

1 **Distinct functions of TIR1 and AFB1 receptors in auxin
2 signalling**

3

4 **Authors:** Huihuang Chen¹, Lanxin Li^{1, 2}, Minxia Zou¹, Linlin Qi¹ and Jiří Friml^{1*}

5

6 **Affiliation:**

7 1 Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria

8 2 Beijing Key Laboratory of Development and Quality Control of Ornamental Crops,

9 Department of Ornamental Horticulture, College of Horticulture, China Agricultural

10 University, 100193 Beijing, China

11

12

13 * Correspondence to: jiri.friml@ist.ac.at

14

15

16

17

18

19

20

21

22 Short summary: Auxin receptors TIR1 and AFB1 have distinct functions in mediating
23 transcriptional and non-transcriptional responses, respectively. Manipulation of their subcellular
24 localizations revealed that these functional differences cannot be attributed to nuclear versus
25 cytosolic enrichment of TIR1 and AFB1 but to different, specific properties of these proteins, not
26 least to their ability to associate with ubiquitin ligase components.

27

28

29 Abstract,

30 Auxin is the major plant hormone regulating growth and development (Friml, 2022).

31 Forward genetic approaches in the model plant *Arabidopsis thaliana* have identified

32 major components of auxin signalling and established the canonical mechanism

33 mediating transcriptional and thus developmental reprogramming. In this textbook view,

34 TRANSPORT INHIBITOR RESPONSE 1 (TIR1)/AUXIN-SIGNALING F-BOX (AFBs) are auxin

35 receptors, which act as F-box subunits determining the substrate specificity of the Skp1-

36 Cullin1-F box protein (SCF) type E3 ubiquitin ligase complex. Auxin acts as a

37 “molecular glue” increasing the affinity between TIR1/AFBs and the Aux/IAA repressors.

38 Subsequently, Aux/IAAs are ubiquitinated and degraded, thus releasing auxin

39 transcription factors from their repression making them free to mediate transcription of

40 auxin response genes (Yu *et al.*, 2022). Nonetheless, accumulating evidence suggests

41 existence of rapid, non-transcriptional responses downstream of TIR1/AFBs such as

42 auxin-induced cytosolic calcium (Ca^{2+}) transients, plasma membrane depolarization and

43 apoplast alkalinisation, all converging on the process of root growth inhibition and root

44 gravitropism (Li *et al.*, 2022). Particularly, these rapid responses are mostly contributed

45 by predominantly cytosolic AFB1, while the long-term growth responses are mediated

46 by mainly nuclear TIR1 and AFB2-AFB5 (Li *et al.*, 2021; Prigge *et al.*, 2020; Serre *et al.*,

47 2021). How AFB1 conducts auxin-triggered rapid responses and how it is different from

48 TIR1 and AFB2-AFB5 remains elusive. Here, we compare the roles of TIR1 and AFB1

49 in transcriptional and rapid responses by modulating their subcellular localization in

50 Arabidopsis and by testing their ability to mediate transcriptional responses when part of

51 the minimal auxin circuit reconstituted in yeast.

52

53 One prominent difference between TIR1 and AFB1 is their subcellular localization.

54 TIR1 primarily localizes to the nucleus, while AFB1 to the cytoplasm (Figure 1A,

55 Supplemental Figure 1) (Prigge *et al.*, 2020). To test whether their specific localization is

56 a necessary prerequisite for their function in either transcriptional or rapid responses,

57 we fused *Venus* report gene combined with nuclear exporting signal (NES) or nuclear

58 localization signal (NLS) at the C-terminal of *TIR1* (*TIR1-NES-Venus*) and *AFB1* (*AFB1-*

59 *NLS-Venus*), respectively. We showed that the majority of *TIR1-NES-Venus* is shifted to

60 cytosol, while AFB1-NLS-Venus mostly concentrates in the nucleus (Figure 1B,
61 Supplemental Figure 1).

62 To characterize the importance of nuclear versus cytosolic localization of TIR1 and
63 AFB1 in auxin-mediated transcription, we tested if they can rescue mutant phenotype in
64 a sustained root growth inhibition after auxin treatment for 6 days. We introduced the
65 cytosolic-localized *TIR1-NES-Venus* into *tir1* mutant background, and found that all
66 *TIR1* constructs were able to restore completely auxin sensitivity of root growth (Figure
67 1C, D and Supplemental Figure 1, 2). This can be explained by either: (i) the residual
68 TIR1 present in the nucleus is sufficient to conduct full transcriptional activity, or (ii)
69 cytosolic TIR1 may still degrade Aux/IAAs, releasing the ARFs from their inhibition.
70 Besides, we introduced the nuclear-localized *AFB1-NLS-Venus* into *tir1* *afb2* mutants
71 but did not observe any rescue of the auxin-insensitive phenotype in root growth
72 inhibition, root gravitropism, lateral root formation, and root hair elongation (Figure 1C,
73 D and Supplemental Figure 1, 2). This implies that AFB1, even when localized to
74 nucleus, cannot functionally replace TIR1 for its transcriptional regulation and related
75 development.

76 The predominantly cytosolic AFB1 seems to be the major receptor for the rapid
77 auxin effects (Prigge *et al.*, 2020). Therefore, we introduced our mistargeted TIR1 and
78 AFB1 versions into the *afb1* mutant background (Figure 1A, B and Supplemental Figure
79 1) and test their effect in auxin-induced rapid root growth inhibition in microfluidic
80 vRootchip system. The AFB1 when targeted to nucleus could no longer mediate rapid
81 auxin effect on root growth (Figure 1E). On the other hand, TIR1 despite being present
82 in the cytosol could not rescue *afb1* mutant (Figure 1F). This reveals that the cytosolic
83 AFB1 is necessary for its function, but the cytosolic TIR1 cannot replace or supplement
84 the AFB1 function.

85 The observations that nuclear AFB1 cannot functionally replace TIR1 and cytosolic
86 TIR1 cannot functionally replace AFB1 show that TIR1 and AFB1 have distinct
87 functional properties unrelated to their subcellular localization. To confirm this, we made
88 use of the minimal auxin signalling pathway reconstructed in yeast (Pierre-Jerome *et al.*,
89 2014). In this system, only TIR1 but not AFB1, regardless of their subcellular

90 localization, was able to mediate auxin effect on transcription as monitored by the
91 fluorescence intensity of P3_Venus transcriptional auxin reporter (Figure 1G).

92 To gain insights into reasons why AFB1 cannot mediate transcriptional signalling,
93 we tested its ability to form SCF complex using Yeast-Two-Hybrid approach. Only TIR1
94 but not AFB1 was able to interact with CUL1 (Cullin1), the key component of ubiquitin
95 ligase complex (Figure 1H). This is consistent with the available Co-IP/MS data where
96 all SCF components were detected to interact with TIR1, however, for AFB1, no or only
97 extremely weak interaction with CUL1 was detected (Supplemental Figure 3) (Li *et al.*,
98 2021; Yu *et al.*, 2015). The reason why AFB1 does not interact with CUL1 might be the
99 natural mutation of glutamic 8 site in AFB1 (Yu *et al.*, 2015). The absence of interaction
100 with the SCF components will prevent AFB1 to conduct E3 ubiquitin ligase activity; thus
101 failing to mediate Aux/IAAs degradation (Yu *et al.*, 2015) and transcriptional regulation
102 (Figure 1G). This also explains why AFB1, even when artificially targeted to nucleus,
103 still cannot replace the TIR1 function.

104

105 Our observations also imply that CUL1 is not essential for rapid auxin responses.
106 This requires further clarification on the role of SCF components as well as Aux/IAAs
107 ubiquitination and degradation in rapid auxin responses. Recent study revealed the
108 novel function of TIR1/AFBs in producing cAMP, a prominent second messenger in
109 animals. Though this activity in TIR1 specifically does not seem to be important for rapid
110 auxin responses (Qi *et al.*, 2022), it is still possible that AFB1-mediated cAMP
111 production in cytosol is. However, whether and how the AC activity of AFB1 would
112 contribute to rapid responses remains unknown.

113 In summary, we demonstrated that TIR1 and AFB1 have distinct functions with the
114 predominantly nuclear TIR1 mediating slow responses and cytosolic AFB1 conducting
115 the rapid responses. This functional divergence is not, however, simply due to
116 differential subcellular localization of these auxin receptors. The function of TIR1 in
117 mediating slow/transcriptional response seems to be independent of its predominant
118 localization. In contrast, the function of AFB1 in rapid responses necessitates both its
119 localization in cytosol and the specific AFB1 protein properties themselves. Furthermore,
120 the cytosolic AFB1 mediates rapid auxin responses without forming SCF machinery,

121 leaving the mechanism of *AFB1*-mediated rapid responses an exciting topic for future
122 investigations.

123

124 **SUPPLEMENTAL INFORMATION**

125 **Supplemental Method.**

126 **Supplemental Figure 1.** Subcellular localization of *AFB1*-Venus, *TIR1*-NES-Venus, and *AFB1*-
127 *NLS*-Venus in different transgenic lines.

128 **Supplemental Figure 2.** Evaluation of the roles of *TIR1*-NES-Venus and *AFB1*-NLS-Venus in
129 auxin-mediated long-term responses.

130 **Supplemental Figure 3.** IP-MS/MS results performed with the *pTIR1::TIR1*-Venus and
131 *pAFB1::AFB1*-Venus lines.

132 **FUNDING**

133 This project was funded by the European Research Council Advanced Grant (ETAP-
134 742985).

135 **AUTHOR CONTRIBUTIONS**

136 H.C., L.L. and J.F. designed the studies; H.C. and M.Z. performed the experiment. H.C., L.Q.
137 and J.F. wrote the manuscript.

138 **ACKNOWLEDGMENTS**

139 We thank all the authors for sharing the published materials. This research was supported by
140 the Lab Support Facility and the Imaging and Optics Facility of ISTA. We thank Lukáš Fiedler
141 (ISTA) for critical reading of the manuscript.

142

143 **The authors declare no competing interests.**

144

145 **References**

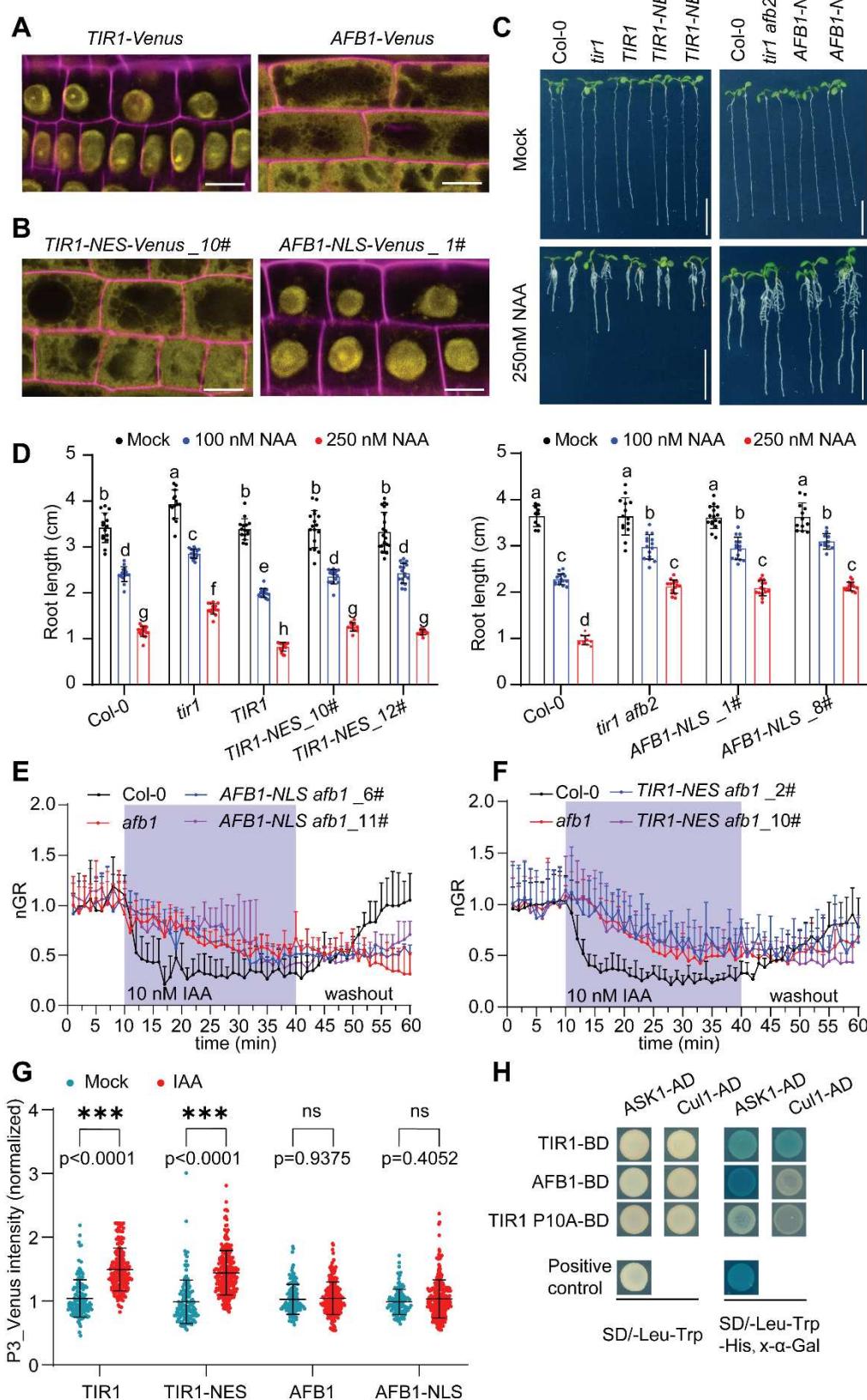
146

147 Friml, J. (2022). Fourteen Stations of Auxin. *Cold Spring Harb Perspect Biol* 14.
148 10.1101/cshperspect.a039859.

149 Li, L., Gallei, M., and Friml, J. (2022). Bending to auxin: fast acid growth for tropisms.
150 *Trends in Plant Science* 27, 440-449. 10.1016/j.tplants.2021.11.006.

151 Li, L., Verstraeten, I., Roosjen, M., Takahashi, K., Rodriguez, L., Merrin, J., Chen, J.,
152 Shabala, L., Smet, W., Ren, H., et al. (2021). Cell surface and intracellular auxin
153 signalling for H(+) fluxes in root growth. *Nature* 599, 273-277. 10.1038/s41586-021-
154 04037-6.

155 Pierre-Jerome, E., Jang, S.S., Havens, K.A., Nemhauser, J.L., and Klavins, E. (2014).
156 Recapitulation of the forward nuclear auxin response pathway in yeast. *Proceedings of
157 the National Academy of Sciences* 111, 9407-9412. 10.1073/pnas.1324147111.


158 Prigge, M.J., Platré, M., Kadakia, N., Zhang, Y., Greenham, K., Szutu, W., Pandey, B.K.,
159 Bhosale, R.A., Bennett, M.J., Busch, W., and Estelle, M. (2020). Genetic analysis of the
160 *Arabidopsis* TIR1/AFB auxin receptors reveals both overlapping and specialized
161 functions. *eLife* 9. 10.7554/eLife.54740.

162 Qi, L., Kwiatkowski, M., Chen, H., Hoermayer, L., Sinclair, S., Zou, M., Del Genio, C.I.,
163 Kubeš, M.F., Napier, R., Jaworski, K., and Friml, J. (2022). Adenylate cyclase activity of
164 TIR1/AFB auxin receptors in plants. *Nature* 611, 133-138. 10.1038/s41586-022-05369-7.

165 Serre, N.B.C., Kralík, D., Yun, P., Slouka, Z., Shabala, S., and Fendrych, M. (2021).
166 AFB1 controls rapid auxin signalling through membrane depolarization in *Arabidopsis*
167 *thaliana* root. *Nature Plants* 7, 1229-1238. 10.1038/s41477-021-00969-z.

168 Yu, H., Zhang, Y., Moss, B.L., Bargmann, B.O., Wang, R., Prigge, M., Nemhauser, J.L.,
169 and Estelle, M. (2015). Untethering the TIR1 auxin receptor from the SCF complex
170 increases its stability and inhibits auxin response. *Nat Plants* 1.
171 10.1038/nplants.2014.30.

172 Yu, Z., Zhang, F., Friml, J., and Ding, Z. (2022). Auxin signaling: Research advances
173 over the past 30 years. *Journal of Integrative Plant Biology* 64, 371-392.
174 10.1111/jipb.13225.

176 **Figure 1. Distinct functions of TIR1 and AFB1 receptors in auxin signalling.** (A, B)
177 Confocal images of *Arabidopsis* root epidermis cells expressing *TIR1*-Venus, *AFB1*-Venus,
178 *TIR1*-NES-Venus and *AFB1*-NLS-Venus as indicated. Venus signal is shown in yellow in all
179 panels. Cell wall stained with propidium iodide is shown in purple. Scale bars =10 μ m. (C, D)
180 Evaluation of the roles of *TIR1*-NES-Venus and *AFB1*-NLS-Venus in auxin-mediated long-term
181 root growth inhibition. The indicated *TIR1*-related constructs were transformed into *tir1*, and the
182 *AFB1*-related constructs were transformed into *tir1* *afb2*. Primary root length in the 6-day-old
183 seedlings of different genotypes grown on mock or 250nM NAA plate. Scale bars = 1 cm, n \geq 10
184 (D). Lowercase letters indicate significant difference, two-way ANOVA test, $p\leq 0.01$. (E, F)
185 Evaluation of the roles of *TIR1*-NES-Venus and *AFB1*-NLS-Venus in auxin-mediated rapid
186 root growth inhibition using Microfluidic vRootchip. The constructs *TIR1*-NES-Venus and *AFB1*-
187 NLS-Venus were transformed into *afb1*-3 mutant. Root growth rate of the indicated genotypes
188 was normalized to the respective average root growth rate within 10 minutes before IAA
189 application. The imaging interval is 1 minute. (G) Differential effects of *TIR1*, *TIR1*-NES, *AFB1*,
190 *AFB1*-NLS in auxin mediated transcriptional responses in the minimal auxin signaling pathway
191 reconstructed in *Saccharomyces cerevisiae*. Fluorescence intensity was quantified with the
192 images captured after the yeast cells were treated with 10 μ M IAA for 6 hours. Error bar = \pm SD,
193 *t* test, *** $P\leq 0.001$, NS, not significant ($P>0.05$). (H) Interactions of different SCF components
194 in yeast two hybrid assay. The yeast transformants were plated on SD/-Leu-Trp-His drop out
195 medium with 4 mg/ml x-alpha-Gal (x- α -Gal) and were cultured for 3 days to assess the protein-
196 protein interactions. *TIR1* P10A acts as a negative control in here. Alpha-galactosidase activity
197 manifested as blue color indicates the interaction.

198 **Supplemental Method.**

199 **Plant materials and growth conditions**

200 All *Arabidopsis* mutants and transgenic lines used in this study are in the Columbia-0
201 (Col-0) background. The *tir1-1* (Ruegger et al., 1998), *afb1-3* (Savaldi-Goldstein et al.,
202 *tir1-1 afb2-3* (Prigge et al., 2020), *pTIR1::TIR1-Venus* in *tir1-1* (Wang et al., 2016)
203 and *pAFB1::AFB-Venus* in *afb1-3* (Rast-Somssich et al., 2017) mutants were donated
204 by the original authors. The promoters of *TIR1* (Wang et al., 2016) and *AFB1* (Rast-
205 Somssich et al., 2017) were amplified from genomic DNA and cloned into pDONR P4-
206 P1r Gateway entry vector. The genomic or coding domain sequences of *TIR1* and
207 coding domain sequences of *AFB1* without stop codon were cloned into pENTR/D-
208 TOPO Gateway entry Vector to obtain the pENTR-gTIR1, pENTR-TIR1 and pENTR-
209 *AFB1*.

The NES-GS-linker

210 (ctgcagctgcctccctggagcgcctgaccctggacggaggcggttggaaagcggcggaggt) and NLS-GS-
211 linker (atgccaagaagaagagaaggtaggaggcggttggaaagcggcggaggttcc) were directly
212 introduced at the 5' end of Venus by primers and cloned into the pDONR-P2r-P3 vector.
213 All those plasmids were confirmed by sequencing and then recombined into the
214 destination vector pB7m34GW,0 by LR reaction. The final expression plasmids were
215 introduced into *Agrobacterium tumefaciens* GV3101 strain by electroporation.
216 *Arabidopsis* plants were transformed by floral dip. Two independent homozygous lines
217 for each transgenic plant were used for further experiments. Seed surface-sterilization
218 and growth conditions were the same as described before (Qi et al., 2022).

219 **Phenotypic analysis**

220 For root length measurement: the seeds from the same batch were sown directly on the
221 ½ Murashige and Skoog (MS) medium with 100 nM or 250 nM NAA. Medium with
222 equally diluted ethanol was used as the Mock group. The plates containing 6-day-old
223 seedlings were imaged by a scanner. The primary root length was measured manually
224 by using the segmented Line plug-in of Image J.

225 For gravitropism analysis: 5-day-old seedlings were transferred to a new plate
226 containing ½ MS medium, and the plate was rotated 90 degrees for gravity stimulation
227 and was placed on a vertical scanner. Images were automatically taken using Autolt
228 program every 30 min, and the root growth deviation angle was measured using Image
229 J.

230 For lateral root formation: 5-day-old seedlings were transferred to ½ MS medium
231 containing mock or 100 nM IAA, and grown for another 5 days. The number of lateral
232 roots were counted from the images obtained.

233 For root hair length measurement: 5-day-old seedlings were transferred to ½ MS
234 medium containing mock or 10 nM IAA, and grown for 24 h. After taking images with a
235 stereo microscope (Olympus SZX16), root hair length was measured using Image J.

237 **Microfluidic vRootchip**

238 The upgraded Microfluidic vRootchip system was used to analyze the auxin-mediated
239 rapid root growth inhibition (Li et al., 2021). The 4-day-old seedlings were transferred
240 into the vRootchip channel and grown in $\frac{1}{4}$ MS medium without sucrose for more than
241 12 hours. The vRootchip was then mounted on the vertical confocal microscope system
242 and the medium was replaced with $\frac{1}{4}$ MS medium containing 0.1% sucrose (Von
243 Wangenheim et al., 2017). The imaging started after the plants were acclimated for 3
244 hours. Zeiss LSM 800 confocal microscope with transmitted light detector was used for
245 imaging. The objective lens was 20x/0.8 NA air objective, and the Zoom in was 1.0 x.
246 The time interval for imaging was 1 minute. After pre-imaging for 10 minutes, medium
247 containing 10 nM IAA was applied, followed by a washout with basic medium after 30
248 minutes. The software package used for data analysis is the same as described before
249 (Li et al., 2021).

250

251 **Minimal auxin signalling pathway constructed in yeast**

252 The vectors, plasmids, and yeast strains for this assay were all provided by Prof.
253 Jennifer, including pGP5G-ccdb empty vector, pGP4GY- TPLN100-IAA3 plasmid,
254 pGP8A-ARF19 plasmid, MAT α strain containing the P3_2x-UbiVenus reporter
255 integrated at URA3, and MAT α strain containing the HIS3:pADH1-ARF19 URA3:P3_2x-
256 UbiVenus (Pierre-Jerome et al., 2014). pENTR-TIR1, pENTR-TIR1-NES, pENTR-AFB1
257 and pENTR-AFB1-NLS were recombined with the destination vector pGP5G-ccdb to
258 generate pGP5G-TIR1, pGP5G-TIR1-NES, pGP5G-AFB1 and pGP5G-AFB1-NLS
259 plasmids by LR reaction. Yeast transformation was performed by the lithium acetate
260 transfer method (Sherman, 2002). Transformants survived from SD/-Leu-Trp-Ura-His
261 drop out (QDO) solid medium were transferred to QDO liquid medium to grow overnight.
262 Then, the yeast cells were diluted 10 times in QDO liquid medium and treated with 10
263 μ M IAA for 6 h. Images were taken by an inverted Zeiss LSM800 confocal microscope
264 with 20x/0.8 NA air objective. The Venus fluorescence intensity was measured using
265 Image J, with more than 100 yeast cells for each treatment.

266

267 **Yeast two hybrid**

268 Phusion Site-Directed Mutagenesis Kit (Thermo Fisher, F541) was used to generate the
269 P10A mutation in TIR1, using pENTR-TIR1 as the template. pENTR-TIR1, pENTR-TIR1
270 P10A and pENTR-AFB1 were introduced into pGBKT7-GW vector (Clontech). The
271 coding domain sequence of ASK1 and Cullin1 were cloned into the pGADT7 vector
272 (Clontech). Different pGBKT7 recombinant plasmids and pGADT7 recombinant
273 plasmids were co-transformed into Y2H Gold yeast strain (Clontech) by lithium acetate
274 transformation (Sherman, 2002). SD/-Leu-Trp drop-out (DDO) plate is used to confirm
275 the presence of the transgene. The transformants with the size of 2-3 mm were

276 suspended in DDO liquid medium and incubated at 30 °C until OD₆₀₀ was around 0.8. 3
277 µl of suspended culture was dropped on the SD-Leu-Trp-His plate containing 4mg/ml
278 X-alpha-Gal. Alpha -galactosidase activity is used to evaluate the interaction after
279 incubation at 30 °C for 3 days.

280

281 **Reference**

282 Li, L., Verstraeten, I., Roosjen, M., Takahashi, K., Rodriguez, L., Merrin, J., Chen, J.,
283 Shabala, L., Smet, W., Ren, H., et al. (2021). Cell surface and intracellular auxin
284 signalling for H(+) fluxes in root growth. *Nature* 599, 273-277. 10.1038/s41586-021-
285 04037-6.

286 Pierre-Jerome, E., Jang, S.S., Havens, K.A., Nemhauser, J.L., and Klavins, E. (2014).
287 Recapitulation of the forward nuclear auxin response pathway in yeast. *Proceedings of
288 the National Academy of Sciences* 111, 9407-9412. 10.1073/pnas.1324147111.

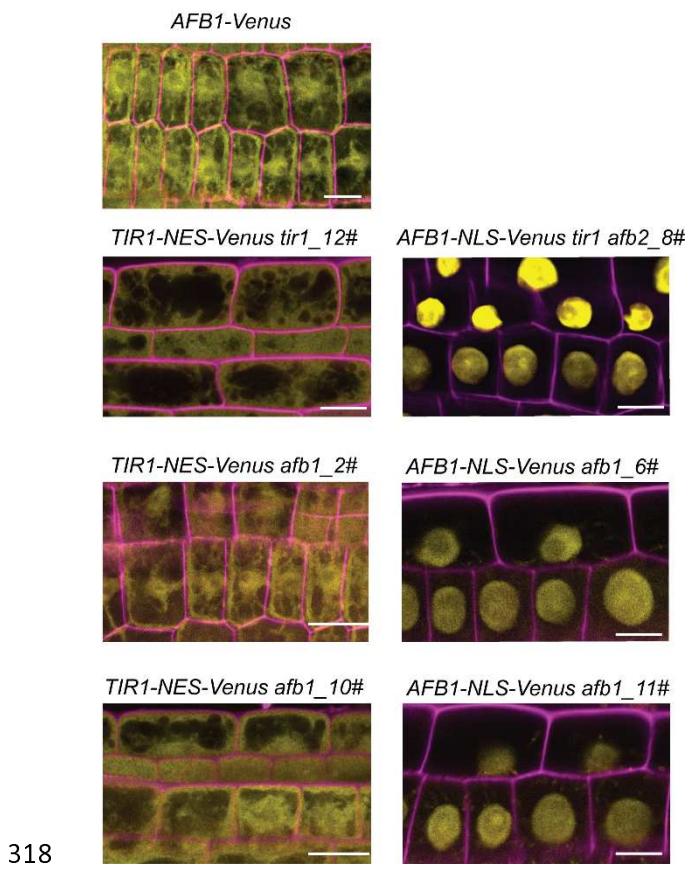
289 Prigge, M.J., Platres, M., Kadakia, N., Zhang, Y., Greenham, K., Szutu, W., Pandey, B.K.,
290 Bhosale, R.A., Bennett, M.J., Busch, W., and Estelle, M. (2020). Genetic analysis of the
291 *Arabidopsis* TIR1/AFB auxin receptors reveals both overlapping and specialized
292 functions. *eLife* 9. 10.7554/eLife.54740.

293 Qi, L., Kwiatkowski, M., Chen, H., Hoermayer, L., Sinclair, S., Zou, M., Del Genio, C.I.,
294 Kubeš, M.F., Napier, R., Jaworski, K., and Friml, J. (2022). Adenylate cyclase activity of
295 TIR1/AFB auxin receptors in plants. *Nature* 611, 133-138. 10.1038/s41586-022-05369-7.

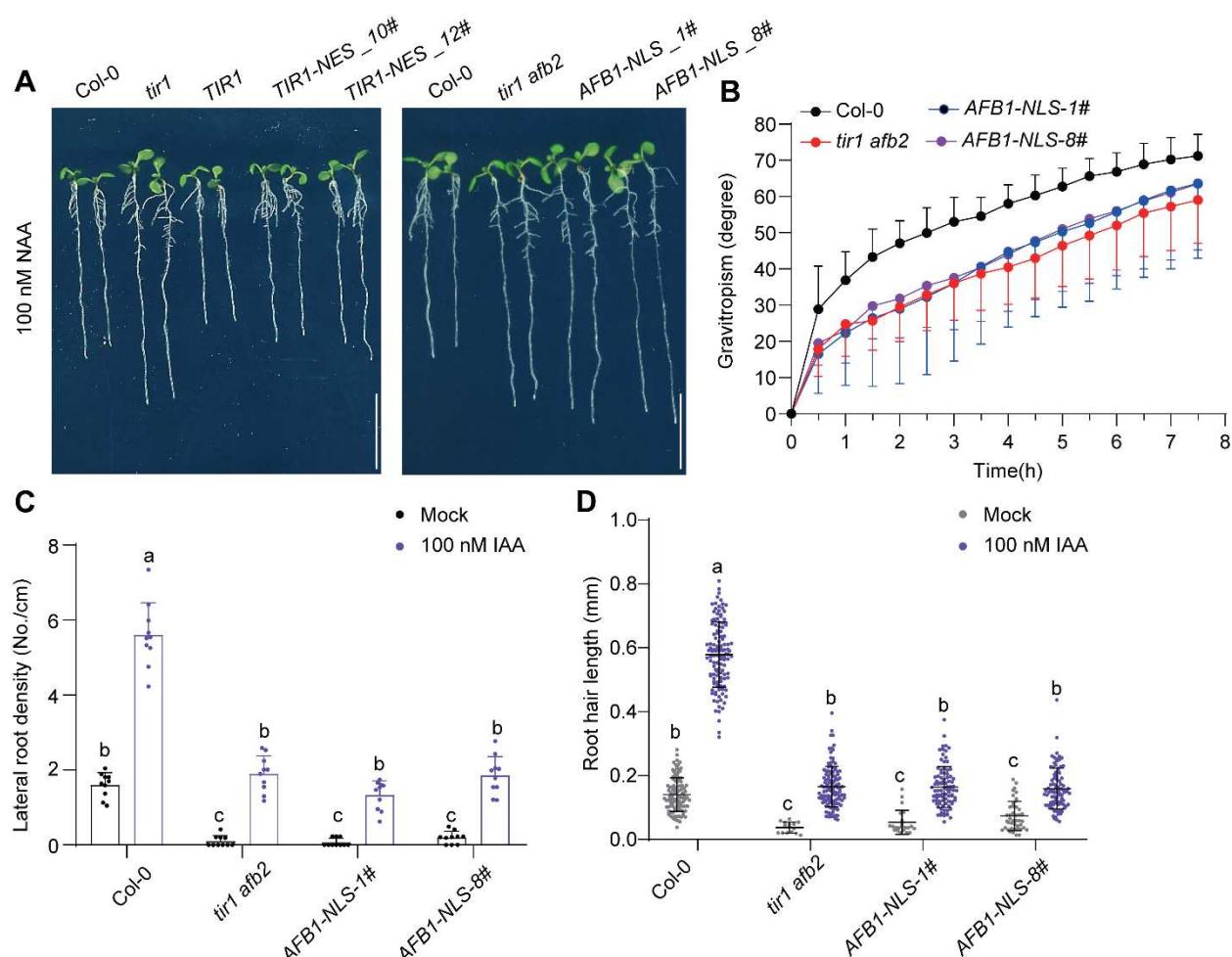
296 Rast-Somssich, M.I., Žádníková, P., Schmid, S., Kieffer, M., Kepinski, S., and Simon, R.
297 (2017). The *Arabidopsis* JAGGED LATERAL ORGANS (JLO) gene sensitizes plants to
298 auxin. *Journal of Experimental Botany* 68, 2741-2755. 10.1093/jxb/erx131.

299 Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J., and Estelle, M. (1998). The
300 TIR1 protein of *Arabidopsis* functions in auxin response and is related to human SKP2
301 and yeast Grr1p. *Genes & Development* 12, 198-207. 10.1101/gad.12.2.198.

302 Savaldi-Goldstein, S., Baiga, T.J., Pojer, F., Dabi, T., Butterfield, C., Parry, G., Santner,
303 A., Dharmasiri, N., Tao, Y., Estelle, M., et al. (2008). New auxin analogs with growth-
304 promoting effects in intact plants reveal a chemical strategy to improve hormone
305 delivery. *Proceedings of the National Academy of Sciences* 105, 15190-15195.
306 10.1073/pnas.0806324105.

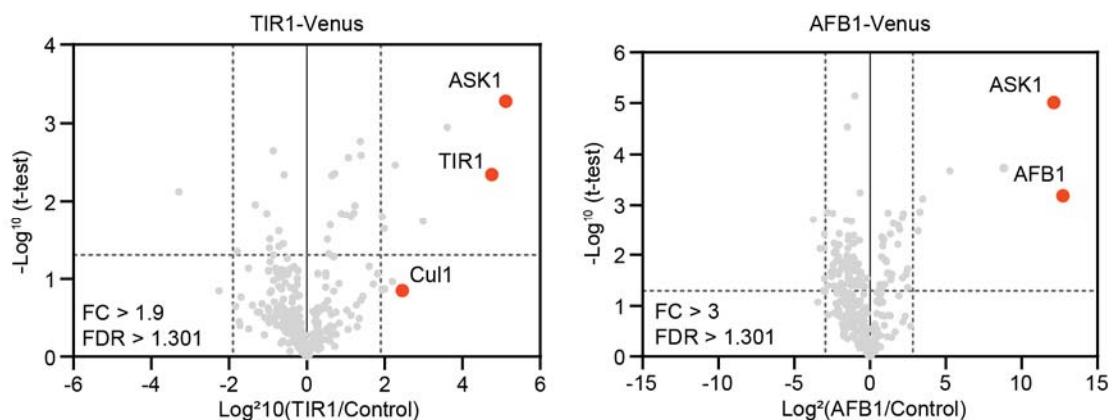

307 Sherman, F. (2002). Getting started with yeast. In *Methods in Enzymology*, C. Guthrie,
308 and G.R. Fink, eds. (Academic Press), pp. 3-41. 10.1016/S0076-6879(02)50954-X.

309 Von Wangenheim, D., Hauschild, R., Fendrych, M., Barone, V., Benková, E., and Friml,
310 J. (2017). Live tracking of moving samples in confocal microscopy for vertically grown
311 roots. *eLife* 6. 10.7554/elife.26792.


312 Wang, R., Zhang, Y., Kieffer, M., Yu, H., Kepinski, S., and Estelle, M. (2016). HSP90
313 regulates temperature-dependent seedling growth in *Arabidopsis* by stabilizing the
314 auxin co-receptor F-box protein TIR1. *Nature Communications* 7, 10269.
315 10.1038/ncomms10269.

316

317



Supplemental Figure 1. Subcellular localization of AFB1-Venus, TIR1-NES-Venus and AFB1-NLS-Venus in different transgenic lines. Confocal images of the root epidermis cells of the 4-day-old *Arabidopsis* seedlings with the indicated genotypes: AFB1-Venus, TIR1-NES-Venus in *tir1-1* or *afb1-3*, AFB1-NLS-Venus in *tir1-1 afb2-3* or *afb1-3*. Venus signal was shown in yellow in all panels. Cell wall was stained with propidium iodide and shown in purple. The lines shown here were also used in Figure1C, E and F. The AFB1-Venus shows weak nuclear signal in certain Z-plane. Scale bars = 10 μ m.

328

329 **Supplemental Figure 2. Evaluation of the roles of *TIR1*-NES-Venus and *AFB1*-NLS-Venus**
330 **in auxin-mediated long-term responses.** (A) Shown were 6-day-old seedlings of the indicated
331 genotypes grown on the $\frac{1}{2}$ MS medium containing 100 nM NAA. Scale bars = 1 cm. (B-D)
332 *AFB1*-NLS cannot exert *TIR1* function in root gravitropism, later root formation, and root hair
333 elongation. (B) Five-day-old seedlings were transferred to new plates and were then rotated 90°.
334 Images were captured every 1 h, and the root bending angle was measured to monitor the
335 gravitropic response. Data are mean \pm SD of 10 seedlings. (C) Five-day-old seedlings were
336 transferred to mock or 100 nM IAA-containing medium and were cultured for another 5 days.
337 Lateral root density was calculated from 10 roots. Error bars = \pm SD. Different lowercase letters
338 indicate significant difference, $p \leq 0.001$. (D) Five-day-old seedlings were transferred to mock or
339 10 nM IAA medium. The root hair length was measured after growth for 24 h. Error bars =
340 \pm SD, Different lowercase letters indicate significant difference, $p \leq 0.001$.

341
342 **Supplemental Figure 3. IP-MS/MS results performed with the *pTIR1::TIR1-VENUS* and**
343 ***pAFB1::AFB1-VENUS* lines.** Red dots indicate the subunits of SCF complex. Note that
344 CUL1 was not detected in the immune precipitates of AFB1-Venus. The original data
345 was available in Li et al, 2022, Supplementary Table 2.

346