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6 Abstract

7 Mendelian randomization (MR) is an instrumental variable approach used to infer
8 causal relationships between exposures and outcomes and can apply to summary data
9 from genome-wide association studies (GWAS). Since GWAS summary statistics are
10 subject to estimation errors, most existing MR approaches suffer from measurement
11 error bias, whose scale and direction are influenced by weak instrumental variables
12 and GWAS sample overlap, respectively. We introduce MRBEE (MR using Bias-
13 corrected Estimating Equation), a novel multivariable MR method capable of simul-
14 taneously removing measurement error bias and identifying horizontal pleiotropy. In
15 simulations, we showed that MRBEE is capable of effectively removing measurement
16 error bias in the presence of weak instrumental variables and sample overlap. In
17 two independent real data analyses, we discovered that the causal effect of BMI on
18 coronary artery disease risk is entirely mediated by blood pressure, and that exist-
19 ing MR methods may underestimate the causal effect of cannabis use disorder on
20 schizophrenia risk compared to MRBEE. MRBEE possesses significant potential for
21 advancing genetic research by providing a valuable tool to study causality between
2 multiple risk factors and disease outcomes, particularly as a large number of GWAS
23 summary statistics become publicly available.
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» 1 Introduction

2 Mendelian randomization (MR) is an epidemiological approach that leverages genetic vari-
26 ants as instrumental variables (IVs) to infer causal relationships between exposures and
2 outcomes, reducing confounding and reverse causation, while providing a cost-effective,
» ethical, and generalizable alternative to randomized controlled trials (Burgess et al., 2015;
a Sanderson et al., 2022; Zhu, 2020). Originally developed for application in individual-level
» data (Sanderson et al., 2022), MR can also be applied to summary-level statistics obtained
1 from genome-wide association studies (GWAS) and has therefore become increasingly pop-
3¢ ular to infer causality of disease risk factors (Zhu, 2020), identify biological drug targets
5 (Gill et al., 2021), and causal effects of genes on phenotypes (van Der Graaf et al., 2020).
3 Inverse-variance weighting (IVW) (Burgess et al., 2013) is the fundamental approach to
s perform MR with GWAS summary data, the validity of which relies heavily on three so-
s called valid IVs assumptions: the genetic [Vs are (i) strongly associated with the exposures,
» (i) not directly associated with the outcome conditional on the exposures, and (iii) not
w0 associated with any confounders of the exposure-outcome relationships. Violations of the
a (i) - (iii) assumptions will respectively introduce weak instrument (Burgess et al., 2011),
2 uncorrelated horizontal pleiotropy (UHP) (Zhu, 2020), and correlated horizontal pleiotropy
s (CHP) (Morrison et al., 2020) biases into the casual effect estimation of IVW.

o From a statistical standpoint, both UHP and CHP in an MR model exhibit charac-
s teristics similar to outliers in traditional regression analysis, and hence can be addressed
s by applying robust tools. In the literature, MR pleiotropy residual sum and outlier (MR-~
» PRESSO) (Verbanck et al., 2018) and iterative MR pleiotropy (IMRP) (Zhu et al., 2021)
s intend to detect and remove potential horizontal pleiotropy through hypothesis tests, while
» MR-Median (Bowden et al., 2016), MR-Robust (Rees et al., 2019), and MR-Lasso (Kang
so et al., 2016) attempt to mitigate UHP/CHP effects by using robust loss functions. Al-
si ternatively, Gaussian mixture models have been employed by MRMix (Qi and Chatterjee,
2 2019), MR contamination mixture (MR-Conmix) (Burgess et al., 2020), causal analysis us-
53 ing summary effect (CAUSE) (Morrison et al., 2020), MR constrained maximum likelihood
ss. (MR-CML) (Xue et al., 2021), and MR with correlated horizontal pleiotropy unraveling
s shared etiology and confounding (MR-CUE) (Cheng et al., 2022) to reduce UHP and CHP
ss biases. An advantage of a Gaussian mixture model beyond robust tools is that it uses
57 smaller degrees of freedom to describe the UHP and CHP and hence is more efficient if the
s mixture models are correctly specified.

59 While the aforementioned single-exposure MR methods allow for some IVs to exhibit
o horizontally pleiotropic effects, they typically assume that the overwhelming majority of IVs

s1 influence the outcome solely through the mediation of the exposure. However, considerable
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s2 evidence suggests that common human traits share a significant amount of causal vari-
s ants, such as systolic blood pressure (SBP) and diastolic blood pressure (DBP) (Zhu et al.,
s« 2022), making it difficult to satisfy this assumption in reality. A more robust, straightfor-
s ward, and computationally efficient way to mitigate the effect of horizontal pleiotropy is
6 to employ multivariable MR, which can account for a majority of horizontally pleiotropic
v variants shared by multiple exposures. To date, multivariable versions of IVW (Burgess
¢ and Thompson, 2015), MR-Egger (Rees et al., 2017), MR-Median (Bowden et al., 2016),
oo and MR-Robust (Grant and Burgess, 2021) have been developed. As demonstrated in
7 an examination by Sanderson et al. (2019), multivariable MR is a reliable tool for esti-
7 mating the direct causal effects of one or more exposures, using either individual-level or
72 summary-level data.

73 However, multivariable MR is often subject to substantial weak instrument bias because
72 the instruments only need to be associated with one exposure in a set for them to be
75 considered to satisfy assumption (i) in practice. In other words, the set of IVs used in
7 multivariable MR is the union set of exposure-specific IV sets used in univariable MR. As
77 GWAS sample sizes become larger, increasing numbers of causal variants with moderate or
7z small effects are being identified, making weak instrument bias — the violation of assumption
79 (1) — more significant and difficult to disregard. For instance, Yengo et al. (2022) detected
so 12,111 independent variants in a height GWAS with 5.4 million participants, while Okbay
s et al. (2022) found nearly 3,952 independent variants in an educational attainment GWAS
&2 with 3.0 million participants. Since the heritability of a trait is fixed, the average variance
s explained by each causal variant should be small if there are thousands of them, which thus
sa causes a significant weak instrument bias in MR. The traditional solution to mitigate the
&5 weak instrument bias is to discard I'Vs with small effect sizes such that the F- or conditional
s I-statistic of the remaining instruments exceeds 10, which approximately guarantees that
&7 the relative bias in causal effect estimation remains within 10% (Burgess et al., 2011;
s Sanderson et al., 2021). However, excluding instruments with weaker effects can result
o in a “winner’s curse”, which alternatively inflates the bias in causal estimation (Sadreev
o et al.,, 2021). Additionally, the statistical principle underlying how weak IVs lead to biased
a1 causal effect estimation has not been well understood, especially when multiple exposures
o are included in MR.

03 Measurement error bias occurs when explanatory variables are measured with random
a error, which generally exists in all statistical models including linear and generalized linear
s regression models, and leads to biased estimates of model parameters (Yi, 2017). Since cur-
s rent MR approaches are performed with GWAS summary statistics that contain estimation
o errors, the causal effect estimates can suffer from measurement error bias (VanderWeele
e et al., 2014; Ye et al., 2021). Weak IVs can further worsen this bias since the degree of
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(A) MRBEE Flowchart
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(B) Capabilities of existing MR methods in different conditions

1V-out

Weak  Sample Measurement UHP CHP Additional
1Vs overlap error exposures
Single exposure methods
d-IVW [26] Y N Y N N N
MRMix [15] N N Y Y Y N
IMRP/MRPRESSO [20,22] N N N Y Y N
CAUSE/MR-CUE [7,16] Y Y Y Y Y* N
MR-Corr [19] N N Y Y Y N
MR-CML [27] N N Y Y N N
MR-Lap [54] Y Y Y N N N
Multiple exposure methods
IVW/MR-Egger [21,38] N N N N N Y
MR-Robust/Lasso/Median [23,24] N N N Y Y* Y
MRBEE Y Y Y Y Y Y

(C) Bias in univariable MR compared to multivariable MR

i) G is UHP through Exposure 2 ii) G is CHP through Exposure 2 iii) G is CHP through Exposures 1 and 2
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Figure 1: (A): Flowchart illustrating the principles behind and implementation of MR-
BEE. (B): Bias addressed by currently available MR methods. ‘N’: cannot address. ‘Y’:
can fully address. To be Y?, Y™ requires that assumptions about the behavior of CHP
IVs are met. (C): Situations in which univariable MR with IVW cannot reliably estimate
direct causal effects. Multivariable IVW can more reliably estimate direct causal effects,
but still suffers from bias. Horizontal gray and red lines respectively indicate true direct
effects of exposure 1 and 2. Boxplots are causal estimates from simulation with true re-
lationships represented by the corresponding directed acyclic graphs above the boxplots.
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o measurement error bias is proportional to the ratio between the true genetic effect size and
wo the standard error of its estimate. This is the primary reason why violating assumption
1 (i) introduces bias into causal effect estimates in IVW and other MR approaches. Further-
102 more, unlike traditional measurement error analyses that require uncorrelated estimation
103 errors in exposures and outcomes, overlapping individuals in exposure and outcome GWAS
s can result in correlated measurement errors, making the direction of measurement error
s bias not always toward zero. This is the key reason why, in empirical studies such as Fig-
s ure 1 in Burgess et al. (2016), IVW estimates exhibit negative bias with small numbers of
w7 overlapping samples and positive bias with large numbers of overlapping samples.

108 In this paper, we propose a multivariable MR method, MR using Bias-corrected Es-
0o timating Equations (MRBEE), to eliminate measurement error bias while simultaneously
o accounting for horizontal pleiotropy in the presence of many weak IVs. In contrast to exist-
m  ing methods that only address measurement error bias in specific cases such as no sample
2 overlap (debiased IVW; Ye et al. (2021)) or no horizontal pleiotropy (MRlap; Mounier
us and Kutalik (2023)), MRBEE offers a comprehensive solution to measurement error bias,
s accommodates sample overlap, and adapts to both univariable and multivariable MR mod-
us els. Through numerical simulations, we demonstrate that MRBEE is capable of estimating
us causal effects without bias across various real-world conditions. To exhibit its practical
uz  significance, we perform two independent real data analyses using MRBEE, first estimat-
us ing the causal effects of cardiometabolic risk factors on coronary artery disease risk in two
ne populations, and secondly estimating the causal effects of modifiable and non-modifiable
1o risk factors for schizophrenia and bipolar disorder. A parallel study in Yang et al. (2023)
21 provides more extensive theoretical investigations of bias in multivariable MR and the
122 asymptotic properties of [IVW and MRBEE.

» 2 Materials and methods

2 2.1  Multivariable Mendelian randomization model

s Let g; = (gi1,- .-, 9im) ' be a vector of m independent genetic variants where each variant
16 is standardized with mean zero and variance one, x; = (z;1,... ,xip)T be a vector of p

127 exposures, and y; be an outcome. Consider the following linear structural model:

z; =B'g, +u, (1)
yi=0"xz; +~'gi + v, (2)
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s where B = (B1,...,08,)" is an (m x p) matrix of genetic effects on exposures with
w B; = (Bj1,...,Bj) " being a vector of length p, 8 = (6y,...,6,)" is a vector of length
130 p representing the causal effects of the p exposures on the outcome, v = (y1,..., V)" is
1 a vector of length m representing horizontal pleiotropy, which may violate the (IV2) or
132 (IV3) conditions, and u,; and v; are noise terms. Substituting for @; in (2), we obtain the

133 reduced-form model:
yi = g; o+ 0+, (3)
134 where
a=B0 +~. (4)

135 In practice, u; and v; are usually correlated, and hence traditional linear regression between
s @; and y; cannot obtain a consistent estimate of 8. In contrast, the genetic variant vector g;
17 is generally independent of the noise terms w; and v; because the genotypes of individuals
133 are randomly inherited from their parents and do not change during their lifetime (Lawlor
130 et al., 2008). Hence, g; can be used as IVs to remove the confounding effect of u; and v;.

140 Since large individual-level data from GWAS are less publicly available, most of the
w1 current MR analyses are performed with summary statistics of IVs through the following

12 linear regression:
dj :,BJTO—F’Y]'—FE]', (5)

s where &; and ,éj are respectively estimated from the outcome and exposure GWASs, v; is
s the horizontal pleiotropy, €; represents the residual of this regression model, and j =1, ...,m
us  referring to the m IVs. IVsin MVMR are selected based on evidence of nonzero association
s with at least one exposure (Sanderson et al., 2019), meaning that some IVs may not be
17 associated with all exposures. Multivariable [IVW, which serves as the foundation of most

us existing MR approaches, estimates 8 by
Oryy = arg min {(d ~-BO) V(& - 1§9)} (6)
1 where V is a diagonal matrix consisting of the variance of estimation errors of &. In

s practice, it is routine to standardize &; and 3 by d;/se(d;) and f3,,/se(B;x) to remove the

151 minor allele frequency effect (Zhu et al., 2022). With this standardization, the multivariable
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12 IVW is indeed an ordinary least squares (OLS) estimate which estimates 6 by
61y = arg min {||a - ﬁoug} (7)
153 whose close-form expression is 01y = (]§T]§)_1]§Td

s 2.2  Bias of Multivariable IVW estimate

155 However, the mutivariable IVW estimate éva is biased due to the estimation errors of &;
5 and B; in GWAS:

(?tj = Oy + waj, (8)

Bj = B + wg,. 9)

15710 see this, we consider the estimating equation and Hessian matrix of @ryy:

AN A

Slvw(o) = ﬁT(EG - d), HIVW = BTB (10)

155 That is, Sty (@) is the score function of (7) and Oy is estimated by solving Sty (01ww) = O,
150 and Hiyyy is the 2nd derivative matrix of (7). Since O — 0 = —H},Stw(0), the bias of
w0 Oy is approximately (Yang et al., 2023):

E(élvw —0) = (cov(B;) + cov(’wﬁj)) 1 (cov(wﬁj)O - cov(wﬁj,waj))

. AN s

weak instr‘IZment bias measureme‘rgc error bias
+ (cov(B;) + cov(wg,)) ™! cov(B;, 7). (11)
N———

pleiotropy bias

160 Here, cov(3;) can be regarded as the average information carried by each IV, while
12 cov(wg;) can be regarded as the information carried by each estimation error. If cov(3;)
163 is not substantially larger than cov(wg,), then the weak instrument bias (cov(B;) +
s cov(wg,))”" will inflate the measurement error bias cov(wg,)d — cov(wg,,w,,). There-
165 fore, weak IVs can worsen the measurement error bias, which is the primary reason why
166 violating assumption (i) introduces bias into causal effect estimates in IVW and other MR
167 approaches (Ye et al., 2021; Sanderson et al., 2021).

168 On the other hand, the covariance between the estimation errors of SNP-exposure and
19 SNP-outcome associations cov(wg,,w,,;) can be affected by the fraction of overlapping
o samples of the exposures and outcome GWAS. If the exposures GWAS and outcome GWAS

i1 are independent of each other, then cov(wg,,w,,) = 0 and hence the measurement error
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12 bias always shrinks éIVW towards the null. In contrast, if the exposures GWAS and outcome
173 GWAS are estimated from the same cohorts, cov(wpg,, w,;) usually introduces bias towards
17 the direction of cov(w;,v;). This is the reason why in some empirical studies (Burgess
s et al., 2016; Sadreev et al., 2021), IVW cannot completely remove the confounding bias if
e the overlapping sample fraction is large.

177 If cov(B;,v;) # 0, there is additional pleiotropy bias due to the horizontal pleiotropy
s that violates the InSIDE assumption. In univariable MR, it is challenging to guarantee
s ;= 0 or cov(y;,B;) = 0 for all 1 < j < m, resulting in a potentially biased IVW
1o estimate. Traditional solutions to horizontal pleiotropy bias require that only a small
111 proportion of IVs exhibit horizontally pleiotropic effects, and robust tools or Gaussian
12 mixture models can be employed to identify these IVs (Morrison et al., 2020; Zhu et al.,
13 2021; Qi and Chatterjee, 2019). However, for complex traits, it is plausible that a large
18 portion of IVs (even possibly > 50%) possess horizontally pleiotropic effects, leading to the
15 failure of univariable MR methods. Multivariable MR can balance these pleiotropic effects
185 shared by multiple exposures, significantly reducing the number of IVs with horizontal
17 pleiotropy evidence when conditioned on specified exposures. In other words, it is more
s likely to guarantee that only few IVs violate the InSIDE assumption cov(3;,v;) = 0 after
189 accounting for multiple exposures, which can be then detected and removed using the

100 Tobust tools such as a pleiotropy hypothesis test.

w 2.3 MR using bias-corrected estimating equation

12 We propose MRBEE which estimates causal effects by solving a new unbiased estimating
103 equation of causal effects. Let cov(wg,) = Zw,w,0 and cov(wg;, wa,;) = Ow,sw,. The

10a unbiased estimating equation of 6 is
Sgee(0) = Stvw(0) — m(Zw,w,0 — Ow,w, ), (12)
s where Sty (0) = —]§T(d — ]§0) The solution @ggx such that SBEE(éBEE) =0is
sz = (BTB — mZw,w,) (BT & — mow,u,). (13)

we In MRBEE, how to estimate the bias-correction terms Xy, and oy,y, may be the
17 most important issue in implementation. Here, we estimate them from insignificant GWAS
108 summary statistics (Zhu et al., 2015). Let a7, A;-‘l, ce A;‘p (j=1,..., M) be M insignificant
19 GWAS effect size estimates of outcome and exposures, where the insignificance means that
200 the p-value of the genetic variants are larger than 0.05 for all exposures and outcome, and

20 the independence means that they are not in linkage disequilibrium. Because & and B]*k
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202 follow the same distributions of Wa, and Wy, BWsxw, Can be estimated by
M
X ~%\ T 1 A% * A
W xwa = Z e B, &) (Bl B ). (14)

203 Here, iwﬁwﬁ is the first (p X p) sub-matrix of fJWﬁXwa and oy, consists of the first p—1
20 elements of the last column of iwﬁxwa-

205 The covariance matrix of éBEE is yielded through the sandwich formula:
cov(0gze) = Fogp Viee(0) Fogr, (15)

206 where the outer matrix Fgge is the Fisher information matrix, i.e., the expectation of the
207 Hessian matrix of Sgee(0), and the inner matrix Viggg(0) is the covariance matrix of Sgee(6).

208 A consistent estimate of Ypge(0) is

~—1 -1

oV (Ones) = Foge Vies (Ons) Fags, (16)

s where Fgzz = BB fm — Ewﬁwﬁ, Vige(Oeez) = 01 S, (05e2) Sj(05ze) T /m, and S (6gze) =
20 —(Q — 0] 3))8; — EWﬁWﬂOBEE + 0wy, As presented so far, MRBEE only removes the
a1 weak instrument bias and estimation error bias, which may still yield biased or inefficient
a2 causal effect estimates if horizontal pleiotropy exists. In the next section, we show how to

213 use a pleiotropy test to detect and remove the underlying horizontal pleiotropy.

a2 2.4 Detecting horizontal pleiotropy

25 In this subsection, we illustrate how to remove specific IVs with evidence of additional
26 UHP or CHP effects with the pleiotropy test Spieio Which tests the same null hypothesis
27 for each SNP as MR-PRESSO (Verbanck et al., 2018) and IMRP (Zhu et al., 2021). The
218 null hypothesis for the jth IV not having any horizontally pleiotropic effects on the outcome

210 1S
HOj = 0 \% Hlj et 7é 0. (17)
20 The statistic Spieio for the jth IV is defined

. a; — B16)?
SPleioj (0) = ( . ~ ! A—z AL (18>
cov(a; — 3, 0)
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Algorithm 1 Pseudo-code of MRBEE + pleiotropy test

Input: Initial estimates é(o), bias-correction terms f]wﬂwﬁ and Gw,u, ; Spreio P-value sig-

nificance threshold s, tolerance ¢, full set of m* IVs ]-"g)) ={j:j=1,...m*}
while doHOOﬁJr1 H(t)HQ > €
Calculate St (W) for all j =1,...,m*,

p191o
1)
Update .7-"(tJr ={j Sfflem 00) < F 2(1)(1 K)},
Update 8¢+1 using Equation 13 and IVs in }"(Hl)
end while

Output: Causal effect estimates éBEE, set of m non-UHP/CHP IVs Fg.

21 which follows a x?(1) distribution under Hy;. The only assumption here is that &; — B;é
2 is asymptotically normal distributed, which it is as proven in Yang et al. (2023) and shown

23 in the Supplement. In practice, we can estimate cov(d; — BJTOA) using the delta method:
COV( ,BTO) = 0'2 + éTEWﬁWgé + BJTEBEEB]' — 20ATO'Wﬁwa, (19)

»¢ which is shown to converge to the true variance asymptotically (Yang et al., 2023). In
25 practice, we calculate Spieio for all candidate IVs and remove IVs with large Spieio values
26 in an iterative manner, which is summarized in Algorithm 1.

207 It should be pointed out that as GWAS sample sizes increase, the test of Hy; using
28 Spleio becomes more powerful and more UHP /CHP IVs can be detected. Specifically, the
2o variance of Spie1, vanishes with a rate O(1/nyin) where np,, is the minimum sample size of
20 exposures and outcome GWAS, while the effect size of ; under the alternative hypothesis
o is of O(1/4/m). Consequently, the non-centrality parameter of hypothesis test (18) tends
2 to infinity with a rate O(nym/m). Panel (A) in Fig 3 shows an example of this situation
213 using simulated data, from which it is easy to see the UHP and CHP have larger departures
24 from the causal pathway than non-UHP/CHP IVs and that more UHP/CHP IVs can be
25 detected when GWAS sample sizes are larger. Consequently, IVs with sufficiently large
26 Spreio Will be removed from causal estimation using our algorithm in practice.

237 Since Spieio tests a very general null hypothesis, we can also calculate Spieso for all
23 SNPs across the genome after estimating the causal effects of p exposures on the outcome
20 used in MR. Results from these tests can be used to (i) find novel loci associated with the
20 MR outcome and (ii) draw inferences about pathways of genetic association with the MR
21 outcome. Specifically, when a SNP has a negative effect on the exposure 8; and a positive
22 pleiotropic effect on the outcome v;, and simultaneously the causal effect 6 is positive, then
23 the total effect of this variant on the outcome «; is canceled and hence cannot be detected in
2 the outcome GWAS. In contrast, the pleiotropy test directly tests the effect v; and therefore

25 is able to detect novel loci. For example, Zhu et al. (2022) successfully detected many novel
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A) Spieio identifies genetic instruments with horizontal pleiotropy evidence
+ UHP/CHP e Valid IV ~o— Spieio<T —o— Spieic>T

Small GWAS n Larger GWAS n

w>ofF - - - - - - - - —--
w>ofF - - - - ------

B) Classifications of loci by Spejo and GWAS evidence

Direct U Mediation U Pleiotropy U Novel Pleiotro U
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P-value(B;8) > 5x 1078 P-value(B;8) < 5x 1078 P-value(B;8) < 5x 107° P-value(B,;8) < 5x 107°
P-value(7;) <5 x 1078 P-value(7;) > 5 x 1078 P-value(;) < 5 x 1078 P-value(7;) <5 x 1078
P-value(&;) < 5x 1078 P-value(&;) < 5x 1078 P-value(&;) < 5x 1078 P-value(&;) >5x 1078

Figure 2: (A): Demonstration of how horizontal pleiotropy IVs are identified in MRBEE
using Spieio for one exposure and one outcome. B on the x-axis are estimated SNP-exposure
associations; & on the y-axis are estimated SNP-outcome associations. IVs represented by
red points have a large Spieio value greater than 7 and so have evidence of horizontal
pleiotropy; blue points have small Spieio values less than 7 and do not have evidence of
horizontal pleiotropy. As GWAS sample sizes increase, we can identify more SNPs with
UHP/CHP evidence and remove them from causal estimation. Horizontal and vertical
lines at each point indicate the 95% confidence intervals for the association estimates.
(B): Classifications of outcome loci by evidence from the original outcome GWAS and
genome-wide horizontal pleiotropy testing using Spieio. Classifications are based on P-
values [denoted as P-value(-)] for testing null hypotheses of equality with 0 for a given
parameter in practice. We display the standard threshold of P-value<5x10® for inference,
but researchers can choose their own.
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26 blood pressure loci using this genome-wide pleiotropy test with IMRP as the estimator of
27 the causal effect. The results indicated that most detected pleiotropic variants influenced
2 SBP and DBP in opposite directions, providing support for the principle of the genome-
29 wide pleiotropy test. Scenarios in which researchers may infer direct, exposure-mediated,
=0 and pleiotropic genetic associations with the MR outcome using Spieio are displayed in

1 Figure 2B.

x 2.5 Simulation settings

3 For the univariable MR results presented in Figure 3, we simulated m = 50,100, and
4 250 genetic variants G for 30k individuals from a binomial distribution with minor allele
s frequency (MAF) 7 that followed a Uniform(0.05,0.50) distribution. One true exposure
6 with variance 1 was generated. The effect sizes [ of the m genotypes on the exposure
27 followed a Uniform(—1, 1) distribution and were scaled to explain 5% of exposure variation.
s Thus, increasing m was equivalent to introducing more weak IV bias. In the true MR
s0 model oo = B0 + Y +~, the term 4V representing UHP was random noise and the term
20 ¢ representing CHP was negatively correlated with 3. UHP and CHP effects were either
1 generated for 0% or 10% of IVs depending on the simulation scenario, and were scaled
%2 to match the patterns of horizontal pleiotropy that we observed in Real Data Analysis |
23 (see Figures 6S and 7S in the Supplement for examples). R code used to generate these
»s  values and an example plot of them is presented in the Supplement. The model for x was

s therefore

r=)Y Gf+U+e (20)

s=1
6 and the outcome was generated as

m

y=20+Y G(W+)+U+e (21)

s=1

7 where U is a confounder of (z,y) with variance (1 — h2) x 0.15 and ¢, was generated from
s a normal distribution N(0,1 — h% — Var[U]). After drawing 30k independent realizations
%0 of x and y, we performed linear regression of x and y on each G, separately to produce
20 the respective GWAS estimate pairs (5, 86[3]) and (&,8&[a]) that were used in MR. The
on - competitors we included in simulations were IVW (Burgess and Bowden, 2015), MR-Egger
a2 (Rees et al., 2017), dIVW (Ye et al., 2021), weighted median (Bowden et al., 2016), MR-
o3 Lasso/Robust (Burgess et al., 2020), MR-Mode (Yavorska and Burgess, 2017), IMRP (Zhu

aa et al, 2021), MR-CML (Xue et al., 2021), MRMix (Qi and Chatterjee, 2019), MR-~Corr
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25 (Cheng et al., 2022), and MR-CUE (Cheng et al., 2022). We did not include CAUSE
26 (Morrison et al., 2020) because of its computational cost. The number of independent
a7 replications was 1000. All R codes used to perform these simulations are available the
zs Github repository (https://github.com/noahlorinczcomi).

279 For the multivariable MR results presented in Figure 4, we followed the same procedure
280 as above to generate G for 30k individuals. We then generated two exposures with pheno-
s typic correlation p, = 0.5, variances 1, and heritability (h?) explained by the m = 50, 100,
2 and 250 SNPs of 5% for each exposure. Effect sizes (81, 32) of G on x = (z1,75)" were

283 generated from

0 0 1 045 0
<51 ) NN( ’ m [771 ]) (22)
B, 0 0 m || 045 1 0 1
¢ where (11,72) are scaling factors to ensure 5% heritability in (x;, z5) explained by the m

s ONPs. We then generated x as

T = Z Gsbis + U + €1, Ty = Z GsfBas + U + €42 (23)

s=1 s=1
s where var(U) = (1—h?) x (0.15/2)%, var(e,;) = var(ey) = 1 —h?—var(U), and h? = 0.05.
27 CHP in univariable MR methods is automatically introduced by generating two genetically
s correlated exposures. Additional UHP (1Y) and CHP (79) effects were generated directly
280 from transformations on fi40; + P20 using the same procedure described above in the

200 Univariable setting described above. We then simulated the outcome y as

?J:fElQl+9€292+ZG3(75+%C)+U+% (24)

s=1

21 where var(ey) = 1 —var(x' 0+ U). We then performed association testing of (z;, ;) and
22y for all SNPs and phenotypes separately using randomly drawn values for the quantities
203 above and linear regression on G to produce the estimates (Bls, 55[331]), (Bgs, EE[BSQ]), and
2 ((ig, 5€[G)). These estimates were used to perform MR using the methods displayed in

295 Figure 4.

» 2.6 Real Data Analysis I: Coronary artery disease

207 We performed two real data analyses, the first of which is described here and the second in
28 Section 2.7. In Real Data Analysis I, we estimated direct causal effects of 9 exposures on

200 coronary artery disease (CAD) risk in East Asian (EAS) and European (EUR) populations
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30 using multivariable MRBEE and existing alternatives. East Asian (EAS) GWAS data for
;1 exposures were provided by Biobank Japan (Nagai et al., 2017), and for coronary artery
22 disease (CAD) were provided by Ishigaki et al. (2020) (n=212k). European (EUR) GWAS
303 data for exposures were provided by the consortia listed in the Supplement, and for CAD
3¢ by the CARDIoGRAM consortium (n=184k) (CARDIoGRAMplusC4D, 2015). CAD risk
w5 factors used in multivariable MR included high-density lipoprotein (HDL), low-density
ws lipoprotein (LDL), triglycerides (TG), body mass index (BMI), systolic blood pressure
w7 (SBP), uric acid (UA), height, HbAlc, and hemoglobin (HG). Hematocrit, diastolic blood
28 pressure (DBP), and red blood cell count were initially considered but later excluded from
30 multivariable MR because of high correlations (>0.75) in IV estimates with other exposures.
s More details of the GWAS data used are available in Section 4 of the Supplement.

311 We generally followed the methods of Wang et al. (2022) to select instruments for
sz univariable and multivariable MR analyses. Candidate IVs in univariable MR analysis
23 were associated (P<5x107®) with the exposure in a within-phenotype and between-ancestry
s fixed-effects meta-analysis of EAS and EUR GWAS, had the same sign in the EAS and
a5 KUR GWAS, and had at least P<0.05 in both GWAS. We then selected only independent
a6 SNPs from this set using ancestry-specific linkage disequilibrium (LD) reference panels from
a7 1000 Genomes Phase 3 (Fairley et al., 2020) and the following parameters in PLINK v1.9
ss (Chang et al., 2015): r2<0.01, 1Mb, P<5x10®). Only ancestry-specific GWAS estimates
si9 were used in ancestry-specific MR. For multivariable MR, we filtered the full set of all IVs
2o used in univariable MR to only independent SNPs that had linkage disequilibrium r?<0.01
s in a 1Mb window using ancestry-specific LD reference panels from 1000 Genomes. This
32 resulted in 3,097 IVs used in EAS and 2,821 in EUR. Results from alternative selections of
23 the IVs are available in the Supplement and are consistent with those presented in the
24 Results section. All GWAS estimates were standardized following the methods in Qi and
»s Chatterjee (2019).

326 For all available SNPs genome-wide, we performed horizontal pleiotropy testing using
27 the statistic Spieio With causal estimates from multivariable MRBEE. These tests were used

»s for inferences of direct, exposure-mediated, novel, and pleiotropic genetic associations with
20 CAD as described in Methods.

» 2.7 Real Data Analysis II: Schizophrenia and bipolar disorder

s In Real Data Analysis I, we estimated direct causal effects of seven exposures on risk of
2 schizophrenia (SCZ) and bipolar disorder (I or II; BP) with GWAS data from European
;13 populations using multivariable MRBEE and existing alternatives.

334 We estimated causal effects of the following risk factors: Cannabis use disorder (CUD),
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335 left handedness (LH), Attention-Deficit/Hyperactivity Disorder (ADHD), sleep duration,
1 education, intelligence, and neuroticism (SESA). All GWAS data were from studies in
a7 strictly EUR individuals. Exposure GWAS sample sizes ranged from 55k for ADHD (De-
1 montis et al., 2019) to 1.7M for LH (Cuellar-Partida et al., 2021). SCZ GWAS data were
;9 from a meta-analysis performed using data from the Psychiatric Genomics Consortium
10 (Trubetskoy et al., 2022) on 130k EUR individuals. BP GWAS data were from Mullins
s et al. (2021) that had a total sample size of 413k EUR individuals, where the outcome phe-
2 notype was defined as either lifetime Bipolar I or II disorder. More complete descriptions
w3 of all GWAS data used in MR are available in the Supplement.

344 Because some exposure GWAS did not detect many genome-wide significant signals
us  (e.g., only 2 were detected for CUD), we initially considered all independent SNPs with
16 exposure GWAS P<5x107 in multivariable MR analysis. We then restriced this set of IVs
.7 to only those with P<5x10® in a 7-degree of freedom chi-square joint test of association
us  with any of the 7 exposures. This test accounting for sample overlap among the exposure
s GWAS. We then excluded 3 IVs whose minor allele frequencies differed by more than 0.10
30 from all other exposures. This resulted in 1,227 IVs that were used in multivariable MR
351 which were standardized by their GWAS standard error.

352 We performed genome-wide horizontal pleiotropy testing with Spieso using all MR ex-
353 posures with a causal effect P-value less than 0.05 for either SCZ or BP. Including non-
34 significant exposures in genome-wide pleiotropy testing would have only increased the vari-
35 ance term used in Spie;o and not otherwise affected the inferences we could make. We
16 performed a sensitivity analysis in which non-significant MR exposures were included, the
57 results of which are presented in Supplement Section 4.6 and are identical to those pre-
3 sented below. Genome-wide testing with Spiei0 Was performed separately for SCZ and
30 BP.

w» 3 Results

w 3.1  Simulation Results

2 Univariable simulation results in Figure 3 demonstrates that MRBEE is able to estimate
33 the causal effect of a single exposure without bias as UHP, CHP, sample overlap, GWAS
s sample sizes, and weak instrument bias sources vary. While the competitors may estimate
ss  the causal effect with little or no bias in some scenarios, MRBEE is the only method that
6 does not encounter bias in all scenarios. MRBEE also has well-controlled Type I error
w7 (Figure 3B) and coverage frequencies (Supplement Fig 9S), whereas other methods do

s Not, especially as weak IV bias and sample overlap proportions become larger. For example,
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10 the false positive rate of IVW, MR-Egger, MR-Median, MR-Lasso/Robust, dIVW, IMRP,
s MR-CML, and MR-Corr can surpass 20% when there is 100% sample overlap and 250 IVs
snonly explain 5% heritability in the exposure, a pattern which was commonly observed in
w2 an East Asian population in Wang et al. (2022). Power for univariable MR with MRBEE
;i3 compared to existing alternatives is presented in Supplement Figure 11S and shows that
s MRBEE is at least as powerful as the most powerful existing methods in all 24 scenarios
a5 we considered.

376 Multivariable simulation results in Figure 4A demonstrates that, compared with the
sr7 - alternative methods included in Figure 3 and their multivariable versions, MRBEE can
ss  estimate direct causal effects without bias in the presence of weak IVs, UHP and CHP,
so - and sample overlap. Multivariable MR methods are generally less biased than univariable
;0 MR methods, but still they cannot consistently estimate direct causal effects because of
ss1 uncontrolled biases from weak instruments, measurement error, and sample overlap. Since
;2 every other MR method except MRBEE is biased in at least one of the scenarios we
3 considered, their coverage frequencies are generally not optimal (i.e., less than 95%). For
s« example, the coverage frequencies for MR-CUE and MR-Corr are less than 50% for almost
s all cases we considered. Alternatively, some methods such as MR-Mode and MR-Median
s can have coverage frequencies greater than 0.95 because they have large standard errors
w7 (see Supplement Fig 9S). In contrast, MRBEE obtained optimal coverage frequencies in

;s all simulation settings.

w 3.2 Real Data Analysis I: CAD
0 3.2.1 Causal Estimates

s Univariable MR results suggested nonzero causal effects of all exposures on CAD in either
32 EAS or EUR populations. However, there was widespread evidence of unbalanced hori-
33 zontal pleiotropy as indicated by large differences in causal estimates between estimators
¢ that differ only in how UHP/CHP is addressed. For example, the odds ratio of causal
s effect of DBP on CAD in EAS was estimated to be 2.03 (P=2.8x10""") using IMRP but
w6 only 1.43 (P=0.140) using MR-Egger. Full univariable MR results are presented in the
37 Supplement.

308 Table 1 contains all multivariable MR estimates, which were generally consistent be-
30 tween EAS and EUR populations. All 9 exposures had evidence of nonzero causal effect
wo on CAD in EAS or EUR. LDL had the largest estimated odds ratio for causal effect in
w1 both EAS and EUR. MRBEE produced odds ratio estimates of 2.09 in EAS (P<1x1071%%)
w2 and 1.76 in EUR (P<1x10?°), the latter of which was undetected in Wang et al. (2022).

w3 In EAS, all other multivariable MR methods may underestimate the direct causal effect of
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A) Causal estimates for single-exposure MR
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Figure 3: (A) Bias when estimating the total causal effect for one exposure in MR. The
true causal effect is indicated by the vertical black line (0.5). Simulations were performed
1,000 times using the individual-level data generation process described in the text. Ex-
posure heritability explained by the IVs was 5% for all scenarios. (B): Type I error of
univariable MR using the same simulation settings as those used in panel (A) except the
true causal effect is 0.
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A) Causal estimates for the first of two exposures
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Figure 4: (A): Bias when estimating the direct causal effect for the first of two true and
genetically correlated exposures and one outcome. The true causal effect is indicated by
the vertical black line (0.5). MR methods that could only include exposure 1 in MR are
dIVW, IMRP, MR-Mode, MRMix, MR-CML, MR-Corr, and MR-CUE. MRBEE, MVMR-
Egger, MVMR-Median, MVMR-Lasso included both exposures in MR simultaneously. This
simulation was performed 1,000 times using the individual-level data generation process
described in the text. Heritability in the exposures explained by the IVs was 5% for all
scenarios. (B): Proportions of simulations in which the estimated 95% confidence interval
of the causal estimate contained the true direct causal effect of exposure 1.
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sws  LDL on CAD compared to MRBEE. For example, MR-Robust produced an odds ratio es-
ws timate of 1.26 (P<1x1071%). The direct causal effect of SBP on CAD in EAS was similarly
ws underestimated by MR-Median compared to MRBEE, where MRBEE produced an odds
w7 ratio estimate of 1.94 (P=1.3x10"°) and MR-Median 1.49 (P=1.3x10"%).

408 In EAS, the total and unmediated causal effect of BMI on CAD from univariable MR
w0 (OR=1.44, P=2.0x10"?°) was completely mediated by SBP (P=0.220 in a test against total
a0 mediation; see Supplement). In EUR, the SBP GWAS included BMI as a covariate and
a0 SBP could not statistically act as a mediator for BMI in multivariable MR with CAD.
a2 The BMI result displayed in Table 1 therefore reflects the effect of BMI on CAD that does
a3 not go through all other exposures except SBP. This phenomenon — that including one
ss exposure as a covariate in the GWAS for another can preclude consistent direct causal
a5 effect estimation in multivariable MR — is confirmed in simulations in the Supplement
ss and reported in Gilbody et al. (2022).

a7 Finally, we estimated the correlation between the bias in Equation 11 and differ-
ss  ences in causal estimates between MRBEE and multivariable IVW adjusted for horizontal
s pleiotropy, termed here as ‘IVW*'. IVW* is the multivariable IVW estimator with IVs
220 that had P-values corresponding to Spieio less than 0.05 /m removed. In EAS, this Pear-
21 son correlation was 0.92 (P=4.6x10"*) and in EUR was 0.65 (P=0.058) (see Figure 5A).
a2 This suggested that differences between IVW* and MRBEE causal estimates were due to
w3 uncontrolled bias in IVW*. Since causal estimates made by IVW* were generally simi-
24 lar to those made by MR-Robust and MR-Median methods (see Supplement), a similar

w5 interpretation can be made for them.

w2 3.2.2 Genome-wide Spei, Test

w27 We then applied the Spleio test to all SNPs genome-wide using causal estimates from
»s MRBEE to search for SNPs with pleiotropic effects. The original CAD GWAS in EAS
29 and EUR respectively identified 65 (Age = 1.16) and 39 (Age = 1.00) loci, defined as
s 1 megabase (Mb) windows with r?<0.01 between lead SNPs (P<5x10%). Genome-wide
s horizontal pleiotropy testing with Spieso correspondingly identified 27 (Age = 1.08) and 41
3 (Age = 1.01) loci in EAS and EUR. In EUR, nine loci that were detected in horizontal
a3 pleiotropy testing were not detected in the original CAD GWAS, as Figure 6 demonstrates.
sa Seven of these loci were replicated with P<0.05 for the lead SNP in an independent CAD
i35 GWAS in Europeans from the UK Biobank (Neale’s lab: http://www.nealelab.is/), all
w6 of which could only be detected in a recent larger CAD GWAS (Aragam et al., 2022). In
a7 EUR and EAS, we respectively identified only 10 and 18 loci that were directly associated
s with CAD. These loci had evidence of association with CAD but not any of the MR

a0 exposures. We also identified 19 loci in EUR and 5 in EAS with evidence of simultaneous
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0¢

Coronary artery disease (East Asian)

Coronary artery disease (European)

MRBEE MR-Lasso MR-Median MRBEE MR-Lasso MR-Median
Exposure OR P OR P OR P OR P OR P OR P
HDL 085 1.1E-2 0.89 21E-7 0.89 18E-4 077 38E-5 074 12E-14 074 1.2E-7
Height 096 6.1E-1 094 9.8E-5 094 5.7E-3 090 56E-6 090 7.8E-11 0.90 1.2E-6
HG 1.06 45E-1 099 69E-1 1.03 5.6E-1 1.15 26E-3 1.16 59E-7 117 2.8E4
BMI 097 b54E-1 106 3.1E-2 1.03 4.7E-1 126 7.1E-7 128 6.5E-14 1.30 3.7E-8
TG 1.20 38E-2 1.17 3.7E-7 112 6.7E-3 1.02 79E-1 1.02 6.0E-1 097 6.7E-1
HbAlc 1.26 33E-3 1.12 95E6 1.16 1.0E-5 1.19 15E-5 1.19 1.1E-10 1.19 3.1E-6
UA 1.36 64E-6 1.18 72E9 1.15 19E4 119 44E4 108 7.1E-3 112 6.8E-3
SBP 1.94 13E-5 146 <10-100 149 13E-15 1.34 14E-3 121 1.5E-5 124 &83E-4
LDL 2.09 <10-100 1.26 <10-100 1.23 8.5E-9 1.76 <10-100 1.69 <10-100 1.65 <10-100

Bipolar I or II (European) Schizophrenia (European)
MRBEE MR-Lasso MR-Median MRBEE MR-Lasso MR-Median
OR P OR P OR P OR P OR P OR P

INT 0.77 34E-4 089 69E-7 090 4.9E-4 052 54E-12 0.77 7.7E-24 0.73 1.4E-17
SLP 1.12 19E-3 1.05 5.1E-3 1.07 7.0E-3 1.18 47E-4 1.11 33E-9 1.12 1.6E-5
SESA 1.13 78E-4 1.11 44E-9 1.11 1.44E-5 128 14E-7 1.21 28E-24 1.24 1.6E-15
LH 1.12 3.0E-1 1.11 28E-5 1.12 1.2E-3 124 12E-1 1.16 25E-7 118 3.2E-5
ADHD 1.29 23E-3 1.15 15E9 1.17 1.0E-6 1.08 50E-1 1.07 54E-3 111 3.6E-3
EDU 1.24 83E-13 1.12 13E-24 1.12 1.0E-12 139 23E-15 1.14 59E-28 1.16 1.0E-18
CUD 1.50 1.3E-3 1.14 20E-7 1.16 1.0E-5 271 b57E-8 129 1.1E-18 1.30 3.4E-11

Table 1: Direct causal estimates from multivariable MR are obtained from IVs whose selection is described in Methods. Significant
(P<0.05) estimates are presented in bold text. We found no evidence of unbalanced horizontal pleiotropy in any analyses (P>0.1

for a test of non-zero intercepts; see Supplement
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A) Expected and observed bias in estimating direct causal effects (real data analysis 1)
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A) Expected and observed bias in estimating direct causal effects (real data analysis 2)
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Figure 5: The x-axes represent theoretical bias in the direct causal effect estimates of
IVW* (multivariable IVW with horizontal pleiotropy IVs removed using Spieio), which was
calculated using the expectation of Equation 11 with the plugged-in MRBEE direct causal
estimates. Y-axes are the observed difference between the IVW* and MRBEE direct causal
estimates. Pearson’s r values represent the linear correlation between values on the x- and
y-axes. Corresponding P-values are for testing the null hypothesis that r=0.

association with the MR exposures and CAD conditional on the exposures.

3.3 Real Data Analysis II: SCZ and BP
3.3.1 Causal Estimates

Univariable MR results suggested nonzero total/unmediated causal effects of CUD, ADHD,
left handedness, neuroticism, sleep duration, intelligence, and education on either BP or
SCZ. We found a strong protective causal effect of left handedness on BP risk (MRBEE
OR=0.70, P=8.9x10"3*), which is of opposite sign for SCZ (OR=1.36, P=6.2x102%). It is
consistent with Scully et al. (2000) but not with Bellani et al. (2010) or Savitz et al. (2007).
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CAD (East Asian) CAD (European)

s S22

oy o2 -

Bipolar I/II disorder

2z
s O Chry

o

Mediation Direct  Pleiotropy Novel Genes in novel loci
CAD (EUR)  9(19%) 10(21%) 19 (41%) 9 (19%) FNI% FGD5*, PRDMS&, FGF5* FURIN®, CFDPI* AXL*
CAD (EAS) 37(62%) 18 (30%) 5(8%) 0 (0%) =)
ZNF638, AFF3, SPAG16, FOXO3, BTRC, SNX21, CLN3
9 9 9 9 » 4 ’ » 4 ’ 4
SCZ (EUR) 36 (22%) 104 (64%) 12 (7%) 11 (7%) NFATC3, RAIL, MEDIS
BP (EUR) 13 (28%) 26(55%) 5(11%) 3 (6.4%) FOX06, SCMHI1, ALDH7A1P4, ARNTL

Figure 6: Results from genome-wide testing using Spieio for horizontal pleiotropy. Inner
circles of Manhattan plots correspond to the original GWAS for the respective outcome;
outer circles correspond to Spieio tests using causal estimates from MRBEE. Points high-
lighted in red are genome-wide significant (P<5x10®) using Spieio but not in the original
GWAS. These loci are novel and contain genes listed in the bottom table. Italic font is
used to represent gene names. (a): These genes were replicated (P<0.05 for the marginal
association of the lead SNP) in the UK Biobank (Neale’s lab: http://www.nealelab.is/).
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as  The full univariable results are presented in the Supplement.

449 Full multivariable MR results are presented in Table 1. Multivariable MRBEE iden-
0 tified nonzero causal effects for all exposures on BP and/or SCZ except left handedness.
i1 MR-Robust and MR-Median generally produced similar causal estimates. Compared to
2 MRBEE, MR-Robust underestimated the direct causal effect of CUD on SCZ, where MR-
»3 Robust and MRBEE respectively produced odds ratio estimates of 1.29 (P=1.1x10"®) and
we 2,71 (P=5.7x10"%), the latter of which is more consistent with the literature. That is, the
»ss  odds ratio for association between CUD and schizophrenia is 3.90, 95% CI: 2.84-5.34 in
6 Marconi et al. (2016). Together, these seven exposures explained approximately 31% and
w7 17% of the genetic variance in schizophrenia and bipolar disorder, respectively.

458 As before, we compared differences between MRBEE and IVW* — the multivariable
s0 IVW estimator with pleiotropic IVs identified using Spieio Temoved — to the bias we ex-
wo pected in the multivariable IVW estimator using Equation 11. Differences between IVW*
w1 and MRBEE causal estimates were almost perfectly correlated with the expected bias,
w as demonstrated in Figure 5B: Pearson r=0.97 for BP (P=2.3x10"*) and r=0.97 for SCZ
w0 (P=2.5x10"). Only 3 IVs (<0.25%) had significant Spyeio values in MR, and they had no

w4 impact on causal estimates.

ws 3.3.2 Genome-wide S, Test

w6 We identified 11 schizophrenia loci and 3 bipolar disorder loci that were genome-wide
a7 significant using Spieio but had P>5x10® in the original GWAS (Figure 6). These loci
s are considered novel and contain genes associated with traits such as cancers (Welch et al.,
w0 2012), multiple sclerosis (Baranzini et al., 2009), severe COVID-19 infection (Stomian et al.,
s 2023), and lifetime smoking status (Pasman et al., 2022). Since the SCZ and BP GWAS
an are the largest available to date, independent data to validate these novel findings are
a2 not available. For both SCZ and BP, the majority of significant GWAS loci are directly
w3 associated with the outcome disease but not with the MR exposures. That is, 68% of
aa SCZ-associated loci are not associated with the MR exposures and 59% of BP-associated
a5 loci are not associated with the MR exposures. Alternatively, 24% of SCZ loci and 30% of

s BP loci have associations that are at least partially mediated by the MR exposures.

- 4 Discussion

s Our study suggests that the existing univariable and multivariable MR approaches can be
a0 vulnerable to one or several biases from weak instruments, measurement error, UHP, CHP,

w0 sample overlap, and excluded exposures. One suggested solution to this problem that is
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a1 currently being practiced in the literature is to use multiple MR methods and appraise the
2 evidence in aggregate more highly than evidence from any one method alone (Burgess et al.,
w83 2019). Our applications of MRBEE to simulated data demonstrated that multiple MR
s« methods can be biased in similar ways, rendering any aggregated inference from multiple
w5 biased methods no less subject to mistake than inference from any one method alone. In
a6 contrast, the multivariable MRBEE we developed here is generally robust to the above
w7 biases and should be a useful tool in practice.

488 We demonstrated the practical utility of MRBEE in two independent applications to
0 the study of (i) coronary artery disease (CAD) in East Asian and European populations
w0 and (ii) schizophrenia and bipolar disorder. Causal risk factors were generally consistent
w1 for CAD between EAS and EUR and between SCZ and BP in EUR, where there was
w2 evidence that any differences between MRBEE estimates and those made by alternative
w03 methods were the results of uncontrolled bias in other methods. For example, the IVW
s causal estimate of LDL on CAD in EAS was expected to have 55.3% downward bias from
w5 Equation 11 and indeed the horizontal pleiotropy-robust IVW causal estimate was 55.7%
ws smaller than the MRBEE estimate. In Real Data Analysis I with CAD, we observed that
s the total /unmediated causal effect of BMI on CAD was completely mediated by blood
ws pressure and partially by uric acid in EAS, though the GWAS data in EUR precluded
w0 testing of this kind. In Real Data Analysis II with SCZ and BP, we observed that CUD
so0 has large direct causal effects on SCZ and BP risk, which is consistent with the literature
s (Marconi et al., 2016), but that existing MR methods may underestimate the sizes of these
se2  effects. We also observed a strong protective causal effect of left handedness on BP risk in
so3 univariable MR which disappeared in multivariable MR, suggesting that multivariable MR
sos  was the correct method of causal analysis.

505 We finally introduced a multivariable horizontal pleiotropy test using the statistic Spieio
so that, when applied genome-wide, identified the pathways through which many genomic
s loci were associated with CAD, SCZ, and BP. Spiei, testing revealed that many genetic
so8 associations with disease endpoints were non-direct, suggesting that a large portion of
so0 the heritability of these complex traits may be conferred indirectly through their causal
si0 risk factors. This test also identified 9 novel loci for CAD in EUR — seven of which
su  were replicated in UKBB — 11 for SCZ and 3 for BP, for which no adequate independent
sz replication data exists. This method of pleiotropy testing using Spieio is therefore a valuable
s13 tool both for gaining better insight into how genetic risk of disease is conferred and in
su - detecting new risk loci.

515 MRBEE has the following limitations. As with all MR methods, the reliability of
s16  causal estimates produced by MRBEE depends on the quality of GWAS data used in MR.

siz For example, biases in GWAS from assortative mating or dynastic effects may propagate
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sis through to MR and bias causal estimation (Brumpton et al., 2020; Hartwig et al., 2018).
si9. Second, MRBEE may yield wider confidence intervals for exposures with small heritability
s20 than current approaches that ignore weak instrument bias. This is because current methods
s implictly assume that the effect size estimates used in MR are equal to the true effect sizes,
s2 whereas MRBEE more correctly considers them as consisting of true effect sizes plus their
23 estimation errors. We demonstrate in the Supplement that the variance of MRBEE
s decreases as the variance in the exposures explained by the IVs increases. Conversely, the
5 variance of IVW may decrease even for fixed exposure variance explained when more weak
s Vs are added to MR. Third, high multicollinearity in our real data analyses prevented
so7 us from including some exposures. For example, SBP and DBP were not included in
s.s  multivariable MR together. Future work that can expand the application of MRBEE to
s20 the high-dimensional setting may help address this challenge. Fourth, MRBEE may be
s subject to winner’s curse bias in practice (Sadreev et al., 2021), but this bias is not as
sn severe as for IVW and other methods that neither correct for winner’s curse nor weak 1Vs
s (see Supplement Figure 6S).

533 In conclusion, univariable MR analysis is inherently limited in its ability to reduce bias,
s but univariable MR methods and their applications have so far dominated the literature
s compared to multivariable analyses. We developed multivariable MRBEE to reduce known
s3 biases in MR and estimate direct causal effects of multiple exposures in robust way. MR-
s BEE can be a useful tool in studying causality between risk factors and disease outcomes

s38  as more large GWAS summary statistics are made publicly available.

539

s0 Software

san. The software used to perform all simulations and analyze the real data used above is
sz available at https://github.com/noahlorinczcomi/MRBEE and http://hal.case.edu/
si3 ~xxz10/zhu-web/. The software contains all functions needed to use MRBEE and perform

saa  all their associated tests in practice.

=5 Supplementary Information

sas  Please refer to the Supplement for additional derivations, simulation results, and details

sa7  of real data analyses.
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