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Tumor deconvolution is a reliable way to disentangle the diverse cell types that comprise solid tumors. To date, however, 
both the algorithms developed to deconvolve tumor samples, and the gold standard datasets used to assess the algorithms 
are geared toward the analysis of gene expression (e.g., RNA-seq) rather than protein levels in tumor cells. While gene 

expression is less expensive to measure, protein levels provide a more accurate view of immune markers. To facilitate the 
development as well as improve the reproducibility and reusability of multi-omic deconvolution algorithms, we introduce 
Decomprolute, a Common Workflow Language framework that leverages containerization to compare tumor deconvolution 
algorithms across multiomic data sets. Decomprolute incorporates the large-scale multiomic data sets produced by the 
Clinical Proteomic Tumor Analysis Consortium (CPTAC), which include matched mRNA expression and proteomic data 
from thousands of tumors across multiple cancer types to build a fully open-source, containerized proteogenomic tumor 
deconvolution benchmarking platform. The platform consists of modular architecture and it comes with well-defined input 
and output formats at each module. As a result, it is robust and extendable easily with additional algorithms or analyses. 
The platform is available for access and use at http://pnnl-compbio.github.io/decomprolute.  
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Motivation 

To	provide	a	comprehensive	platform	for	algorithm	developers	and	researchers	to	benchmark	and	run	tumor	deconvolu-

tion	algorithms	on	multiomic	data.		

Introduction 
	Tumor	 growth	 and	metastasis	 rely	 on	 the	 exchanges	 be-

tween	the	tumor	cells	and	additional	components	constitut-

ing	the	tumor	microenvironment1.	Understanding	the	inter-

actions	between	the	tumor	cells	and	surrounding	non-ma-

lignant	 cells,	 including	 stromal,	 endothelial	 and	 immune	
cells,	 is	essential	to	model	the	mechanisms	underlying	tu-

mor	survival	and	spreading2.	 In	particular,	 identifying	the	

degree	and	nature	of	immune	cell	infiltration	can	assist	in	

predicting	a	tumor	responsiveness	to	specific	immunother-

apeutic	regimens3,4.	Hence,	new	technologies,	such	as	mass	

cytometry538	and	single-cell	RNA	sequencing9312,	have	been	

applied	 also	 to	 study	 tumor	 microenvironment	 together	
with	 ad	 hoc	 computational	 algorithms	 to	 deconvolve	 cell	

types	from	bulk	molecular	measurements13317.	

Algorithmic	 tumor	 deconvolution	 is	 based	 upon	 the	

knowledge	that	specific	genes	are	expressed	at	distinct	lev-

els	within	specific	cell	types18.	Given	the	prior	knowledge	of	

the	specific	 combinations	of	gene	expression	 levels	 to	ex-
pect	in	a	specific	cell	type,	numerous	existing	computational	

algorithms	can	provide	estimates	of	relative	cell	types	pre-

sent	in	the	profiled	tissue.	One	such	algorithm,	Microenvi-

ronment	Cell	Populations-counter	(MCP-counter),	provides	

tumor	deconvolution	predictions	from	bulk	RNA	sequenc-

ing	data	using	a	gene	signature	matrix.	This	signature	ma-

trix	 is	derived	from	previously	published	gene	expression	
datasets,	 which	 are	 analyzed	 to	 provide	 an	 MCP-counter	

score,	comprised	of	the	logarithm	of	geometric	mean	of	the	

marker	genes	for	each	cell	type17.	CIBERSORT	and	CIBER-

SORTx	employ	a	linear	modeling	approach	to	estimate	cell-

type	composition	from	a	signature	matrix	and	bulk	gene	ex-

pression	matrix	14,19.	 	EPIC	(Estimating	the	Proportions	of	
Immune	and	Cancer	cells)	is	an	algorithm	that	uses	a	similar	

approach	 to	CIBERSORT	but	 normalizes	 the	 gene	 expres-

sion	values	to	account	for	proportions	of	healthy	vs.	malig-

nant	cells	16,20.	xCell	expands	upon	these	existing	numeric	

approaches	by	leveraging	gene	set	enrichment	statistics	to	

characterize	 cell	 types15.	 These	 methods,	 in	 addition	 to	

many	others	not	explicitly	mentioned	here21,	showcase	the	
great	 need	 for	 tumor	 deconvolution	 from	 bulk	 measure-

ments.		

While	tumor	deconvolution	algorithms	are	highly	effec-

tive	at	using	gene	expression	data,	their	performances	are	

unexplored	 on	 proteomic	 data	 despite	 the	 rise	 ofcancer-

specific	 proteomic	 datasets22325	 together	 with	 the	 estab-
lished	fact	that	protein	levels	do	not	always	correlate	with	

mRNA	26329,	suggests	that	algorithmic	deconvolution	could	

be	more	effective	if	a	proteomic	signature	matrix	or	prote-

omics-derived	 signatures	 are	 utilized.	 Recent	 work	 by	

Rieckmann	et	al.30	 has	 created	a	dataset	 that	enables,	 the	

definition	of	 immune	cell	 types	based	on	proteomic	data..	

However,	there	is	still	no	available	8gold	standard9	dataset	
to	 evaluate	 the	 ability	 of	 an	 algorithm	using	 these	 prote-

omics-defined	immune	cell	types	to	deconvolve	tumor	data.	

On	the	other	side,	for	mRNA-based	deconvolution,	there	are	
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numerous	single-cell	datasets	as	well	as	sorted	cell	experi-

ments	that	can	be	used	for	such	benchmarks31333	which	are	

missing	for	proteomic	data.		

Here	we	introduce	Decomprolute,	a	containerized	set	of	
scientific	workflows	 that	 enables	 the	 community	 to	 com-

pare	the	performance	of	existing	or	novel	deconvolution	al-

gorithms	 specifically	 on	 proteomic	 data.	We	demonstrate	

the	utility	of	Decomprolute	using	a	subset	of	published	de-

convolution	algorithms	on	the	CPTAC3	cancer	datasets	(cite	

data	 resource	 paper)	 for	 direct	 comparison	 with	 mRNA-

based	algorithms,	simulated	data,	and	pan-cancer	immune	
subtypes.	The	framework	comprises	four	existing	deconvo-

lution	algorithms	but	can	easily	work	with	any	new	algo-

rithm	that	is	able	to	function	in	a	Docker	container.	Our	sys-

tem	is	flexible	enough	to	accept	additional	signature	matri-

ces,	deconvolution	algorithms	and	datasets,	both	as	 input	

and	for	validation,	as	we	hope	that	it	will	inspire	future	de-

velopment	in	the	tumor	deconvolution	space.		

Results 
Modular workflow framework enables flexible comparison 
of deconvolution results across signatures, cancer types 
and algorithms 

The	goal	 of	Decomprolute	 is	 to	 encourage	 rapid	develop-

ment	and	benchmarking	of	novel	deconvolution	algorithms	

and	cell	type	signature	matrices.	As	such,	the	underlying	ar-

chitecture	is	structured	around	a	modular	framework	that	

allows	 additional	 algorithms,	 datasets	 or	 cell	 type	 signa-

tures	to	be	easily	added	for	comparison.	The	platform	ena-

bles	users	to	run	and	generate	figures	for	experiments	in	a	
reproducible	fashion	and	its	modularity	allows	it	to	be	ex-

panded	to	run	additional	statistical	tests	as	needed.	

	
Figure 1: Overview of Decomprolute modular architecture de-

scribes four primary subdirectories of Decomprolute. The mrna-

data and prot-data modules both pull from the CPTAC pan-cancer re-

source. The signature-matrix module contains genes that represent dif-

ferent cell types, the tumor-deconv-algs module contains each of the al-

gorithms we implemented, while the metrics module contains all the 

modules used to measure performance. 

The	overall	software	architecture	is	described	in	Figure	

1.	The	modules	that	comprise	decomprolute	are:	1)	prot-

data,	 which	 accesses	 data	 from	 published	 cancer	 prote-

omics	resources	(cite	pan	can	resource	paper),	 	2)	mrna-

data,	which	accesses	matched	gene	expression	data	 from	

the	 same	 patients	 (cite	 same),	 	 3)	 signature-matrices,	

which	returns	specific	signature	matrices	to	evaluate	with	

existing	 algorithms15317,19,	 4)	 tumor-deconv-algs,	 which	

evaluates	a	combination	of	gene	and/or	protein	expression	
data	and	signature	matrix	on	an	algorithm	of	interest,	and	

5)	metrics,	which	compares	the	performance	of	 the	algo-

rithm	on	a	set	of	benchmarks	we	define.	Each	module	takes	

a	standard	set	of	 inputs	and	outputs	and	therefore	can	be	

interchanged	and	appended.	A	full	list	of	parameters	is	de-

scribed	 in	Table	1.	This	modular	design	enables	users	 to	

plug	in	their	own	data	or	algorithms	or	create	a	new	evalu-
ation	metric	by	which	they	can	compare	data.		

Module Inputs Outputs 

prot-data Cancer	 Type	

(e.g.,	LUAD) 
Tissue	 type	

(e.g.,	tumor) 

A	single	file	of	pro-

tein	 expression	

across	patients 

mrna-data Cancer	 type	

(e.g.,	LUAD) 
Tissue	 type	

(e.g.,	tumor) 

A	 single	 file	 of	

gene	 expression	

across	patients 

signature-matrices Signature	

name 
A	 single	 file	 of	

transcriptomic	 or	

proteomic	 profile	

chosen	 for	 cell	

types	 

tumor-deconv-alg Cancer	type 
Signature	

name 
Algorithm	

name 

A	 single	 matrix	

where	 rows	 are	

cell	types,	samples	

are	 columns,	 and	

each	 value	 is	 the	

estimated	 fraction	

of	that	cell	type	for	
that	sample 

metrics Specific	 pa-

rameters	

based	 on	 the	

type	 of	 met-

rics 

Figures	and	tables	

summarizing	

cross-algorithm	

analysis 

Table 1: Overview of Decomprolute modular arguments and de-

scription. 

While	designed	for	flexible	extensibility,	the	platform	in-

cludes	built-in	data	access	scripts,	signature	matrices,	and	

deconvolution	algorithms.	We	focused	on	publicly	available	

CPTAC	data	across	10	cancer	cohorts	(Table	2)	(cite	data	

resource	 paper)	 that	 consist	 of	 matched	 proteomic	 and	

transcriptomic	measurements.	This	allows	the	user	to	eval-
uate	performance	across	different	tumor	types.	We	also	im-

plemented	four	publicly	available	algorithms	for	deconvo-

lution	 to	provide	examples	of	how	these	can	be	used	and	

compared	 in	practice.	We	 include	 signature	matrices	 that	

were	 published	 from	 mRNA	 expression	 profiles14,19	 and	

generated	new	ones	from	sorted	proteomic	data	30,	as	de-

scribed	in	the	Methods.	Lastly,	we	developed	three	metrics	
that	enable	users	to	compare	and	contrast	various	aspects	

of	tumor	deconvolution	on	proteomics	data:	1)	evaluation	
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on	simulated	data,	2)	agreement	between	mRNA	and	pro-

tein,	and	3)	comparison	with	immune	subtypes	34.	Each	of	

these	are	demonstrated	below.	

Cancer	type	 Tumor	samples	 Normal	samples	

BRCA	 122	 0	

CCRCC	 103	 80	

COAD	 110	 100	

GBM	 99	 0	

HNSCC	 108	 62	

LSCC	 108	 99	

LUAD	 110	 101	

OV	 83	 20	

PDAC	 105	 44	

UCEC	 95	 18	

Table 2: Summary of samples by cancer type 

Simulated data metric enables determination of 
proteomics-derived signature matrix 

To	provide	 a	 data	 independent	 assessment	 of	 deconvolu-

tion	algorithms,	we	first	developed	a	suite	of	simulated	da-

tasets	that	allow	each	algorithm	to	be	compared	in	an	unbi-

ased	fashion.	Specifically,	we	simulated	a	dataset	from	pro-
teomic	data	as	well	as	from	mRNA	data	as	described	in	STAR	

methods.	We	were	then	able	to	compare,	for	both	proteomic	

and	mRNA	datasets,	how	well	different	cell	types	were	pre-

dicted	by	correlating	these	values	with	ground	truth	on	sim-

ulated	data.	This	test	can	be	run	using	the	metrics	module	

available	on	our	website.		
To	showcase	 the	value	of	 such	a	metric,	we	compared	

two	proteomic	 signature	matrices	 to	determine	how	well	

different	 algorithms	 can	 deconvolve	 simulated	 samples	

generated	 using	 the	 proteomic	 immune	 data	 from	

Rieckmann	 et	 al.30.	 The	 signature	matrices	were	 also	 de-

rived	from	this	dataset	(see	Methods).	Briefly,	from	the	orig-

inal	 26	 sorted	 immune	 cell	 types,	 our	 original	 analysis	
found	 that	many	of	 them	were	quite	similar	 in	proteomic	

profile,	suggesting	that	the	proteins	used	would	not	be	spe-

cific	enough	to	distinguish	different	cell	types.	As	a	result,	

we	grouped	the	26	cell	types	into	9	different	categories	to	

create	a	new	LM9	signature	matrix.	Using	the	LM9	signature	

matrix	 to	deconvolve	the	simulated	data	provides	hetero-
genous	results	across	algorithms,	as	depicted	in	Figure	2A.	

The	correlation	with	simulated	levels	of	CD4	T	cells,	for	ex-

ample,	is	low	across	most	algorithms	but	CIBERSORT	(yel-

low).	We	 then	compared	 this	approach	 to	what	we	called	

the	LM7c	signature	matrix,	which	starts	with	the	LM9	but	

compresses	 basophils,	 eosinophils	 and	 neutrophils	 into	 a	

single	8granulocyte9	category	(see	STAR	Methods).	As	a	re-
sult,	 we	 are	 able	 to	 predict	 the	 immune	 cell	 types	 with	

higher	 overall	 correlation	 and	 also	 see	 improvements	

within	cell	types	(Figure	2B),	suggesting	that	the	LM7c	sig-

nature	matrix	 is	more	 accurate	 for	 proteomics-based	 de-

convolution.		

 
Figure 2:	Correlation of proteomics-derived matrices.	 Correlations	

are	between	predicted	results	and	simulated	results	from	the	LM9	and	(B)	

LM7c	signature	matrices.	X-axis	depicts	predicted	cell	 type	and	y-axis	 is	

spearman	 rank	 correlation	 across	 10	 simulated	 datasets	 between	 algo-

rithm	prediction	(color	indicated	on	right)	and	known	fractions	of	cells.	

Assessing algorithmic agreement between protein and 
mRNA-based deconvolution 

As	we	described	earlier,	mRNA-based	tumor	deconvolution	
algorithms14317	have	demonstrated	success	when	compared	

to	gold	standards.	These	datasets	contain	known	mixtures	

of	individual	cell	types	or	paired	single-cell	measurements,	

alongside	bulk	RNA-seq	data.	Hence,	it	is	possible	to	com-

pare	different	algorithms	to	see	which	method	deconvolves	

better	 having	 a	 ground	 truth	 as	 reference.	 However,	 be-

cause	no	such	dataset	exists	for	tumors	measured	via	bulk	
proteomics,	we	use	the	bulk	mRNA	measurements	matched	

to	bulk	proteomic	measurements	across	10	different	cancer	

types	from	the	CPTAC	3	pan-cancer	efforts	to	identify	which	

algorithm-signature	matrix	combination	gives	the	best	re-

sults	 on	 proteomic	 data	when	 compared	 to	mRNA-based	

predictions.	
Like	our	other	metrics,	this	test	is	also	implemented	as	a	

single	workflow	that	produces	numerous	tables	and	figures	

for	further	analysis.	Figure	3	depicts	a	subset	of	the	results	

of	this	analysis,	measuring	the	concordance	between	mRNA	

and	protein-based	deconvolution	using	one	of	two	different	

distance	 metrics:	 the	 Jensen-Shannon	 divergence	 and	
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Spearman	rank	correlation	(see	STAR	Methods).	Across	the	

ten	 cancer	 types	 and	 three	 signature	 matrices,	 the	 MCP-

counter	 algorithm	 showed	 the	 highest	 amount	 of	 agree-

ment	for	 its	predictions	on	mRNA	and	protein	data,	using	
both	 transcriptomics-	 and	 proteomics-derived	 signature	

matrices,	as	depicted	by	low	average	distance	in	Figure	3A	

and	 high	 correlation	 in	 Figure	 3B.	 The	 xCell	 algorithm	

achieves	similar	results,	with	a	low	distance	(3A)	and	high	

correlation	(3B)	between	mRNA	and	protein-based	predic-

tions.	CIBERSORT	and	EPIC,	which	do	not	rely	on	gene	sig-

natures	 but	 on	 gene	 expression	 values,	 proved	 to	 be	 less	
flexible	 across	 mRNA	 and	 protein	 deconvolution	 algo-

rithms.	

	
Figure 3. All vs. all algorithmic comparison.	Average	(A)	Jenson-Shan-

non	divergence	distance	and	(b)	Spearman	rank	correlation	between	de-

convolution	 results	 run	on	mRNA	data	 (x-axis)	 and	proteomics	data	 (y-

axis).	Individual	values	are	divided	across	signature	matrices	and	cancer	

types.	Legend	along	right	side.	

Cell type-specific variation in algorithmic performance 

Due	to	biases	in	the	algorithms	and	signature	matrices,	

we	also	provided	the	ability	to	compare	mRNA	and	protein	
deconvolution	results	across	algorithms	and	cell	types.	Spe-

cifically,	we	measured,	for	each	cell	type,	the	correlation	be-

tween	mRNA	and	protein	across	patient	 samples.	The	 re-

sults	are	depicted	in	Figure	4.	Here,	we	see	that	even	within	

the	same	signature	matrix,	we	can	get	different	degrees	of	

correlation	between	mRNA	and	protein	algorithms.	As	we	
see	in	Figure	4,	MCP-counter	and	xCell	have	a	high	degree	

of	 agreement	 between	 mRNA	 (columns)	 and	 proteins	

(rows).	However,	xCell	and	MCP-counter	have	a	lower	de-

gree	of	correlation	when	it	comes	to	NK	cells,	T4	cells,	and	

DC	cells.	Generally,	the	LM7c	signature	matrix,	which	is	de-

rived	from	protein	data,	has	higher	mean	correlation	than	

the	PBMC	matrix,	which	 comes	 from	 sorted	mRNA-based	
measurements.	

xCell captures immune subtypes in proteomic-derived cell 
type composition 

As	 a	 third	 validation	we	 again	 leveraged	 CPTAC	 3	 prote-

omics	datasets.	Here,	we	utilized	the	classification	of	each	

tumor	sample	 into	one	of	 the	six	 immune	subtypes34	pre-

dicted	using	the	mRNA	data35.	Specifically,	we	compared	the	

deconvolution	results	of	the	four	algorithms	on	tumor	sam-
ples	of	all	10	tumors	respect	to	the	immune	subtypes	clas-

sification.	The	values	from	each	algorithm	and	for	each	cell	

type	were	transformed	to	z-scores.	We	used	PBMC	on	RNA-

seq	data	 and	LM7c	on	proteomic	data	 and	 the	median	as	

summary	 statistics,	 since	we	 are	 interested	 in	 how	many	

samples	have	a	z-score	above	or	below	zero.	We	focused	on	
immune	subtypes	with	more	than	one	hundred	samples	as-

signed	(Figure	5).		

	
Figure 4. Correlation across algorithms and cancer by cell type.	Pre-

dicted	cell	types	across	tumors	by	algorithm	and	cancer	type	for	the	(A)	

LM7c	signature	matrix	and	(B)	PMBC	signature	matrix.	Columns	represent	

algorithms	run	on	mRNA	data	and	rows	represent	algorithms	run	on	pro-

tein	data.	The	correlation	for	each	cancer	type	and	cell	type	are	shown	bars	

colored	by	cancer	type.	

We	can	use	the	cross	section	of	immune	signatures	with	cell	
type	to	evaluate	how	accurately	the	algorithms	can	predict	

immune	activity.	For	example,	the	C1	(wound	healing)	im-

mune	 subtype,	 characterized	 by	 a	 high	 proliferation	 rate,	

shows	no	enrichment	for	any	cell	type	for	both	types	of	data	

and	for	all	algorithms	(Figure	5A).	The	C2	(IFN-g	dominant)	

subtype,	defined	rich	of	CD8	T	cells	and	M1	macrophages,	

has	 the	 highest	 number	 of	 samples	 assigned,	 505.	
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Interestingly,	xCell	predicts,	for	the	samples	assigned	to	this	

cluster,	an	enrichment	for	most	immune	cells	regardless	of	

the	type	of	data	used	while	 the	other	algorithms	show	an	

opposite	result	(Figure	5B).	CIBERSORT	found	enrichment	
of	CD8	T	cells	in	the	C2	samples.	These	samples	serve	as	a	

good	 benchmark	 of	 immune	 activity	 because	 they	 can	 be	

seen	as	<immune-hot=		-	the	IFN-g	response	that	character-

izes	this	immune	subtype,	causes	the	activation	of	both	in-

nate	and	adaptive	immune	system.	The	C3	subtype,	defined	

as	 inflammatory,	 shows	 enrichment	 for	 lymphocytes	 for	

both	types	of	data	with	xCell	whereas	the	C4	subtype,	de-
fined	 as	 lymphocytes	 depleted,	 shows	 a	 minimal	 enrich-

ment	for	both	types	of	data	for	CD4	T	cells	with	CIBERSORT.	

Overall,	xCell	is	more	accurately	able	to	capture	the	immune	

activation	in	this	subtype	compared	to	the	other	algorithms.	

	
Figure 5. Predicted cell types across tumors by immune subtype 

and algorithm.	(A)	Depicts	distribution	of	cell	types	(rows)	as	predicted	

by	various	algorithms.	Color	of	density	plots	describes	the	algorithm	used	

to	score	the	subtypes.	(B)	Depicts	the	same	distribution	of	values,	but	the	

columns	represent	algorithms	and	the	color	of	the	density	plots	represents	

the	subtypes.	Dashed	bars	represents	a	Z-score	of	0,	while	the	colored	bars	

represent	the	median	of	each	histogram.		

Discussion 
Here	we	introduced	a	benchmarking	platform	to	assess	the	

performance	of	tumor	deconvolution	algorithms	on	prote-
omics	data.	It	is	comprised	of	four	modules,	each	of	which	

can	 be	 altered	 to	 allow	 for	 additional	 (1)	 algorithms,	 (2)	

proteomic	datasets,	(3)	signature	matrices,	and	(4)	evalua-

tion	metrics.	We	showcase	each	of	the	evaluation	metrics.	

First,	we	show	how	the	algorithms	can	be	run	on	simulated	

data	 using	 both	 proteomics	 and	mRNA	 expression	 levels.	
We	 then	 compare	 mRNA-based	 deconvolution	 to	 prote-

omics	to	determine	how	well	the	algorithms	agree.		Lastly,	

we	use	mRNA-derived	 immune	subtypes	 to	evaluate	how	

proteomics-based	tumor	deconvolution	algorithms	identify	

relative	cell	fractions	within	each	subtype.	

The	need	for	such	a	system	emerges	from	the	absence	a	

protein-native	 tumor	 deconvolution	 8gold	 standard9	 that	
can	be	used	to	evaluate	the	performance	of	existing	tumor	

deconvolution	algorithms	on	proteomic	data.	In	the	absence	

of	such	a	dataset,	we	employ	these	three	metrics	-	data	sim-

ulation,	 correlation,	 and	 immune	 analysis,	 to	 enable	 the	

measurement	of	existing	algorithms.	We	hope	that	such	a	

platform	will	be	used	by	the	community	to	further	develop	

tumor	deconvolution	algorithms	based	on	proteomic	data	

so	that	we	can	get	more	insights	from	the	inference	of	cell	
phenotypes	using	this	data.	

As	we	learn	more	about	the	value	of	proteomics	meas-

urements	 in	 cancer	 studies	 (Cite),	 understanding	 the	 nu-

ances	of	proteomics	data	in	tumor	deconvolution	is	highly	

valuable.	This	framework	will	facilitate	the	development	of	

proteomics	and	proteogenomic	tumor	deconvolution	algo-

rithms	by	providing	an	easy	way	to	compare	newly	devel-
oped	approaches	to	those	that	already	exist.	We	believe	this	

platform	 is	 robust	 to	 additional	 datasets,	 algorithms,	 and	

signature	matrices	and	will	be	broadly	used	by	the	tumor	

proteomics	community.	
Limitations of study 

We	only	experimented	with	four	tumor	deconvolution	algo-

rithms	 for	which	we	were	 able	 to	build	 containers.	 Some	

tools,	such	as	CIBERSORTx	19,	were	not	freely	available	to	be	
made	compatible	with	our	framework	and	therefore	could	

not	be	evaluated.		
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part	of	the	CPTAC	data	resource	paper.		

Data and Code Availability 

All	source	code	is	publicly	available	via	Github	at	https://github.com/pnnl-

compbio/decomprolute.	In	addition	to	the	underlying	software	for	execut-

ing	and	assessing	the	performance	of	the	various	algorithms,	this	reposi-

tory	includes	signature	matrix	files,	dummy	test	data,	sample	inputs,	and	

the	CI/CD	configuration	file.	The	CWL	workflows	to	execute	the	pipeline	

are	organized	under	a	single	directory.	From	this	directory,	users	can	exe-

cute	deconvolution	and	performance	comparison.	If	executing	the	code	on	

a	local	machine,	output	is	saved	directly	in	this	directory.	Using	a	Docker	

image	will	save	the	output	on	the	corresponding	container	directory,	and	

the	user	can	transfer	the	file	to	their	local	computer	with	a	mounted	direc-

tory	or	with	the	`docker	scp`	command.	

Materials and Methods 

Cancer transcriptomic and proteomic data		

We	 provide	 a	 flexible	 framework	 that	 enable	 both	 the	 mRNA	 and	

proteomics	data	to	be	handled	in	individual	modules	to	make	it	easier	to	

upgrade	 and	 replace	 these	 modules	 with	 updated	 data	 as	 additional	

proteomics	 datasets	 are	 released.	 Specifically,	 we	 rely	 on	 the	 CPTAC	

Python	package36	in	attempts	to	build	a	framework	that	would	be	flexible	

with	respect	to	incoming	data.	Therefore,	Decomprolute	can	be	used	with	

this	package	or	replaced	with	other	similar	packages	or	data	files.	Table	2	

lists	the	sample	numbers	available	at	the	time	of	publication.	
Tumor deconvolution algorithm modules	

Within	 the	 tumor-deconv-algs	 module	 we	 currently	 have	 implemented	

four	 distinct	 algorithms	 from	 the	 community:	 CIBERSORT14,	 MCP-

counter17,	xCell15,	and	EPIC16.	Additional	algorithms	can	be	added	provided	

they	take	a	tab-delimited	file	as	input	(rows	are	gene	names,	columsn	are	

sample	identifiers)	and	produce	a	tab-delimited	file	as	output.		
Signature matrices	

The	 signature-matrices	module	 implements	 four	 signature	matrices	 3	 2	

derived	 from	 transcriptomics	 and	 two	 derived	 from	 proteomics	

measurements.		

The	mRNA-derived	matrices	 are	 called	 LM22	 and	 PBMC.	 The	 LM22	

matrix	 was	 originally	 published	 in	 the	 CIBERSORT	 manuscript14	 and	

contains	expression	values	derived	 from	microarray	data	 for	a	group	of	

filtered	 genes	 across	 22	 immune	 cell	 types	 and	 subtypes.	 The	 second	

published	matrix	PBMC	(peripheral	blood	mononuclear	cells)	was	derived	

from	single-cell	RNA	sequencing	(39	sequencing)	data	in	the	CIBERSORTx	

m	manuscript19	and	comprises	8	immune	phenotypes.		

We	also	generated	two	additional	signature	matrices	from	a	published	

proteomic	 dataset	 of	 flow	 cytometry-sorted	 PBMC30.	 Briefly,	 28	 distinct	

human	 hematopoietic	 cell	 types	 and	 subtypes	 from	 peripheral	 blood	 of	

healthy	donors	were	sorted	by	flow	cytometry.	Erythrocytes	and	platelets	

were	 excluded	 from	 subsequent	 analyses.	 Cellular	 proteomes	 were	

analyzed	in	single	runs	by	high-resolution	MS	using	a	quadrupole	Orbitrap	

instrument.	 Each	 cell	 phenotype	 proteome	 was	 measured	 from	 four	

donors.	The	proteomic	dataset	 included	10,134	proteins	and	104	steady	

state	samples.	For	LM9	we	grouped	the	26	phenotypes	into	9	cell	types:	B	

cells,	 basophils,	 CD4	 T	 cells,	 CD8	 T	 cells,	 dendritic	 cells,	 eosinophils,	

monocytes,	 natural	 killer	 cells	 (NKs),	 neutrophils.	 For	 LM7c,	 basophils,	

eosinophils	and	neutrophils	were	grouped	 together	as	granulocytes.	We	

took	 imputed	 values	 from	 Table	 S3	 of	 the	 Rieckmann	 et	 al.	 paper30	 to	

generate	the	two	signature	matrices,	with	samples	first	scaled	to	have	zero	

mean	 and	 unit	 variance	 for	 LM9,	 using	 CIBERSORTx19	 with	 these	

parameters:	kappa=	999;	q-value=	0.01;	number	of	barcode	genes=	300	to	

500;	 disable	 quantile	 normalization=	 TRUE;	 filter	 non-hematopoietic	

genes=	TRUE.	
Common Workflow Language deconvolution pipeline	

We	 used	 the	 Common	Workflow	 Language	 (CWL),	 following	 the	 syntax	

specified	 in	 CWL	 v1.237,	 to	 link	 the	 individual	 docker	 images	 described	

above.	 Separate	 CWL	 script	 files	 were	 written	 for	 each	 step	 of	 data	

downloading,	 analyzing,	 and	 visualization.	 These	 individual	 script	 files	

have	been	integrated	into	ordered	workflow	steps	in	a	single	workflow	file.	

Workflow	has	been	primarily	tested	by	the	program	cwltool,	which	is	the	

reference	implementation	of	programs	that	run	CWL	scripts,	 though	can	

be	employed	using	other	CWL	execution	engines.	The	order	of	workflow	

steps	was	determined	by	using	dependencies	between	the	output	of	each	

step	(e.g.	data	produced,	file	generated)	and	the	input	for	the	next	step.	The	

<scatter	feature=	was	applied	to	facilitate	parallel	execution	and	accelerate	

the	evaluations	in	each	step.	Essential	results	and	log	data	were	saved	in	
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order	 to	 retrieve	 or	 reanalyze	 the	 intermediate	 output	 files.	 The	

specification	file	for	the	workflow	pipeline	is	written	in	YAML	Ain9t	Markup	

Language	 (YAML).	 The	 YAML	 files	 specify	 the	 input	 other	 parameters	

and/or	arguments	necessary	for	the	pipeline.		
Docker image building 	

Each	CWL	file	leverages	a	local	Docker	runtime	to	execute	the	underlying	

algorithm	 scripts.	 All	 individual	 steps	 are	 built	 into	 separate	 Docker	

images,	 which	 makes	 the	 pipeline	 reproducible	 and	 resolves	 the	

complexity	 of	 package	 management	 or	 issues	 arising	 from	 differing	

operating	 systems.	 The	Docker	 images	 required	 to	 run	 the	 pipeline	 are	

included	 in	 the	 public	 image	 repository	 Docker	 Hub,	 at	

https://hub.docker.com/u/tumordeconv	 .	 When	 executed,	 each	 CWL	

performs	 a	 "pull	 action"	 and	 automatically	 downloads	 or	 updates	 the	

specified	 image	 it	 requires	 to	 complete	 its	 task.	 Docker	 images	 were	

automatically	 built	 with	 each	 code	 commit	 and	 pushed	 to	 the	 Github	

repository,	 using	 continuous	 integration	 and	 continuous	 deployment	

practices	(CI/CD),	to	avoid	conflicts	that	can	arise	with	manually	built	or	

outdated	images.	Each	commit	push	triggered	a	series	of	end-to-end	tests	

on	the	CI/CD	platform	CircleCI,	where	the	entire	workflow	is	executed	on	

a	 virtual	 machine.	 If	 the	 tests	 were	 successful,	 indicating	 the	 pipeline	

integrity	was	maintained	with	each	 code	 change,	 any	associated	Docker	

images	were	rebuilt	and	published	to	the	repository.		
Data simulation	

Pseudo-bulk	 data	was	 simulated	 in	 a	 similar	 fashion	 as	 in	 Petralia	 et	 al	

(2022)38.	 Our	 simulation	 framework	 relied	 on	 two	 published	 datasets.	

First,	we	considered	proteomic	profiling	from	Rieckmann	et	al30.	This	study	

includes	 proteomic	 profiling	 of	 26	 immune	 cell	 subtypes,	 and	 then	

collapsed	to	k=9	different	cell	types:	Neutrophils,	Eosinophils,	Basophils,	B	

cells,	CD4	T	cells,	CD8	t	cells,	Monocytes	and	Dendritic	Cells.	For	each	cell	

type	k,	4	different	proteomic	profiles	were	provided,	i.e.,	�!,#,	�$,#,	�%,#,	�&,#.	
For	 each	 sample	 � ,	 weights	 of	 different	 immune	 cells	 were	 randomly	

sampled	 from	 a	 dirichlet	 distribution	 with	 parameter	 0.5	 (i.e.,	

�',!, �',$	. . �',() .	 Then,	 for	 each	 patient,	 mixed	 proteomic	 profiling	 was	

derived	as	 the	weighted	average	of	proteomic	profiling	of	different	 cell-

types	as	follows:	
�' = �',!�',! + �',$�',$+. . �',#�',(	

with	�',#	being	one	of	the	proteomic	profiles	available	for	the	k-th	cell	type	

which	was	randomly	sampled	from	�!,#,	�$,#,	�%,#,	�&,#.	Next,	we	considered	

data	 from	 Linsley	 et	 al.39,	 which	 contains	 transcriptomic	 profiling	 of	 6	

immune	 cell	 types	 including	B-cells,	 CD4	 t-cells,	 CD8	 t-cells,	Monocytes,	

Neutrophils	and	Natural	Killers.	For	each	cell	type,	this	data	contained	20	

different	 transcriptomic	 profiling.	 Mixed	 transcriptomic	 data	 was	

generated	similarly	to	proteomic	profiling.		

Algorithm metrics	

We	use	 two	 types	 of	metrics	 for	 comparing	 the	deconvoluted	 results	 to	

either	 simulated	 data	 or	 mRNA	 data	 from	 the	 same	 sample:	 namely	 a	

correlation-based	metric	and	a	distance	based	metric.	The	deconvoluted	

results	are	in	a	matrix	where	columns	are	the	samples	and	rows	are	the	

cell	 type	 proportion	 calculated	 from	 the	 deconvolution	 algorithms.	 To	

compare	 any	 two	 deconvoluted	 matrices,	 we	 can	 calculate	 either	 the	

correlation	or	the	distance	between	the	corresponding	vectors	of	cell	type	

proportions.	 Given	 any	 two	 matrices	 � 	and	 � 	we	 can	 get	 cell	 type	

proportions	 �7* = {�!* , . . . , �'* , . . . , �+*} 	and	 �7* = {�!* , . . . , �'* , . . . , �+*} 	for	
patient	�,	where	�	is	the	number	of	cell	types,	and	distributions	across	all	

patients	 �'7 = {�'!, . . . , �'* , . . . , �',} 	and	 �'7 = {�'!, . . . , �'* , . . . , �',} 	for	 cell	
type	 � ,	 where	� 	is	 the	 number	 of	 patients.	 We	 can	 then	 calculate	 the	

correlation	and	distances	in	the	following	approach.	
Correlation based comparison		

In	 this	 comparison,	 each	 of	 the	 deconvoluted	 results	 are	 compared	 by	

calculating	 the	 Pearson	 correlation	 or	 Spearman	 correlation	 for	 each	

sample	or	for	each	cell	type.	The	average	correlation	was	simply	calculated	

by	 averaging	 the	 correlation	 values	 across	 patients.	 The	 Pearson	

correlation	for	cell	type	proportions	is	calculated	following:	

�-. = 3 (-!1-)(.!1.)"
!#$

33 (-!1-)%"
!#$

33 (.!1.)%"
!#$

,	

and	 the	 Spearman	 correlation	 for	 cell	 type	 proportions	 is	 calculated	

following:	

�45 = 3 (4!14)(4!14)"
!#$

33 (4!14)%"
!#$

33 (5!15)%"
!#$

,	

where,	�'	and	�'	are	ranks	of	�'	and	�' .	For	correlations	between	patients	

distributions,	we	replace	the	�	with	�	in	the	equations	above.	
Distance based comparison	

In	 this	 comparison,	we	provide	 three	different	distance	metrics,	 namely	

Euclidean,	 Jenson-Shannon	 divergence,	 Kolmogorov-Smirnov	 distance.	

For	the	distance	metrics,	we	only	calculate	the	distances	between	cell	type	

proportions	for	each	patient.	An	average	distance	was	simply	calculated	by	

averaging	 the	distance	 values	 across	patients.	The	Euclidean	distance	 is	

calculated	following:	

�67(�, �) = !
,3 ;3 (�'* 2 �'*)$+'8!,*8! .	

The	Jenson-Shannon	distance	is	calculated	with:	

�95(�, �) = !
,3 ;:&'(-7)||.7))<:&'(.7)||-7))

$
,*8! ,	

where	 �(=(�7*||�7*) 	and	 �(=(�7*||�7*) 	are	 the	 Kullback-Leibler	 (KL)	

divergences	calculated	by:	

�(=(�7*||�7*) = 3 �(�'*)��� >(-!))
>(.!))

+'8! ,	

and	 �(�'*) 	is	 the	 proportion	 of	 cell	 type	 � 	in	 patient	 sample	 � 	in	
deconvoluted	matrix	�	and	similarity	for	�(�'*)	in	deconvoluted	matrix	�.	
For	the	Kolmogorov-Simirnov	(KS)	distance,	we	calculated	the	KS	distance	

with	the	following	equation:	

�(5(�, �) = !
,3 ���|�(�7*) 2 �(�7*)|,*8! 	,	

where	�(�7*) 	and	�(�7*) 	are	 the	 cumulative	 distribution	 function	 of	�7*	
and	�7* .	
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