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Abstract6

Mendelian randomization (MR) is an instrumental variable approach used to infer7

causal relationships between exposures and outcomes and can apply to summary data8

from genome-wide association studies (GWAS). Since GWAS summary statistics are9

subject to estimation errors, most existing MR approaches suffer from measurement10

error bias, whose scale and direction are influenced by weak instrumental variables11

and GWAS sample overlap, respectively. We introduce MRBEE (MR using Bias-12

corrected Estimating Equation), a novel multivariable MR method capable of simul-13

taneously removing measurement error bias and identifying horizontal pleiotropy. In14

simulations, we showed that MRBEE is capable of effectively removing measurement15

error bias in the presence of weak instrumental variables and sample overlap. In16

two independent real data analyses, we discovered that the causal effect of BMI on17

coronary artery disease risk is entirely mediated by blood pressure, and that exist-18

ing MR methods may underestimate the causal effect of cannabis use disorder on19

schizophrenia risk compared to MRBEE. MRBEE possesses significant potential for20

advancing genetic research by providing a valuable tool to study causality between21

multiple risk factors and disease outcomes, particularly as a large number of GWAS22

summary statistics become publicly available.23
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1 Introduction26

Mendelian randomization (MR) is an epidemiological approach that leverages genetic vari-27

ants as instrumental variables (IVs) to infer causal relationships between exposures and28

outcomes, reducing confounding and reverse causation, while providing a cost-effective,29

ethical, and generalizable alternative to randomized controlled trials (Burgess et al., 2015;30

Sanderson et al., 2022; Zhu, 2020). Originally developed for application in individual-level31

data (Sanderson et al., 2022), MR can also be applied to summary-level statistics obtained32

from genome-wide association studies (GWAS) and has therefore become increasingly pop-33

ular to infer causality of disease risk factors (Zhu, 2020), identify biological drug targets34

(Gill et al., 2021), and causal effects of genes on phenotypes (van Der Graaf et al., 2020).35

Inverse-variance weighting (IVW) (Burgess et al., 2013) is the fundamental approach to36

perform MR with GWAS summary data, the validity of which relies heavily on three so-37

called valid IVs assumptions: the genetic IVs are (i) strongly associated with the exposures,38

(ii) not directly associated with the outcome conditional on the exposures, and (iii) not39

associated with any confounders of the exposure-outcome relationships. Violations of the40

(i) - (iii) assumptions will respectively introduce weak instrument (Burgess et al., 2011),41

uncorrelated horizontal pleiotropy (UHP) (Zhu, 2020), and correlated horizontal pleiotropy42

(CHP) (Morrison et al., 2020) biases into the casual effect estimation of IVW.43

From a statistical standpoint, both UHP and CHP in an MR model exhibit charac-44

teristics similar to outliers in traditional regression analysis, and hence can be addressed45

by applying robust tools. In the literature, MR pleiotropy residual sum and outlier (MR-46

PRESSO) (Verbanck et al., 2018) and iterative MR pleiotropy (IMRP) (Zhu et al., 2021)47

intend to detect and remove potential horizontal pleiotropy through hypothesis tests, while48

MR-Median (Bowden et al., 2016), MR-Robust (Rees et al., 2019), and MR-Lasso (Kang49

et al., 2016) attempt to mitigate UHP/CHP effects by using robust loss functions. Al-50

ternatively, Gaussian mixture models have been employed by MRMix (Qi and Chatterjee,51

2019), MR contamination mixture (MR-Conmix) (Burgess et al., 2020), causal analysis us-52

ing summary effect (CAUSE) (Morrison et al., 2020), MR constrained maximum likelihood53

(MR-CML) (Xue et al., 2021), and MR with correlated horizontal pleiotropy unraveling54

shared etiology and confounding (MR-CUE) (Cheng et al., 2022) to reduce UHP and CHP55

biases. An advantage of a Gaussian mixture model beyond robust tools is that it uses56

smaller degrees of freedom to describe the UHP and CHP and hence is more efficient if the57

mixture models are correctly specified.58

While the aforementioned single-exposure MR methods allow for some IVs to exhibit59

horizontally pleiotropic effects, they typically assume that the overwhelming majority of IVs60

influence the outcome solely through the mediation of the exposure. However, considerable61
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evidence suggests that common human traits share a significant amount of causal vari-62

ants, such as systolic blood pressure (SBP) and diastolic blood pressure (DBP) (Zhu et al.,63

2022), making it difficult to satisfy this assumption in reality. A more robust, straightfor-64

ward, and computationally efficient way to mitigate the effect of horizontal pleiotropy is65

to employ multivariable MR, which can account for a majority of horizontally pleiotropic66

variants shared by multiple exposures. To date, multivariable versions of IVW (Burgess67

and Thompson, 2015), MR-Egger (Rees et al., 2017), MR-Median (Bowden et al., 2016),68

and MR-Robust (Grant and Burgess, 2021) have been developed. As demonstrated in69

an examination by Sanderson et al. (2019), multivariable MR is a reliable tool for esti-70

mating the direct causal effects of one or more exposures, using either individual-level or71

summary-level data.72

However, multivariable MR is often subject to substantial weak instrument bias because73

the instruments only need to be associated with one exposure in a set for them to be74

considered to satisfy assumption (i) in practice. In other words, the set of IVs used in75

multivariable MR is the union set of exposure-specific IV sets used in univariable MR. As76

GWAS sample sizes become larger, increasing numbers of causal variants with moderate or77

small effects are being identified, making weak instrument bias – the violation of assumption78

(i) – more significant and difficult to disregard. For instance, Yengo et al. (2022) detected79

12,111 independent variants in a height GWAS with 5.4 million participants, while Okbay80

et al. (2022) found nearly 3,952 independent variants in an educational attainment GWAS81

with 3.0 million participants. Since the heritability of a trait is fixed, the average variance82

explained by each causal variant should be small if there are thousands of them, which thus83

causes a significant weak instrument bias in MR. The traditional solution to mitigate the84

weak instrument bias is to discard IVs with small effect sizes such that the F- or conditional85

F-statistic of the remaining instruments exceeds 10, which approximately guarantees that86

the relative bias in causal effect estimation remains within 10% (Burgess et al., 2011;87

Sanderson et al., 2021). However, excluding instruments with weaker effects can result88

in a “winner’s curse”, which alternatively inflates the bias in causal estimation (Sadreev89

et al., 2021). Additionally, the statistical principle underlying how weak IVs lead to biased90

causal effect estimation has not been well understood, especially when multiple exposures91

are included in MR.92

Measurement error bias occurs when explanatory variables are measured with random93

error, which generally exists in all statistical models including linear and generalized linear94

regression models, and leads to biased estimates of model parameters (Yi, 2017). Since cur-95

rent MR approaches are performed with GWAS summary statistics that contain estimation96

errors, the causal effect estimates can suffer from measurement error bias (VanderWeele97

et al., 2014; Ye et al., 2021). Weak IVs can further worsen this bias since the degree of98

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.01.10.523480doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523480
http://creativecommons.org/licenses/by/4.0/


(B) Capabilities of existing MR methods in different conditions

Weak 

IVs

Sample 

overlap

Measurement 

error
UHP CHP

Additional 

exposures

Single exposure methods

d-IVW [26] Y N Y N N N

MRMix [15] N N Y Y Y N

IMRP/MRPRESSO [20,22] N N N Y Y* N

CAUSE/MR-CUE [7,16] Y Y Y Y Y* N

MR-Corr [19] N N Y Y Y* N

MR-CML [27] N N Y Y N N

MR-Lap [54] Y Y Y N N N

Multiple exposure methods

IVW/MR-Egger [21,38] N N N N N Y

MR-Robust/Lasso/Median [23,24] N N N Y Y* Y

MRBEE Y Y Y Y Y* Y

                                                         

          

                                     

            
 

          

            
 
   

      
          

            
 
   
      

(C) Bias in univariable MR compared to multivariable MR
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(A) MRBEE Flowchart
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Figure 1: (A): Flowchart illustrating the principles behind and implementation of MR-
BEE. (B): Bias addressed by currently available MR methods. ‘N’: cannot address. ‘Y’:
can fully address. To be ‘Y’, ‘Y*’ requires that assumptions about the behavior of CHP
IVs are met. (C): Situations in which univariable MR with IVW cannot reliably estimate
direct causal effects. Multivariable IVW can more reliably estimate direct causal effects,
but still suffers from bias. Horizontal gray and red lines respectively indicate true direct
effects of exposure 1 and 2. Boxplots are causal estimates from simulation with true re-
lationships represented by the corresponding directed acyclic graphs above the boxplots.
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measurement error bias is proportional to the ratio between the true genetic effect size and99

the standard error of its estimate. This is the primary reason why violating assumption100

(i) introduces bias into causal effect estimates in IVW and other MR approaches. Further-101

more, unlike traditional measurement error analyses that require uncorrelated estimation102

errors in exposures and outcomes, overlapping individuals in exposure and outcome GWAS103

can result in correlated measurement errors, making the direction of measurement error104

bias not always toward zero. This is the key reason why, in empirical studies such as Fig-105

ure 1 in Burgess et al. (2016), IVW estimates exhibit negative bias with small numbers of106

overlapping samples and positive bias with large numbers of overlapping samples.107

In this paper, we propose a multivariable MR method, MR using Bias-corrected Es-108

timating Equations (MRBEE), to eliminate measurement error bias while simultaneously109

accounting for horizontal pleiotropy in the presence of many weak IVs. In contrast to exist-110

ing methods that only address measurement error bias in specific cases such as no sample111

overlap (debiased IVW; Ye et al. (2021)) or no horizontal pleiotropy (MRlap; Mounier112

and Kutalik (2023)), MRBEE offers a comprehensive solution to measurement error bias,113

accommodates sample overlap, and adapts to both univariable and multivariable MR mod-114

els. Through numerical simulations, we demonstrate that MRBEE is capable of estimating115

causal effects without bias across various real-world conditions. To exhibit its practical116

significance, we perform two independent real data analyses using MRBEE, first estimat-117

ing the causal effects of cardiometabolic risk factors on coronary artery disease risk in two118

populations, and secondly estimating the causal effects of modifiable and non-modifiable119

risk factors for schizophrenia and bipolar disorder. A parallel study in Yang et al. (2023)120

provides more extensive theoretical investigations of bias in multivariable MR and the121

asymptotic properties of IVW and MRBEE.122

2 Materials and methods123

2.1 Multivariable Mendelian randomization model124

Let gi = (gi1, . . . , gim)¦ be a vector of m independent genetic variants where each variant125

is standardized with mean zero and variance one, xi = (xi1, . . . , xip)
¦ be a vector of p126

exposures, and yi be an outcome. Consider the following linear structural model:127

xi = B¦gi + ui, (1)

yi = θ¦xi + γ¦gi + vi, (2)
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where B = (β1, . . . ,βm)¦ is an (m × p) matrix of genetic effects on exposures with128

βj = (´j1, . . . , ´jp)
¦ being a vector of length p, θ = (¹1, . . . , ¹p)

¦ is a vector of length129

p representing the causal effects of the p exposures on the outcome, γ = (µ1, . . . , µm)¦ is130

a vector of length m representing horizontal pleiotropy, which may violate the (IV2) or131

(IV3) conditions, and ui and vi are noise terms. Substituting for xi in (2), we obtain the132

reduced-form model:133

yi = g¦

i α + u¦

i θ + vi, (3)

where134

α = Bθ + γ. (4)

In practice, ui and vi are usually correlated, and hence traditional linear regression between135

xi and yi cannot obtain a consistent estimate of θ. In contrast, the genetic variant vector gi136

is generally independent of the noise terms ui and vi because the genotypes of individuals137

are randomly inherited from their parents and do not change during their lifetime (Lawlor138

et al., 2008). Hence, gi can be used as IVs to remove the confounding effect of ui and vi.139

Since large individual-level data from GWAS are less publicly available, most of the140

current MR analyses are performed with summary statistics of IVs through the following141

linear regression:142

³̂j = β̂¦

j θ + µj + εj, (5)

where ³̂j and β̂j are respectively estimated from the outcome and exposure GWASs, µj is143

the horizontal pleiotropy, εj represents the residual of this regression model, and j = 1, ...,m144

referring to the m IVs. IVs in MVMR are selected based on evidence of nonzero association145

with at least one exposure (Sanderson et al., 2019), meaning that some IVs may not be146

associated with all exposures. Multivariable IVW, which serves as the foundation of most147

existing MR approaches, estimates θ by148

θ̂IVW = arg min
θ

{
(α̂− B̂θ)¦V−1(α̂− B̂θ)

}
(6)

where V is a diagonal matrix consisting of the variance of estimation errors of α̂. In149

practice, it is routine to standardize ³̂j and ˆ́
jk by ³̂j/se(³̂j) and ˆ́

js/se( ˆ́
jk) to remove the150

minor allele frequency effect (Zhu et al., 2022). With this standardization, the multivariable151
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IVW is indeed an ordinary least squares (OLS) estimate which estimates θ by152

θ̂IVW = arg min
θ

{
∥α̂− B̂θ∥22

}
(7)

whose close-form expression is θ̂IVW = (B̂¦B̂)−1B̂¦α̂.153

2.2 Bias of Multivariable IVW estimate154

However, the mutivariable IVW estimate θ̂IVW is biased due to the estimation errors of ³̂j155

and β̂j in GWAS:156

³̂j = ³j + wαj
, (8)

β̂j = βj + wβj
. (9)

To see this, we consider the estimating equation and Hessian matrix of θ̂IVW:157

SIVW(θ) = B̂¦(B̂θ − α̂), HIVW = B̂¦B̂. (10)

That is, SIVW(θ) is the score function of (7) and θ̂IVW is estimated by solving SIVW(θIVW) = 0,158

and HIVW is the 2nd derivative matrix of (7). Since θ̂IVW − θ = −H−1
IVWSIVW(θ), the bias of159

θ̂IVW is approximately (Yang et al., 2023):160

E(θ̂IVW − θ) ≈ (cov(βj) + cov(wβj
))−1

︸ ︷︷ ︸
weak instrument bias

(cov(wβj
)θ − cov(wβj

, wαj
))︸ ︷︷ ︸

measurement error bias

+ (cov(βj) + cov(wβj
))−1 cov(βj, µj)︸ ︷︷ ︸

pleiotropy bias

. (11)

Here, cov(βj) can be regarded as the average information carried by each IV, while161

cov(wβj
) can be regarded as the information carried by each estimation error. If cov(βj)162

is not substantially larger than cov(wβj
), then the weak instrument bias (cov(βj) +163

cov(wβj
))−1 will inflate the measurement error bias cov(wβj

)θ − cov(wβj
, wαj

). There-164

fore, weak IVs can worsen the measurement error bias, which is the primary reason why165

violating assumption (i) introduces bias into causal effect estimates in IVW and other MR166

approaches (Ye et al., 2021; Sanderson et al., 2021).167

On the other hand, the covariance between the estimation errors of SNP-exposure and168

SNP-outcome associations cov(wβj
, wαj

) can be affected by the fraction of overlapping169

samples of the exposures and outcome GWAS. If the exposures GWAS and outcome GWAS170

are independent of each other, then cov(wβj
, wαj

) = 0 and hence the measurement error171
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bias always shrinks θ̂IVW towards the null. In contrast, if the exposures GWAS and outcome172

GWAS are estimated from the same cohorts, cov(wβj
, wαj

) usually introduces bias towards173

the direction of cov(ui, vi). This is the reason why in some empirical studies (Burgess174

et al., 2016; Sadreev et al., 2021), IVW cannot completely remove the confounding bias if175

the overlapping sample fraction is large.176

If cov(βj, µj) ̸= 0, there is additional pleiotropy bias due to the horizontal pleiotropy177

that violates the InSIDE assumption. In univariable MR, it is challenging to guarantee178

µj = 0 or cov(µj,βj) = 0 for all 1 f j f m, resulting in a potentially biased IVW179

estimate. Traditional solutions to horizontal pleiotropy bias require that only a small180

proportion of IVs exhibit horizontally pleiotropic effects, and robust tools or Gaussian181

mixture models can be employed to identify these IVs (Morrison et al., 2020; Zhu et al.,182

2021; Qi and Chatterjee, 2019). However, for complex traits, it is plausible that a large183

portion of IVs (even possibly > 50%) possess horizontally pleiotropic effects, leading to the184

failure of univariable MR methods. Multivariable MR can balance these pleiotropic effects185

shared by multiple exposures, significantly reducing the number of IVs with horizontal186

pleiotropy evidence when conditioned on specified exposures. In other words, it is more187

likely to guarantee that only few IVs violate the InSIDE assumption cov(βj, µj) = 0 after188

accounting for multiple exposures, which can be then detected and removed using the189

robust tools such as a pleiotropy hypothesis test.190

2.3 MR using bias-corrected estimating equation191

We propose MRBEE which estimates causal effects by solving a new unbiased estimating192

equation of causal effects. Let cov(wβj
) = ΣWβWβ

θ and cov(wβj
, wαj

) = σWβwα
. The193

unbiased estimating equation of θ is194

SBEE(θ) = SIVW(θ) −m(ΣWβWβ
θ − σWβwα

), (12)

where SIVW(θ) = −B̂¦(α̂− B̂θ). The solution θ̂BEE such that SBEE(θ̂BEE) = 0 is195

θ̂BEE = (B̂¦B̂−mΣWβWβ
)−1(B̂¦α̂−mσWβwα

). (13)

In MRBEE, how to estimate the bias-correction terms ΣWβWβ
and σWβwα

may be the196

most important issue in implementation. Here, we estimate them from insignificant GWAS197

summary statistics (Zhu et al., 2015). Let ³̂∗

j ,
ˆ́∗
j1, . . . ,

ˆ́∗
jp (j = 1, . . . ,M) be M insignificant198

GWAS effect size estimates of outcome and exposures, where the insignificance means that199

the p-value of the genetic variants are larger than 0.05 for all exposures and outcome, and200

the independence means that they are not in linkage disequilibrium. Because ³̂∗

j and ˆ́∗
jk201
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follow the same distributions of wαj
and wβjk

, ΣWβ×wα
can be estimated by202

Σ̂Wβ×wα
=

1

M

M∑

j=1

( ˆ́∗
j1, . . . ,

ˆ́∗
jp, ³̂

∗

j )
¦( ˆ́∗

j1, . . . ,
ˆ́∗
jp, ³̂

∗

j ). (14)

Here, Σ̂WβWβ
is the first (p×p) sub-matrix of Σ̂Wβ×wα

and σWβwα
consists of the first p−1203

elements of the last column of Σ̂Wβ×wα
.204

The covariance matrix of θ̂BEE is yielded through the sandwich formula:205

cov(θ̂BEE) = F−1
BEEVBEE(θ)F−1

BEE, (15)

where the outer matrix FBEE is the Fisher information matrix, i.e., the expectation of the206

Hessian matrix of SBEE(θ), and the inner matrix VBEE(θ) is the covariance matrix of SBEE(θ).207

A consistent estimate of ΣBEE(θ) is208

ĉov(θ̂BEE) = F̂
−1

BEEV̂BEE(θ̂BEE)F̂
−1

BEE, (16)

where F̂BEE = B̂¦B̂/m− Σ̂WβWβ
, V̂BEE(θ̂BEE) =

∑m

j=1 Ŝj(θ̂BEE)Ŝj(θ̂BEE)
¦/m, and Ŝj(θ̂BEE) =209

−(³̂j − θ̂¦

BEEβ̂j)β̂j − Σ̂WβWβ
θ̂BEE + σ̂Wβwα

. As presented so far, MRBEE only removes the210

weak instrument bias and estimation error bias, which may still yield biased or inefficient211

causal effect estimates if horizontal pleiotropy exists. In the next section, we show how to212

use a pleiotropy test to detect and remove the underlying horizontal pleiotropy.213

2.4 Detecting horizontal pleiotropy214

In this subsection, we illustrate how to remove specific IVs with evidence of additional215

UHP or CHP effects with the pleiotropy test Spleio which tests the same null hypothesis216

for each SNP as MR-PRESSO (Verbanck et al., 2018) and IMRP (Zhu et al., 2021). The217

null hypothesis for the jth IV not having any horizontally pleiotropic effects on the outcome218

is219

H0j : µj = 0 vs H1j : µj ̸= 0. (17)

The statistic Spleio for the jth IV is defined220

Spleioj
(θ̂) =

(³̂j − β̂¦

j θ̂)2

cov(³̂j − β̂¦

j θ̂)
, (18)

9
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Algorithm 1 Pseudo-code of MRBEE + pleiotropy test

Input: Initial estimates θ̂(0), bias-correction terms Σ̂WβWβ
and σ̂Wβwα

, Spleio P-value sig-

nificance threshold », tolerance ϵ, full set of m∗ IVs F (0)
Θ = {j : j = 1, ...,m∗}

while do∥θ̂(t+1) − θ̂(t)∥2 > ϵ

Calculate S
(t)
pleioj

(θ̂(t)) for all j = 1, ...,m∗,

Update F (t+1)
Θ =

{
j : S

(t)
pleioj

(θ̂(t)) < F−1
χ2(1)(1 − »)

}
,

Update θ̂(t+1) using Equation 13 and IVs in F (t+1)
Θ

end while
Output: Causal effect estimates θ̂BEE, set of m non-UHP/CHP IVs FΘ.

which follows a Ç2(1) distribution under H0j. The only assumption here is that ³̂j − β̂¦

j θ̂221

is asymptotically normal distributed, which it is as proven in Yang et al. (2023) and shown222

in the Supplement. In practice, we can estimate cov(³̂j − β̂¦

j θ̂) using the delta method:223

ĉov(³̂j − β̂¦

j θ̂) = Ã2
wα

+ θ̂¦ΣWβWβ
θ̂ + β̂¦

j Σ̂BEEβ̂j − 2θ̂¦σWβwα
, (19)

which is shown to converge to the true variance asymptotically (Yang et al., 2023). In224

practice, we calculate Spleio for all candidate IVs and remove IVs with large Spleio values225

in an iterative manner, which is summarized in Algorithm 1.226

It should be pointed out that as GWAS sample sizes increase, the test of H0j using227

Spleio becomes more powerful and more UHP/CHP IVs can be detected. Specifically, the228

variance of Spleio vanishes with a rate O(1/nmin) where nmin is the minimum sample size of229

exposures and outcome GWAS, while the effect size of µj under the alternative hypothesis230

is of O(1/
√
m). Consequently, the non-centrality parameter of hypothesis test (18) tends231

to infinity with a rate O(nmin/m). Panel (A) in Fig 3 shows an example of this situation232

using simulated data, from which it is easy to see the UHP and CHP have larger departures233

from the causal pathway than non-UHP/CHP IVs and that more UHP/CHP IVs can be234

detected when GWAS sample sizes are larger. Consequently, IVs with sufficiently large235

Spleio will be removed from causal estimation using our algorithm in practice.236

Since Spleio tests a very general null hypothesis, we can also calculate Spleio for all237

SNPs across the genome after estimating the causal effects of p exposures on the outcome238

used in MR. Results from these tests can be used to (i) find novel loci associated with the239

MR outcome and (ii) draw inferences about pathways of genetic association with the MR240

outcome. Specifically, when a SNP has a negative effect on the exposure ´j and a positive241

pleiotropic effect on the outcome µj, and simultaneously the causal effect ¹ is positive, then242

the total effect of this variant on the outcome ³j is canceled and hence cannot be detected in243

the outcome GWAS. In contrast, the pleiotropy test directly tests the effect µj and therefore244

is able to detect novel loci. For example, Zhu et al. (2022) successfully detected many novel245

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.01.10.523480doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523480
http://creativecommons.org/licenses/by/4.0/


                               

  

 

 

    

  

  

            

  

 

 

    

  
  

             

A) �þ���ý identifies genetic instruments with horizontal pleiotropy evidence

B) Classifications of loci by �þ���ý and GWAS evidence
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Figure 2: (A): Demonstration of how horizontal pleiotropy IVs are identified in MRBEE
using Spleio for one exposure and one outcome. ˆ́ on the x-axis are estimated SNP-exposure
associations; ³̂ on the y-axis are estimated SNP-outcome associations. IVs represented by
red points have a large Spleio value greater than Ä and so have evidence of horizontal
pleiotropy; blue points have small Spleio values less than Ä and do not have evidence of
horizontal pleiotropy. As GWAS sample sizes increase, we can identify more SNPs with
UHP/CHP evidence and remove them from causal estimation. Horizontal and vertical
lines at each point indicate the 95% confidence intervals for the association estimates.
(B): Classifications of outcome loci by evidence from the original outcome GWAS and
genome-wide horizontal pleiotropy testing using Spleio. Classifications are based on P-
values [denoted as P-value(·)] for testing null hypotheses of equality with 0 for a given
parameter in practice. We display the standard threshold of P-value<5x10-8 for inference,
but researchers can choose their own.
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blood pressure loci using this genome-wide pleiotropy test with IMRP as the estimator of246

the causal effect. The results indicated that most detected pleiotropic variants influenced247

SBP and DBP in opposite directions, providing support for the principle of the genome-248

wide pleiotropy test. Scenarios in which researchers may infer direct, exposure-mediated,249

and pleiotropic genetic associations with the MR outcome using Spleio are displayed in250

Figure 2B.251

2.5 Simulation settings252

For the univariable MR results presented in Figure 3, we simulated m = 50, 100, and253

250 genetic variants G for 30k individuals from a binomial distribution with minor allele254

frequency (MAF) Ä that followed a Uniform(0.05, 0.50) distribution. One true exposure255

x with variance 1 was generated. The effect sizes ´ of the m genotypes on the exposure256

followed a Uniform(−1, 1) distribution and were scaled to explain 5% of exposure variation.257

Thus, increasing m was equivalent to introducing more weak IV bias. In the true MR258

model ³ = ´¹ + µU + µC , the term µU representing UHP was random noise and the term259

µC representing CHP was negatively correlated with ´. UHP and CHP effects were either260

generated for 0% or 10% of IVs depending on the simulation scenario, and were scaled261

to match the patterns of horizontal pleiotropy that we observed in Real Data Analysis I262

(see Figures 6S and 7S in the Supplement for examples). R code used to generate these263

values and an example plot of them is presented in the Supplement. The model for x was264

therefore265

x =
m∑

s=1

Gs´s + U + ϵx (20)

and the outcome was generated as266

y = x¹ +
m∑

s=1

Gs(µ
U
s + µC

s ) + U + ϵy (21)

where U is a confounder of (x, y) with variance (1 − h2
x) × 0.15 and ϵx was generated from267

a normal distribution N(0, 1 − h2
x − Var[U ]). After drawing 30k independent realizations268

of x and y, we performed linear regression of x and y on each Gs separately to produce269

the respective GWAS estimate pairs ( ˆ́, ŝe[ ˆ́]) and (³̂, ŝe[³̂]) that were used in MR. The270

competitors we included in simulations were IVW (Burgess and Bowden, 2015), MR-Egger271

(Rees et al., 2017), dIVW (Ye et al., 2021), weighted median (Bowden et al., 2016), MR-272

Lasso/Robust (Burgess et al., 2020), MR-Mode (Yavorska and Burgess, 2017), IMRP (Zhu273

et al., 2021), MR-CML (Xue et al., 2021), MRMix (Qi and Chatterjee, 2019), MR-Corr274
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(Cheng et al., 2022), and MR-CUE (Cheng et al., 2022). We did not include CAUSE275

(Morrison et al., 2020) because of its computational cost. The number of independent276

replications was 1000. All R codes used to perform these simulations are available the277

Github repository (https://github.com/noahlorinczcomi).278

For the multivariable MR results presented in Figure 4, we followed the same procedure279

as above to generate G for 30k individuals. We then generated two exposures with pheno-280

typic correlation Ä
x

= 0.5, variances 1, and heritability (h2) explained by the m = 50, 100,281

and 250 SNPs of 5% for each exposure. Effect sizes (´1, ´2) of G on x = (x1, x2)
¦ were282

generated from283

(
´1

´2

)
∼ N

([
0

0

]
,

[
¸1 0

0 ¸2

][
1 0.45

0.45 1

] [
¸1 0

0 ¸2

])
(22)

where (¸1, ¸2) are scaling factors to ensure 5% heritability in (x1, x2) explained by the m284

SNPs. We then generated x as285

x1 =
m∑

s=1

Gs´1s + U + ϵx1, x2 =
m∑

s=1

Gs´2s + U + ϵx2 (23)

where var(U) = (1−h2)×(0.15/2)2, var(ϵx1) = var(ϵx2) = 1−h2−var(U), and h2 = 0.05.286

CHP in univariable MR methods is automatically introduced by generating two genetically287

correlated exposures. Additional UHP (µU
s ) and CHP (µC

s ) effects were generated directly288

from transformations on ´1s¹1 + ´2s¹2 using the same procedure described above in the289

univariable setting described above. We then simulated the outcome y as290

y = x1¹1 + x2¹2 +
m∑

s=1

Gs(µ
U
s + µC

s ) + U + ϵy (24)

where var(ϵY ) = 1− var(x¦θ +U). We then performed association testing of (x1, x2) and291

y for all SNPs and phenotypes separately using randomly drawn values for the quantities292

above and linear regression on Gs to produce the estimates ( ˆ́
1s, ŝe[ ˆ́

s1]), ( ˆ́
2s, ŝe[ ˆ́

s2]), and293

(³̂s, ŝe[³̂s]). These estimates were used to perform MR using the methods displayed in294

Figure 4.295

2.6 Real Data Analysis I: Coronary artery disease296

We performed two real data analyses, the first of which is described here and the second in297

Section 2.7. In Real Data Analysis I, we estimated direct causal effects of 9 exposures on298

coronary artery disease (CAD) risk in East Asian (EAS) and European (EUR) populations299
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using multivariable MRBEE and existing alternatives. East Asian (EAS) GWAS data for300

exposures were provided by Biobank Japan (Nagai et al., 2017), and for coronary artery301

disease (CAD) were provided by Ishigaki et al. (2020) (n=212k). European (EUR) GWAS302

data for exposures were provided by the consortia listed in the Supplement, and for CAD303

by the CARDIoGRAM consortium (n=184k) (CARDIoGRAMplusC4D, 2015). CAD risk304

factors used in multivariable MR included high-density lipoprotein (HDL), low-density305

lipoprotein (LDL), triglycerides (TG), body mass index (BMI), systolic blood pressure306

(SBP), uric acid (UA), height, HbA1c, and hemoglobin (HG). Hematocrit, diastolic blood307

pressure (DBP), and red blood cell count were initially considered but later excluded from308

multivariable MR because of high correlations (>0.75) in IV estimates with other exposures.309

More details of the GWAS data used are available in Section 4 of the Supplement.310

We generally followed the methods of Wang et al. (2022) to select instruments for311

univariable and multivariable MR analyses. Candidate IVs in univariable MR analysis312

were associated (P<5x10-8) with the exposure in a within-phenotype and between-ancestry313

fixed-effects meta-analysis of EAS and EUR GWAS, had the same sign in the EAS and314

EUR GWAS, and had at least P<0.05 in both GWAS. We then selected only independent315

SNPs from this set using ancestry-specific linkage disequilibrium (LD) reference panels from316

1000 Genomes Phase 3 (Fairley et al., 2020) and the following parameters in PLINK v1.9317

(Chang et al., 2015): r2<0.01, 1Mb, P<5x10-8). Only ancestry-specific GWAS estimates318

were used in ancestry-specific MR. For multivariable MR, we filtered the full set of all IVs319

used in univariable MR to only independent SNPs that had linkage disequilibrium r2<0.01320

in a 1Mb window using ancestry-specific LD reference panels from 1000 Genomes. This321

resulted in 3,097 IVs used in EAS and 2,821 in EUR. Results from alternative selections of322

the IVs are available in the Supplement and are consistent with those presented in the323

Results section. All GWAS estimates were standardized following the methods in Qi and324

Chatterjee (2019).325

For all available SNPs genome-wide, we performed horizontal pleiotropy testing using326

the statistic Spleio with causal estimates from multivariable MRBEE. These tests were used327

for inferences of direct, exposure-mediated, novel, and pleiotropic genetic associations with328

CAD as described in Methods.329

2.7 Real Data Analysis II: Schizophrenia and bipolar disorder330

In Real Data Analysis II, we estimated direct causal effects of seven exposures on risk of331

schizophrenia (SCZ) and bipolar disorder (I or II; BP) with GWAS data from European332

populations using multivariable MRBEE and existing alternatives.333

We estimated causal effects of the following risk factors: Cannabis use disorder (CUD),334
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left handedness (LH), Attention-Deficit/Hyperactivity Disorder (ADHD), sleep duration,335

education, intelligence, and neuroticism (SESA). All GWAS data were from studies in336

strictly EUR individuals. Exposure GWAS sample sizes ranged from 55k for ADHD (De-337

montis et al., 2019) to 1.7M for LH (Cuellar-Partida et al., 2021). SCZ GWAS data were338

from a meta-analysis performed using data from the Psychiatric Genomics Consortium339

(Trubetskoy et al., 2022) on 130k EUR individuals. BP GWAS data were from Mullins340

et al. (2021) that had a total sample size of 413k EUR individuals, where the outcome phe-341

notype was defined as either lifetime Bipolar I or II disorder. More complete descriptions342

of all GWAS data used in MR are available in the Supplement.343

Because some exposure GWAS did not detect many genome-wide significant signals344

(e.g., only 2 were detected for CUD), we initially considered all independent SNPs with345

exposure GWAS P<5x10-5 in multivariable MR analysis. We then restriced this set of IVs346

to only those with P<5x10-8 in a 7-degree of freedom chi-square joint test of association347

with any of the 7 exposures. This test accounting for sample overlap among the exposure348

GWAS. We then excluded 3 IVs whose minor allele frequencies differed by more than 0.10349

from all other exposures. This resulted in 1,227 IVs that were used in multivariable MR350

which were standardized by their GWAS standard error.351

We performed genome-wide horizontal pleiotropy testing with Spleio using all MR ex-352

posures with a causal effect P-value less than 0.05 for either SCZ or BP. Including non-353

significant exposures in genome-wide pleiotropy testing would have only increased the vari-354

ance term used in Spleio and not otherwise affected the inferences we could make. We355

performed a sensitivity analysis in which non-significant MR exposures were included, the356

results of which are presented in Supplement Section 4.6 and are identical to those pre-357

sented below. Genome-wide testing with Spleio was performed separately for SCZ and358

BP.359

3 Results360

3.1 Simulation Results361

Univariable simulation results in Figure 3 demonstrates that MRBEE is able to estimate362

the causal effect of a single exposure without bias as UHP, CHP, sample overlap, GWAS363

sample sizes, and weak instrument bias sources vary. While the competitors may estimate364

the causal effect with little or no bias in some scenarios, MRBEE is the only method that365

does not encounter bias in all scenarios. MRBEE also has well-controlled Type I error366

(Figure 3B) and coverage frequencies (Supplement Fig 9S), whereas other methods do367

not, especially as weak IV bias and sample overlap proportions become larger. For example,368
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the false positive rate of IVW, MR-Egger, MR-Median, MR-Lasso/Robust, dIVW, IMRP,369

MR-CML, and MR-Corr can surpass 20% when there is 100% sample overlap and 250 IVs370

only explain 5% heritability in the exposure, a pattern which was commonly observed in371

an East Asian population in Wang et al. (2022). Power for univariable MR with MRBEE372

compared to existing alternatives is presented in Supplement Figure 11S and shows that373

MRBEE is at least as powerful as the most powerful existing methods in all 24 scenarios374

we considered.375

Multivariable simulation results in Figure 4A demonstrates that, compared with the376

alternative methods included in Figure 3 and their multivariable versions, MRBEE can377

estimate direct causal effects without bias in the presence of weak IVs, UHP and CHP,378

and sample overlap. Multivariable MR methods are generally less biased than univariable379

MR methods, but still they cannot consistently estimate direct causal effects because of380

uncontrolled biases from weak instruments, measurement error, and sample overlap. Since381

every other MR method except MRBEE is biased in at least one of the scenarios we382

considered, their coverage frequencies are generally not optimal (i.e., less than 95%). For383

example, the coverage frequencies for MR-CUE and MR-Corr are less than 50% for almost384

all cases we considered. Alternatively, some methods such as MR-Mode and MR-Median385

can have coverage frequencies greater than 0.95 because they have large standard errors386

(see Supplement Fig 9S). In contrast, MRBEE obtained optimal coverage frequencies in387

all simulation settings.388

3.2 Real Data Analysis I: CAD389

3.2.1 Causal Estimates390

Univariable MR results suggested nonzero causal effects of all exposures on CAD in either391

EAS or EUR populations. However, there was widespread evidence of unbalanced hori-392

zontal pleiotropy as indicated by large differences in causal estimates between estimators393

that differ only in how UHP/CHP is addressed. For example, the odds ratio of causal394

effect of DBP on CAD in EAS was estimated to be 2.03 (P=2.8x10-11) using IMRP but395

only 1.43 (P=0.140) using MR-Egger. Full univariable MR results are presented in the396

Supplement.397

Table 1 contains all multivariable MR estimates, which were generally consistent be-398

tween EAS and EUR populations. All 9 exposures had evidence of nonzero causal effect399

on CAD in EAS or EUR. LDL had the largest estimated odds ratio for causal effect in400

both EAS and EUR. MRBEE produced odds ratio estimates of 2.09 in EAS (P<1x10-100)401

and 1.76 in EUR (P<1x10-20), the latter of which was undetected in Wang et al. (2022).402

In EAS, all other multivariable MR methods may underestimate the direct causal effect of403
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A) Causal estimates for single-exposure MR

B) Type I error for single-exposure MR

                                 

                                                                                          

      
       

       

 
 
  

 
 

 
 
  

  
 

 
 
  

 
 

 
 
 
  

 
 
  

  
 

  
 
 

  
  

 
 
  
  

  
 
 
  

  
  
 

 
 
  

  
  

  
 

 
 
  

 

 
 
  

 
 

 
 
  

  
 

 
 
  

 
 

 
 
 
  

 
 
  

  
 

  
 
 

  
  

 
 
  
  

  
 
 
  

  
  
 

 
 
  

  
  

  
 

 
 
  

 

 
 
  

 
 

 
 
  

  
 

 
 
  

 
 

 
 
 
  

 
 
  

  
 

  
 
 

  
  

 
 
  
  

  
 
 
  

  
  
 

 
 
  

  
  

  
 

 
 
  

 

 
 
  

 
 

 
 
  

  
 

 
 
  

 
 

 
 
 
  

 
 
  

  
 

  
 
 

  
  

 
 
  
  

  
 
 
  

  
  
 

 
 
  

  
  

  
 

 
 
  

 

 
 
  

 
 

 
 
  

  
 

 
 
  

 
 

 
 
 
  

 
 
  

  
 

  
 
 

  
  

 
 
  
  

  
 
 
  

  
  
 

 
 
  

  
  

  
 

 
 
  

 

 
 
  

 
 

 
 
  

  
 

 
 
  

 
 

 
 
 
  

 
 
  

  
 

  
 
 

  
  

 
 
  
  

  
 
 
  

  
  
 

 
 
  

  
  

  
 

 
 
  

 

   

   

   

   

   

   

   

   

   

   

   

   

  
  
  
  

  
   
  
  
  

                                 

                                                                                          

      
       

       

                                                      

      
       
      
     

       
    
    

        
         
        

   
     

      
       
      
     

       
    
    

        
         
        

   
     

      
       
      
     

       
    
    

        
         
        

   
     

  
  

  
  
  
  
  
 

                                       

Figure 3: (A) Bias when estimating the total causal effect for one exposure in MR. The
true causal effect is indicated by the vertical black line (0.5). Simulations were performed
1,000 times using the individual-level data generation process described in the text. Ex-
posure heritability explained by the IVs was 5% for all scenarios. (B): Type I error of
univariable MR using the same simulation settings as those used in panel (A) except the
true causal effect is 0.
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A) Causal estimates for the first of two exposures

B) Coverage frequencies for the first of two exposures

                                 

                                                                                          

      
       

       

                                                      

      
       
      
     

       
    
    

          
           
          
        

     

      
       
      
     

       
    
    

          
           
          
        

     

      
       
      
     

       
    
    

          
           
          
        

     

               

                                       

                                 

                                                                                          

      
       

       

                                                                                                                        

      
       
      
     

       
    
    

          
           
          
        

     

      
       
      
     

       
    
    

          
           
          
        

     

      
       
      
     

       
    
    

          
           
          
        

     

                  

Figure 4: (A): Bias when estimating the direct causal effect for the first of two true and
genetically correlated exposures and one outcome. The true causal effect is indicated by
the vertical black line (0.5). MR methods that could only include exposure 1 in MR are
dIVW, IMRP, MR-Mode, MRMix, MR-CML, MR-Corr, and MR-CUE. MRBEE, MVMR-
Egger, MVMR-Median, MVMR-Lasso included both exposures in MR simultaneously. This
simulation was performed 1,000 times using the individual-level data generation process
described in the text. Heritability in the exposures explained by the IVs was 5% for all
scenarios. (B): Proportions of simulations in which the estimated 95% confidence interval
of the causal estimate contained the true direct causal effect of exposure 1.
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LDL on CAD compared to MRBEE. For example, MR-Robust produced an odds ratio es-404

timate of 1.26 (P<1x10-100). The direct causal effect of SBP on CAD in EAS was similarly405

underestimated by MR-Median compared to MRBEE, where MRBEE produced an odds406

ratio estimate of 1.94 (P=1.3x10-5) and MR-Median 1.49 (P=1.3x10-15).407

In EAS, the total and unmediated causal effect of BMI on CAD from univariable MR408

(OR=1.44, P=2.0x10-25) was completely mediated by SBP (P=0.220 in a test against total409

mediation; see Supplement). In EUR, the SBP GWAS included BMI as a covariate and410

so SBP could not statistically act as a mediator for BMI in multivariable MR with CAD.411

The BMI result displayed in Table 1 therefore reflects the effect of BMI on CAD that does412

not go through all other exposures except SBP. This phenomenon – that including one413

exposure as a covariate in the GWAS for another can preclude consistent direct causal414

effect estimation in multivariable MR – is confirmed in simulations in the Supplement415

and reported in Gilbody et al. (2022).416

Finally, we estimated the correlation between the bias in Equation 11 and differ-417

ences in causal estimates between MRBEE and multivariable IVW adjusted for horizontal418

pleiotropy, termed here as ‘IVW*’. IVW* is the multivariable IVW estimator with IVs419

that had P-values corresponding to Spleio less than 0.05/m removed. In EAS, this Pear-420

son correlation was 0.92 (P=4.6x10-4) and in EUR was 0.65 (P=0.058) (see Figure 5A).421

This suggested that differences between IVW* and MRBEE causal estimates were due to422

uncontrolled bias in IVW*. Since causal estimates made by IVW* were generally simi-423

lar to those made by MR-Robust and MR-Median methods (see Supplement), a similar424

interpretation can be made for them.425

3.2.2 Genome-wide Spleio Test426

We then applied the Spleio test to all SNPs genome-wide using causal estimates from427

MRBEE to search for SNPs with pleiotropic effects. The original CAD GWAS in EAS428

and EUR respectively identified 65 (¼GC = 1.16) and 39 (¼GC = 1.00) loci, defined as429

1 megabase (Mb) windows with r2<0.01 between lead SNPs (P<5x10-8). Genome-wide430

horizontal pleiotropy testing with Spleio correspondingly identified 27 (¼GC = 1.08) and 41431

(¼GC = 1.01) loci in EAS and EUR. In EUR, nine loci that were detected in horizontal432

pleiotropy testing were not detected in the original CAD GWAS, as Figure 6 demonstrates.433

Seven of these loci were replicated with P<0.05 for the lead SNP in an independent CAD434

GWAS in Europeans from the UK Biobank (Neale’s lab: http://www.nealelab.is/), all435

of which could only be detected in a recent larger CAD GWAS (Aragam et al., 2022). In436

EUR and EAS, we respectively identified only 10 and 18 loci that were directly associated437

with CAD. These loci had evidence of association with CAD but not any of the MR438

exposures. We also identified 19 loci in EUR and 5 in EAS with evidence of simultaneous439
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Coronary artery disease (East Asian) Coronary artery disease (European)
MRBEE MR-Lasso MR-Median MRBEE MR-Lasso MR-Median

Exposure OR P OR P OR P OR P OR P OR P
HDL 0.85 1.1E-2 0.89 2.1E-7 0.89 1.8E-4 0.77 3.8E-5 0.74 1.2E-14 0.74 1.2E-7
Height 0.96 6.1E-1 0.94 9.8E-5 0.94 5.7E-3 0.90 5.6E-6 0.90 7.8E-11 0.90 1.2E-6
HG 1.06 4.5E-1 0.99 6.9E-1 1.03 5.6E-1 1.15 2.6E-3 1.16 5.9E-7 1.17 2.8E-4
BMI 0.97 5.4E-1 1.06 3.1E-2 1.03 4.7E-1 1.26 7.1E-7 1.28 6.5E-14 1.30 3.7E-8
TG 1.20 3.8E-2 1.17 3.7E-7 1.12 6.7E-3 1.02 7.9E-1 1.02 6.0E-1 0.97 6.7E-1
HbA1c 1.26 3.3E-3 1.12 9.5E-6 1.16 1.0E-5 1.19 1.5E-5 1.19 1.1E-10 1.19 3.1E-6
UA 1.36 6.4E-6 1.18 7.2E-9 1.15 1.9E-4 1.19 4.4E-4 1.08 7.1E-3 1.12 6.8E-3
SBP 1.94 1.3E-5 1.46 <10-100 1.49 1.3E-15 1.34 1.4E-3 1.21 1.5E-5 1.24 8.3E-4
LDL 2.09 <10-100 1.26 <10-100 1.23 8.5E-9 1.76 <10-100 1.69 <10-100 1.65 <10-100

Bipolar I or II (European) Schizophrenia (European)
MRBEE MR-Lasso MR-Median MRBEE MR-Lasso MR-Median

OR P OR P OR P OR P OR P OR P
INT 0.77 3.4E-4 0.89 6.9E-7 0.90 4.9E-4 0.52 5.4E-12 0.77 7.7E-24 0.73 1.4E-17
SLP 1.12 1.9E-3 1.05 5.1E-3 1.07 7.0E-3 1.18 4.7E-4 1.11 3.3E-9 1.12 1.6E-5
SESA 1.13 7.8E-4 1.11 4.4E-9 1.11 1.44E-5 1.28 1.4E-7 1.21 2.8E-24 1.24 1.6E-15
LH 1.12 3.0E-1 1.11 2.8E-5 1.12 1.2E-3 1.24 1.2E-1 1.16 2.5E-7 1.18 3.2E-5
ADHD 1.29 2.3E-3 1.15 1.5E-9 1.17 1.0E-6 1.08 5.0E-1 1.07 5.4E-3 1.11 3.6E-3
EDU 1.24 8.3E-13 1.12 1.3E-24 1.12 1.0E-12 1.39 2.3E-15 1.14 5.9E-28 1.16 1.0E-18
CUD 1.50 1.3E-3 1.14 2.0E-7 1.16 1.0E-5 2.71 5.7E-8 1.29 1.1E-18 1.30 3.4E-11

Table 1: Direct causal estimates from multivariable MR are obtained from IVs whose selection is described in Methods. Significant
(P<0.05) estimates are presented in bold text. We found no evidence of unbalanced horizontal pleiotropy in any analyses (P>0.1
for a test of non-zero intercepts; see Supplement
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A) Expected and observed bias in estimating direct causal effects (real data analysis 1)

A) Expected and observed bias in estimating direct causal effects (real data analysis 2)

      

   

     

   

             

   

          

         

   

                        

              

   

             

   

          

         

   

                        

                              

                                                        
      

      

      

     

     

    

    

    

    

   

   

                                               

  
  

  
  

  
   
  
  

  
  
  
 
  

  
  
 
   

  
  
  

  

   

    

  

    
   

   

   

                         
   

    

  

    

   

   

   

                         

                                          

                            

     

     

    

    

    

    

   

   

                                               

  
  

  
  

  
   
  
  

  
  
  
 
  

  
  
 
   

  
  
  

  

Figure 5: The x-axes represent theoretical bias in the direct causal effect estimates of
IVW* (multivariable IVW with horizontal pleiotropy IVs removed using Spleio), which was
calculated using the expectation of Equation 11 with the plugged-in MRBEE direct causal
estimates. Y-axes are the observed difference between the IVW* and MRBEE direct causal
estimates. Pearson’s r values represent the linear correlation between values on the x- and
y-axes. Corresponding P-values are for testing the null hypothesis that r=0.

association with the MR exposures and CAD conditional on the exposures.440

3.3 Real Data Analysis II: SCZ and BP441

3.3.1 Causal Estimates442

Univariable MR results suggested nonzero total/unmediated causal effects of CUD, ADHD,443

left handedness, neuroticism, sleep duration, intelligence, and education on either BP or444

SCZ. We found a strong protective causal effect of left handedness on BP risk (MRBEE445

OR=0.70, P=8.9x10-34), which is of opposite sign for SCZ (OR=1.36, P=6.2x10-24). It is446

consistent with Scully et al. (2000) but not with Bellani et al. (2010) or Savitz et al. (2007).447
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Schizophrenia Bipolar I/II disorder

Original GWAS

�pleio testing

Original GWAS

�pleio testing

Novel loci

Mediation Direct Pleiotropy Novel Genes in novel loci

CAD (EUR) 9 (19%) 10 (21%) 19 (41%) 9 (19%) FN1a, FGD5a, PRDM8a, FGF5a, FURINa, CFDP1a, AXLa

CAD (EAS) 37 (62%) 18 (30%) 5 (8%) 0 (0%) (–)

SCZ (EUR) 36 (22%) 104 (64%) 12 (7%) 11 (7%)
ZNF638, AFF3, SPAG16, FOXO3, BTRC, SNX21, CLN3, 

NFATC3, RAI1, MED15

BP (EUR) 13 (28%) 26 (55%) 5 (11%) 3 (6.4%) FOXO6, SCMH1, ALDH7A1P4, ARNTL

CAD (East Asian) CAD (European)

Original GWAS

�pleio testing

Original GWAS

�pleio testing

Novel loci

Figure 6: Results from genome-wide testing using Spleio for horizontal pleiotropy. Inner
circles of Manhattan plots correspond to the original GWAS for the respective outcome;
outer circles correspond to Spleio tests using causal estimates from MRBEE. Points high-
lighted in red are genome-wide significant (P<5x10-8) using Spleio but not in the original
GWAS. These loci are novel and contain genes listed in the bottom table. Italic font is
used to represent gene names. (a): These genes were replicated (P<0.05 for the marginal
association of the lead SNP) in the UK Biobank (Neale’s lab: http://www.nealelab.is/).
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The full univariable results are presented in the Supplement.448

Full multivariable MR results are presented in Table 1. Multivariable MRBEE iden-449

tified nonzero causal effects for all exposures on BP and/or SCZ except left handedness.450

MR-Robust and MR-Median generally produced similar causal estimates. Compared to451

MRBEE, MR-Robust underestimated the direct causal effect of CUD on SCZ, where MR-452

Robust and MRBEE respectively produced odds ratio estimates of 1.29 (P=1.1x10-18) and453

2.71 (P=5.7x10-8), the latter of which is more consistent with the literature. That is, the454

odds ratio for association between CUD and schizophrenia is 3.90, 95% CI: 2.84-5.34 in455

Marconi et al. (2016). Together, these seven exposures explained approximately 31% and456

17% of the genetic variance in schizophrenia and bipolar disorder, respectively.457

As before, we compared differences between MRBEE and IVW* – the multivariable458

IVW estimator with pleiotropic IVs identified using Spleio removed – to the bias we ex-459

pected in the multivariable IVW estimator using Equation 11. Differences between IVW*460

and MRBEE causal estimates were almost perfectly correlated with the expected bias,461

as demonstrated in Figure 5B: Pearson r=0.97 for BP (P=2.3x10-4) and r=0.97 for SCZ462

(P=2.5x10-4). Only 3 IVs (<0.25%) had significant Spleio values in MR, and they had no463

impact on causal estimates.464

3.3.2 Genome-wide Spleio Test465

We identified 11 schizophrenia loci and 3 bipolar disorder loci that were genome-wide466

significant using Spleio but had P>5x10-8 in the original GWAS (Figure 6). These loci467

are considered novel and contain genes associated with traits such as cancers (Welch et al.,468

2012), multiple sclerosis (Baranzini et al., 2009), severe COVID-19 infection (S lomian et al.,469

2023), and lifetime smoking status (Pasman et al., 2022). Since the SCZ and BP GWAS470

are the largest available to date, independent data to validate these novel findings are471

not available. For both SCZ and BP, the majority of significant GWAS loci are directly472

associated with the outcome disease but not with the MR exposures. That is, 68% of473

SCZ-associated loci are not associated with the MR exposures and 59% of BP-associated474

loci are not associated with the MR exposures. Alternatively, 24% of SCZ loci and 30% of475

BP loci have associations that are at least partially mediated by the MR exposures.476

4 Discussion477

Our study suggests that the existing univariable and multivariable MR approaches can be478

vulnerable to one or several biases from weak instruments, measurement error, UHP, CHP,479

sample overlap, and excluded exposures. One suggested solution to this problem that is480
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currently being practiced in the literature is to use multiple MR methods and appraise the481

evidence in aggregate more highly than evidence from any one method alone (Burgess et al.,482

2019). Our applications of MRBEE to simulated data demonstrated that multiple MR483

methods can be biased in similar ways, rendering any aggregated inference from multiple484

biased methods no less subject to mistake than inference from any one method alone. In485

contrast, the multivariable MRBEE we developed here is generally robust to the above486

biases and should be a useful tool in practice.487

We demonstrated the practical utility of MRBEE in two independent applications to488

the study of (i) coronary artery disease (CAD) in East Asian and European populations489

and (ii) schizophrenia and bipolar disorder. Causal risk factors were generally consistent490

for CAD between EAS and EUR and between SCZ and BP in EUR, where there was491

evidence that any differences between MRBEE estimates and those made by alternative492

methods were the results of uncontrolled bias in other methods. For example, the IVW493

causal estimate of LDL on CAD in EAS was expected to have 55.3% downward bias from494

Equation 11 and indeed the horizontal pleiotropy-robust IVW causal estimate was 55.7%495

smaller than the MRBEE estimate. In Real Data Analysis I with CAD, we observed that496

the total/unmediated causal effect of BMI on CAD was completely mediated by blood497

pressure and partially by uric acid in EAS, though the GWAS data in EUR precluded498

testing of this kind. In Real Data Analysis II with SCZ and BP, we observed that CUD499

has large direct causal effects on SCZ and BP risk, which is consistent with the literature500

(Marconi et al., 2016), but that existing MR methods may underestimate the sizes of these501

effects. We also observed a strong protective causal effect of left handedness on BP risk in502

univariable MR which disappeared in multivariable MR, suggesting that multivariable MR503

was the correct method of causal analysis.504

We finally introduced a multivariable horizontal pleiotropy test using the statistic Spleio505

that, when applied genome-wide, identified the pathways through which many genomic506

loci were associated with CAD, SCZ, and BP. Spleio testing revealed that many genetic507

associations with disease endpoints were non-direct, suggesting that a large portion of508

the heritability of these complex traits may be conferred indirectly through their causal509

risk factors. This test also identified 9 novel loci for CAD in EUR – seven of which510

were replicated in UKBB – 11 for SCZ and 3 for BP, for which no adequate independent511

replication data exists. This method of pleiotropy testing using Spleio is therefore a valuable512

tool both for gaining better insight into how genetic risk of disease is conferred and in513

detecting new risk loci.514

MRBEE has the following limitations. As with all MR methods, the reliability of515

causal estimates produced by MRBEE depends on the quality of GWAS data used in MR.516

For example, biases in GWAS from assortative mating or dynastic effects may propagate517
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through to MR and bias causal estimation (Brumpton et al., 2020; Hartwig et al., 2018).518

Second, MRBEE may yield wider confidence intervals for exposures with small heritability519

than current approaches that ignore weak instrument bias. This is because current methods520

implictly assume that the effect size estimates used in MR are equal to the true effect sizes,521

whereas MRBEE more correctly considers them as consisting of true effect sizes plus their522

estimation errors. We demonstrate in the Supplement that the variance of MRBEE523

decreases as the variance in the exposures explained by the IVs increases. Conversely, the524

variance of IVW may decrease even for fixed exposure variance explained when more weak525

IVs are added to MR. Third, high multicollinearity in our real data analyses prevented526

us from including some exposures. For example, SBP and DBP were not included in527

multivariable MR together. Future work that can expand the application of MRBEE to528

the high-dimensional setting may help address this challenge. Fourth, MRBEE may be529

subject to winner’s curse bias in practice (Sadreev et al., 2021), but this bias is not as530

severe as for IVW and other methods that neither correct for winner’s curse nor weak IVs531

(see Supplement Figure 6S).532

In conclusion, univariable MR analysis is inherently limited in its ability to reduce bias,533

but univariable MR methods and their applications have so far dominated the literature534

compared to multivariable analyses. We developed multivariable MRBEE to reduce known535

biases in MR and estimate direct causal effects of multiple exposures in robust way. MR-536

BEE can be a useful tool in studying causality between risk factors and disease outcomes537

as more large GWAS summary statistics are made publicly available.538

539

Software540

The software used to perform all simulations and analyze the real data used above is541

available at https://github.com/noahlorinczcomi/MRBEE and http://hal.case.edu/542

~xxz10/zhu-web/. The software contains all functions needed to use MRBEE and perform543

all their associated tests in practice.544

Supplementary Information545

Please refer to the Supplement for additional derivations, simulation results, and details546

of real data analyses.547
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