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Abstract

In our previous work, we have developed LSTM_Pep to generate de novo potential
active peptides by finetuning with known active peptides and developed DeepPep to
effectively identify protein-peptide interaction. Here, we have combined LSTM_Pep
and DeepPep to successfully obtained an active de novo peptide
(ARG-ALA-PRO-GLU) of Xanthine oxidase (XOD) with 1C50 value of 3.76mg/mL,
and XOD inhibitory activity of 64.32%. Consistent with the experiment result, the
peptide ARG-ALA-PRO-GLU has the highest DeepPep score, this strongly supports
that we can generate de novo potential active peptides by finetune training LSTM_Pep
over some known active peptides and identify those active peptides by DeepPep
effectively. Our work sheds light on the development of deep learning-based methods
and pipelines to effectively generate and obtain bioactive peptides with a specific
therapeutic effect and showcases how artificial intelligence can help discover de novo

bi oactive peptides that can bind to a particular target.
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I ntroduction

Hyperuricemia is increasing prevalence in the globe, especially in Asian countries”.
Xanthine oxidase (XOD) is a therapeutic target of hyperuricemia®. This enzyme was
required to produce uric acid through the breakdown of purine nucleotides. Its
inhibitors are used in the clinical treatment of hyperuricemia®. Xanthine oxidase
inhibitors include purine analogues and others. Many natural products have been
found to inhibit xanthine oxidasein vitroor in model animals, for
instance, kaempferol, myricetin, and quercetin®.

Many peptides also can inhibit Xanthine oxidase and many of them are derived from
protein hydrolysates of food >°. For instance, FPSV and FPFP from round scad
(Decapterus maruadsi) protein hydrolysates exhibited XOD inhibitory activity’. A
novel peptide named RDP1 (AAAAGAKAR) from the extract of shelled fruits of
Oryza sativa could significantly reduce the serum uric acid and aleviate
hyperuricemic in rats by inhibiting XOD, and RDP1 showed no toxicity in rats’.

Deep learning techniques have been widely applied in biological related fields.
Recently, we have developed LSTM_pep for de novo potential bioactive peptide
generation through finetune training over known active peptides, and DeepPep for
prediction of whether given protein-peptide are binding®. The combination of
LSTM_Pep and DeepPep can provide an effective way to generate and screen
potential active peptides for given protein targets.

In this work, we successfully identified a de novo active peptide of OXD by using
LSTM_pep and DeepPep together, and this active peptide (ARG-ALA-PRO-GLU)
turn out to have the top DeepPep score.

Method
Screening de novo peptides for Xanthine oxidase (XOD) by LSTM_pep and
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DeepPep

To further demonstrate the strong power of the combination LSTM_Pep and
DeepPep in identifying de novo peptides, we efficiently finetune training, generating,
and screening to obtain potential de novo peptide inhibitors of XOD by LSTM_pep
and DeepPep. We obtain 19 known active peptides of XOD from literature reports,
shown in Table 1. We finetune training LSTM_Pep over these peptides and generate
5000 de novo peptides. After removing redundancy and peptides same as the training
set, we finally obtained 821 peptides sequence. Then, we built 3D structure of the 821
peptides by TrRosetta software™.

Table 1. The information of 19 known peptide inhibitors of XOD. Their source, sequence,

inhibitor activity/IC50, and reference were listed.

Polypeptide Inhibitory activity of Studies
Number Source
sequence XO /ICso conducted
Extract of shelled the inhibitory activity of
1 fruits of Oryza AAAAGAKAR RDP1(1 mg/mL) was 8
sativa 3/4 out of allopurinol

Pleurotus
2 FCH 0.9 mg/mL 1

ostreatus
3 w 1259.8+84.5 pmol/L 12
4 Wwv 1301.7+£336.7 pmol/L 12

Lactoferrin

1195.7£131.5
5 VW 12
pmol/L

6 Walnut protein WDD 241 +£0.02 mM 13
7 hydrolysate HCPF 15.07 £ 1.74 mM 13
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8 WwDQW 0.95+0.01 mM 13
9 PPKNW 2.21+0.04 mM 13
10 WPPKN 2.06 £ 0.05mM 13
11 ADIYTE 7.37 £0.14 mM 613
12 WSREEQE 1.88 £0.004 mM 6.13
13 PGACSN 14

the inhibitory activity of
Bonito
WML (20 Mm) was
14 hydrolysates WML 14
comparable to that of

40uM allopurinol

Tuna protein

15 FH 25.7 mmol/L 15
hydrolysates

16 Scomberomorus IIAPPER 6.08 mg/mL 16

17 niphonius protein | AGFAGDDAPR 6.15 mg/mL 16
Skipjack tuna

18 ACECD 7.23 mg/mL 17
hydrolysates

Tilapia skin
19 TSPW 3.51 mg/mL 18
collagen

We obtain XOD's ligand binding domain from the PDB database (PDBid 3nvy™,
C chain, with cofactor MTE, MOS). The 821 obtained peptides’ 3D structure were
then docked into the pocket of XOD with ZDOCK, the docked result contains 2000

binding conformation with docking scores. The top 200 docked conformations (by
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ZDOCK score) for each peptide-XOD pair were transferred into the figure-like matrix
as input of the DeepPep. Finally, DeepPep was used to predict the binding possibility
of these 200 conformations, and select the top prediction as the peptide-XOD pair
score, and the corresponding conformation as the predicted binding pose. In such a
way, we have scored and ranked all the peptide-XOD pairs. Finally, we obtain a
candidate list with all de novo peptides that have DeepPep score larger than a cutoff
value (eg. 0.9), and five with top scores are selected for further experimental

validation.

M easurement of XOD inhibitory activity

XOD activity assay was conducted according to the method® with slight
modifications. Briefly, XOD (30 uL, 0.1 U/mL) was incubated with various amounts
of the samples in phosphate buffer (0.05 mol/L, pH 7.5) at 37 °C for 5 min before the
reaction. Then, the enzymatic reaction was started by adding 60uL of substrate
xanthine (150 uM) to the mixture. The final absorbance measurement was read at 295
nm for calculating the enzyme activity. The XOD inhibitory activity in the enzymatic
reaction was estimated as

Inhibition% = (Ap—A¢)/Ap x 100%

where Ay, is the absorbance of the control and A is the absorbance of samples. The
ICso Obtained from the inhibition curve represents the concentration of an inhibitor

that inhibits 50% of X O activity.

The predicted peptides for Xanthine oxidase (XOD) and experimental validation
results

Hyperuricemia can lead to several serious diseases, including gout(a common form of
inflammatory arthritis), cardiovascular disease, diabetes, and kidney disease®. In
order to obtain de novo peptide inhibitors of XOD to combat hyperuricemia, we
combine LSTM _Pep, DeepPep, and the experimental method together to generate and
screen de novo XOD peptides efficiently in a step-by-step pipeline, shown in Figure 1.


https://doi.org/10.1101/2023.01.11.523536
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.11.523536; this version posted January 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

we finetune training our LSTM_pep over 19 known active peptides of XOD, and
using the obtained LSTM_Pep to generate 821 unique new potential Peptides, as
shown in Figure 7A. The 821 unigue new peptides were modeled into the 3D
structures by TrRosseta software. Then, we docked those 3D peptide structure into
XOD pocket, shown in Figure 7B. For each docking result, we obtain the top 100
zdock conformations for further DeepPep prediction. In other words, the DeepPep has
carried a total of 82100 times predictions. Finaly, we obtained a candidate list with
DeepPep prediction score, among them 11 peptides have score values reached above
0.92, shown in Figure 3C. Finally, we select the top 5 candidates for experimental
validation. The experimental results show that ARG-ALA-PRO-GLU has an
inhibitory activity value of 64.31 and IC50 of 3.76 mg/mL, which is a very
encouraging result, indicating ARG-ALA-PRO-GLU could be a good start for future

modification to achieve even higher affinity.
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Figure 1. The workflow of combination LSTM_Pep and DeepPep in identifying
de novo active peptides of XOD. Panel A, finetune training the LSTM_Pep model
with 19 known active peptides of XOD, and generated 821 de novo peptides by
finetune trained model; Panel B, building 3D structure for the generated de novo
peptides by TrRosetta, then Zdock was used to dock the peptides into the pocket
region of XOD (with cofactor MTE, MOS), for each docking, we selected top 100
conformations from total 2000 conformation; Panel C, DeepPep was used to predict
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the binding possibility of selected conformations, and score each XOD-peptide
binding pair; Panel D, the top five predictions were selected for experimental
validation.

Conclusion

We find combined LSTM_Pep and DeepPep can generate and screen de novo active
peptide very efficiently, and applying these two methods in target Xanthine oxidase
led to the successfully discover an active de novo peptide (ARG-ALA-PRO-GLU).
This work supports the practical usage of LSTM_Pep and DeepPep in accelerating the

finding of active de novo peptides for a given therapeutic protein targets.
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