

1 MRBEE: A novel bias-corrected 2 multivariable Mendelian Randomization 3 method

4 Noah Lorincz-Comi, Yihe Yang, Gen Li, Xiaofeng Zhu *

5 Department of Population and Quantitative Health Sciences,
6 School of Medicine,
7 Case Western Reserve University,
8 Cleveland, OH 44106, USA

9 June 12, 2023

10 Abstract

11 Mendelian randomization (MR) is an instrumental variable approach used to infer
12 causal relationships between exposures and outcomes and can apply to summary data
13 from genome-wide association studies (GWAS). Since GWAS summary statistics are
14 subject to estimation errors, most existing MR approaches suffer from measurement
15 error bias, whose scale and direction are influenced by weak instrumental variables
16 and GWAS sample overlap, respectively. We introduce MRBEE (MR using Bias-
17 corrected Estimating Equation), a novel multivariable MR method capable of simulta-
18 neously removing measurement error bias and identifying horizontal pleiotropy. In
19 simulations, we showed that MRBEE is capable of effectively removing measurement
20 error bias in the presence of weak instrumental variables and sample overlap. In
21 two independent real data analyses, we discovered that the causal effect of BMI on
22 coronary artery disease risk is entirely mediated by blood pressure, and that existing
23 MR methods may underestimate the causal effect of cannabis use disorder on
schizophrenia risk compared to MRBEE. MRBEE possesses significant potential for
advancing genetic research by providing a valuable tool to study causality between
multiple risk factors and disease outcomes, particularly as a large number of GWAS
summary statistics become publicly available.

24 *Keywords:* Genetic Epidemiology, Statistical Genetics, Complex Disease, Mendelian Ran-
25 domization

*This work was supported by grant HG011052 (to X.Z.) from the National Human Genome Research Institute (NHGRI), USA. Email: xxz10@case.edu

26 1 Introduction

27 Mendelian randomization (MR) is an epidemiological approach that leverages genetic vari-
28 ants as instrumental variables (IVs) to infer causal relationships between exposures and
29 outcomes, reducing confounding and reverse causation, while providing a cost-effective,
30 ethical, and generalizable alternative to randomized controlled trials (Burgess et al., 2015;
31 Sanderson et al., 2022; Zhu, 2020). Originally developed for application in individual-level
32 data (Sanderson et al., 2022), MR can also be applied to summary-level statistics obtained
33 from genome-wide association studies (GWAS) and has therefore become increasingly pop-
34 ular to infer causality of disease risk factors (Zhu, 2020), identify biological drug targets
35 (Gill et al., 2021), and causal effects of genes on phenotypes (van Der Graaf et al., 2020).
36 Inverse-variance weighting (IVW) (Burgess et al., 2013) is the fundamental approach to
37 perform MR with GWAS summary data, the validity of which relies heavily on three so-
38 called valid IVs assumptions: the genetic IVs are (i) strongly associated with the exposures,
39 (ii) not directly associated with the outcome conditional on the exposures, and (iii) not
40 associated with any confounders of the exposure-outcome relationships. Violations of the
41 (i) - (iii) assumptions will respectively introduce weak instrument (Burgess et al., 2011),
42 uncorrelated horizontal pleiotropy (UHP) (Zhu, 2020), and correlated horizontal pleiotropy
43 (CHP) (Morrison et al., 2020) biases into the causal effect estimation of IVW.

44 From a statistical standpoint, both UHP and CHP in an MR model exhibit charac-
45 teristics similar to outliers in traditional regression analysis, and hence can be addressed
46 by applying robust tools. In the literature, MR pleiotropy residual sum and outlier (MR-
47 PRESSO) (Verbanck et al., 2018) and iterative MR pleiotropy (IMRP) (Zhu et al., 2021)
48 intend to detect and remove potential horizontal pleiotropy through hypothesis tests, while
49 MR-Median (Bowden et al., 2016), MR-Robust (Rees et al., 2019), and MR-Lasso (Kang
50 et al., 2016) attempt to mitigate UHP/CHP effects by using robust loss functions. Al-
51 ternatively, Gaussian mixture models have been employed by MRMix (Qi and Chatterjee,
52 2019), MR contamination mixture (MR-Conmix) (Burgess et al., 2020), causal analysis us-
53 ing summary effect (CAUSE) (Morrison et al., 2020), MR constrained maximum likelihood
54 (MR-CML) (Xue et al., 2021), and MR with correlated horizontal pleiotropy unraveling
55 shared etiology and confounding (MR-CUE) (Cheng et al., 2022) to reduce UHP and CHP
56 biases. An advantage of a Gaussian mixture model beyond robust tools is that it uses
57 smaller degrees of freedom to describe the UHP and CHP and hence is more efficient if the
58 mixture models are correctly specified.

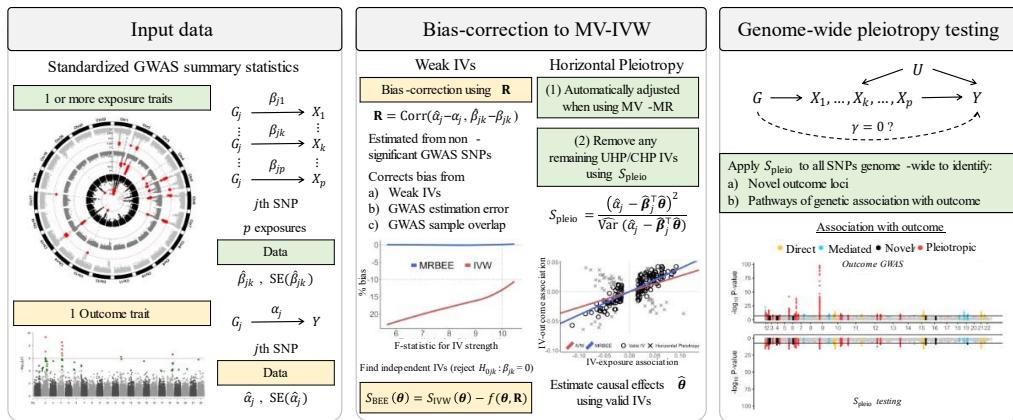
59 While the aforementioned single-exposure MR methods allow for some IVs to exhibit
60 horizontally pleiotropic effects, they typically assume that the overwhelming majority of IVs
61 influence the outcome solely through the mediation of the exposure. However, considerable

62 evidence suggests that common human traits share a significant amount of causal vari-
63 ants, such as systolic blood pressure (SBP) and diastolic blood pressure (DBP) (Zhu et al.,
64 2022), making it difficult to satisfy this assumption in reality. A more robust, straightfor-
65 ward, and computationally efficient way to mitigate the effect of horizontal pleiotropy is
66 to employ multivariable MR, which can account for a majority of horizontally pleiotropic
67 variants shared by multiple exposures. To date, multivariable versions of IVW (Burgess
68 and Thompson, 2015), MR-Egger (Rees et al., 2017), MR-Median (Bowden et al., 2016),
69 and MR-Robust (Grant and Burgess, 2021) have been developed. As demonstrated in
70 an examination by Sanderson et al. (2019), multivariable MR is a reliable tool for esti-
71 mating the direct causal effects of one or more exposures, using either individual-level or
72 summary-level data.

73 However, multivariable MR is often subject to substantial weak instrument bias because
74 the instruments only need to be associated with one exposure in a set for them to be
75 considered to satisfy assumption (i) in practice. In other words, the set of IVs used in
76 multivariable MR is the union set of exposure-specific IV sets used in univariable MR. As
77 GWAS sample sizes become larger, increasing numbers of causal variants with moderate or
78 small effects are being identified, making weak instrument bias – the violation of assumption
79 (i) – more significant and difficult to disregard. For instance, Yengo et al. (2022) detected
80 12,111 independent variants in a height GWAS with 5.4 million participants, while Okbay
81 et al. (2022) found nearly 3,952 independent variants in an educational attainment GWAS
82 with 3.0 million participants. Since the heritability of a trait is fixed, the average variance
83 explained by each causal variant should be small if there are thousands of them, which thus
84 causes a significant weak instrument bias in MR. The traditional solution to mitigate the
85 weak instrument bias is to discard IVs with small effect sizes such that the F- or conditional
86 F-statistic of the remaining instruments exceeds 10, which approximately guarantees that
87 the relative bias in causal effect estimation remains within 10% (Burgess et al., 2011;
88 Sanderson et al., 2021). However, excluding instruments with weaker effects can result
89 in a “winner’s curse”, which alternatively inflates the bias in causal estimation (Sadreev
90 et al., 2021). Additionally, the statistical principle underlying how weak IVs lead to biased
91 causal effect estimation has not been well understood, especially when multiple exposures
92 are included in MR.

93 Measurement error bias occurs when explanatory variables are measured with random
94 error, which generally exists in all statistical models including linear and generalized linear
95 regression models, and leads to biased estimates of model parameters (Yi, 2017). Since cur-
96 rent MR approaches are performed with GWAS summary statistics that contain estimation
97 errors, the causal effect estimates can suffer from measurement error bias (VanderWeele
98 et al., 2014; Ye et al., 2021). Weak IVs can further worsen this bias since the degree of

(A) MRBEE Flowchart



(B) Capabilities of existing MR methods in different conditions

	Weak IVs	Sample overlap	Measurement error	UHP	CHP	Additional exposures
Single exposure methods						
d-IVW [26]	Y	N	Y	N	N	N
MRMix [15]	N	N	Y	Y	Y	N
IMRP/MRPRESSO [20,22]	N	N	N	Y	Y*	N
CAUSE/MR-CUE [7,16]	Y	Y	Y	Y	Y*	N
MR-Corr [19]	N	N	Y	Y	Y*	N
MR-CML [27]	N	N	Y	Y	N	N
MR-Lap [54]	Y	Y	Y	N	N	N
Multiple exposure methods						
IVW/MR-Egger [21,38]	N	N	N	N	N	Y
MR-Robust/Lasso/Median [23,24]	N	N	N	Y	Y*	Y
MRBEE	Y	Y	Y	Y	Y*	Y

(C) Bias in univariable MR compared to multivariable MR

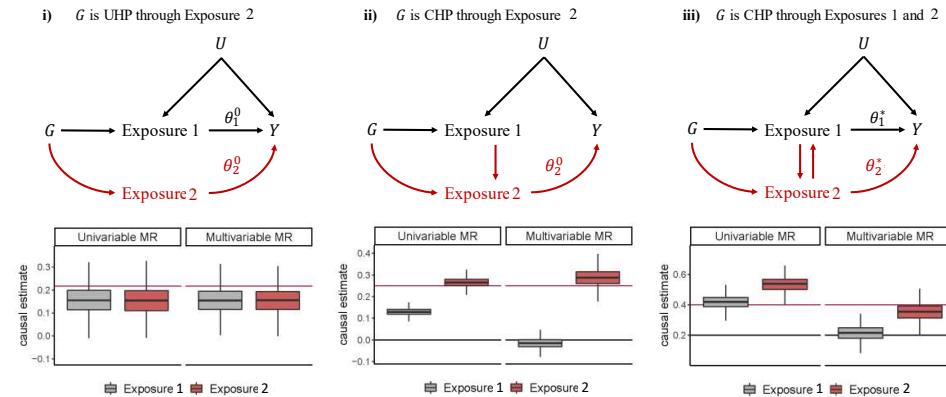


Figure 1: **(A)**: Flowchart illustrating the principles behind and implementation of MR-BEE. **(B)**: Bias addressed by currently available MR methods. ‘N’: cannot address. ‘Y’: can fully address. To be ‘Y’, ‘Y*’ requires that assumptions about the behavior of CHP IVs are met. **(C)**: Situations in which univariable MR with IVW cannot reliably estimate direct causal effects. Multivariable IVW can more reliably estimate direct causal effects, but still suffers from bias. Horizontal gray and red lines respectively indicate true direct effects of exposure 1 and 2. Boxplots are causal estimates from simulation with true relationships represented by the corresponding directed acyclic graphs above the boxplots.

99 measurement error bias is proportional to the ratio between the true genetic effect size and
100 the standard error of its estimate. This is the primary reason why violating assumption
101 (i) introduces bias into causal effect estimates in IVW and other MR approaches. Further-
102 more, unlike traditional measurement error analyses that require uncorrelated estimation
103 errors in exposures and outcomes, overlapping individuals in exposure and outcome GWAS
104 can result in correlated measurement errors, making the direction of measurement error
105 bias not always toward zero. This is the key reason why, in empirical studies such as Fig-
106 ure 1 in [Burgess et al. \(2016\)](#), IVW estimates exhibit negative bias with small numbers of
107 overlapping samples and positive bias with large numbers of overlapping samples.

108 In this paper, we propose a multivariable MR method, MR using Bias-corrected Es-
109 timating Equations (MRBEE), to eliminate measurement error bias while simultaneously
110 accounting for horizontal pleiotropy in the presence of many weak IVs. In contrast to exist-
111 ing methods that only address measurement error bias in specific cases such as no sample
112 overlap (debiased IVW; [Ye et al. \(2021\)](#)) or no horizontal pleiotropy (MRlap; [Mounier](#)
113 [and Katalik \(2023\)](#)), MRBEE offers a comprehensive solution to measurement error bias,
114 accommodates sample overlap, and adapts to both univariable and multivariable MR mod-
115 els. Through numerical simulations, we demonstrate that MRBEE is capable of estimating
116 causal effects without bias across various real-world conditions. To exhibit its practical
117 significance, we perform two independent real data analyses using MRBEE, first estimat-
118 ing the causal effects of cardiometabolic risk factors on coronary artery disease risk in two
119 populations, and secondly estimating the causal effects of modifiable and non-modifiable
120 risk factors for schizophrenia and bipolar disorder. A parallel study in [Yang et al. \(2023\)](#)
121 provides more extensive theoretical investigations of bias in multivariable MR and the
122 asymptotic properties of IVW and MRBEE.

123 2 Materials and methods

124 2.1 Multivariable Mendelian randomization model

125 Let $\mathbf{g}_i = (g_{i1}, \dots, g_{im})^\top$ be a vector of m independent genetic variants where each variant
126 is standardized with mean zero and variance one, $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^\top$ be a vector of p
127 exposures, and y_i be an outcome. Consider the following linear structural model:

$$\mathbf{x}_i = \mathbf{B}^\top \mathbf{g}_i + \mathbf{u}_i, \quad (1)$$

$$y_i = \boldsymbol{\theta}^\top \mathbf{x}_i + \boldsymbol{\gamma}^\top \mathbf{g}_i + v_i, \quad (2)$$

128 where $\mathbf{B} = (\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m)^\top$ is an $(m \times p)$ matrix of genetic effects on exposures with
 129 $\boldsymbol{\beta}_j = (\beta_{j1}, \dots, \beta_{jp})^\top$ being a vector of length p , $\boldsymbol{\theta} = (\theta_1, \dots, \theta_p)^\top$ is a vector of length
 130 p representing the causal effects of the p exposures on the outcome, $\boldsymbol{\gamma} = (\gamma_1, \dots, \gamma_m)^\top$ is
 131 a vector of length m representing horizontal pleiotropy, which may violate the (IV2) or
 132 (IV3) conditions, and \mathbf{u}_i and v_i are noise terms. Substituting for \mathbf{x}_i in (2), we obtain the
 133 reduced-form model:

$$y_i = \mathbf{g}_i^\top \boldsymbol{\alpha} + \mathbf{u}_i^\top \boldsymbol{\theta} + v_i, \quad (3)$$

134 where

$$\boldsymbol{\alpha} = \mathbf{B}\boldsymbol{\theta} + \boldsymbol{\gamma}. \quad (4)$$

135 In practice, \mathbf{u}_i and v_i are usually correlated, and hence traditional linear regression between
 136 \mathbf{x}_i and y_i cannot obtain a consistent estimate of $\boldsymbol{\theta}$. In contrast, the genetic variant vector \mathbf{g}_i
 137 is generally independent of the noise terms \mathbf{u}_i and v_i because the genotypes of individuals
 138 are randomly inherited from their parents and do not change during their lifetime (Lawlor
 139 et al., 2008). Hence, \mathbf{g}_i can be used as IVs to remove the confounding effect of \mathbf{u}_i and v_i .

140 Since large individual-level data from GWAS are less publicly available, most of the
 141 current MR analyses are performed with summary statistics of IVs through the following
 142 linear regression:

$$\hat{\alpha}_j = \hat{\boldsymbol{\beta}}_j^\top \boldsymbol{\theta} + \gamma_j + \varepsilon_j, \quad (5)$$

143 where $\hat{\alpha}_j$ and $\hat{\boldsymbol{\beta}}_j$ are respectively estimated from the outcome and exposure GWASs, γ_j is
 144 the horizontal pleiotropy, ε_j represents the residual of this regression model, and $j = 1, \dots, m$
 145 referring to the m IVs. IVs in MVMR are selected based on evidence of nonzero association
 146 with at least one exposure (Sanderson et al., 2019), meaning that some IVs may not be
 147 associated with all exposures. Multivariable IVW, which serves as the foundation of most
 148 existing MR approaches, estimates $\boldsymbol{\theta}$ by

$$\hat{\boldsymbol{\theta}}_{\text{IVW}} = \arg \min_{\boldsymbol{\theta}} \left\{ (\hat{\boldsymbol{\alpha}} - \hat{\mathbf{B}}\boldsymbol{\theta})^\top \mathbf{V}^{-1} (\hat{\boldsymbol{\alpha}} - \hat{\mathbf{B}}\boldsymbol{\theta}) \right\} \quad (6)$$

149 where \mathbf{V} is a diagonal matrix consisting of the variance of estimation errors of $\hat{\boldsymbol{\alpha}}$. In
 150 practice, it is routine to standardize $\hat{\alpha}_j$ and $\hat{\beta}_{jk}$ by $\hat{\alpha}_j/\text{se}(\hat{\alpha}_j)$ and $\hat{\beta}_{jk}/\text{se}(\hat{\beta}_{jk})$ to remove the
 151 minor allele frequency effect (Zhu et al., 2022). With this standardization, the multivariable

152 IVW is indeed an ordinary least squares (OLS) estimate which estimates $\boldsymbol{\theta}$ by

$$\hat{\boldsymbol{\theta}}_{\text{IVW}} = \arg \min_{\boldsymbol{\theta}} \left\{ \|\hat{\boldsymbol{\alpha}} - \hat{\mathbf{B}}\boldsymbol{\theta}\|_2^2 \right\} \quad (7)$$

153 whose close-form expression is $\hat{\boldsymbol{\theta}}_{\text{IVW}} = (\hat{\mathbf{B}}^\top \hat{\mathbf{B}})^{-1} \hat{\mathbf{B}}^\top \hat{\boldsymbol{\alpha}}$.

154 2.2 Bias of Multivariable IVW estimate

155 However, the multivariable IVW estimate $\hat{\boldsymbol{\theta}}_{\text{IVW}}$ is biased due to the estimation errors of $\hat{\alpha}_j$
 156 and $\hat{\beta}_j$ in GWAS:

$$\hat{\alpha}_j = \alpha_j + w_{\alpha_j}, \quad (8)$$

$$\hat{\beta}_j = \beta_j + \mathbf{w}_{\beta_j}. \quad (9)$$

157 To see this, we consider the estimating equation and Hessian matrix of $\hat{\boldsymbol{\theta}}_{\text{IVW}}$:

$$\mathbf{S}_{\text{IVW}}(\boldsymbol{\theta}) = \hat{\mathbf{B}}^\top (\hat{\mathbf{B}}\boldsymbol{\theta} - \hat{\boldsymbol{\alpha}}), \quad \mathbf{H}_{\text{IVW}} = \hat{\mathbf{B}}^\top \hat{\mathbf{B}}. \quad (10)$$

158 That is, $\mathbf{S}_{\text{IVW}}(\boldsymbol{\theta})$ is the score function of (7) and $\hat{\boldsymbol{\theta}}_{\text{IVW}}$ is estimated by solving $\mathbf{S}_{\text{IVW}}(\hat{\boldsymbol{\theta}}_{\text{IVW}}) = \mathbf{0}$,
 159 and \mathbf{H}_{IVW} is the 2nd derivative matrix of (7). Since $\hat{\boldsymbol{\theta}}_{\text{IVW}} - \boldsymbol{\theta} = -\mathbf{H}_{\text{IVW}}^{-1} \mathbf{S}_{\text{IVW}}(\boldsymbol{\theta})$, the bias of
 160 $\hat{\boldsymbol{\theta}}_{\text{IVW}}$ is approximately (Yang et al., 2023):

$$\begin{aligned} \mathbb{E}(\hat{\boldsymbol{\theta}}_{\text{IVW}} - \boldsymbol{\theta}) &\approx \underbrace{(\text{cov}(\boldsymbol{\beta}_j) + \text{cov}(\mathbf{w}_{\beta_j}))^{-1}}_{\text{weak instrument bias}} \underbrace{(\text{cov}(\mathbf{w}_{\beta_j})\boldsymbol{\theta} - \text{cov}(\mathbf{w}_{\beta_j}, w_{\alpha_j}))}_{\text{measurement error bias}} \\ &\quad + (\text{cov}(\boldsymbol{\beta}_j) + \text{cov}(\mathbf{w}_{\beta_j}))^{-1} \underbrace{\text{cov}(\boldsymbol{\beta}_j, \gamma_j)}_{\text{pleiotropy bias}}. \end{aligned} \quad (11)$$

161 Here, $\text{cov}(\boldsymbol{\beta}_j)$ can be regarded as the average information carried by each IV, while
 162 $\text{cov}(\mathbf{w}_{\beta_j})$ can be regarded as the information carried by each estimation error. If $\text{cov}(\boldsymbol{\beta}_j)$
 163 is not substantially larger than $\text{cov}(\mathbf{w}_{\beta_j})$, then the weak instrument bias $(\text{cov}(\boldsymbol{\beta}_j) +$
 164 $\text{cov}(\mathbf{w}_{\beta_j}))^{-1}$ will inflate the measurement error bias $\text{cov}(\mathbf{w}_{\beta_j})\boldsymbol{\theta} - \text{cov}(\mathbf{w}_{\beta_j}, w_{\alpha_j})$. There-
 165 fore, weak IVs can worsen the measurement error bias, which is the primary reason why
 166 violating assumption (i) introduces bias into causal effect estimates in IVW and other MR
 167 approaches (Ye et al., 2021; Sanderson et al., 2021).

168 On the other hand, the covariance between the estimation errors of SNP-exposure and
 169 SNP-outcome associations $\text{cov}(\mathbf{w}_{\beta_j}, w_{\alpha_j})$ can be affected by the fraction of overlapping
 170 samples of the exposures and outcome GWAS. If the exposures GWAS and outcome GWAS
 171 are independent of each other, then $\text{cov}(\mathbf{w}_{\beta_j}, w_{\alpha_j}) = \mathbf{0}$ and hence the measurement error

172 bias always shrinks $\hat{\boldsymbol{\theta}}_{\text{IVW}}$ towards the null. In contrast, if the exposures GWAS and outcome
 173 GWAS are estimated from the same cohorts, $\text{cov}(\mathbf{w}_{\beta_j}, w_{\alpha_j})$ usually introduces bias towards
 174 the direction of $\text{cov}(\mathbf{u}_i, v_i)$. This is the reason why in some empirical studies (Burgess
 175 et al., 2016; Sadreev et al., 2021), IVW cannot completely remove the confounding bias if
 176 the overlapping sample fraction is large.

177 If $\text{cov}(\boldsymbol{\beta}_j, \gamma_j) \neq \mathbf{0}$, there is additional pleiotropy bias due to the horizontal pleiotropy
 178 that violates the InSIDE assumption. In univariable MR, it is challenging to guarantee
 179 $\gamma_j = 0$ or $\text{cov}(\gamma_j, \boldsymbol{\beta}_j) = \mathbf{0}$ for all $1 \leq j \leq m$, resulting in a potentially biased IVW
 180 estimate. Traditional solutions to horizontal pleiotropy bias require that only a small
 181 proportion of IVs exhibit horizontally pleiotropic effects, and robust tools or Gaussian
 182 mixture models can be employed to identify these IVs (Morrison et al., 2020; Zhu et al.,
 183 2021; Qi and Chatterjee, 2019). However, for complex traits, it is plausible that a large
 184 portion of IVs (even possibly $> 50\%$) possess horizontally pleiotropic effects, leading to the
 185 failure of univariable MR methods. Multivariable MR can balance these pleiotropic effects
 186 shared by multiple exposures, significantly reducing the number of IVs with horizontal
 187 pleiotropy evidence when conditioned on specified exposures. In other words, it is more
 188 likely to guarantee that only few IVs violate the InSIDE assumption $\text{cov}(\boldsymbol{\beta}_j, \gamma_j) = \mathbf{0}$ after
 189 accounting for multiple exposures, which can be then detected and removed using the
 190 robust tools such as a pleiotropy hypothesis test.

191 2.3 MR using bias-corrected estimating equation

192 We propose MRBEE which estimates causal effects by solving a new unbiased estimating
 193 equation of causal effects. Let $\text{cov}(\mathbf{w}_{\beta_j}) = \boldsymbol{\Sigma}_{W_\beta W_\beta}$ and $\text{cov}(\mathbf{w}_{\beta_j}, w_{\alpha_j}) = \boldsymbol{\sigma}_{W_\beta w_\alpha}$. The
 194 unbiased estimating equation of $\boldsymbol{\theta}$ is

$$S_{\text{BEE}}(\boldsymbol{\theta}) = S_{\text{IVW}}(\boldsymbol{\theta}) - m(\boldsymbol{\Sigma}_{W_\beta W_\beta} \boldsymbol{\theta} - \boldsymbol{\sigma}_{W_\beta w_\alpha}), \quad (12)$$

195 where $S_{\text{IVW}}(\boldsymbol{\theta}) = -\hat{\mathbf{B}}^\top(\hat{\boldsymbol{\alpha}} - \hat{\mathbf{B}}\boldsymbol{\theta})$. The solution $\hat{\boldsymbol{\theta}}_{\text{BEE}}$ such that $S_{\text{BEE}}(\hat{\boldsymbol{\theta}}_{\text{BEE}}) = \mathbf{0}$ is

$$\hat{\boldsymbol{\theta}}_{\text{BEE}} = (\hat{\mathbf{B}}^\top \hat{\mathbf{B}} - m \boldsymbol{\Sigma}_{W_\beta W_\beta})^{-1}(\hat{\mathbf{B}}^\top \hat{\boldsymbol{\alpha}} - m \boldsymbol{\sigma}_{W_\beta w_\alpha}). \quad (13)$$

196 In MRBEE, how to estimate the bias-correction terms $\boldsymbol{\Sigma}_{W_\beta W_\beta}$ and $\boldsymbol{\sigma}_{W_\beta w_\alpha}$ may be the
 197 most important issue in implementation. Here, we estimate them from insignificant GWAS
 198 summary statistics (Zhu et al., 2015). Let $\hat{\alpha}_j^*, \hat{\beta}_{j1}^*, \dots, \hat{\beta}_{jp}^*$ ($j = 1, \dots, M$) be M insignificant
 199 GWAS effect size estimates of outcome and exposures, where the insignificance means that
 200 the p -value of the genetic variants are larger than 0.05 for all exposures and outcome, and
 201 the independence means that they are not in linkage disequilibrium. Because $\hat{\alpha}_j^*$ and $\hat{\beta}_{jk}^*$

202 follow the same distributions of w_{α_j} and $w_{\beta_{jk}}$, $\Sigma_{W_\beta \times w_\alpha}$ can be estimated by

$$\widehat{\Sigma}_{W_\beta \times w_\alpha} = \frac{1}{M} \sum_{j=1}^M (\hat{\beta}_{j1}^*, \dots, \hat{\beta}_{jp}^*, \hat{\alpha}_j^*)^\top (\hat{\beta}_{j1}^*, \dots, \hat{\beta}_{jp}^*, \hat{\alpha}_j^*). \quad (14)$$

203 Here, $\widehat{\Sigma}_{W_\beta W_\beta}$ is the first $(p \times p)$ sub-matrix of $\widehat{\Sigma}_{W_\beta \times w_\alpha}$ and $\sigma_{W_\beta w_\alpha}$ consists of the first $p-1$
204 elements of the last column of $\widehat{\Sigma}_{W_\beta \times w_\alpha}$.

205 The covariance matrix of $\hat{\theta}_{\text{BEE}}$ is yielded through the sandwich formula:

$$\text{cov}(\hat{\theta}_{\text{BEE}}) = \mathbf{F}_{\text{BEE}}^{-1} \mathbf{V}_{\text{BEE}}(\theta) \mathbf{F}_{\text{BEE}}^{-1}, \quad (15)$$

206 where the outer matrix \mathbf{F}_{BEE} is the Fisher information matrix, i.e., the expectation of the
207 Hessian matrix of $\mathbf{S}_{\text{BEE}}(\theta)$, and the inner matrix $\mathbf{V}_{\text{BEE}}(\theta)$ is the covariance matrix of $\mathbf{S}_{\text{BEE}}(\theta)$.
208 A consistent estimate of $\Sigma_{\text{BEE}}(\theta)$ is

$$\widehat{\text{cov}}(\hat{\theta}_{\text{BEE}}) = \widehat{\mathbf{F}}_{\text{BEE}}^{-1} \widehat{\mathbf{V}}_{\text{BEE}}(\hat{\theta}_{\text{BEE}}) \widehat{\mathbf{F}}_{\text{BEE}}^{-1}, \quad (16)$$

209 where $\widehat{\mathbf{F}}_{\text{BEE}} = \widehat{\mathbf{B}}^\top \widehat{\mathbf{B}}/m - \widehat{\Sigma}_{W_\beta W_\beta}$, $\widehat{\mathbf{V}}_{\text{BEE}}(\hat{\theta}_{\text{BEE}}) = \sum_{j=1}^m \hat{S}_j(\hat{\theta}_{\text{BEE}}) \hat{S}_j(\hat{\theta}_{\text{BEE}})^\top / m$, and $\hat{S}_j(\hat{\theta}_{\text{BEE}}) =$
210 $-(\hat{\alpha}_j - \hat{\theta}_{\text{BEE}}^\top \hat{\beta}_j) \hat{\beta}_j - \widehat{\Sigma}_{W_\beta W_\beta} \hat{\theta}_{\text{BEE}} + \hat{\sigma}_{W_\beta w_\alpha}$. As presented so far, MRBEE only removes the
211 weak instrument bias and estimation error bias, which may still yield biased or inefficient
212 causal effect estimates if horizontal pleiotropy exists. In the next section, we show how to
213 use a pleiotropy test to detect and remove the underlying horizontal pleiotropy.

214 2.4 Detecting horizontal pleiotropy

215 In this subsection, we illustrate how to remove specific IVs with evidence of additional
216 UHP or CHP effects with the pleiotropy test S_{pleio} which tests the same null hypothesis
217 for each SNP as MR-PRESSO (Verbanck et al., 2018) and IMRP (Zhu et al., 2021). The
218 null hypothesis for the j th IV not having any horizontally pleiotropic effects on the outcome
219 is

$$H_{0j} : \gamma_j = 0 \quad \text{vs} \quad H_{1j} : \gamma_j \neq 0. \quad (17)$$

220 The statistic S_{pleio} for the j th IV is defined

$$S_{\text{pleio}_j}(\hat{\theta}) = \frac{(\hat{\alpha}_j - \hat{\beta}_j^\top \hat{\theta})^2}{\text{cov}(\hat{\alpha}_j - \hat{\beta}_j^\top \hat{\theta})}, \quad (18)$$

Algorithm 1 Pseudo-code of MRBEE + pleiotropy test

Input: Initial estimates $\hat{\boldsymbol{\theta}}^{(0)}$, bias-correction terms $\hat{\boldsymbol{\Sigma}}_{W_\beta W_\beta}$ and $\hat{\boldsymbol{\sigma}}_{W_\beta w_\alpha}$, S_{pleio} P-value significance threshold κ , tolerance ϵ , full set of m^* IVs $\mathcal{F}_\Theta^{(0)} = \{j : j = 1, \dots, m^*\}$

while $\|\hat{\boldsymbol{\theta}}^{(t+1)} - \hat{\boldsymbol{\theta}}^{(t)}\|_2 > \epsilon$

- Calculate $S_{\text{pleio}_j}^{(t)}(\hat{\boldsymbol{\theta}}^{(t)})$ for all $j = 1, \dots, m^*$,
- Update $\mathcal{F}_\Theta^{(t+1)} = \{j : S_{\text{pleio}_j}^{(t)}(\hat{\boldsymbol{\theta}}^{(t)}) < F_{\chi^2(1)}^{-1}(1 - \kappa)\}$,
- Update $\hat{\boldsymbol{\theta}}^{(t+1)}$ using Equation 13 and IVs in $\mathcal{F}_\Theta^{(t+1)}$

end while

Output: Causal effect estimates $\hat{\boldsymbol{\theta}}_{\text{BEE}}$, set of m non-UHP/CHP IVs \mathcal{F}_Θ .

221 which follows a $\chi^2(1)$ distribution under H_{0j} . The only assumption here is that $\hat{\alpha}_j - \hat{\beta}_j^\top \hat{\boldsymbol{\theta}}$
222 is asymptotically normal distributed, which it is as proven in [Yang et al. \(2023\)](#) and shown
223 in the **Supplement**. In practice, we can estimate $\text{cov}(\hat{\alpha}_j - \hat{\beta}_j^\top \hat{\boldsymbol{\theta}})$ using the delta method:

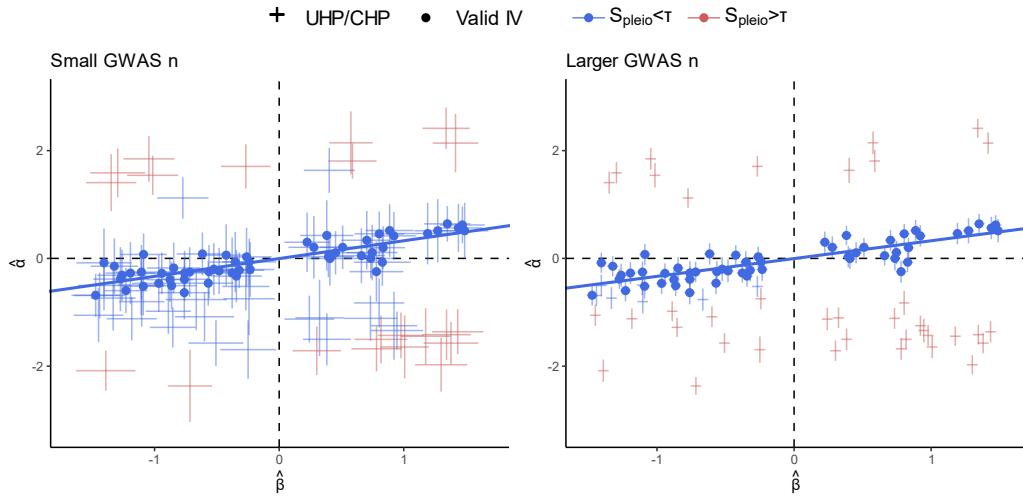
$$\widehat{\text{cov}}(\hat{\alpha}_j - \hat{\beta}_j^\top \hat{\boldsymbol{\theta}}) = \sigma_{w_\alpha}^2 + \hat{\boldsymbol{\theta}}^\top \Sigma_{W_\beta W_\beta} \hat{\boldsymbol{\theta}} + \hat{\beta}_j^\top \hat{\boldsymbol{\Sigma}}_{\text{BEE}} \hat{\beta}_j - 2\hat{\boldsymbol{\theta}}^\top \boldsymbol{\sigma}_{W_\beta w_\alpha}, \quad (19)$$

224 which is shown to converge to the true variance asymptotically ([Yang et al., 2023](#)). In
225 practice, we calculate S_{pleio} for all candidate IVs and remove IVs with large S_{pleio} values
226 in an iterative manner, which is summarized in Algorithm 1.

227 It should be pointed out that as GWAS sample sizes increase, the test of H_{0j} using
228 S_{pleio} becomes more powerful and more UHP/CHP IVs can be detected. Specifically, the
229 variance of S_{pleio} vanishes with a rate $O(1/n_{\min})$ where n_{\min} is the minimum sample size of
230 exposures and outcome GWAS, while the effect size of γ_j under the alternative hypothesis
231 is of $O(1/\sqrt{m})$. Consequently, the non-centrality parameter of hypothesis test (18) tends
232 to infinity with a rate $O(n_{\min}/m)$. Panel (A) in Fig 3 shows an example of this situation
233 using simulated data, from which it is easy to see the UHP and CHP have larger departures
234 from the causal pathway than non-UHP/CHP IVs and that more UHP/CHP IVs can be
235 detected when GWAS sample sizes are larger. Consequently, IVs with sufficiently large
236 S_{pleio} will be removed from causal estimation using our algorithm in practice.

237 Since S_{pleio} tests a very general null hypothesis, we can also calculate S_{pleio} for all
238 SNPs across the genome after estimating the causal effects of p exposures on the outcome
239 used in MR. Results from these tests can be used to (i) find novel loci associated with the
240 MR outcome and (ii) draw inferences about pathways of genetic association with the MR
241 outcome. Specifically, when a SNP has a negative effect on the exposure β_j and a positive
242 pleiotropic effect on the outcome γ_j , and simultaneously the causal effect θ is positive, then
243 the total effect of this variant on the outcome α_j is canceled and hence cannot be detected in
244 the outcome GWAS. In contrast, the pleiotropy test directly tests the effect γ_j and therefore
245 is able to detect novel loci. For example, [Zhu et al. \(2022\)](#) successfully detected many novel

A) S_{pleio} identifies genetic instruments with horizontal pleiotropy evidence



B) Classifications of loci by S_{pleio} and GWAS evidence

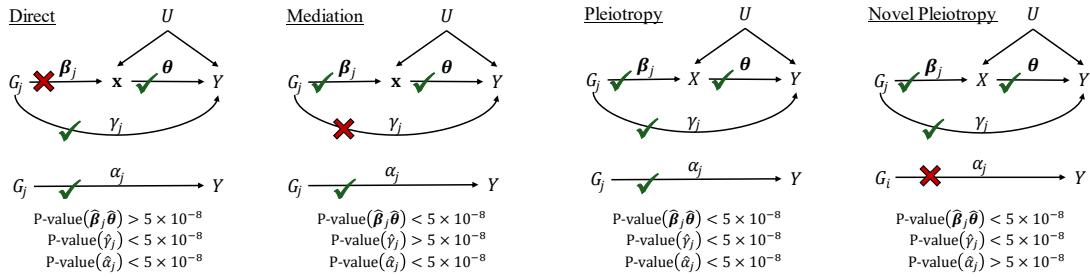


Figure 2: **(A)**: Demonstration of how horizontal pleiotropy IVs are identified in MRBEE using S_{pleio} for one exposure and one outcome. $\hat{\beta}$ on the x-axis are estimated SNP-exposure associations; $\hat{\alpha}$ on the y-axis are estimated SNP-outcome associations. IVs represented by red points have a large S_{pleio} value greater than τ and so have evidence of horizontal pleiotropy; blue points have small S_{pleio} values less than τ and do not have evidence of horizontal pleiotropy. As GWAS sample sizes increase, we can identify more SNPs with UHP/CHP evidence and remove them from causal estimation. Horizontal and vertical lines at each point indicate the 95% confidence intervals for the association estimates. **(B)**: Classifications of outcome loci by evidence from the original outcome GWAS and genome-wide horizontal pleiotropy testing using S_{pleio} . Classifications are based on P-values [denoted as $\text{P-value}(\cdot)$] for testing null hypotheses of equality with 0 for a given parameter in practice. We display the standard threshold of $\text{P-value} < 5 \times 10^{-8}$ for inference, but researchers can choose their own.

246 blood pressure loci using this genome-wide pleiotropy test with IMRP as the estimator of
247 the causal effect. The results indicated that most detected pleiotropic variants influenced
248 SBP and DBP in opposite directions, providing support for the principle of the genome-
249 wide pleiotropy test. Scenarios in which researchers may infer direct, exposure-mediated,
250 and pleiotropic genetic associations with the MR outcome using S_{pleio} are displayed in
251 Figure 2B.

252 2.5 Simulation settings

253 For the univariable MR results presented in Figure 3, we simulated $m = 50, 100$, and
254 250 genetic variants G for 30k individuals from a binomial distribution with minor allele
255 frequency (MAF) τ that followed a Uniform(0.05, 0.50) distribution. One true exposure
256 x with variance 1 was generated. The effect sizes β of the m genotypes on the exposure
257 followed a Uniform(-1, 1) distribution and were scaled to explain 5% of exposure variation.
258 Thus, increasing m was equivalent to introducing more weak IV bias. In the true MR
259 model $\alpha = \beta\theta + \gamma^U + \gamma^C$, the term γ^U representing UHP was random noise and the term
260 γ^C representing CHP was negatively correlated with β . UHP and CHP effects were either
261 generated for 0% or 10% of IVs depending on the simulation scenario, and were scaled
262 to match the patterns of horizontal pleiotropy that we observed in Real Data Analysis I
263 (see Figures 6S and 7S in the **Supplement** for examples). R code used to generate these
264 values and an example plot of them is presented in the **Supplement**. The model for x was
265 therefore

$$x = \sum_{s=1}^m G_s \beta_s + U + \epsilon_x \quad (20)$$

266 and the outcome was generated as

$$y = x\theta + \sum_{s=1}^m G_s (\gamma_s^U + \gamma_s^C) + U + \epsilon_y \quad (21)$$

267 where U is a confounder of (x, y) with variance $(1 - h_x^2) \times 0.15$ and ϵ_x was generated from
268 a normal distribution $N(0, 1 - h_x^2 - \text{Var}[U])$. After drawing 30k independent realizations
269 of x and y , we performed linear regression of x and y on each G_s separately to produce
270 the respective GWAS estimate pairs $(\hat{\beta}, \widehat{\text{se}}[\hat{\beta}])$ and $(\hat{\alpha}, \widehat{\text{se}}[\hat{\alpha}])$ that were used in MR. The
271 competitors we included in simulations were IVW (Burgess and Bowden, 2015), MR-Egger
272 (Rees et al., 2017), dIVW (Ye et al., 2021), weighted median (Bowden et al., 2016), MR-
273 Lasso/Robust (Burgess et al., 2020), MR-Mode (Yavorska and Burgess, 2017), IMRP (Zhu
274 et al., 2021), MR-CML (Xue et al., 2021), MRMix (Qi and Chatterjee, 2019), MR-Corr

275 (Cheng et al., 2022), and MR-CUE (Cheng et al., 2022). We did not include CAUSE
 276 (Morrison et al., 2020) because of its computational cost. The number of independent
 277 replications was 1000. All R codes used to perform these simulations are available the
 278 Github repository (<https://github.com/noahlorinczcomi>).

279 For the multivariable MR results presented in Figure 4, we followed the same procedure
 280 as above to generate G for 30k individuals. We then generated two exposures with pheno-
 281 typic correlation $\rho_x = 0.5$, variances 1, and heritability (h^2) explained by the $m = 50, 100,$
 282 and 250 SNPs of 5% for each exposure. Effect sizes (β_1, β_2) of G on $\mathbf{x} = (x_1, x_2)^\top$ were
 283 generated from

$$\begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \eta_1 & 0 \\ 0 & \eta_2 \end{bmatrix} \begin{bmatrix} 1 & 0.45 \\ 0.45 & 1 \end{bmatrix} \begin{bmatrix} \eta_1 & 0 \\ 0 & \eta_2 \end{bmatrix} \right) \quad (22)$$

284 where (η_1, η_2) are scaling factors to ensure 5% heritability in (x_1, x_2) explained by the m
 285 SNPs. We then generated \mathbf{x} as

$$x_1 = \sum_{s=1}^m G_s \beta_{1s} + U + \epsilon_{x1}, \quad x_2 = \sum_{s=1}^m G_s \beta_{2s} + U + \epsilon_{x2} \quad (23)$$

286 where $\text{var}(U) = (1 - h^2) \times (0.15/2)^2$, $\text{var}(\epsilon_{x1}) = \text{var}(\epsilon_{x2}) = 1 - h^2 - \text{var}(U)$, and $h^2 = 0.05$.
 287 CHP in univariable MR methods is automatically introduced by generating two genetically
 288 correlated exposures. Additional UHP (γ_s^U) and CHP (γ_s^C) effects were generated directly
 289 from transformations on $\beta_{1s}\theta_1 + \beta_{2s}\theta_2$ using the same procedure described above in the
 290 univariable setting described above. We then simulated the outcome y as

$$y = x_1\theta_1 + x_2\theta_2 + \sum_{s=1}^m G_s(\gamma_s^U + \gamma_s^C) + U + \epsilon_y \quad (24)$$

291 where $\text{var}(\epsilon_Y) = 1 - \text{var}(\mathbf{x}^\top \boldsymbol{\theta} + U)$. We then performed association testing of (x_1, x_2) and
 292 y for all SNPs and phenotypes separately using randomly drawn values for the quantities
 293 above and linear regression on G_s to produce the estimates $(\hat{\beta}_{1s}, \widehat{\text{se}}[\hat{\beta}_{s1}])$, $(\hat{\beta}_{2s}, \widehat{\text{se}}[\hat{\beta}_{s2}])$, and
 294 $(\hat{\alpha}_s, \widehat{\text{se}}[\hat{\alpha}_s])$. These estimates were used to perform MR using the methods displayed in
 295 Figure 4.

296 2.6 Real Data Analysis I: Coronary artery disease

297 We performed two real data analyses, the first of which is described here and the second in
 298 Section 2.7. In Real Data Analysis I, we estimated direct causal effects of 9 exposures on
 299 coronary artery disease (CAD) risk in East Asian (EAS) and European (EUR) populations

300 using multivariable MRBEE and existing alternatives. East Asian (EAS) GWAS data for
301 exposures were provided by Biobank Japan (Nagai et al., 2017), and for coronary artery
302 disease (CAD) were provided by Ishigaki et al. (2020) (n=212k). European (EUR) GWAS
303 data for exposures were provided by the consortia listed in the **Supplement**, and for CAD
304 by the CARDIoGRAM consortium (n=184k) (CARDIoGRAMplusC4D, 2015). CAD risk
305 factors used in multivariable MR included high-density lipoprotein (HDL), low-density
306 lipoprotein (LDL), triglycerides (TG), body mass index (BMI), systolic blood pressure
307 (SBP), uric acid (UA), height, HbA1c, and hemoglobin (HG). Hematocrit, diastolic blood
308 pressure (DBP), and red blood cell count were initially considered but later excluded from
309 multivariable MR because of high correlations (>0.75) in IV estimates with other exposures.
310 More details of the GWAS data used are available in Section 4 of the **Supplement**.

311 We generally followed the methods of Wang et al. (2022) to select instruments for
312 univariable and multivariable MR analyses. Candidate IVs in univariable MR analysis
313 were associated ($P < 5 \times 10^{-8}$) with the exposure in a within-phenotype and between-ancestry
314 fixed-effects meta-analysis of EAS and EUR GWAS, had the same sign in the EAS and
315 EUR GWAS, and had at least $P < 0.05$ in both GWAS. We then selected only independent
316 SNPs from this set using ancestry-specific linkage disequilibrium (LD) reference panels from
317 1000 Genomes Phase 3 (Fairley et al., 2020) and the following parameters in PLINK v1.9
318 (Chang et al., 2015): $r^2 < 0.01$, 1Mb, $P < 5 \times 10^{-8}$). Only ancestry-specific GWAS estimates
319 were used in ancestry-specific MR. For multivariable MR, we filtered the full set of all IVs
320 used in univariable MR to only independent SNPs that had linkage disequilibrium $r^2 < 0.01$
321 in a 1Mb window using ancestry-specific LD reference panels from 1000 Genomes. This
322 resulted in 3,097 IVs used in EAS and 2,821 in EUR. Results from alternative selections of
323 the IVs are available in the **Supplement** and are consistent with those presented in the
324 **Results** section. All GWAS estimates were standardized following the methods in Qi and
325 Chatterjee (2019).

326 For all available SNPs genome-wide, we performed horizontal pleiotropy testing using
327 the statistic S_{pleio} with causal estimates from multivariable MRBEE. These tests were used
328 for inferences of direct, exposure-mediated, novel, and pleiotropic genetic associations with
329 CAD as described in **Methods**.

330 2.7 Real Data Analysis II: Schizophrenia and bipolar disorder

331 In Real Data Analysis II, we estimated direct causal effects of seven exposures on risk of
332 schizophrenia (SCZ) and bipolar disorder (I or II; BP) with GWAS data from European
333 populations using multivariable MRBEE and existing alternatives.

334 We estimated causal effects of the following risk factors: Cannabis use disorder (CUD),

335 left handedness (LH), Attention-Deficit/Hyperactivity Disorder (ADHD), sleep duration,
336 education, intelligence, and neuroticism (SESA). All GWAS data were from studies in
337 strictly EUR individuals. Exposure GWAS sample sizes ranged from 55k for ADHD ([De-](#)
338 [montis et al., 2019](#)) to 1.7M for LH ([Cuellar-Partida et al., 2021](#)). SCZ GWAS data were
339 from a meta-analysis performed using data from the Psychiatric Genomics Consortium
340 ([Trubetskoy et al., 2022](#)) on 130k EUR individuals. BP GWAS data were from [Mullins](#)
341 [et al. \(2021\)](#) that had a total sample size of 413k EUR individuals, where the outcome phe-
342 notype was defined as either lifetime Bipolar I or II disorder. More complete descriptions
343 of all GWAS data used in MR are available in the **Supplement**.

344 Because some exposure GWAS did not detect many genome-wide significant signals
345 (e.g., only 2 were detected for CUD), we initially considered all independent SNPs with
346 exposure GWAS $P < 5 \times 10^{-5}$ in multivariable MR analysis. We then restricted this set of IVs
347 to only those with $P < 5 \times 10^{-8}$ in a 7-degree of freedom chi-square joint test of association
348 with any of the 7 exposures. This test accounting for sample overlap among the exposure
349 GWAS. We then excluded 3 IVs whose minor allele frequencies differed by more than 0.10
350 from all other exposures. This resulted in 1,227 IVs that were used in multivariable MR
351 which were standardized by their GWAS standard error.

352 We performed genome-wide horizontal pleiotropy testing with S_{pleio} using all MR ex-
353 posures with a causal effect P-value less than 0.05 for either SCZ or BP. Including non-
354 significant exposures in genome-wide pleiotropy testing would have only increased the vari-
355 ance term used in S_{pleio} and not otherwise affected the inferences we could make. We
356 performed a sensitivity analysis in which non-significant MR exposures were included, the
357 results of which are presented in **Supplement** Section 4.6 and are identical to those pre-
358 sented below. Genome-wide testing with S_{pleio} was performed separately for SCZ and
359 BP.

360 3 Results

361 3.1 Simulation Results

362 Univariable simulation results in Figure 3 demonstrates that MRBEE is able to estimate
363 the causal effect of a single exposure without bias as UHP, CHP, sample overlap, GWAS
364 sample sizes, and weak instrument bias sources vary. While the competitors may estimate
365 the causal effect with little or no bias in some scenarios, MRBEE is the only method that
366 does not encounter bias in all scenarios. MRBEE also has well-controlled Type I error
367 (Figure 3B) and coverage frequencies (**Supplement** Fig 9S), whereas other methods do
368 not, especially as weak IV bias and sample overlap proportions become larger. For example,

369 the false positive rate of IVW, MR-Egger, MR-Median, MR-Lasso/Robust, dIVW, IMRP,
370 MR-CML, and MR-Corr can surpass 20% when there is 100% sample overlap and 250 IVs
371 only explain 5% heritability in the exposure, a pattern which was commonly observed in
372 an East Asian population in [Wang et al. \(2022\)](#). Power for univariable MR with MRBEE
373 compared to existing alternatives is presented in **Supplement** Figure 11S and shows that
374 MRBEE is at least as powerful as the most powerful existing methods in all 24 scenarios
375 we considered.

376 Multivariable simulation results in Figure 4A demonstrates that, compared with the
377 alternative methods included in Figure 3 and their multivariable versions, MRBEE can
378 estimate direct causal effects without bias in the presence of weak IVs, UHP and CHP,
379 and sample overlap. Multivariable MR methods are generally less biased than univariable
380 MR methods, but still they cannot consistently estimate direct causal effects because of
381 uncontrolled biases from weak instruments, measurement error, and sample overlap. Since
382 every other MR method except MRBEE is biased in at least one of the scenarios we
383 considered, their coverage frequencies are generally not optimal (i.e., less than 95%). For
384 example, the coverage frequencies for MR-CUE and MR-Corr are less than 50% for almost
385 all cases we considered. Alternatively, some methods such as MR-Mode and MR-Median
386 can have coverage frequencies greater than 0.95 because they have large standard errors
387 (see **Supplement** Fig 9S). In contrast, MRBEE obtained optimal coverage frequencies in
388 all simulation settings.

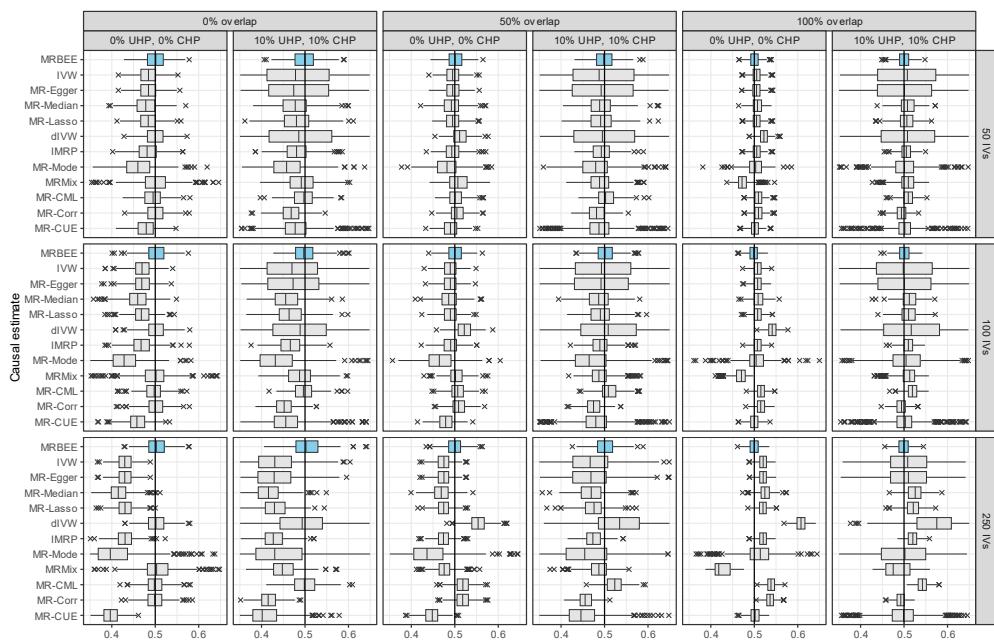
389 3.2 Real Data Analysis I: CAD

390 3.2.1 Causal Estimates

391 Univariable MR results suggested nonzero causal effects of all exposures on CAD in either
392 EAS or EUR populations. However, there was widespread evidence of unbalanced hori-
393 zontal pleiotropy as indicated by large differences in causal estimates between estimators
394 that differ only in how UHP/CHP is addressed. For example, the odds ratio of causal
395 effect of DBP on CAD in EAS was estimated to be 2.03 ($P=2.8\times 10^{-11}$) using IMRP but
396 only 1.43 ($P=0.140$) using MR-Egger. Full univariable MR results are presented in the
397 **Supplement**.

398 Table 1 contains all multivariable MR estimates, which were generally consistent be-
399 tween EAS and EUR populations. All 9 exposures had evidence of nonzero causal effect
400 on CAD in EAS or EUR. LDL had the largest estimated odds ratio for causal effect in
401 both EAS and EUR. MRBEE produced odds ratio estimates of 2.09 in EAS ($P<1\times 10^{-100}$)
402 and 1.76 in EUR ($P<1\times 10^{-20}$), the latter of which was undetected in [Wang et al. \(2022\)](#).
403 In EAS, all other multivariable MR methods may underestimate the direct causal effect of

A) Causal estimates for single-exposure MR



B) Type I error for single-exposure MR

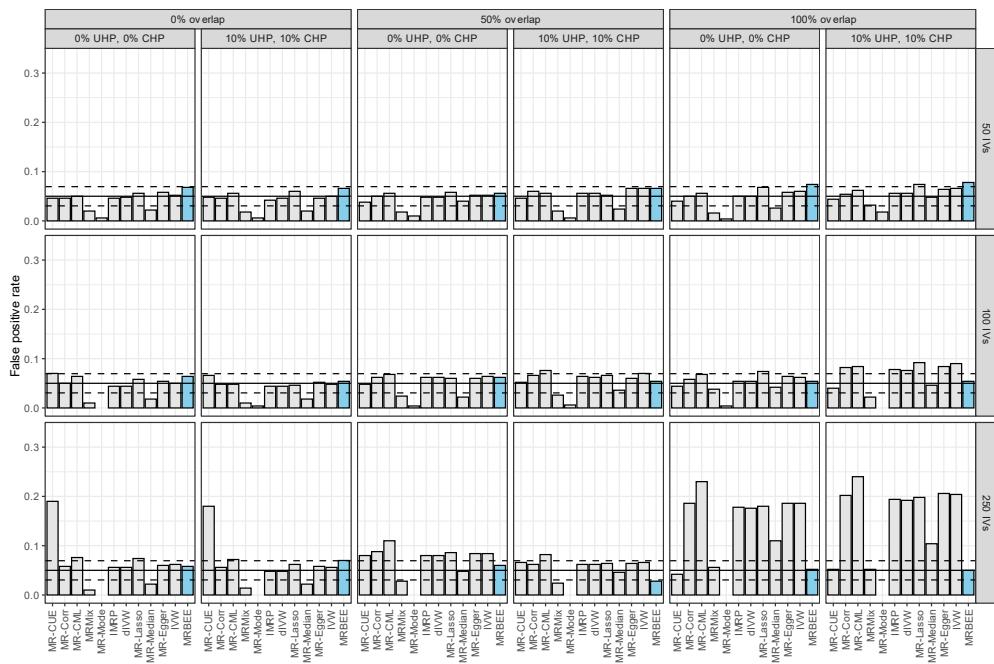
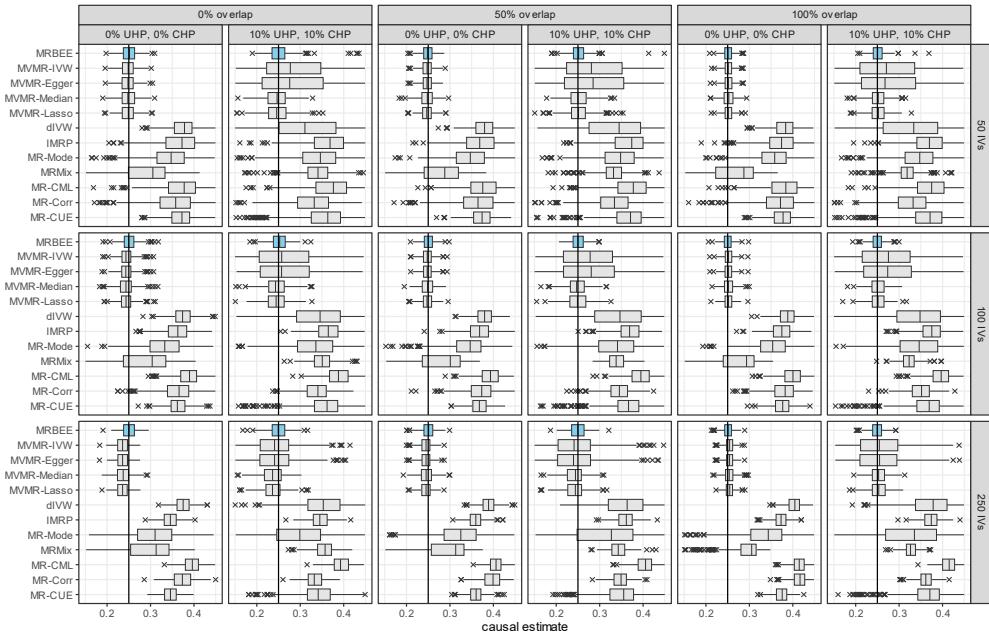


Figure 3: **(A)** Bias when estimating the total causal effect for one exposure in MR. The true causal effect is indicated by the vertical black line (0.5). Simulations were performed 1,000 times using the individual-level data generation process described in the text. Exposure heritability explained by the IVs was 5% for all scenarios. **(B)**: Type I error of univariable MR using the same simulation settings as those used in panel (A) except the true causal effect is 0.

A) Causal estimates for the first of two exposures



B) Coverage frequencies for the first of two exposures

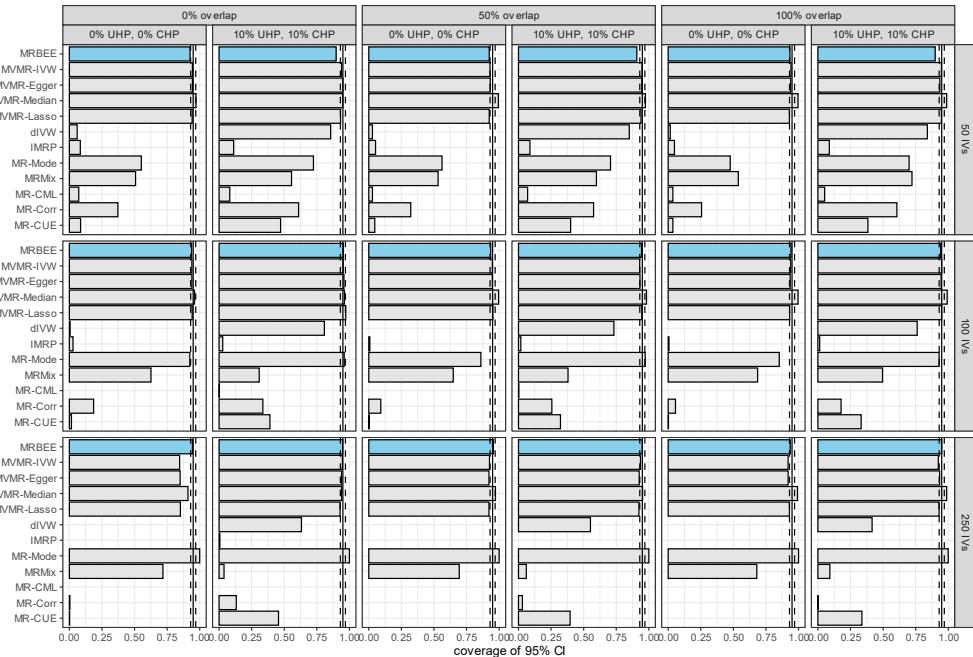


Figure 4: **(A)**: Bias when estimating the direct causal effect for the first of two true and genetically correlated exposures and one outcome. The true causal effect is indicated by the vertical black line (0.5). MR methods that could only include exposure 1 in MR are dIVW, IMRP, MR-Mode, MRMix, MR-CML, MR-Corr, and MR-CUE. MRBEE, MVMR-Egger, MVMR-Median, MVMR-Lasso included both exposures in MR simultaneously. This simulation was performed 1,000 times using the individual-level data generation process described in the text. Heritability in the exposures explained by the IVs was 5% for all scenarios. **(B)**: Proportions of simulations in which the estimated 95% confidence interval of the causal estimate contained the true direct causal effect of exposure 1.

404 LDL on CAD compared to MRBEE. For example, MR-Robust produced an odds ratio es-
405 timate of 1.26 ($P < 1 \times 10^{-100}$). The direct causal effect of SBP on CAD in EAS was similarly
406 underestimated by MR-Median compared to MRBEE, where MRBEE produced an odds
407 ratio estimate of 1.94 ($P = 1.3 \times 10^{-5}$) and MR-Median 1.49 ($P = 1.3 \times 10^{-15}$).

408 In EAS, the total and unmediated causal effect of BMI on CAD from univariable MR
409 ($OR = 1.44, P = 2.0 \times 10^{-25}$) was completely mediated by SBP ($P = 0.220$ in a test against total
410 mediation; see **Supplement**). In EUR, the SBP GWAS included BMI as a covariate and
411 so SBP could not statistically act as a mediator for BMI in multivariable MR with CAD.
412 The BMI result displayed in Table 1 therefore reflects the effect of BMI on CAD that does
413 not go through all other exposures except SBP. This phenomenon – that including one
414 exposure as a covariate in the GWAS for another can preclude consistent direct causal
415 effect estimation in multivariable MR – is confirmed in simulations in the **Supplement**
416 and reported in [Gilbody et al. \(2022\)](#).

417 Finally, we estimated the correlation between the bias in Equation 11 and differ-
418 ences in causal estimates between MRBEE and multivariable IVW adjusted for horizontal
419 pleiotropy, termed here as ‘IVW*’. IVW* is the multivariable IVW estimator with IVs
420 that had P-values corresponding to S_{pleio} less than $0.05/m$ removed. In EAS, this Pear-
421 son correlation was 0.92 ($P = 4.6 \times 10^{-4}$) and in EUR was 0.65 ($P = 0.058$) (see Figure 5A).
422 This suggested that differences between IVW* and MRBEE causal estimates were due to
423 uncontrolled bias in IVW*. Since causal estimates made by IVW* were generally simi-
424 lar to those made by MR-Robust and MR-Median methods (see **Supplement**), a similar
425 interpretation can be made for them.

426 3.2.2 Genome-wide S_{pleio} Test

427 We then applied the *Spleio* test to all SNPs genome-wide using causal estimates from
428 MRBEE to search for SNPs with pleiotropic effects. The original CAD GWAS in EAS
429 and EUR respectively identified 65 ($\lambda_{GC} = 1.16$) and 39 ($\lambda_{GC} = 1.00$) loci, defined as
430 1 megabase (Mb) windows with $r^2 < 0.01$ between lead SNPs ($P < 5 \times 10^{-8}$). Genome-wide
431 horizontal pleiotropy testing with S_{pleio} correspondingly identified 27 ($\lambda_{GC} = 1.08$) and 41
432 ($\lambda_{GC} = 1.01$) loci in EAS and EUR. In EUR, nine loci that were detected in horizontal
433 pleiotropy testing were not detected in the original CAD GWAS, as Figure 6 demonstrates.
434 Seven of these loci were replicated with $P < 0.05$ for the lead SNP in an independent CAD
435 GWAS in Europeans from the UK Biobank (Neale’s lab: <http://www.nealelab.is/>), all
436 of which could only be detected in a recent larger CAD GWAS ([Aragam et al., 2022](#)). In
437 EUR and EAS, we respectively identified only 10 and 18 loci that were directly associated
438 with CAD. These loci had evidence of association with CAD but not any of the MR
439 exposures. We also identified 19 loci in EUR and 5 in EAS with evidence of simultaneous

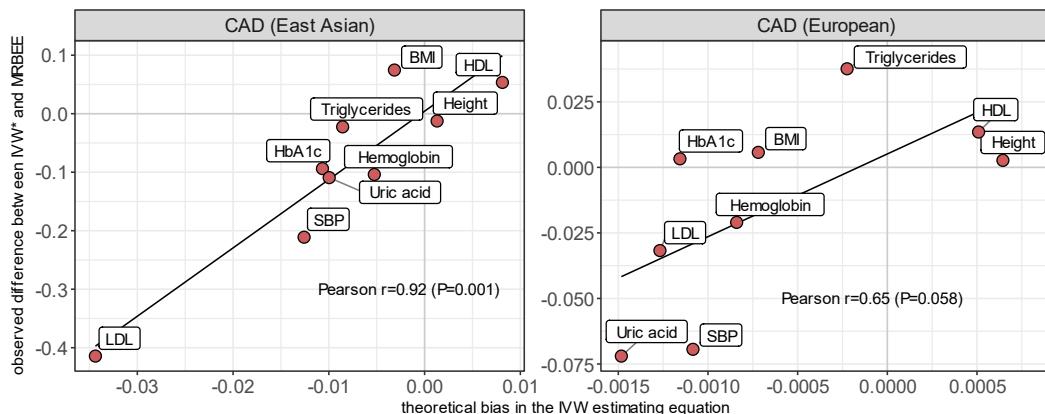
Exposure	Coronary artery disease (East Asian)						Coronary artery disease (European)					
	MRBEE		MR-Lasso		MR-Median		MRBEE		MR-Lasso		MR-Median	
	OR	P	OR	P	OR	P	OR	P	OR	P	OR	P
HDL	0.85	1.1E-2	0.89	2.1E-7	0.89	1.8E-4	0.77	3.8E-5	0.74	1.2E-14	0.74	1.2E-7
Height	0.96	6.1E-1	0.94	9.8E-5	0.94	5.7E-3	0.90	5.6E-6	0.90	7.8E-11	0.90	1.2E-6
HG	1.06	4.5E-1	0.99	6.9E-1	1.03	5.6E-1	1.15	2.6E-3	1.16	5.9E-7	1.17	2.8E-4
BMI	0.97	5.4E-1	1.06	3.1E-2	1.03	4.7E-1	1.26	7.1E-7	1.28	6.5E-14	1.30	3.7E-8
TG	1.20	3.8E-2	1.17	3.7E-7	1.12	6.7E-3	1.02	7.9E-1	1.02	6.0E-1	0.97	6.7E-1
HbA1c	1.26	3.3E-3	1.12	9.5E-6	1.16	1.0E-5	1.19	1.5E-5	1.19	1.1E-10	1.19	3.1E-6
UA	1.36	6.4E-6	1.18	7.2E-9	1.15	1.9E-4	1.19	4.4E-4	1.08	7.1E-3	1.12	6.8E-3
SBP	1.94	1.3E-5	1.46	<10-100	1.49	1.3E-15	1.34	1.4E-3	1.21	1.5E-5	1.24	8.3E-4
LDL	2.09	<10-100	1.26	<10-100	1.23	8.5E-9	1.76	<10-100	1.69	<10-100	1.65	<10-100

20

	Bipolar I or II (European)						Schizophrenia (European)					
	MRBEE		MR-Lasso		MR-Median		MRBEE		MR-Lasso		MR-Median	
	OR	P	OR	P	OR	P	OR	P	OR	P	OR	P
INT	0.77	3.4E-4	0.89	6.9E-7	0.90	4.9E-4	0.52	5.4E-12	0.77	7.7E-24	0.73	1.4E-17
SLP	1.12	1.9E-3	1.05	5.1E-3	1.07	7.0E-3	1.18	4.7E-4	1.11	3.3E-9	1.12	1.6E-5
SESA	1.13	7.8E-4	1.11	4.4E-9	1.11	1.44E-5	1.28	1.4E-7	1.21	2.8E-24	1.24	1.6E-15
LH	1.12	3.0E-1	1.11	2.8E-5	1.12	1.2E-3	1.24	1.2E-1	1.16	2.5E-7	1.18	3.2E-5
ADHD	1.29	2.3E-3	1.15	1.5E-9	1.17	1.0E-6	1.08	5.0E-1	1.07	5.4E-3	1.11	3.6E-3
EDU	1.24	8.3E-13	1.12	1.3E-24	1.12	1.0E-12	1.39	2.3E-15	1.14	5.9E-28	1.16	1.0E-18
CUD	1.50	1.3E-3	1.14	2.0E-7	1.16	1.0E-5	2.71	5.7E-8	1.29	1.1E-18	1.30	3.4E-11

Table 1: Direct causal estimates from multivariable MR are obtained from IVs whose selection is described in **Methods**. Significant ($P < 0.05$) estimates are presented in bold text. We found no evidence of unbalanced horizontal pleiotropy in any analyses ($P > 0.1$ for a test of non-zero intercepts; see **Supplement**

A) Expected and observed bias in estimating direct causal effects (real data analysis 1)



A) Expected and observed bias in estimating direct causal effects (real data analysis 2)

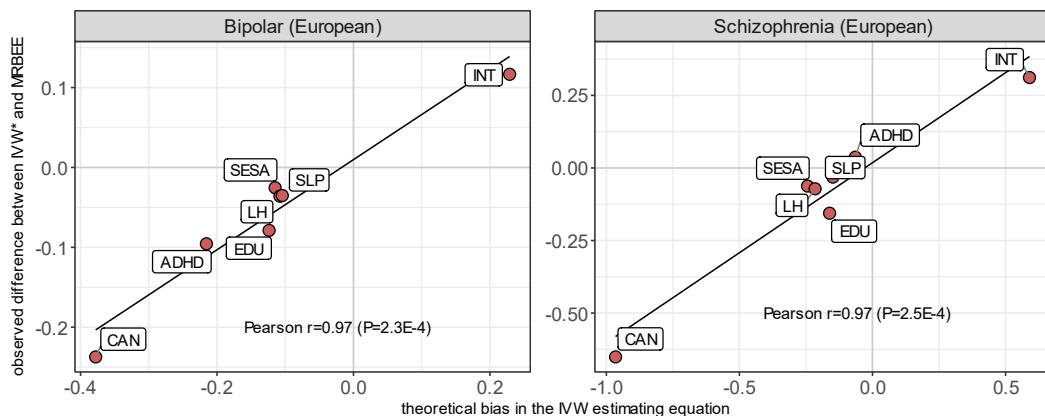


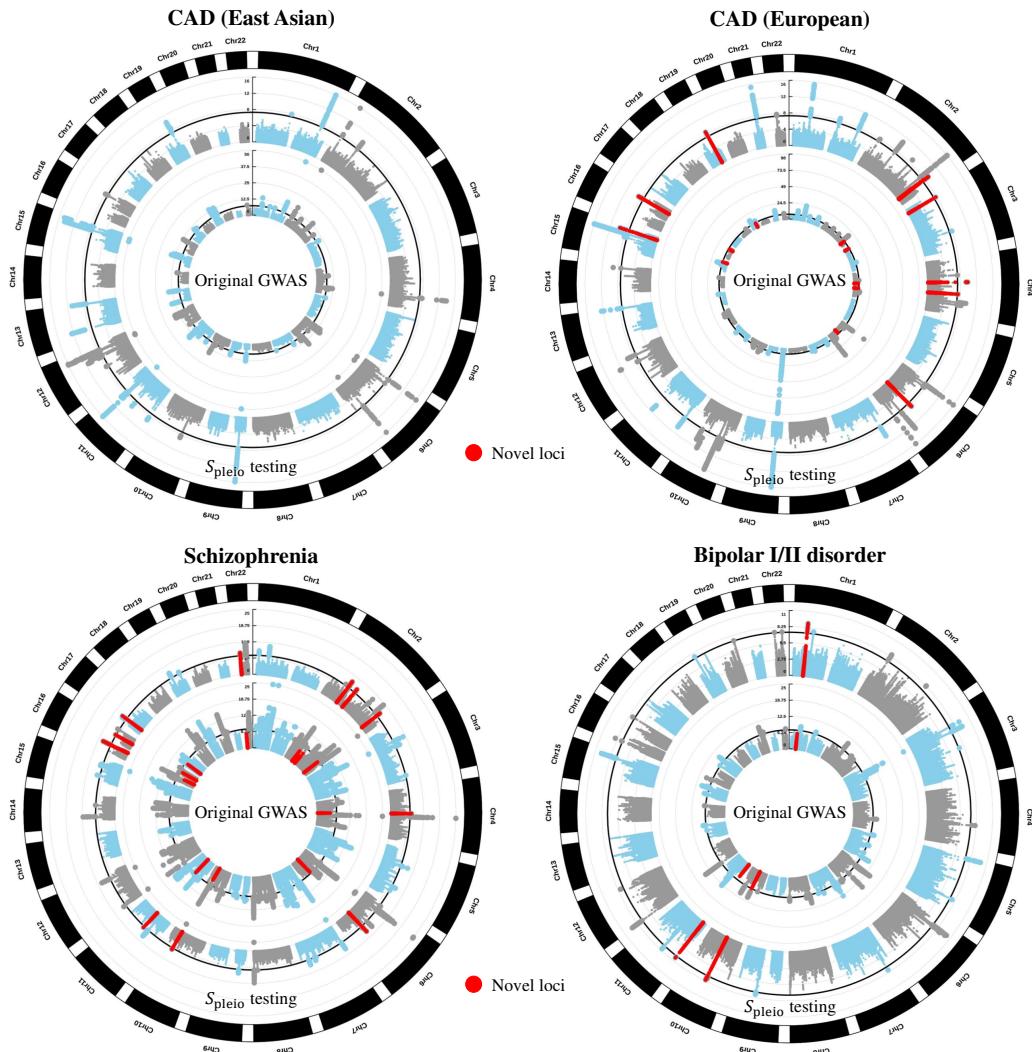
Figure 5: The x-axes represent theoretical bias in the direct causal effect estimates of IVW* (multivariable IVW with horizontal pleiotropy IVs removed using S_{pleio}), which was calculated using the expectation of Equation 11 with the plugged-in MRBEE direct causal estimates. Y-axes are the observed difference between the IVW* and MRBEE direct causal estimates. Pearson's r values represent the linear correlation between values on the x- and y-axes. Corresponding P-values are for testing the null hypothesis that $r=0$.

440 association with the MR exposures and CAD conditional on the exposures.

441 **3.3 Real Data Analysis II: SCZ and BP**

442 **3.3.1 Causal Estimates**

443 UnivARIABLE MR results suggested nonzero total/unmediated causal effects of CUD, ADHD,
 444 left handedness, neuroticism, sleep duration, intelligence, and education on either BP or
 445 SCZ. We found a strong protective causal effect of left handedness on BP risk (MRBEE
 446 OR=0.70, $P=8.9 \times 10^{-34}$), which is of opposite sign for SCZ (OR=1.36, $P=6.2 \times 10^{-24}$). It is
 447 consistent with [Scully et al. \(2000\)](#) but not with [Bellani et al. \(2010\)](#) or [Savitz et al. \(2007\)](#).



	Mediation	Direct	Pleiotropy	Novel	Genes in novel loci
CAD (EUR)	9 (19%)	10 (21%)	19 (41%)	9 (19%)	<i>FNI^a, FGD5^a, PRDM8^a, FGF5^a, FURIN^a, CFDP1^a, AXL^a</i>
CAD (EAS)	37 (62%)	18 (30%)	5 (8%)	0 (0%)	(-)
SCZ (EUR)	36 (22%)	104 (64%)	12 (7%)	11 (7%)	<i>ZNF638, AFF3, SPAG16, FOXO3, BTRC, SNX21, CLN3, NFATC3, RAI1, MED15</i>
BP (EUR)	13 (28%)	26 (55%)	5 (11%)	3 (6.4%)	<i>FOXO6, SCMH1, ALDH7A1P4, ARNTL</i>

Figure 6: Results from genome-wide testing using S_{pleio} for horizontal pleiotropy. Inner circles of Manhattan plots correspond to the original GWAS for the respective outcome; outer circles correspond to S_{pleio} tests using causal estimates from MRBEE. Points highlighted in red are genome-wide significant ($P < 5 \times 10^{-8}$) using S_{pleio} but not in the original GWAS. These loci are novel and contain genes listed in the bottom table. Italic font is used to represent gene names. **(a):** These genes were replicated ($P < 0.05$ for the marginal association of the lead SNP) in the UK Biobank (Neale's lab: <http://www.nealelab.is/>).

448 The full univariable results are presented in the **Supplement**.

449 Full multivariable MR results are presented in Table 1. Multivariable MRBEE iden-
450 tified nonzero causal effects for all exposures on BP and/or SCZ except left handedness.
451 MR-Robust and MR-Median generally produced similar causal estimates. Compared to
452 MRBEE, MR-Robust underestimated the direct causal effect of CUD on SCZ, where MR-
453 Robust and MRBEE respectively produced odds ratio estimates of $1.29 (P=1.1\times 10^{-18})$ and
454 $2.71 (P=5.7\times 10^{-8})$, the latter of which is more consistent with the literature. That is, the
455 odds ratio for association between CUD and schizophrenia is 3.90, 95% CI: 2.84-5.34 in
456 [Marconi et al. \(2016\)](#). Together, these seven exposures explained approximately 31% and
457 17% of the genetic variance in schizophrenia and bipolar disorder, respectively.

458 As before, we compared differences between MRBEE and IVW* – the multivariable
459 IVW estimator with pleiotropic IVs identified using S_{pleio} removed – to the bias we ex-
460 pected in the multivariable IVW estimator using Equation 11. Differences between IVW*
461 and MRBEE causal estimates were almost perfectly correlated with the expected bias,
462 as demonstrated in Figure 5B: Pearson $r=0.97$ for BP ($P=2.3\times 10^{-4}$) and $r=0.97$ for SCZ
463 ($P=2.5\times 10^{-4}$). Only 3 IVs ($<0.25\%$) had significant S_{pleio} values in MR, and they had no
464 impact on causal estimates.

465 3.3.2 Genome-wide S_{pleio} Test

466 We identified 11 schizophrenia loci and 3 bipolar disorder loci that were genome-wide
467 significant using S_{pleio} but had $P>5\times 10^{-8}$ in the original GWAS (Figure 6). These loci
468 are considered novel and contain genes associated with traits such as cancers ([Welch et al.,](#)
469 [2012](#)), multiple sclerosis ([Baranzini et al., 2009](#)), severe COVID-19 infection ([Slomian et al.,](#)
470 [2023](#)), and lifetime smoking status ([Pasman et al., 2022](#)). Since the SCZ and BP GWAS
471 are the largest available to date, independent data to validate these novel findings are
472 not available. For both SCZ and BP, the majority of significant GWAS loci are directly
473 associated with the outcome disease but not with the MR exposures. That is, 68% of
474 SCZ-associated loci are not associated with the MR exposures and 59% of BP-associated
475 loci are not associated with the MR exposures. Alternatively, 24% of SCZ loci and 30% of
476 BP loci have associations that are at least partially mediated by the MR exposures.

477 4 Discussion

478 Our study suggests that the existing univariable and multivariable MR approaches can be
479 vulnerable to one or several biases from weak instruments, measurement error, UHP, CHP,
480 sample overlap, and excluded exposures. One suggested solution to this problem that is

481 currently being practiced in the literature is to use multiple MR methods and appraise the
482 evidence in aggregate more highly than evidence from any one method alone (Burgess et al.,
483 2019). Our applications of MRBEE to simulated data demonstrated that multiple MR
484 methods can be biased in similar ways, rendering any aggregated inference from multiple
485 biased methods no less subject to mistake than inference from any one method alone. In
486 contrast, the multivariable MRBEE we developed here is generally robust to the above
487 biases and should be a useful tool in practice.

488 We demonstrated the practical utility of MRBEE in two independent applications to
489 the study of (i) coronary artery disease (CAD) in East Asian and European populations
490 and (ii) schizophrenia and bipolar disorder. Causal risk factors were generally consistent
491 for CAD between EAS and EUR and between SCZ and BP in EUR, where there was
492 evidence that any differences between MRBEE estimates and those made by alternative
493 methods were the results of uncontrolled bias in other methods. For example, the IVW
494 causal estimate of LDL on CAD in EAS was expected to have 55.3% downward bias from
495 Equation 11 and indeed the horizontal pleiotropy-robust IVW causal estimate was 55.7%
496 smaller than the MRBEE estimate. In Real Data Analysis I with CAD, we observed that
497 the total/unmediated causal effect of BMI on CAD was completely mediated by blood
498 pressure and partially by uric acid in EAS, though the GWAS data in EUR precluded
499 testing of this kind. In Real Data Analysis II with SCZ and BP, we observed that CUD
500 has large direct causal effects on SCZ and BP risk, which is consistent with the literature
501 (Marconi et al., 2016), but that existing MR methods may underestimate the sizes of these
502 effects. We also observed a strong protective causal effect of left handedness on BP risk in
503 univariable MR which disappeared in multivariable MR, suggesting that multivariable MR
504 was the correct method of causal analysis.

505 We finally introduced a multivariable horizontal pleiotropy test using the statistic S_{pleio}
506 that, when applied genome-wide, identified the pathways through which many genomic
507 loci were associated with CAD, SCZ, and BP. S_{pleio} testing revealed that many genetic
508 associations with disease endpoints were non-direct, suggesting that a large portion of
509 the heritability of these complex traits may be conferred indirectly through their causal
510 risk factors. This test also identified 9 novel loci for CAD in EUR – seven of which
511 were replicated in UKBB – 11 for SCZ and 3 for BP, for which no adequate independent
512 replication data exists. This method of pleiotropy testing using S_{pleio} is therefore a valuable
513 tool both for gaining better insight into how genetic risk of disease is conferred and in
514 detecting new risk loci.

515 MRBEE has the following limitations. As with all MR methods, the reliability of
516 causal estimates produced by MRBEE depends on the quality of GWAS data used in MR.
517 For example, biases in GWAS from assortative mating or dynastic effects may propagate

518 through to MR and bias causal estimation (Brumpton et al., 2020; Hartwig et al., 2018).
519 Second, MRBEE may yield wider confidence intervals for exposures with small heritability
520 than current approaches that ignore weak instrument bias. This is because current methods
521 implicitly assume that the effect size estimates used in MR are equal to the true effect sizes,
522 whereas MRBEE more correctly considers them as consisting of true effect sizes plus their
523 estimation errors. We demonstrate in the **Supplement** that the variance of MRBEE
524 decreases as the variance in the exposures explained by the IVs increases. Conversely, the
525 variance of IVW may decrease even for fixed exposure variance explained when more weak
526 IVs are added to MR. Third, high multicollinearity in our real data analyses prevented
527 us from including some exposures. For example, SBP and DBP were not included in
528 multivariable MR together. Future work that can expand the application of MRBEE to
529 the high-dimensional setting may help address this challenge. Fourth, MRBEE may be
530 subject to winner's curse bias in practice (Sadreev et al., 2021), but this bias is not as
531 severe as for IVW and other methods that neither correct for winner's curse nor weak IVs
532 (see **Supplement** Figure 6S).

533 In conclusion, univariable MR analysis is inherently limited in its ability to reduce bias,
534 but univariable MR methods and their applications have so far dominated the literature
535 compared to multivariable analyses. We developed multivariable MRBEE to reduce known
536 biases in MR and estimate direct causal effects of multiple exposures in robust way. MR-
537 BEE can be a useful tool in studying causality between risk factors and disease outcomes
538 as more large GWAS summary statistics are made publicly available.

539

540 Software

541 The software used to perform all simulations and analyze the real data used above is
542 available at <https://github.com/noahlorinczcomi/MRBEE> and <http://hal.case.edu/~xxz10/zhu-web/>. The software contains all functions needed to use MRBEE and perform
543 all their associated tests in practice.
544

545 Supplementary Information

546 Please refer to the **Supplement** for additional derivations, simulation results, and details
547 of real data analyses.

548 Acknowledgments

549 We acknowledge the help of Zhengxi Chen in providing the authors with background liter-
550 ature on the association of cannabis use with schizophrenia and bipolar disorder risk.

551 Author's Contributions

552 NLC, YY, and XZ conceived of and developed MRBEE, NLC and YY performed simula-
553 tions, NLC performed all real data analyses with the support of GL for Real Data Analysis
554 2, NLC drafted the manuscript and XZ and YY revised it. XZ provided guidance and
555 support in all aspects of this work.

556 Funding

557 This work was supported by grant HG011052 (to XZ) from the National Human Genome
558 Research Institute (NHGRI). NLC was partially supported by grant T32 HL007567 from
559 the National Heart, Lung, and Blood Institute (NHLBI).

560 Declarations of interests

561 The authors declare no competing interests.

562 Ethics Approval

563 The study was approved by the institutional review board (IRB number: STUDY20180592)
564 at Case Western Reserve University.

565 Data and code availability

566 All GWAS data used for the analyses were retrieved from publicly available repositories
567 whose online locations are presented in Supplementary Tables 1S and 6S. Genomic loci
568 detected in either the original genome-wide association studies or in genome-wide horizontal
569 pleiotropy testing in Real Data Analyses 1 & 2 are available at <https://github.com/noahlorinczcomi/MRBEE>. R code used in simulations and real data analyses are available
570 at <https://github.com/noahlorinczcomi/MRBEE>. The MRBEE software, written in the
571 R language, is available at <https://github.com/noahlorinczcomi/MRBEE>.

573 References

574 Aragam, K. G., T. Jiang, A. Goel, S. Kanoni, B. N. Wolford, D. S. Atri, E. M. Weeks,
575 M. Wang, G. Hindy, W. Zhou, et al. (2022). Discovery and systematic characterization of
576 risk variants and genes for coronary artery disease in over a million participants. *Nature*
577 *Genetics*, 1–13.

578 Baranzini, S. E., J. Wang, R. A. Gibson, N. Galwey, Y. Naegelin, F. Barkhof, E.-W. Radue,
579 R. L. Lindberg, B. M. Uitdehaag, M. R. Johnson, et al. (2009). Genome-wide association
580 analysis of susceptibility and clinical phenotype in multiple sclerosis. *Human Molecular*
581 *Genetics* 18(4), 767–778.

582 Bellani, M., C. A. Marzi, S. Savazzi, C. Perlini, S. Cerruti, A. Ferro, V. Marinelli, S. Sponda,
583 G. Rambaldelli, M. Tansella, et al. (2010). Laterality effects in schizophrenia and bipolar
584 disorder. *Experimental Brain Research* 201, 339–344.

585 Bowden, J., G. Davey Smith, P. C. Haycock, and S. Burgess (2016). Consistent estimation
586 in mendelian randomization with some invalid instruments using a weighted median
587 estimator. *Genet. Epidemiol.* 40(4), 304–314.

588 Brumpton, B., E. Sanderson, K. Heilbron, F. P. Hartwig, S. Harrison, G. Å. Vie, Y. Cho,
589 L. D. Howe, A. Hughes, D. I. Boomsma, et al. (2020). Avoiding dynastic, assortative
590 mating, and population stratification biases in mendelian randomization through within-
591 family analyses. *Nature Communications* 11(1), 3519.

592 Burgess, S. and J. Bowden (2015). Integrating summarized data from multiple genetic
593 variants in mendelian randomization: bias and coverage properties of inverse-variance
594 weighted methods. *arXiv preprint arXiv:1512.04486*.

595 Burgess, S., A. Butterworth, and S. G. Thompson (2013). Mendelian randomization anal-
596 ysis with multiple genetic variants using summarized data. *Genet. Epidemiol.* 37(7),
597 658–665.

598 Burgess, S., N. M. Davies, and S. G. Thompson (2016). Bias due to participant overlap in
599 two-sample mendelian randomization. *Genet. Epidemiol.* 40(7), 597–608.

600 Burgess, S., C. N. Foley, E. Allara, J. R. Staley, and J. M. Howson (2020). A robust and
601 efficient method for mendelian randomization with hundreds of genetic variants. *Nat.*
602 *Commun.* 11(1), 1–11.

603 Burgess, S., G. D. Smith, N. M. Davies, F. Dudbridge, D. Gill, M. M. Glymour, F. P.
604 Hartwig, M. V. Holmes, C. Minelli, C. L. Relton, et al. (2019). Guidelines for performing
605 mendelian randomization investigations. *Wellcome Open Research* 4.

606 Burgess, S. and S. G. Thompson (2015). Multivariable mendelian randomization: the
607 use of pleiotropic genetic variants to estimate causal effects. *American Int. J. Epi-
608 demiol.* 181(4), 251–260.

609 Burgess, S., S. G. Thompson, and C. C. G. Collaboration (2011). Avoiding bias from weak
610 instruments in mendelian randomization studies. *Int. J. Epidemiol.* 40(3), 755–764.

611 Burgess, S., N. J. Timpson, S. Ebrahim, and G. Davey Smith (2015). Mendelian random-
612 ization: where are we now and where are we going?

613 CARDIoGRAMplusC4D (2015). A comprehensive 1000 genomes-based genome-wide as-
614 sociation meta-analysis of coronary artery disease. *Nature Genetics* 47(10), 1121–1130.

615 Chang, C. C., C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell, and J. J. Lee (2015).
616 Second-generation plink: rising to the challenge of larger and richer datasets. *Giga-
617 science* 4(1), s13742–015.

618 Cheng, Q., T. Qiu, X. Chai, B. Sun, Y. Xia, X. Shi, and J. Liu (2022). Mr-corr2: a
619 two-sample mendelian randomization method that accounts for correlated horizontal
620 pleiotropy using correlated instrumental variants. *Bioinformatics* 38(2), 303–310.

621 Cheng, Q., X. Zhang, L. S. Chen, and J. Liu (2022). Mendelian randomization accounting
622 for complex correlated horizontal pleiotropy while elucidating shared genetic etiology.
623 *Nat. Commun.* 13(1), 1–13.

624 Cuellar-Partida, G., J. Y. Tung, N. Eriksson, E. Albrecht, F. Aliev, O. A. Andreassen,
625 I. Barroso, J. S. Beckmann, M. P. Boks, D. I. Boomsma, et al. (2021). Genome-wide as-
626 sociation study identifies 48 common genetic variants associated with handedness. *Nature
627 Human Behaviour* 5(1), 59–70.

628 Demontis, D., R. K. Walters, J. Martin, M. Mattheisen, T. D. Als, E. Agerbo, G. Baldurs-
629 son, R. Belliveau, J. Bybjerg-Grauholm, M. Bækvad-Hansen, et al. (2019). Discovery
630 of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder.
631 *Nature Genetics* 51(1), 63–75.

632 Fairley, S., E. Lowy-Gallego, E. Perry, and P. Flicek (2020). The international genome
633 sample resource (igsr) collection of open human genomic variation resources. *Nucleic
634 Acids Research* 48(D1), D941–D947.

635 Gilbody, J., M. C. Borges, G. Davey Smith, and E. Sanderson (2022). Multivariable mr
636 can mitigate bias in two-sample mr using covariate-adjusted summary associations.
637 *medRxiv*, 2022–07.

638 Gill, D., M. K. Georgakis, V. M. Walker, A. F. Schmidt, A. Gkatzionis, D. F. Freitag, C. Fi-
639 nan, A. D. Hingorani, J. M. Howson, S. Burgess, et al. (2021). Mendelian randomization
640 for studying the effects of perturbing drug targets. *Wellcome Open Research* 6.

641 Grant, A. J. and S. Burgess (2021). Pleiotropy robust methods for multivariable mendelian
642 randomization. *Stat. Med.* 40(26), 5813–5830.

643 Hartwig, F. P., N. M. Davies, and G. Davey Smith (2018). Bias in mendelian randomization
644 due to assortative mating. *Genetic Epidemiology* 42(7), 608–620.

645 Ishigaki, K., M. Akiyama, M. Kanai, A. Takahashi, E. Kawakami, H. Sugishita, S. Sakaue,
646 N. Matoba, S.-K. Low, Y. Okada, et al. (2020). Large-scale genome-wide association
647 study in a japanese population identifies novel susceptibility loci across different diseases.
648 *Nature Genetics* 52(7), 669–679.

649 Kang, H., A. Zhang, T. T. Cai, and D. S. Small (2016). Instrumental variables estimation
650 with some invalid instruments and its application to mendelian randomization. *J. Am.*
651 *Stat. Assoc.* 111(513), 132–144.

652 Lawlor, D. A., R. M. Harbord, J. A. Sterne, N. Timpson, and G. Davey Smith (2008).
653 Mendelian randomization: using genes as instruments for making causal inferences in
654 epidemiology. *Statistics in medicine* 27(8), 1133–1163.

655 Marconi, A., M. Di Forti, C. M. Lewis, R. M. Murray, and E. Vassos (2016). Meta-analysis
656 of the association between the level of cannabis use and risk of psychosis. *Schizophrenia*
657 *Bulletin* 42(5), 1262–1269.

658 Morrison, J., N. Knoblauch, J. H. Marcus, M. Stephens, and X. He (2020). Mendelian ran-
659 domization accounting for correlated and uncorrelated pleiotropic effects using genome-
660 wide summary statistics. *Nat. Genet.* 52(7), 740–747.

661 Mounier, N. and Z. Kutalik (2023). Bias correction for inverse variance weighting mendelian
662 randomization. *Genetic Epidemiology*.

663 Mullins, N., A. J. Forstner, K. S. O'Connell, B. Coombes, J. R. Coleman, Z. Qiao, T. D.
664 Als, T. B. Bigdeli, S. Børte, J. Bryois, et al. (2021). Genome-wide association study
665 of more than 40,000 bipolar disorder cases provides new insights into the underlying
666 biology. *Nature Genetics* 53(6), 817–829.

667 Nagai, A., M. Hirata, Y. Kamatani, K. Muto, K. Matsuda, Y. Kiyohara, T. Ninomiya,
668 A. Tamakoshi, Z. Yamagata, T. Mushirosa, et al. (2017). Overview of the biobank japan
669 project: study design and profile. *Int. J. Epidemiol.* 27(Supplement_III), S2–S8.

670 Okbay, A., Y. Wu, N. Wang, H. Jayashankar, M. Bennett, S. M. Nehzati, J. Sidorenko,
671 H. Kweon, G. Goldman, T. Gjorgjieva, et al. (2022). Polygenic prediction of educational
672 attainment within and between families from genome-wide association analyses in 3
673 million individuals. *Nature Genetics* 54(4), 437–449.

674 Pasman, J. A., P. A. Demange, S. Guloksuz, A. Willemsen, A. Abdellaoui, M. Ten Have,
675 J.-J. Hottenga, D. I. Boomsma, E. de Geus, M. Bartels, et al. (2022). Genetic risk
676 for smoking: disentangling interplay between genes and socioeconomic status. *Behavior*
677 *Genetics* 52(2), 92–107.

678 Qi, G. and N. Chatterjee (2019). Mendelian randomization analysis using mixture models
679 for robust and efficient estimation of causal effects. *Nat. Commun.* 10(1), 1–10.

680 Rees, J. M., A. M. Wood, and S. Burgess (2017). Extending the mr-egger method for
681 multivariable mendelian randomization to correct for both measured and unmeasured
682 pleiotropy. *Stat. Med.* 36(29), 4705–4718.

683 Rees, J. M., A. M. Wood, F. Dudbridge, and S. Burgess (2019). Robust methods in
684 mendelian randomization via penalization of heterogeneous causal estimates. *PLoS*
685 *One* 14(9), e0222362.

686 Sadreev, I. I., B. L. Elsworth, R. E. Mitchell, L. Paternoster, E. Sanderson, N. M. Davies,
687 L. A. Millard, G. D. Smith, P. C. Haycock, J. Bowden, et al. (2021). Navigating sample
688 overlap, winner’s curse and weak instrument bias in mendelian randomization studies
689 using the uk biobank. *medRxiv*.

690 Sanderson, E., G. Davey Smith, F. Windmeijer, and J. Bowden (2019). An examination
691 of multivariable mendelian randomization in the single-sample and two-sample summary
692 data settings. *Int. J. Epidemiol.* 48(3), 713–727.

693 Sanderson, E., M. M. Glymour, M. V. Holmes, H. Kang, J. Morrison, M. R. Munafò,
694 T. Palmer, C. M. Schooling, C. Wallace, Q. Zhao, et al. (2022). Mendelian randomization.
695 *Nat. Rev. Methods Primers* 2(1), 1–21.

696 Sanderson, E., W. Spiller, and J. Bowden (2021). Testing and correcting for weak and
697 pleiotropic instruments in two-sample multivariable mendelian randomization. *Stat.*
698 *Med.* 40(25), 5434–5452.

699 Savitz, J., L. Van Der Merwe, M. Solms, and R. Ramesar (2007). Lateralization of hand
700 skill in bipolar affective disorder. *Genes, Brain and Behavior* 6(8), 698–705.

701 Scully, P., J. Owens, A. Kinsella, and J. Waddington (2000). Epidemiology and patho-
702 biology of bipolar disorder, and their exploration within a complete catchment area
703 population. *Acta Neuropsychiatrica* 12(3), 73–76.

704 Słomian, D., J. Szyda, P. Dobosz, J. Stojak, A. Michalska-Foryszewska, M. Sypniewski,
705 J. Liu, K. Kotlarz, T. Suchocki, M. Mroczek, et al. (2023). Better safe than sorry—whole-
706 genome sequencing indicates that missense variants are significant in susceptibility to
707 covid-19. *PLoS One* 18(1), e0279356.

708 Trubetskoy, V., A. F. Pardiñas, T. Qi, G. Panagiotaropoulou, S. Awasthi, T. B. Bigdeli,
709 J. Bryois, C.-Y. Chen, C. A. Dennison, L. S. Hall, et al. (2022). Mapping genomic loci
710 implicates genes and synaptic biology in schizophrenia. *Nature* 604(7906), 502–508.

711 van Der Graaf, A., A. Claringbould, A. Rimbert, B. C. H. B. T. . H. P. A. . van Meurs
712 Joyce BJ 10 Jansen Rick 11 Franke Lude 1 2, H.-J. Westra, Y. Li, C. Wijmenga, and
713 S. Sanna (2020). Mendelian randomization while jointly modeling cis genetics identifies
714 causal relationships between gene expression and lipids. *Nature Communications* 11(1),
715 4930.

716 VanderWeele, T. J., E. J. T. Tchetgen, M. Cornelis, and P. Kraft (2014). Methodological
717 challenges in mendelian randomization. *Epidemiology* 25(3), 427.

718 Verbanck, M., C.-Y. Chen, B. Neale, and R. Do (2018). Detection of widespread hori-
719 zontal pleiotropy in causal relationships inferred from mendelian randomization between
720 complex traits and diseases. *Nat. Genet.* 50(5), 693–698.

721 Wang, K., X. Shi, Z. Zhu, X. Hao, L. Chen, S. Cheng, R. S. Foo, and C. Wang (2022).
722 Mendelian randomization analysis of 37 clinical factors and coronary artery disease in
723 east asian and european populations. *Genome Medicine* 14(1), 1–15.

724 Welch, J. S., T. J. Ley, D. C. Link, C. A. Miller, D. E. Larson, D. C. Koboldt, L. D.
725 Wartman, T. L. Lamprecht, F. Liu, J. Xia, et al. (2012). The origin and evolution of
726 mutations in acute myeloid leukemia. *Cell* 150(2), 264–278.

727 Xue, H., X. Shen, and W. Pan (2021). Constrained maximum likelihood-based mendelian
728 randomization robust to both correlated and uncorrelated pleiotropic effects. *Am. J.
729 Hum. Genet.* 108(7), 1251–1269.

730 Yang, Y., N. Lorincz-Comi, and X. Zhu (2023). Unbiased estimation and asymptotically
731 valid inference in multivariable mendelian randomization with many weak instrumental
732 variables. *arXiv preprint arXiv:2301.05130*.

733 Yavorska, O. O. and S. Burgess (2017). Mendelianrandomization: an r package for performing
734 mendelian randomization analyses using summarized data. *Int. J. Epidemiol.* 46(6),
735 1734–1739.

736 Ye, T., J. Shao, and H. Kang (2021). Debiased inverse-variance weighted estimator in
737 two-sample summary-data mendelian randomization. *Ann. Stat.* 49(4), 2079–2100.

738 Yengo, L., S. Vedantam, E. Marouli, J. Sidorenko, E. Bartell, S. Sakaue, M. Graff, A. U.
739 Eliasen, Y. Jiang, S. Raghavan, et al. (2022). A saturated map of common genetic
740 variants associated with human height. *Nature* 610(7933), 704–712.

741 Yi, G. Y. (2017). *Statistical analysis with measurement error or misclassification: strategy,*
742 *method and application.* Springer.

743 Zhu, X. (2020). Mendelian randomization and pleiotropy analysis. *Quant. Biol.*, 1–11.

744 Zhu, X., T. Feng, B. O. Tayo, J. Liang, J. H. Young, N. Franceschini, J. A. Smith, L. R.
745 Yanek, Y. V. Sun, T. L. Edwards, et al. (2015). Meta-analysis of correlated traits
746 via summary statistics from gwass with an application in hypertension. *Am. J. Hum.
747 Genet.* 96(1), 21–36.

748 Zhu, X., X. Li, R. Xu, and T. Wang (2021). An iterative approach to detect pleiotropy and
749 perform mendelian randomization analysis using gwas summary statistics. *Bioinformatics*
750 37(10), 1390–1400.

751 Zhu, X., L. Zhu, H. Wang, R. S. Cooper, and A. Chakravarti (2022). Genome-wide
752 pleiotropy analysis identifies novel blood pressure variants and improves its polygenic
753 risk scores. *Genet. Epidemiol.* 46(2), 105–121.