikova et al. 2016) and
(i) reconstructing networks of genetic distances at the PSG regions (Jombart 2008).

First, to identify the allelic sources of tetraploid haplotypes, we searched for tetraploid
variants among diploid individuals. We worked with a complete genetic dataset of A. lyrata
and A. arenosa (339 diploid individuals) and their outcrossing relatives A. halleri, A. croatica,
A. cebennensis and A. pedemontana (‘diploid outgroups’ hereafter, 165 individuals; Dataset
S1). We filtered out singletons, i.e. the variants which occurred only once in the species,
which could be potential sequencing errors (note that results did not change significantly
when we included singletons in the analysis; Fig. S6). Then we used the phylogenetic
relationships among these species (Fig. 5A, (Novikova et al. 2018)) and the
presence/absence information about each SNP across all 504 diploid individuals to
determine the most likely allelic source of each of the 232 candidate SNPs. Specifically, we
distinguished between seven different scenarios (Fig. 5A): 1) trans-specific polymorphism in
both A. lyrata and A. arenosa, 2) trans-specific polymorphism in A. arenosa only (tetraploid
SNP occurs in A. arenosa but not A. Ilyrata diploids and in one to all diploid outgroups), 3)
trans-specific polymorphism in A. lyrata only (tetraploid SNP occurs in A. lyrata but not A.
arenosa diploids and in one to all diploid outgroups), 4) trans-specific polymorphism in the

14


https://doi.org/10.1101/2023.01.11.523565
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.11.523565; this version posted March 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

501 outgroup species only, 5) A. arenosa-specific polymorphism, 6) A. lyrata-specific

502 polymorphism, 7) de novo origin in tetraploids/unsampled in diploids. It is noteworthy that a
503 rarefaction analysis in (Bohutinska, Handrick, et al. 2021) suggests that as little as 40 diploid
504 individuals sampled across the A. arenosa species range is enough to cover most of its

505 diploid diversity. Thus, our comprehensive dataset of 504 diploid individuals (218 of A.

506 arenosa, 121 of A. lyrata, and 165 of outgroups) should be sufficient to estimate the

507 complete natural diversity of diploids. Finally, here we distinguish between trans-specific and
508 species-specific variability at the diploid level, which reflect ancestral allele sharing rather
509 than recent introgression. Still, it is important to note that, ultimately, any tetraploid SNP

510 identified here represents trans-specific polymorphism, as it is shared between tetraploids of
511 two species, A. arenosa and A. lyrata.

512 As an independent evidence for the evlutionary history of tetraploid haplotypes, we also
513 reconstructed networks based on genetic distance (Nei's distance, (Nei 1972)) using the

514 adegenet package for R, and we displayed the resulting neighbour joining networks using
515 SplitsTree.

516 Data Availability

517 Sequence data that support the findings of this study are deposited in the NCBI

518 (https://www.ncbi.nim.nih.gov/bioproject/) under BioProjects PRINA284572, PRINA309929,
519 PRJINA357693, PRINA357372, PRINA459481, PRINA493227, PRIJEB34247 (ENA),

520 PRJNA506705, PRINA484107, PRINA592307, PRINA667586, PRINA929698. See

521 Dataset S1 for individual codes.
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