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Tumor deconvolution is a reliable way to disentangle the diverse cell types that comprise solid tumors. To date, however,
both the algorithms developed to deconvolve tumor samples, and the gold standard datasets used to assess the algorithms
are geared toward the analysis of gene expression (e.g., RNA-seq) rather than protein levels in tumor cells. While gene
expression is less expensive to measure, protein levels provide a more accurate view of immune markers. To facilitate the
development as well as improve the reproducibility and reusability of multi-omic deconvolution algorithms, we introduce
Decomprolute, a Common Workflow Language framework that leverages containerization to compare tumor deconvolution
algorithms across multiomic data sets. Decomprolute incorporates the large-scale multiomic data sets produced by the
Clinical Proteomic Tumor Analysis Consortium (CPTAC), which include matched mRNA expression and proteomic data
from thousands of tumors across multiple cancer types to build a fully open-source, containerized proteogenomic tumor
deconvolution benchmarking platform. The platform consists of modular architecture and it comes with well-defined input
and output formats at each module. As a result, it is robust and extendable easily with additional algorithms or analyses.

The platform is available for access and use at http:/pnnl-compbio.github.io/decomprolute.
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Motivation

To provide a comprehensive platform for algorithm developers and researchers to benchmark and run tumor deconvolu-

tion algorithms on multiomic data.

Introduction

Tumor growth and metastasis rely on the exchanges be-
tween the tumor cells and additional components constitut-
ing the tumor microenvironment?. Understanding the inter-
actions between the tumor cells and surrounding non-ma-
lignant cells, including stromal, endothelial and immune
cells, is essential to model the mechanisms underlying tu-
mor survival and spreading?. In particular, identifying the
degree and nature of immune cell infiltration can assist in
predicting a tumor responsiveness to specific immunother-
apeutic regimens3+. Hence, new technologies, such as mass
cytometry>-8 and single-cell RNA sequencing®-12, have been
applied also to study tumor microenvironment together
with ad hoc computational algorithms to deconvolve cell
types from bulk molecular measurements!3-17.

Algorithmic tumor deconvolution is based upon the
knowledge that specific genes are expressed at distinct lev-
els within specific cell types8. Given the prior knowledge of
the specific combinations of gene expression levels to ex-
pectin a specific cell type, numerous existing computational
algorithms can provide estimates of relative cell types pre-
sent in the profiled tissue. One such algorithm, Microenvi-
ronment Cell Populations-counter (MCP-counter), provides
tumor deconvolution predictions from bulk RNA sequenc-
ing data using a gene signature matrix. This signature ma-
trix is derived from previously published gene expression
datasets, which are analyzed to provide an MCP-counter
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score, comprised of the logarithm of geometric mean of the
marker genes for each cell typel?. CIBERSORT and CIBER-
SORTx employ a linear modeling approach to estimate cell-
type composition from a signature matrix and bulk gene ex-
pression matrix 1419, EPIC (Estimating the Proportions of
Immune and Cancer cells) is an algorithm that uses a similar
approach to CIBERSORT but normalizes the gene expres-
sion values to account for proportions of healthy vs. malig-
nant cells 1620, xCell expands upon these existing numeric
approaches by leveraging gene set enrichment statistics to
characterize cell types!s. These methods, in addition to
many others not explicitly mentioned here?!, showcase the
great need for tumor deconvolution from bulk measure-
ments.

While tumor deconvolution algorithms are highly effec-
tive at using gene expression data, their performances are
unexplored on proteomic data despite the rise ofcancer-
specific proteomic datasets22-25 together with the estab-
lished fact that protein levels do not always correlate with
mRNA 26-29, suggests that algorithmic deconvolution could
be more effective if a proteomic signature matrix or prote-
omics-derived signatures are utilized. Recent work by
Rieckmann et al.3% has created a dataset that enables, the
definition of immune cell types based on proteomic data..
However, there is still no available ‘gold standard’ dataset
to evaluate the ability of an algorithm using these prote-
omics-defined immune cell types to deconvolve tumor data.
On the other side, for mRNA-based deconvolution, there are
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numerous single-cell datasets as well as sorted cell experi-
ments that can be used for such benchmarks31-33 which are
missing for proteomic data.

Here we introduce Decomprolute, a containerized set of
scientific workflows that enables the community to com-
pare the performance of existing or novel deconvolution al-
gorithms specifically on proteomic data. We demonstrate
the utility of Decomprolute using a subset of published de-
convolution algorithms on the CPTAC3 cancer datasets (cite
data resource paper) for direct comparison with mRNA-
based algorithms, simulated data, and pan-cancer immune
subtypes. The framework comprises four existing deconvo-
lution algorithms but can easily work with any new algo-
rithm that is able to function in a Docker container. Our sys-
tem is flexible enough to accept additional signature matri-
ces, deconvolution algorithms and datasets, both as input
and for validation, as we hope that it will inspire future de-
velopment in the tumor deconvolution space.

Results

Modular workflow framework enables flexible comparison
of deconvolution results across signatures, cancer types
and algorithms

The goal of Decomprolute is to encourage rapid develop-
ment and benchmarking of novel deconvolution algorithms
and cell type signature matrices. As such, the underlying ar-
chitecture is structured around a modular framework that
allows additional algorithms, datasets or cell type signa-
tures to be easily added for comparison. The platform ena-
bles users to run and generate figures for experiments in a
reproducible fashion and its modularity allows it to be ex-
pan_ded to run additional statistical tests as needed.
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Figure 1: Overview of Decomprolute modular architecture de-

scribes four primary subdirectories of Decomprolute. The mrna-
data and prot-data modules both pull from the CPTAC pan-cancer re-
source. The signature-matrix module contains genes that represent dif-
ferent cell types, the tumor-deconv-algs module contains each of the al-
gorithms we implemented, while the metrics module contains all the
modules used to measure performance.

The overall software architecture is described in Figure
1. The modules that comprise decomprolute are: 1) prot-
data, which accesses data from published cancer prote-
omics resources (cite pan can resource paper), 2) mrna-
data, which accesses matched gene expression data from
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the same patients (cite same), 3) signature-matrices,
which returns specific signature matrices to evaluate with
existing algorithms!5-17.19, 4) tumor-deconv-algs, which
evaluates a combination of gene and/or protein expression
data and signature matrix on an algorithm of interest, and
5) metrics, which compares the performance of the algo-
rithm on a set of benchmarks we define. Each module takes
a standard set of inputs and outputs and therefore can be
interchanged and appended. A full list of parameters is de-
scribed in Table 1. This modular design enables users to
plug in their own data or algorithms or create a new evalu-
ation metric by which they can compare data.

Module Inputs Outputs

prot-data Cancer Type | A single file of pro-
(e.g., LUAD) tein  expression
Tissue type | across patients
(e.g., tumor)

mrna-data Cancer type | A single file of
(e.g., LUAD) gene  expression
Tissue type | across patients

(e.g., tumor)

signature-matrices A single file of
transcriptomic or
proteomic profile

chosen for cell
types

Signature
name

tumor-deconv-alg | Cancer type A single matrix

Signature where rows are
name cell types, samples
Algorithm are columns, and
name each value is the
estimated fraction
of that cell type for
that sample
metrics Specific  pa- | Figures and tables
rameters summarizing
based on the | cross-algorithm
type of met- | analysis
rics

Table 1: Overview of Decomprolute modular arguments and de-
scription.

While designed for flexible extensibility, the platform in-
cludes built-in data access scripts, signature matrices, and
deconvolution algorithms. We focused on publicly available
CPTAC data across 10 cancer cohorts (Table 2) (cite data
resource paper) that consist of matched proteomic and
transcriptomic measurements. This allows the user to eval-
uate performance across different tumor types. We also im-
plemented four publicly available algorithms for deconvo-
lution to provide examples of how these can be used and
compared in practice. We include signature matrices that
were published from mRNA expression profiles!4+1? and
generated new ones from sorted proteomic data 39, as de-
scribed in the Methods. Lastly, we developed three metrics
that enable users to compare and contrast various aspects
of tumor deconvolution on proteomics data: 1) evaluation
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on simulated data, 2) agreement between mRNA and pro-
tein, and 3) comparison with immune subtypes 34 Each of
these are demonstrated below.

Cancer type Tumor samples | Normal samples
BRCA 122 0
CCRCC 103 80
COAD 110 100
GBM 99 0
HNSCC 108 62
LSCC 108 99
LUAD 110 101
ov 83 20
PDAC 105 44
UCEC 95 18

Table 2: Summary of samples by cancer type

Simulated data metric enables determination of
proteomics-derived signature matrix

To provide a data independent assessment of deconvolu-
tion algorithms, we first developed a suite of simulated da-
tasets that allow each algorithm to be compared in an unbi-
ased fashion. Specifically, we simulated a dataset from pro-
teomic data as well as from mRNA data as described in STAR
methods. We were then able to compare, for both proteomic
and mRNA datasets, how well different cell types were pre-
dicted by correlating these values with ground truth on sim-
ulated data. This test can be run using the metrics module
available on our website.

To showcase the value of such a metric, we compared
two proteomic signature matrices to determine how well
different algorithms can deconvolve simulated samples
generated using the proteomic immune data from
Rieckmann et al.3%. The signature matrices were also de-
rived from this dataset (see Methods). Briefly, from the orig-
inal 26 sorted immune cell types, our original analysis
found that many of them were quite similar in proteomic
profile, suggesting that the proteins used would not be spe-
cific enough to distinguish different cell types. As a result,
we grouped the 26 cell types into 9 different categories to
create a new LM9 signature matrix. Using the LM9 signature
matrix to deconvolve the simulated data provides hetero-
genous results across algorithms, as depicted in Figure 2A.
The correlation with simulated levels of CD4 T cells, for ex-
ample, is low across most algorithms but CIBERSORT (yel-
low). We then compared this approach to what we called
the LM7c signature matrix, which starts with the LM9 but
compresses basophils, eosinophils and neutrophils into a
single ‘granulocyte’ category (see STAR Methods). As a re-
sult, we are able to predict the immune cell types with
higher overall correlation and also see improvements
within cell types (Figure 2B), suggesting that the LM7c sig-
nature matrix is more accurate for proteomics-based de-
convolution.
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Figure 2: Correlation of proteomics-derived matrices. Correlations
are between predicted results and simulated results from the LM9 and (B)
LM7c signature matrices. X-axis depicts predicted cell type and y-axis is
spearman rank correlation across 10 simulated datasets between algo-
rithm prediction (color indicated on right) and known fractions of cells.

Assessing algorithmic agreement between protein and
mRNA-based deconvolution

As we described earlier, nRNA-based tumor deconvolution
algorithms4-17 have demonstrated success when compared
to gold standards. These datasets contain known mixtures
of individual cell types or paired single-cell measurements,
alongside bulk RNA-seq data. Hence, it is possible to com-
pare different algorithms to see which method deconvolves
better having a ground truth as reference. However, be-
cause no such dataset exists for tumors measured via bulk
proteomics, we use the bulk mRNA measurements matched
to bulk proteomic measurements across 10 different cancer
types from the CPTAC 3 pan-cancer efforts to identify which
algorithm-signature matrix combination gives the best re-
sults on proteomic data when compared to mRNA-based
predictions.

Like our other metrics, this test is also implemented as a
single workflow that produces numerous tables and figures
for further analysis. Figure 3 depicts a subset of the results
of this analysis, measuring the concordance between mRNA
and protein-based deconvolution using one of two different
distance metrics: the Jensen-Shannon divergence and
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Spearman rank correlation (see STAR Methods). Across the
ten cancer types and three signature matrices, the MCP-
counter algorithm showed the highest amount of agree-
ment for its predictions on mRNA and protein data, using
both transcriptomics- and proteomics-derived signature
matrices, as depicted by low average distance in Figure 3A
and high correlation in Figure 3B. The xCell algorithm
achieves similar results, with a low distance (3A) and high
correlation (3B) between mRNA and protein-based predic-
tions. CIBERSORT and EPIC, which do not rely on gene sig-
natures but on gene expression values, proved to be less
flexible across mRNA and protein deconvolution algo-
rithms.
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Figure 3. All vs. all algorithmic comparison. Average (A) Jenson-Shan-
non divergence distance and (b) Spearman rank correlation between de-
convolution results run on mRNA data (x-axis) and proteomics data (y-
axis). Individual values are divided across signature matrices and cancer
types. Legend along right side.

Cell type-specific variation in algorithmic performance

Due to biases in the algorithms and signature matrices,
we also provided the ability to compare mRNA and protein
deconvolution results across algorithms and cell types. Spe-
cifically, we measured, for each cell type, the correlation be-
tween mRNA and protein across patient samples. The re-
sults are depicted in Figure 4. Here, we see that even within
the same signature matrix, we can get different degrees of
correlation between mRNA and protein algorithms. As we
see in Figure 4, MCP-counter and xCell have a high degree
of agreement between mRNA (columns) and proteins
(rows). However, xCell and MCP-counter have a lower de-
gree of correlation when it comes to NK cells, T4 cells, and
DC cells. Generally, the LM7c signature matrix, which is de-
rived from protein data, has higher mean correlation than
the PBMC matrix, which comes from sorted mRNA-based
measurements.
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xCell captures immune subtypes in proteomic-derived cell
type composition

As a third validation we again leveraged CPTAC 3 prote-
omics datasets. Here, we utilized the classification of each
tumor sample into one of the six immune subtypes3* pre-
dicted using the mRNA data3>. Specifically, we compared the
deconvolution results of the four algorithms on tumor sam-
ples of all 10 tumors respect to the immune subtypes clas-
sification. The values from each algorithm and for each cell
type were transformed to z-scores. We used PBMC on RNA-
seq data and LM7c on proteomic data and the median as
summary statistics, since we are interested in how many
samples have a z-score above or below zero. We focused on
immune subtypes with more than one hundred samples as-
signed (Figure 5).
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Figure 4. Correlation across algorithms and cancer by cell type. Pre-
dicted cell types across tumors by algorithm and cancer type for the (A)
LM7c signature matrix and (B) PMBC signature matrix. Columns represent
algorithms run on mRNA data and rows represent algorithms run on pro-
tein data. The correlation for each cancer type and cell type are shown bars
colored by cancer type.

We can use the cross section of immune signatures with cell
type to evaluate how accurately the algorithms can predict
immune activity. For example, the C1 (wound healing) im-
mune subtype, characterized by a high proliferation rate,
shows no enrichment for any cell type for both types of data
and for all algorithms (Figure 5A). The C2 (IFN-g dominant)
subtype, defined rich of CD8 T cells and M1 macrophages,
has the highest number of samples assigned, 505.
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Interestingly, xCell predicts, for the samples assigned to this
cluster, an enrichment for most immune cells regardless of
the type of data used while the other algorithms show an
opposite result (Figure 5B). CIBERSORT found enrichment
of CD8 T cells in the C2 samples. These samples serve as a
good benchmark of immune activity because they can be
seen as “immune-hot” - the IFN-g response that character-
izes this immune subtype, causes the activation of both in-
nate and adaptive immune system. The C3 subtype, defined
as inflammatory, shows enrichment for lymphocytes for
both types of data with xCell whereas the C4 subtype, de-
fined as lymphocytes depleted, shows a minimal enrich-
ment for both types of data for CD4 T cells with CIBERSORT.
Overall, xCell is more accurately able to capture the immune
activation in this subtype compared to the other algorithms.
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Figure 5. Predicted cell types across tumors by immune subtype
and algorithm. (A) Depicts distribution of cell types (rows) as predicted
by various algorithms. Color of density plots describes the algorithm used
to score the subtypes. (B) Depicts the same distribution of values, but the
columns represent algorithms and the color of the density plots represents
the subtypes. Dashed bars represents a Z-score of 0, while the colored bars
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Discussion

Here we introduced a benchmarking platform to assess the
performance of tumor deconvolution algorithms on prote-
omics data. It is comprised of four modules, each of which
can be altered to allow for additional (1) algorithms, (2)
proteomic datasets, (3) signature matrices, and (4) evalua-
tion metrics. We showcase each of the evaluation metrics.
First, we show how the algorithms can be run on simulated
data using both proteomics and mRNA expression levels.
We then compare mRNA-based deconvolution to prote-
omics to determine how well the algorithms agree. Lastly,
we use mRNA-derived immune subtypes to evaluate how
proteomics-based tumor deconvolution algorithms identify
relative cell fractions within each subtype.

The need for such a system emerges from the absence a
protein-native tumor deconvolution ‘gold standard’ that
can be used to evaluate the performance of existing tumor
deconvolution algorithms on proteomic data. In the absence
of such a dataset, we employ these three metrics - data sim-
ulation, correlation, and immune analysis, to enable the
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measurement of existing algorithms. We hope that such a
platform will be used by the community to further develop
tumor deconvolution algorithms based on proteomic data
so that we can get more insights from the inference of cell
phenotypes using this data.

As we learn more about the value of proteomics meas-
urements in cancer studies (Cite), understanding the nu-
ances of proteomics data in tumor deconvolution is highly
valuable. This framework will facilitate the development of
proteomics and proteogenomic tumor deconvolution algo-
rithms by providing an easy way to compare newly devel-
oped approaches to those that already exist. We believe this
platform is robust to additional datasets, algorithms, and
signature matrices and will be broadly used by the tumor
proteomics community.

Limitations of study

We only experimented with four tumor deconvolution algo-
rithms for which we were able to build containers. Some
tools, such as CIBERSORTx 19, were not freely available to be
made compatible with our framework and therefore could
not be evaluated.
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Resource availability

Materials Availability

All materials used for this analysis are published and freely available as
part of the CPTAC data resource paper.

Data and Code Availability

All source code is publicly available via Github at https://github.com/pnnl-
compbio/decomprolute. In addition to the underlying software for execut-
ing and assessing the performance of the various algorithms, this reposi-
tory includes signature matrix files, dummy test data, sample inputs, and
the CI/CD configuration file. The CWL workflows to execute the pipeline
are organized under a single directory. From this directory, users can exe-
cute deconvolution and performance comparison. If executing the code on
a local machine, output is saved directly in this directory. Using a Docker
image will save the output on the corresponding container directory, and
the user can transfer the file to their local computer with a mounted direc-
tory or with the ‘docker scp® command.

Materials and Methods

Cancer transcriptomic and proteomic data

We provide a flexible framework that enable both the mRNA and
proteomics data to be handled in individual modules to make it easier to
upgrade and replace these modules with updated data as additional
proteomics datasets are released. Specifically, we rely on the CPTAC
Python package36 in attempts to build a framework that would be flexible
with respect to incoming data. Therefore, Decomprolute can be used with
this package or replaced with other similar packages or data files. Table 2
lists the sample numbers available at the time of publication.

Tumor deconvolution algorithm modules

Within the tumor-deconv-algs module we currently have implemented
four distinct algorithms from the community: CIBERSORT!4, MCP-
counter!?, xCell>, and EPIC!6. Additional algorithms can be added provided
they take a tab-delimited file as input (rows are gene names, columsn are
sample identifiers) and produce a tab-delimited file as output.

Signature matrices

The signature-matrices module implements four signature matrices - 2
derived from transcriptomics and two derived from proteomics
measurements.

The mRNA-derived matrices are called LM22 and PBMC. The LM22
matrix was originally published in the CIBERSORT manuscript!* and
contains expression values derived from microarray data for a group of
filtered genes across 22 immune cell types and subtypes. The second
published matrix PBMC (peripheral blood mononuclear cells) was derived
from single-cell RNA sequencing (3’ sequencing) data in the CIBERSORTx
m manuscript!® and comprises 8 immune phenotypes.

We also generated two additional signature matrices from a published
proteomic dataset of flow cytometry-sorted PBMC30. Briefly, 28 distinct
human hematopoietic cell types and subtypes from peripheral blood of
healthy donors were sorted by flow cytometry. Erythrocytes and platelets
were excluded from subsequent analyses. Cellular proteomes were
analyzed in single runs by high-resolution MS using a quadrupole Orbitrap
instrument. Each cell phenotype proteome was measured from four
donors. The proteomic dataset included 10,134 proteins and 104 steady
state samples. For LM9 we grouped the 26 phenotypes into 9 cell types: B
cells, basophils, CD4 T cells, CD8 T cells, dendritic cells, eosinophils,
monocytes, natural killer cells (NKs), neutrophils. For LM7c, basophils,
eosinophils and neutrophils were grouped together as granulocytes. We
took imputed values from Table S3 of the Rieckmann et al. paper3? to
generate the two signature matrices, with samples first scaled to have zero
mean and unit variance for LM9, using CIBERSORTx!? with these
parameters: kappa= 999; g-value= 0.01; number of barcode genes= 300 to
500; disable quantile normalization= TRUE; filter non-hematopoietic
genes= TRUE.

Common Workflow Language deconvolution pipeline

We used the Common Workflow Language (CWL), following the syntax
specified in CWL v1.23%7, to link the individual docker images described
above. Separate CWL script files were written for each step of data
downloading, analyzing, and visualization. These individual script files
have been integrated into ordered workflow steps in a single workflow file.
Workflow has been primarily tested by the program cwltool, which is the
reference implementation of programs that run CWL scripts, though can
be employed using other CWL execution engines. The order of workflow
steps was determined by using dependencies between the output of each
step (e.g. data produced, file generated) and the input for the next step. The
“scatter feature” was applied to facilitate parallel execution and accelerate
the evaluations in each step. Essential results and log data were saved in
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order to retrieve or reanalyze the intermediate output files. The
specification file for the workflow pipeline is written in YAML Ain’t Markup
Language (YAML). The YAML files specify the input other parameters
and/or arguments necessary for the pipeline.

Docker image building

Each CWL file leverages a local Docker runtime to execute the underlying
algorithm scripts. All individual steps are built into separate Docker
images, which makes the pipeline reproducible and resolves the
complexity of package management or issues arising from differing
operating systems. The Docker images required to run the pipeline are
included in the public image repository Docker Hub, at
https://hub.docker.com/u/tumordeconv . When executed, each CWL
performs a "pull action” and automatically downloads or updates the
specified image it requires to complete its task. Docker images were
automatically built with each code commit and pushed to the Github
repository, using continuous integration and continuous deployment
practices (CI/CD), to avoid conflicts that can arise with manually built or
outdated images. Each commit push triggered a series of end-to-end tests
on the CI/CD platform CircleCI, where the entire workflow is executed on
a virtual machine. If the tests were successful, indicating the pipeline
integrity was maintained with each code change, any associated Docker
images were rebuilt and published to the repository.

Data simulation

Pseudo-bulk data was simulated in a similar fashion as in Petralia et al
(2022)38. Our simulation framework relied on two published datasets.
First, we considered proteomic profiling from Rieckmann et al3. This study
includes proteomic profiling of 26 immune cell subtypes, and then
collapsed to k=9 different cell types: Neutrophils, Eosinophils, Basophils, B
cells, CD4 T cells, CD8 t cells, Monocytes and Dendritic Cells. For each cell
type k, 4 different proteomic profiles were provided, i.e., f; y, t2 k> U3 » Hak-
For each sample i, weights of different immune cells were randomly
sampled from a dirichlet distribution with parameter 0.5 (i.e,
Ty, --Mg). Then, for each patient, mixed proteomic profiling was
derived as the weighted average of proteomic profiling of different cell-
types as follows:

Vi = TiaBia + Ti2Piat. TPk

with f; , being one of the proteomic profiles available for the k-th cell type
which was randomly sampled from p; y, t i, i3 k., Ua k- Next, we considered
data from Linsley et al.3%, which contains transcriptomic profiling of 6
immune cell types including B-cells, CD4 t-cells, CD8 t-cells, Monocytes,
Neutrophils and Natural Killers. For each cell type, this data contained 20
different transcriptomic profiling. Mixed transcriptomic data was
generated similarly to proteomic profiling.

Algorithm metrics

We use two types of metrics for comparing the deconvoluted results to
either simulated data or mRNA data from the same sample: namely a
correlation-based metric and a distance based metric. The deconvoluted
results are in a matrix where columns are the samples and rows are the
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cell type proportion calculated from the deconvolution algorithms. To
compare any two deconvoluted matrices, we can calculate either the
correlation or the distance between the corresponding vectors of cell type
proportions. Given any two matrices A and B we can get cell type
proportions a.; = {ay,..., a;j,...,ay;} and b,; = {byj,..., byj,..., by;} for
patient j, where N is the number of cell types, and distributions across all
patients a;, = {a;,..., aj, ..., @y} and by, = {b;y,..., byj,..., by} for cell
type i, where M is the number of patients. We can then calculate the
correlation and distances in the following approach.
Correlation based comparison
In this comparison, each of the deconvoluted results are compared by
calculating the Pearson correlation or Spearman correlation for each
sample or for each cell type. The average correlation was simply calculated
by averaging the correlation values across patients. The Pearson
correlation for cell type proportions is calculated following:

I (@) (bi-b)
S (a2 [ b1y
and the Spearman correlation for cell type proportions is calculated
following:

Tap =

N, (Ri-R)(Ri~R)

/ziil(erl T (Si-9)?

where, R; and S; are ranks of a; and b;. For correlations between patients
distributions, we replace the N with M in the equations above.

Distance based comparison

In this comparison, we provide three different distance metrics, namely
Euclidean, Jenson-Shannon divergence, Kolmogorov-Smirnov distance.
For the distance metrics, we only calculate the distances between cell type
proportions for each patient. An average distance was simply calculated by
averaging the distance values across patients. The Euclidean distance is
calculated following:

A5 (A, B) =230, [ (a; — by)2.

The Jenson-Shannon distance is calculated with:

1 Dir(a«jlIb.j)+DkL(byjlla.))
d]S(A‘B):EZﬁl\/ J 12 1)

where Dy, (a,j||b.;) and Dg,(b,j||a.;) are the Kullback-Leibler (KL)
divergences calculated by:
Dia(allb.;) = Eiy P(aiplog 7,0,

and P(a;) is the proportion of cell type i in patient sample j in
deconvoluted matrix 4 and similarity for P(b;;) in deconvoluted matrix B.
For the Kolmogorov-Simirnov (KS) distance, we calculated the KS distance
with the following equation:

dys(4,B) = T, sup|F(a.) — F(b.))l,
where F(a,;) and F(b,;) are the cumulative distribution function of a,;
and b, ;.

Trs =
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