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Abstract

DNA methylation (DNAme) is a major epigenetic factor influencing gene expression
with alterations leading to cancer, immunological, and cardiovascular diseases.
Recent technological advances enable genome-wide quantification of DNAme in large
human cohorts. So far, existing methods have not been evaluated to identify
differential DNAme present in large and heterogeneous patient cohorts. We developed
an end-to-end analytical framework named “EpiMix” for population-level analysis of
DNAme and gene expression. Compared to existing methods, EpiMix showed higher
sensitivity in detecting abnormal DNAme that was present in only small patient
subsets. We extended the model-based analyses of EpiMix to cis-regulatory elements
within protein-coding genes, distal enhancers, and genes encoding microRNAs and
IncRNAs. Using cell-type specific data from two separate studies, we discovered novel
epigenetic mechanisms underlying childhood food allergy and survival-associated,

methylation-driven non-coding RNAs in non-small cell lung cancer.
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Main text

DNA methylation (DNAme) is one of the major epigenetic marks in humans. It is
defined as the addition of a methyl (CHz) group to DNA that occurs primarily at the
cytosine of cytosine-guanine dinucleotide (CpG) sequence. DNAme regulates various
biological processes by affecting gene expression, and aberrant DNAme plays a
critical role in the development and progression of many human diseases'—3. Recent
experimental methods based on microarrays or next-generation sequencing have
enabled genome-wide quantification of DNAme at single-nucleotide resolution. Due to
its quantitative and cost-effective nature, microarray-based technology has emerged
as the method of choice for profiing DNAme in large human cohorts. For example,
The Cancer Genome Atlas (TCGA) project has used the microarray technology to
generate DNAme profiles in over 10,000 specimens representing 33 cancer types.
The Gene Expression Omnibus database (GEO) and other public repositories also

host a large number of DNAme datasets across cancers and other complex diseases.

Over the last decade, a number of computational approaches have been developed
to identify genes that are abnormally methylated in human diseases. Some methods
are tailored to the analysis of DNAme data from bisulfite sequencing*’, while others
are designed for array-based data or can be adapted to both data platforms®-12. Many
existing methods identify differentially methylated loci by comparing all samples from
an experimental group versus samples in a control group. This type of comparison
works well when the experimental population is assumed to be homogenous. However,

when the study population is large, abnormal DNAme may be present in only a subset
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of the patients, and this intra-population variation has been observed in cancers and
many other diseases'*~'5. In cases where abnormal DNAme occurred in only a small
subset of the patients, existing methods are not capable of capturing the signals of
differential methylation. Therefore, there is a critical need to use a statistical approach
to model the distribution of DNAme in large patient cohorts, and to identify the patient
subsets with differential DNAme profiles. This epigenetic subtyping can be essential

to improve personalized diagnosis, treatment and drug discovery.

Furthermore, gene expression in mammalian cells is a result of a complex process
coordinated by a broad range of genomic regulatory elements'®'”. In many studies,
CpG sites were mapped to genes based on linear genomic proximity. This mapping
logic assumes that the transcriptional activity can be affected only when the genes are
overlapped or close to the differentially methylated sites. However, emerging evidence
has shown that distal enhancers, which may locate at a great linear genomic distance
from their target genes, play a critical role in orchestrating spatiotemporal gene
expression programs'®. Abnormal DNAme at enhancers was frequently reported in
cancers and many other diseases'®?. Therefore, the analysis of enhancer
methylation can improve our understanding of how gene expression is regulated

across physiological and pathological conditions.

Existing computational tools focus on the DNAme analysis of protein-coding genes.
Besides protein-coding genes, non-coding RNAs, such as microRNAs (miRNAs) and
long non-coding RNAs (IncRNAs), play an important role in regulating cell

functions?’?2, Recent studies have shown that DNAme is a major epigenetic


https://doi.org/10.1101/2023.01.03.522660
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.03.522660; this version posted January 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

95 mechanism regulating non-coding RNA expression?24. With existing methods, it is
96 challenging to decipher how DNAme regulates non-coding RNA expression.

97

98 Here, we present EpiMix, a comprehensive analytical framework for population-level
99 analysis of DNAme and gene expression. EpiMix utilizes a model-based
100 computational approach to identify abnormal DNAme at diverse genomic elements,
101  including cis-regulatory elements within or surrounding protein-coding genes, distal
102  enhancers, and genes encoding miRNAs and IncRNAs. In two separate studies, we
103 showed that EpiMix identified novel methylation-driven pathways in T cells from
104  childhood food allergy and methylation-driven non-coding RNAs in non-small cell lung
105 cancer patients. To improve usability, we disseminated EpiMix’s algorithms in
106  Bioconductor?®, enabling end-to-end DNAme analysis. Furthermore, we developed a
107 web tool for interactive exploration and visualization of EpiMix’s results
108  (https://epimix.stanford.edu). Overall, EpiMix can be used to discover novel epigenetic
109  biomarkers for disease subtypes and therapeutic targets for personalized medicine.

110

111 Results

112

113 Overview of EpiMix Workflow

114

115  EpiMix is an end-to-end analytical framework for modeling DNAme at diverse genomic
116 elements and for identifications of differential DNAme associated with gene
117  expression. The EpiMix framework consisted of four functional modules: (1) data
118 downloading, (2) preprocessing, (3) DNAme modeling and (4) functional analysis

5
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119 (Fig.1). To analyze DNAme at functionally diverse genomic elements, we
120 implemented four alternative analytic modes: "Regular," "Enhancer”, "miRNA" and
121 "IncRNA." Both the Regular and Enhancer modes aimed to detect differential DNAme
122  associated with the expression of protein-coding genes. The Regular mode analyzed
123  DNAme sites within or immediately surrounding the genes, while the Enhancer mode
124  specifically analyzed DNAme at distal enhancers. The miRNA and IncRNA modes
125 were built for the detection of DNAme affecting the expression of miRNAs and
126  IncRNAs. After the methylation-driven genes were identified, users could perform
127  comprehensive exploratory analyses using the functional analysis module. The
128  functional analysis module was built with both in-house developed methods and
129  integrating existing computational tools to enable diverse functional analyses and

130 visualization of the differential DNAme.
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Fig.1 Overview of EpiMix workflow. EpiMix includes four modules: Downloading, Preprocessing, Methylation
modeling and Functional analysis. Data from public repositories (i.e., TCGA and GEO) can be automatically
downloaded and preprocessed by EpiMix. Alternatively, users can input their own custom datasets. The
preprocessing module includes functions for quality control, batch effect normalization, and missing value
imputation. To model DNAme, EpiMix enables four alternative analytic modes: Regular, Enhancer, miRNA and
IncRNA. Each mode uses a custom algorithm to analyze DNAme at a specific type of genomic element. One major
output from the methylation modeling is a matrix of functional CpG-gene pairs, illustrating the differentially
methylated CpGs whose DNAme states were associated with gene expression. After the differentially methylated
genes have been identified, users can perform diverse analytical tasks with EpiMix’s functional analysis module.
This includes pathway enrichment analysis, genome-browser style visualization, gene regulatory network analysis,
epigenetic biomarker discovery and identification of methylation-associated disease subtypes.
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143 ldentifications of abnormal DNAme present in small sample

144 subsets

145

146  To assess the sensitivity of EpiMix in identifications of differential DNAme that was
147  present in only specific patient subsets, we performed simulation experiments. We
148 used a dataset that jointly profiled DNAme data and messenger RNA abundance in
149  human naive CD4+ T cells?®. The dataset contains quiescent T cells and antigen-
150 activated T cells from 103 human subjects. The DNAme data were obtained from
151  Infinium MethylationEPIC array, and the messenger RNA expression data were
152  obtained from RNA-Seq. We randomly sampled a subset of CpGs (n = 300) from the
153  quiescent group as baselines, such that the average beta values of the selected CpGs
154  ranged from 0.1 t0 0.9. Then, for each CpG, we randomly selected a subset of samples
155  from the activation group and combined them with the baseline group (Fig.2a and
156  Methods), such that the final proportions of samples from the activation group in the
157  combined dataset ranged from 3% to 50%, and the mean differences in beta values
158 between the activated and the baseline samples ranged from 0.1 to 0.7. We then

159  compared the DNAme of the synthetic populations to the baseline population (Fig.2a).
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160

161 Fig.2 a, Design of the simulation study. The dataset contained experimentally purified naive CD4+ T cells from 103
162 human subjects. Cells from each subject were divided into half and either activated with the T-cell antigen or left
163 resting in the media. The baseline group contained quiescent samples from all 103 subjects. The experimental
164 group contained quiescent samples from all subjects and the antigen-activated samples from N subjects, where N
165 ranged from 3 to 103. We compared the DNAme of the experimental group to the baseline group and tested
166 whether EpiMix can detect the signals of differential methylation. b, Correlation between the delta beta values and
167 the minimum detection threshold for the prevalence (left axis) and actual count (right axis) of the activated samples
168 in the experimental group. The simulation was repeated 300 times using a different CpG site at each time, and the
169 mean detection threshold was shown. ¢, Density plots showing the mixture models when delta beta was 0.1 and
170 the differential methylation was present in 3%, 5% and 25% of the experimental group. d, Density plots showing
171 the mixture models when delta beta was 0.3 and the differential methylation was present in 3%, 5%, and 25% of
172 the experimental group. e) Number of differentially methylated CpGs detected by different methods when the
173 differential methylation was present in from 3% to 25% of the population. For all methods, the same set of CpGs
174 were used, and the total number of CpGs at each prevalence was 2,700.

9
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175

176  We found that the sensitivity of EpiMix was determined by the magnitude of differences
177  in DNAme between the quiescent and the activated subjects. When the delta beta was
178 0.1, EpiMix detected differential DNAme that was presentin 3% to 25% of the synthetic
179  population, with a mean minimum detection threshold of 11.0% (absolute sample
180 count = 13) (Fig.2b, c). When the delta beta was 0.2 or higher, the minimum detection
181  threshold ranged from 3% to 10%, with a mean threshold of 3.4% (absolute sample
182  count =4) (Fig.2b, d). These results indicated that EpiMix was able to detect abnormal
183 DNAme that was present in only small subsets of a tested population, and the
184  sensitivity was positively correlated with the magnitude of differences in DNAme.

185
186 Next, we compared the performance of EpiMix with other existing methods in

187 identifications of differential DNAme, including Minfi'®, iEVORA?” and RnBeads'??8,
188  When the differential DNAme was present in 3% of the population, EpiMix detected
189  the differential methylation signals at 1,747 CpG sites, whereas the other methods did
190 not capture any differential DNAme (Fig.2e). When the differential DNAme was
191 present in 5% of the population, EpiMix identified 3.1 times more differentially
192  methylated CpGs than iEVORA, and 3.6 times more CpGs than Minfi and RnBeads.
193  Minfi and RnBeads only detected CpGs with high magnitude differences in DNAme,
194  with an average delta beta of 0.6. In contrast, EpiMix detected CpGs with delta beta
195 ranging from 0.1 to 0.7, with an average threshold of 0.3. When the prevalence of
196 differential DNAme was 15% or higher, EpiMix detected similar numbers of CpGs to
197  the other three methods. These results indicated that EpiMix had higher sensitivity to
198 detect differential DNAme that was present in only small sample subsets.

199

10
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200 Modeling of DNA methylation at cis-regulatory elements within

201 protein-coding genes

202

203 To test the Regular mode of EpiMix, we used the complete, real dataset from antigen-
204 activated T cells and quiescent T cells (n = 103 subjects per group)?. In the activated
205 T cells, 1,090 CpGs were differentially methylated compared to the quiescent cells.
206 Integrative analysis with RNA-seq data showed that the differentially methylated CpGs
207 were functionally associated with the expression of 748 protein-coding genes
208 (Supplementary Table 1). Of the differentially methylated CpGs, 746 (68.4%) CpGs
209 associated with 504 genes were hypomethylated and 327 (30.0%) CpGs associated
210 with 238 genes were hypermethylated (Fig.3a). This result indicated that antigens
211 induced a widespread loss of DNAme. Gene ontology (GO) analysis showed that the
212  hypomethylated genes were associated with lymphocyte proliferation (e.g., CCND2,
213 CCND3, CDK6, CDK14), T cell activation (e.g., BCL2, CCL5, HLA-DPA1, HLA-DRB1),
214  glycoprotein biosynthesis (e.g., AGO2, ALG9, B3GNTS, B4GALTS5) and cytokine
215  receptor activity (IL1R1, IL1R2, IL21R, IL23R) (Supplementary Table 2). This result
216  confirmed that EpiMix identified differential DNAme associated with T cell activation.
217

218 Many of the CpGs were differentially methylated in only a subset of the patients. For
219 instance, the Human Leukocyte Antigen DRB1 (HLA-DRB1) gene was
220 hypomethylated in the antigen-activated T cells from 25% of the subjects, whereas the
221 majority (75%) of the subjects had a normal methylation state similar to the quiescent
222 T cells (Fig.3b). As expected, gene expression levels of HLA-DRB1 were significantly
223 increased in the hypomethylated compared to the normally methylated subjects

224  (Fig.3c). Overall, the prevalence of hypomethylation ranged from 5.9% - 100%, with
11
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225 a mean prevalence of 69.6% (Fig.3d). The prevalence of hypermethylation ranged
226 from 5.8% - 100%, with a mean prevalence of 47.3% (Fig.3e). These results indicated
227  that the antigen-induced response in T cells varied between different individuals.

228

229  We next investigated the genomic distribution of the differentially methylated CpGs.
230  Thirty-nine percent (39.5%) of the CpGs were located at the promoters, and 56.4%
231  were located at introns (Supplementary Fig.1a). Using publicly available chromatin
232  immunoprecipitation-sequencing (ChlP-seq) data of human naive CD4+ T cells, we
233 found that the abnormal DNAme was significantly enriched at active promoters
234  marked by H3K4me3 and H3K27ac, active enhancers marked by H3K4me1, and to a
235 lesser extent, actively transcribed gene bodies marked by H3K36me3
236  (Supplementary Fig.1b). These results demonstrated that EpiMix was able to identify
237 aberrant DNAme at lineage-defining cis-regulatory elements.

238

239 To allow users to investigate the genomic locations and chromatin states associated
240 with the differentially methylated sites, EpiMix enables genome browser-style
241  visualization. We illustrated this functionality with hypomethylation in two regions of
242  the interleukin-receptor gene IL21R (Fig.3f). The first region was located at the
243  promoter, which overlapped with DNase | hypersensitivity sites and activating histone
244  modifications (i.e., H3K4me1, H3K4me3 and H3K27ac). The second region was
245 located at the three-prime untranslated region, enriched with histone modifications
246  marking for active enhancers (i.e., H3K4me1 and H3K27ac). In concordance with this
247 DNA hypomethylation, /IL21R expression levels were significantly increased

248  (Supplementary Table 1, Wilcoxon rank-sum test, P < 3.19E-08).

249
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250 Fig.3 Identifications of differential DNAme resulting from antigen-induced T cell activation. a, Proportions
251 of the hypo-, hyper- and dual methylated CpGs in antigen-activated T cells. The dual methylated CpGs refer to the
252 CpGs that were hypomethylated in some individuals, while hypermethylated in some other individuals. b, Mixture
253  model of a CpG associated with the HLA-DRB1 gene, and ¢, HLA-DRB1 gene expression levels in different
254 mixtures. Red indicates hypomethylation (n = 26), while blue indicates normal methylation (n = 77). Gene
255 expression levels were compared with Wilcoxon rank-sum test. d-e, Density plots showing the prevalence
256 distribution of the d) hypo- and e) hyper-methylated CpGs f, Genome-browser style visualization of the chromatin
257 state, DM values, and transcript structure of the IL21R gene. The hypomethylated CpGs were labeled in red. The
258 differential methylation (DM) value represents the mean difference in beta values between the hypomethylated
259 subjects versus the normally methylated subjects. DM = 0: normal methylation; DM < 0: hypomethylation.

260
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261 ldentification of functional DNA methylation at distal enhancers in food allergy
262

263 To demonstrate the Enhancer mode of EpiMix, we used the same CD4+ T cell
264 dataset?®. In this dataset, 82 human subjects were diagnosed with food allergy and 21
265 subjects were non-allergic controls. The differential response of T cells to antigen-
266 induced activation between different individuals may be associated with the allergic
267  status. We then characterized allergy-associated changes in DNAme by comparing
268 antigen-activated T cells from the allergic patients to those from the non-allergic
269 controls. Using a permutation approach (Supplementary Fig.2 and Methods), we
270 identified 107 differentially methylated enhancers that were functionally linked to the
271 expression of 119 genes. The number of target genes of each enhancer ranged from
272 1 to 3, resulting in 131 significant enhancer-gene pairs (Supplementary Table 3).
273  This result is consistent with the previous studies showing that enhancers typically
274  loop to and are associated with the activation of 1 to 3 promoters?®3°. Of the functional
275 enhancers, 21/107 (19.6%) enhancers associated with 24 genes were
276  hypomethylated, 82/107 (76.7%) enhancers associated with 92 genes were
277  hypermethylated (Fig.4a). This result indicated that there was a global gain of DNAme
278 at enhancers in food allergy.

279

280 The genomic distance between enhancers and their target genes ranged from 4.5 kb
281 to 1.7 Mb, with a median distance of 148 kb (Fig.4b). In a previous study, Jin et al.
282  used high-throughput chromosome conformation capture (Hi-C) assay to investigate
283  promoter-enhancer interactions and demonstrated that approximately 25% of the
284  enhancer-promoter pairs are within a 50 kb range and approximately 57% spans 100

285 kb or greater genomic distance, with a median distance of 124 kb3'. Another study by
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286 Rao et al. showed that the distance between enhancers and promoters spans from 40
287 kb to 3 MB, with a median distance of 185 kb%2. Our data agree with these
288 experimentally generated results. To further characterize the enhancer-gene linkage,
289 we investigated how often did the functional enhancers associate with the nearest
290 gene promoter. We ranked the 20 adjacent genes of each enhancer by their genomic
291  distance to the enhancer. Fig.4c showed that only 6.1% of the times did the enhancer
292  associate with the nearest promoter, whereas the majority of the enhancers skipped

293  one or more intervening genes to associate with promoters farther away. In line with
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294 Fig. 4 Identifications of differentially methylated enhancers associated with food allergy. a, Proportions of
295 the hypo-, hyper- and dual methylated enhancers in children with food allergy. b, Distribution of the linear genomic
296 distance between enhancers and their gene targets. ¢, For each functional enhancer, the 20 adjacent genes were
297 ranked by genomic distance. Bars show the proportions of the functionally linked genes in each rank. d, Mixture
298 model of the LDLR gene (top panel) and LDLR gene expression levels in different mixtures (bottom panel). Red
299 indicates normal methylation (n = 72), while blue indicates hypermethylation (n = 10). Gene expression levels were
300 compared by Wilcoxon rank-sum test. e, Integrative visualization of the chromatin states and the adjacent genes
301 of the hypermethylated enhancer shown in panel d. The genes in the functional CpG-gene pairs are shown in red,
302  while the others are shown in black. f, Enriched TF motifs and odds ratios for the differentially methylated enhancers.
303 To find significantly enriched motifs, we used all the distal CpGs as the background and the functional enhancers
304  asthe targets.
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305 this result, a previous study using the chromosome 5C assay showed that only ~7%
306 of the time did the distal elements loop to the promoter of the nearest gene, whereas
307 the majority of enhancers bypass the nearest promoter and loop to promoters farther
308 away®. These results confirmed that EpiMix identified true distal cis-regulatory events.
309

310 The genes linked to the differentially methylated enhancers were related to the lipid
311 metabolism (LDLR, CAT, LPIN2, SREBF1, PIK3C2B) and T cell activation (CASPS3,
312  MALT, PRKCZ, SMADJ). Fig.4d showed that the enhancer linked to the LDLR gene
313 was hypermethylated in 12.2% of the allergic patients, and the gene expression of
314 LDLR was significantly decreased in the hypermethylated patients. Integrative
315 visualization (Fig.4e) showed that the hypermethylated enhancer overlapped with the
316  Dnase | hypersensitivity site and was enriched with histone modifications marking for
317  active enhancers, including H3K4me1 and H3K27ac, and to a lesser extent, H3K4me3
318 and H3K9ac. The LDLR gene encodes a low-density lipoprotein receptor that
319 transports cholesterol from the blood into the cell, which plays a critical role in
320 regulating T cell lipid metabolism34. Our results suggested that T cells from a small
321  subset of the allergic patients may have an abnormal lipid metabolic profile due to
322  enhancer hypermethylation.

323

324 Enhancers are enriched for sequences bound by site-specific transcription factors
325 (TFs). Hypermethylation of enhancers suppresses gene transcription by decreasing
326 the binding affinity of TFs3%36, We then carried out motif enrichment analysis of the
327 differentially methylated enhancers. We identified significant enrichment of binding
328 sites for Jun-related factors (JUN, JUND), Fos-related factors (FOS, FOSL1, FOSL2,

329 FOSB), BATF-related factors (BATF, BATF3), and Interferon-regulatory factors (IRF2,
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330 IRF5, IRF7) (Fig.4f and Supplementary Table 4). These results agree with the
331 evidence showing that Jun-related factors, BATF-related factors and Interferon-
332  regulatory factors play a critical role in regulating the immune gene activationin T cells,
333 and dysregulation of their activity causes aberrant immune response3’-38. Our results
334 demonstrated that the abnormal DNAme at enhancers affected the target gene

335 response of these TFs and increased the subsequent risk for developing food allergy.

336

337 Identification of methylation-driven miRNAs in human lung cancer

338

339 Similar to protein-coding genes, miRNA-coding genes are transcriptionally regulated
340 by DNAme®¥4. To demonstrate the miRNA mode of EpiMix, we used a lung
341  adenocarcinoma dataset containing DNAme and miRNA expression profiles of 457
342 tumors and 32 adjacent normal tissues*'. The DNAme data were acquired from the
343 HMA450 array, and the gene expression data were obtained from high-throughput
344  microRNA sequencing (miRNA-Seq).

345

346  Both tumors and normal tissues from the lung are composed of multiple cell types,
347  majorly including epithelial cells, fibroblasts, hematopoietic cells and endothelial cells.
348 Studies have shown that DNAme profiles are cell-type specific*?43. When using data
349 collected at the tissue (“bulk”) level for DNAme analysis, the differential DNAme may
350 result from variations in cell-type proportions between different individuals. To resolve
351 the confounding effects from intra-tumoral heterogeneity, we used previously
352 validated computational methods to decompose tissue compositions and to infer cell-
353 type-specific methylomes and transcriptomes (Supplementary Fig. 3 and

354  Methods)*4°. We then applied EpiMix to the deconvoluted data of each individual cell
17
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355 type. In epithelial cells, we identified 272 differentially methylated CpGs functionally
356 associated with the expression of 92 miRNA genes (Fig.5a and Supplementary
357 Table 5). In fibroblasts, we found 12 hypomethylated CpGs functionally associated
358 with the expression of 3 miRNA genes (Supplementary Fig. 4a-b). Although we
359 discovered 9 differentially methylated CpGs in hematopoietic cells and 6 CpGs in
360 endothelial cells, none of the differential DNAme were functionally correlated with
361 gene expression. We further compared the differentially methylated gene lists
362 identified using data from bulk tissues versus the ones using individual cell types. Over
363 80% of the differentially methylated genes identified in epithelial cells could also be
364 identified using data from bulk tissues (Supplementary Fig. 4a-b). These results
365 demonstrated that, although tumors are composed of multiple cell types, the majority
366  of differential methylation events occurred in epithelial cells.

367

368 We next focused our analysis on the deconvoluted data of epithelial cells. Of the 272
369 differentially methylated CpGs, 138 (50.8%) CpGs associated with 66 genes were
370 hypomethylated and 55 (20.2%) CpGs associated with 37 genes were
371 hypermethylated. Sixty-five percent (63.6%) of the functional CpGs were located at
372 the promoters, and this proportion was significantly higher than randomly selected
373 CpGs (Supplementary Fig.1c, Fisher’s exact test, P = 0.003). Using publicly available
374  ChlP-seq data of lung, we further determined that the differentially methylated regions
375 were enriched with histone modifications (i.e., H3K27ac, H3K4me1 and H3K4me3)
376  marking for actively transcribed promoters and enhancers (Supplementary Fig.1d).
377 The prevalence of hypomethylation ranged from 1.1% to 66.7%, with a mean
378 prevalence of 18.0% (Fig. 5b). Similarly, the prevalence of hypermethylation ranged

379 from 2.6% to 83.7%, with a mean prevalence of 24.9% (Fig. 5¢). These results
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380 indicated that the majority of differential DNAme associated with miRNA genes

381  occurred in less than 25% of the patient population.
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382 Fig. 5 Identifications of differentially methylated miRNA-coding genes in human lung cancers. a, Proportions
383 of the hypo-, hyper- and dual methylated CpGs of miRNAs in lung cancer. b-c, Density plots showing the
384  prevalence distribution of the differentially methylated miRNAs in lung cancers (n = 457), (b) prevalence of
385 hypomethylation and (c) prevalence of hypermethylation. d, Mixture model of the MIR30A gene (left panel) and
386 Kaplan-Meier survival curves of patients in different mixtures (right panel). Red indicates normal methylation and
387 blue indicates hypermethylation. Gene expression levels were compared by Wilcoxon rank-sum test. e, Mixture
388  model of the MIR1292 gene (left panel) and Kaplan-Meier survival curves of patients in different mixtures (right
389  panel). Red indicates hypomethylation and blue indicates normal methylation. f-g-h, Network visualization of (f)
390 the gene targets of miR-34a, (g) differentially methylated miRNAs related to the cell cycle pathway, and (h) focal
391 adhesion pathway. Blue squares: miRNAs, green circles: protein-coding genes targeted by miRNAs.

392

393  MicroRNAs play an important role in regulating cell proliferation, invasion and cancer
394 metastasis*®4’. We next investigated whether the DNAme of miRNAs were associated
395  with patient survival. Of the 92 methylation-driven miRNAs, we identified 22 miRNAs

396 whose methylation states were significantly correlated with patient survival
19
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397 (Supplementary table 6, log-rank test, P < 0.05). Half (11/22, 50%) of the survival-
398 associated miRNAs were hypomethylated and the others (11/22, 50%) were
399 hypermethylated. Some of the miRNAs, such as MIR29C*, MIR30A*°, MIR34A%° and
400 MIR148A%", were known to be associated with lung cancer survival. For instance,
401  MIR30A, a tumor suppressor miRNA?*°, was hypermethylated in 8.6% of the patients,
402 and the hypermethylated patients showed a significantly worse survival than the
403 normally methylated patients (Fig.5d, Hazard Ratio = 1.50, P = 0.001). In addition,
404  EpiMix identified many new survival-associated miRNAs. For instance, MIR1292 was
405 hypomethylated in 8.6% of the patients, and the hypomethylated patients showed
406  significantly worse survival (Fig.5e, Hazard Ratio = 1.39, P = 0.0008). These results
407 demonstrated that EpiMix was able to identify survival-associated miRNAs that were
408 differentially methylated in only small subsets of the patients, and this feature can be
409 used to discover novel epigenetic biomarkers for prognosis.

410

411 To gain systematic insight into the biological functions of the methylation-driven
412  miRNAs, we queried miRTarBase® to obtain experimental validated target genes of
413 the miRNAs. We then performed pathway analyses of the target gene list. The
414  differentially methylated miRNAs were related to Wnt signaling pathway, cell cycle,
415  p53 signaling, focal adhesion and apoptosis (Fig.5f-h and Supplementary Table 7).
416  These results provided mechanistic insights into how abnormal DNAme of miRNAs
417  was involved in the development and progression of lung cancer. The data also
418  suggested that targeting miRNA expression can be a therapeutic strategy to inhibit
419  tumor progression and to improve patient survival.

420

421  Identification of methylation-driven IncRNAs in human lung cancer
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422

423  To demonstrate the IncRNA mode of EpiMix, we used the same lung adenocarcinoma
424  dataset*', and we aimed to identify differentially methylated IncRNA genes in tumors
425 compared to normal tissues. Compared to protein-coding genes, INcRNAs are shorter,
426 lower-expressed, less evolutionarily conserved, and expressed in a more tissue-
427  specific manner®3. To precisely quantify INcRNA expression from RNA-Seq, we used
428  our previously developed pipeline®*. With this pipeline, we combined the transcriptome
429  annotations from GENCODE and NONCODE®®. Raw sequencing reads were aligned
430 to the combined transcriptome reference and quantified using the Kallisto-Sleuth
431  algorithm®6:%7. Using this pipeline, we were able to detect the expression of 2,475
432  IncRNAs in both tumors and normal tissues. This number was three times higher
433 compared to the IncRNAs detected by the traditional STAR-HTSeq pipeline. We then
434  computationally deconvoluted bulk DNAme data and IncRNA expression data to cell-
435 type-specific data (Supplementary Fig. 3). Since over 95% of the functional
436 differential DNAme was found in epithelial cells (Supplementary Fig. 4c-d), we next
437 focused our analysis on epithelial cells.

438

439 EpiMix identified 397 CpGs functionally associated with the expression of 132
440 IncRNAs in epithelial cells (Fig.6a and Supplementary Table 8). Of these CpGs, 146
441  (36.8%) CpGs associated with 69 genes were hypomethylated and 187 (47.1%) CpGs
442  associated with 73 genes were hypermethylated. Seventy-two percent (72.0%) of the
443  functional CpGs were located at the promoters, and this proportion was significantly
444  higher than randomly selected CpGs (Supplementary Fig.1e, Fisher's exact test, P

445 < 0.0001). The differentially methylated regions were enriched with histone
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446  modifications marking for actively transcribed promoters and enhancers, including
447  H3K27ac, H3K4me1 and H3K4me3 (Supplementary Fig.1f).

448

449  The majority of differential methylation was identified in less 50% of the patients. The
450 prevalence for hypomethylation ranged from 1.8% to 53.0%, with a mean value of 19.8%
451  (Fig.6b). Similarly, the prevalence for hypermethylation ranged from 0.6% to 68.2%,
452  with a mean value of 18.9% (Fig.6c). For instance, one of the hypermethylated
453  IncRNAs was LINC00881. LINC00881 was hypermethylated at CG11931463in 15.7%
454  of the patients and CG00673344 in 7.9% of the patients (Fig.6d). Both CpGs were
455 located within the promoter (Fig.6e). Integrative analysis with clinical data showed that
456  LINCO00881 hypermethylation was associated with significantly worse patient survival
457  (Figs.6f, log-rank test, P < 0.001). These data demonstrated that many IncRNAs were
458 differentially methylated in only a subset of the lung cancer patients. In addition, EpiMix
459  was able to identify survival-associated IncRNAs that were differentially methylated in
460 small patient subsets.

461

462  One of the major outputs from EpiMix is a differential methylation or “DM” value matrix,
463 which reflects the homogeneous subpopulations of samples with a particular
464  methylation state (Fig.6g). An application of the DM value matrix is to identify DNAme-
465 associated subtypes, where patients are clustered into robust and homogenous
466 groups based on their differential DNAme profiles. Using unsupervised consensus
467 clustering, we discovered five DNAme subtypes (S1-S5) (Fig.6h). S5 contained a
468  significantly higher proportion of females (89/133 = 66.9%) compared to S1 (54/120 =
469 45.0%), S2 (36/74 = 48.6%) and S4 (16/50 = 32.0%) (Fig.6i, Fisher’'s exact test, P <

470 0.01). In addition, patients from S5 had significantly better survival than patients of S2
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471  (Fig.6j, log-rank test, P = 0.007). We benchmarked the clustering results from using
472 the DM value matrix versus using the raw DNAme data (beta values) of the
473  differentially methylated CpGs. The patient subsets identified using raw DNAme data
474  had low cluster consensus (Supplementary Fig.5), and no significant association was
475 found between patient subsets and survival outcome. These results demonstrated that
476 the DNAme subtypes discovered by EpiMix had prognostic values.

477

478 To investigate the biological functions of the differentially methylated IncRNAs, we
479  utilized ncFANs, a functional annotation tool for INcRNAs®. We identified 4,552
480 protein-coding genes functionally associated with 76 IncRNAs. GO analysis showed
481 that the protein-coding genes were primarily associated with DNA replication, cell
482  cycle and regulation of cell activation (Fig.6k and Supplementary Table 9). These
483 results indicated how differential methylation of IncRNAs were involved in the

484  regulation of lung cancer development and progression.
485
486

487
488
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490 Fig. 6 Identifications of differentially methylated IncRNA-coding genes in human lung cancers. a,
491 Proportions of the hypo-, hyper- and dual methylated CpGs of IncRNA genes in epithelial cells from lung cancers
492 compared to normal tissues. b-c, Density plot showing the prevalence distribution of the (b) hypo- and (c) hyper-
493 methylated IncRNAs in the lung cancer cohort (n = 457). d, Mixture models of the LINC00881 gene at two different
494 CpG sites. Red indicates normal methylation and blue indicates hypermethylation. e, Integrative visualization of
495 the transcript structure, DM values and chromatin state associated with the LINC00881 gene. DM = 0: normal
496  methylation; DM > 0: hypermethylation. f, Kaplan-Meier survival curves of patients in the normally methylated and
497 the hypermethylated mixtures. Red indicates normal methylation and blue indicates hypermethylation. g,
498 Schematic representation of the DM value matrix. The rows correspond to CpG sites, and the columns correspond
499 to patients. DM values represent the mean differences in DNAme levels between patients in each mixture
500 component identified in the experimental group compared to the control group. At each CpG site, patients in the
501 same mixture component have the same DM values. DM < 0: hypomethylation, DM = 0: normal methylation, DM >
502 0: hypermethylation. h, Consensus matrix showing patient clusters based on the DM values of IncRNAs. i,
503 Proportions of male and female patients in different patient clusters (n1 =120, n2=74,n3 =72, n4 =50, n5 = 133).
504 j, Kaplan-Meier survival curves of patients in different patient clusters. k, Top 20 enriched GO terms of the
505 methylation-driven IncRNAs in lung cancer. DM: differential methylation.

506

507 Discussion

508
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509 In this study, we present EpiMix, a comprehensive analytic framework for population-
510 level analysis of DNAme and gene expression. We packaged the EpiMix algorithms
511 in R, enabling end-to-end DNAme analysis. To enhance the user experience, we also

512 implemented a web-based application (https://epimix.stanford.edu) for interactive

513 exploration and visualization of EpiMix’s results (Fig.7). EpiMix contains diverse
514  functionalities, including automated data downloading, preprocessing, methylation
515 modeling and functional analysis. The seamless connection of EpiMix to data from the
516 TCGA program and the GEO database enables DNAme analysis on a broad range of
517 diseases. Here, we showed that EpiMix identified novel methylation-driven pathways
518 in food allergy and lung cancer. However, EpiMix is not limited to these disease areas

519 and can be easily applied to any other diseases.

. . .
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520 Fig. 7 Screenshots of the EpiMix web application. a, Interactive data filters and visualization of functional CpG-
521 gene pair matrix. b, Visualization of the mixture model of the SLC16A4 gene in lung cancer. ¢, Genome-browser
522 style visualization of the IncRNA gene LINC00881 in lung cancer. d, Kaplan-Meier survival curves of patients with
523  different methylation states of the miRNA gene miR-34a in lung cancer.
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524  EpiMix uses a beta mixture model to decompose the DNAme profiles in a patient
525 population. Using EpiMix, we can resolve the epigenetic subtypes within the patient
526  population and pinpoint the individuals carrying differential DNAme profiles. In this
527  study, we identified five DNAme subtypes in lung cancers using the DM values of
528 IncRNAs. Patients of subtype 2 had worse survival than patients of subtype 5,
529 indicating that the DNAme subtypes discovered by EpiMix had prognostic values. The
530 Dbiological interpretation of DNAme subtypes requires the integration of data from other
531  modalities, such as genetic mutations, lifestyle history, and other etiological features.
532

533 In addition, EpiMix was able to detect abnormal DNAme that was present in only small
534  subsets of a patient cohort. In our simulation study, EpiMix detected more differentially
535 methylated CpGs compared to existing methods, when the differential methylation
536  occurred in only a small patient subset. Using the real lung cancer dataset (n = 457),
537 we identified miRNAs that were differentially methylated in only 1.1% of the patient
538 population and IncRNAs differentially methylated in 0.6% of the patient population. We
539 showed that over half of the miRNAs and IncRNAs were differentially methylated in
540 only less than 20% of the patients. This unique feature of EpiMix to detect differential
541  DNAme in small patient subsets enables us to identify novel epigenetic mechanisms
542  underlying disease phenotypes. It can also be used to discover new epigenetic
543  biomarkers and drug targets for improving personalized treatment.

544

545  Another feature of EpiMix is its ability to model DNAme at functionally diverse genomic
546 elements. This includes cis-regulatory elements within or surrounding protein-coding
547  genes, distal enhancers, and genes encoding miRNAs and IncRNAs. To model

548 DNAme at distal enhancers, we selected the enhancers from the ENCODE and
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549 ROADMAP consortiums, in which enhancers of over a hundred human tissues and
550 cell lines were identified using the chromatin-state discovery (ChromHMM)®°. Since
551 enhancers are cell-type specific, EpiMix allows the users to select enhancers of
552  specific cell types or tissues. In this study, we selected the enhancers of human blood
553 and T cells, leading to the discovery of 40,311 CpG of enhancers. In addition to
554  enhancers, many other regulatory elements were identified from the ROADMAP
555  studies®®. These include active transcription start site proximal promoters, zinc finger
556  protein genes, bivalent regulatory elements, polycomb-repressed regions and many
557  others. By customizing the “chromatin state” parameter of EpiMix, users can target the
558 DNAme analysis to any of these regulatory modules.

559

560 Despite the critical biological functions of non-coding RNAs, there are no existing tools
561 that specifically analyze DNAme regulating their transcription. To analyze DNAme of
562 miRNA genes, we utilized the miRNA annotation from miRBase, the largest and
563 consistently updated knowledge base of miRNAs®. In addition, we selected CpGs at
564  miRNA promoters by using a recent database that integrates the information of miRNA
565 TSSs from 14 genome-wide studies across different human cell types and tissues®".
566  This led to the discovery of 17,192 CpGs associated with 1,484 miRNAs in the HM450
567 array and 23,379 CpGs associated with 1,759 miRNAs in the EPIC array. With miRNA-
568 Seq data provided, EpiMix can select differential DNAme that was associated with
569  miRNA expression. Different from profiling protein-coding gene expression, measuring
570 miRNA expression requires special library preparation strategies that capture small
571  RNAs from total RNAs®?. Users are preferentially needed to supply miRNA expression
572  data obtained from proper library preparation strategies.

573

27


https://doi.org/10.1101/2023.01.03.522660
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.03.522660; this version posted January 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

574  Similarly, custom methods are needed to accurately quantify IncRNA expression from
575 RNA-Seq. We adopted the data processing pipeline developed from our previous
576  study®*. With this pipeline, we combined the transcriptome annotations from
577 GENCODE and NONCODE. Raw sequencing reads were aligned to the combined
578 transcriptome reference and quantified using the Kallisto-Sleuth algorithm®6:57. Using
579 this pipeline, we detected the expression of over 2,400 IncRNA genes. In this study,
580 we have used our pipeline to generate INcCRNA expression profiles for all the cancers
581 in the TCGA database, and users can retrieve these data with EpiMix. Note, if users
582  plan to use EpiMix on non-TCGA datasets, they are encouraged to use this pipeline
583 to profile IncRNA expression.

584

585  Future work will aim to extend the use of EpiMix to whole-genome bisulfite sequencing
586 and to further improve the scalability. Furthermore, the rapid development of single-
587  cell technologies enables co-assay of DNAme and gene expression in thousands of
588 cells. EpiMix can be used to identify differential DNAme that was present in only small
589 subsets of a cell population. Therefore, a joint analysis of single cell methylome and
590 transcriptome holds great promise for substantiating our goals, and the analytical
591  framework presented here will be a valuable component for future research and
592  applications.

593

s04 Methods

595

596 Data downloading

597
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598 The downloading module enables automated data downloading from the GEO
599 database and TCGA project. Alternatively, users can supply custom datasets
600 generated from their own studies. To retrieve data from GEO, we utilized the getGEO
601  function from the GEOquery R package (version 2.62)%. In this study, we downloaded
602 DNAme data and gene expression data using GEO accession number GSE114135.
603 The DNAme data were beta values ranging from 0 to 1, representing the proportion of
604 the methylated signal to the total signal. The gene expression data were TMM values.
605 Other formats of gene expression data are also acceptable (e.g., RPKM, TPM, FPKM
606 etc.). To retrieve data from TCGA, we used the Broad Institute Firehose tool
607 (Firehose)®. We downloaded level three DNAme data and gene expression data. The
608 downloaded data have been preprocessed for several steps, including removing
609 problematic rows, removing redundant columns, reordering the columns and sorting
610 the data by gene name. With the Regular mode, we used log-transformed RSEM
611  values. With the miRNA mode, we used the pri-miRNA expression data with log-
612 transformed RPKM values.

613

614 Preprocessing

615

616  The majority of datasets obtained from the TCGA and GEO databases have already
617 been preprocessed for a few steps. EpiMix’s contribution to preprocessing includes
618 missing value imputation, removal of single-nucleotide polymorphism (SNP) probe
619 and batch effect correction. Users can also select to remove CpGs on sex
620 chromosomes. We then removed CpGs and samples with more than 20% missing
621 values, and imputed missing values on the remaining dataset using the k-nearest

622  neighbor (KNN) algorithm with K = 15.
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623

624 Data from large patient cohorts were typically collected in technical batches.
625 Systematic variances between technical batches may affect downstream data
626 analysis and interpretation. To correct batch effects, we implemented two alternative
627 approaches: (1) an anchor-based data integration approach adapted from the Seurat
628 package (version 4.0.1)% and (2) an empirical Bayes regression approach, Combat®®.
629 The anchor-based approach uses canonical correlation analysis and mutual nearest
630 neighbors to identify shared subpopulations (termed “anchors”) across different
631 datasets and then uses a non-linear transformation to integrate the data. To identify
632 the anchors, we used the “vst” method to select the top 10% variable features.
633 Effective batch effect removal was confirmed using the PCA-based ANOVA analysis.
634  Alternatively, the batch effect can be corrected with the Combat algorithm>8. We found
635 that the anchor-based approach was more time efficient compared to the Combat.
636 When tested on the lung cancer dataset, the former approach completed the batch
637  correction within 2 hours, whereas the Combat consumed more than 48 hours.

638

639 CpG annotation and filtering

640

641  Regular mode

642

643 The Regular mode aims to model DNAme at cis-regulatory elements within or
644 immediately surrounding protein-coding genes. We paired each CpG site to the
645 nearest genes based on the hg38 manifest generated from Zhou et al.6”. Unique CpG-
646 gene pairs were identified, where a CpG was either within the gene body or at the

647 immediately surrounding area. Users can restrict the analysis to the promoters,
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648 defined as 2 kb upstream and 500 bp downstream (-2000bp ~ +500bp) of the
649 transcription start sites (TSSs). TSS information was retrieved from Ensembl using the
650 biomaRt R package (version 2.50.1)%8,

651

652  Enhancer mode

653

654  The Enhancer mode aims to model DNAme specifically at distal enhancers. Therefore,
655 we selected the distal CpGs that were at least 2 kb away from any known TSSs. Users
656 can customize this distance based on their needs. To select the CpGs within
657 enhancers, we used the enhancer database established from the ENCODE and
658 ROADMAP consortiums, in which enhancers of over a hundred human tissues and
659 cell lines were identified using the chromatin-state discovery (ChromHMM)%°. We
660 looked for the DNA elements associated with the chromatin states of active enhancers
661 (“EnhA1” and “EnhA2”) and genic enhancers (‘EnhG1” and “EnhG2”). Since
662 enhancers are cell-type specific, EpiMix allows users to select enhancers of specific
663  cell types or tissue groups. In this study, we selected the enhancers of human blood
664 and T cells, leading to the discovery of 40,311 CpGs of enhancers. For each CpG, we
665 retrieved 20 nearby genes as candidate genes targets. This gene number was
666 determined by the previous studies showing that many of the enhancers can regulate
667 a gene within a 10-gene distance?®®°7°, Genes that are positively regulated by the
668 enhancers should have a negative relationship between DNAme and gene
669 expression3®7172 Therefore, we performed a one-tailed Wilcoxon rank-sum test on
670 each enhancer-gene pair to select the enhancers whose methylation states were
671 inversely associated with the gene expression. The raw P value from the Wilcoxon

672 rank-sum test was adjusted using a permutation approach’3, where an empirical P
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673 value was determined by ranking the raw P value in a set of permutation P values from
674 testing the expression of a set of randomly selected 1,000 genes (Supplementary
675 Fig.2).

676

677 miRNA mode

678

679 MicroRNAs are commonly classified into “intergenic” or “intronic” based on their
680 genomic locations. Intergenic miRNAs are found at previously unannotated human
681 genome and are transcribed from their own unique promoters as independent entities.
682 In contrast, intronic miRNAs are believed to share promoters with their host genes and
683 co-transcribed from respective hosts. Recent evidence shows that some intronic
684 miRNAs can also be transcribed independently from their host genes, suggesting they
685 have their own independent promoters’. To select CpGs associated with miRNAs,
686 we used a combined strategy. First, we obtained the most recent annotation of
687 miRNAs from miRBase (version 22.1)%°. For each miRNA gene, we selected CpGs
688 that were located within 5 kb upstream and 5 kb downstream. Second, we selected
689 CpGs at miRNA promoters by using a recent database that integrates miRNA TSS
690 information from 14 genome-wide studies across different human cell types and
691 tissues®'. We included CpGs located with miRNA promoters defined as 2000 bp
692 upstream and 1000 bp downstream of the TSSs. This combined feature selection
693  strategy resulted in the discovery of 17,192 CpGs associated with 1,484 miRNAs in
694 the HM450 array and 23,379 CpGs associated with 1,759 miRNAs in the EPIC array.
695

696 IncRNA mode

697
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698  The mechanisms for transcriptional regulation of IncRNAs are similar to protein-coding
699 genes. We first selected IncRNA-coding genes using the GENCODE annotation
700 (Version 36). We then selected CpGs associated with each IncRNA based on the
701 hg38 manifest generated from Zhou et al.?’. Unique CpG-gene pairs were identified,
702 where a CpG was either located within the gene body or at the immediately
703  surrounding area. This resulted in the discovery of 98,320 CpGs associated with
704 11,280 IncRNAs in the HM450 array and 184,816 CpGs associated with 15,392
705 IncRNAs in the EPIC array. Alternatively, users can select to focus the analysis at
706  IncRNA promoters, defined as 2 kb upstream and 500 bp downstream (-2000bp ~
707  +500bp) of the TSSs. The TSS information was retrieved from Ensembl using the
708  biomaRt R package (version 2.50.1)%8,

709

710 CpG site clustering and smoothing (optional features)

711

712 Clustering

713

714  Modeling the DNAme at all individual CpG sites can be computationally expensive. In
715  addition, it can also lead to overfitting of DNAme data in identifications of patient
716  subsets. Since the DNAme at adjacent CpGs are strongly correlated, we implemented
717  an optional feature that allows users to group the correlated CpGs into CpG clusters.
718  First, we used the average linkage hierarchical clustering algorithm to cluster CpGs of
719 a single gene into clusters. Then we cut off the hierarchical tree at a Pearson
720 correlation threshold of 0.4 to define CpG clusters and single CpG sites when they do
721  not correlate with other sites. For each CpG site cluster, we used the mean levels of

722 DNAme of the CpGs to represent the cluster DNAme, resulting in potentially multiple
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723  CpG site clusters representing a single gene. The DNAme modeling can then be
724  performed at each separate CpG site or CpG site cluster.

725

726  Smoothing

727

728 Smoothing is another technique frequently used in removing noise and increasing
729 statistical power in analyzing whole-genome bisulfite sequencing data®. This
730 technique estimates localized DNAme levels using data of adjacent CpGs at a user-
731  specified genomic window. EpiMix allows users to smooth the DNAme data using local
732  likelihood smoothing”™. Since the number of CpGs is lower in array-based data than
733 in bisulfite sequencing data, using smoothing on array-based data should be taken
734 with cautions.

735

736  Methylation modeling

737

738  After preprocessing, the methylation data are beta values bounded between 0 and 1,
739  representing the proportion of the methylated signal to the total signal. When the study
740 population is large, the beta values can be assumed to come from multiple underlying
741 probability distributions, in our case, beta distributions. To model the DNAme, we fit a
742  beta mixture model to the methylation values at each CpG site (or CpG site cluster).
743  Let y; denote the beta value from subject i at a CpG site, where i € {1,...,n}, and n
744  represents the total number of subjects. Let k denote the class membership of subject
745 i,where k € {1, ...,K}, and K represents the total number of components in the mixture.
746 Assume subject i belongs to component k with probability 7,, we will have YX_, n, =

747 1. Subsequently, the likelihood contribution from subject i is:
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(1 — y) Pt
B(ay, Bi)

K
y
748 fi=y)= an
k=1

749
750  where B(ay, ) = folt“k‘l(l — t)Px=1 dt is the beta function. Since the population

751  contains n subjects, the log-likelihood for the complete dataset is

752 ) = ) log {f (¥ = y))

753  The goal of our modeling is to estimate the «a, 8,7 parameters of each component that
754  Dbest fit the methylation values. Let 6 = {ay, 1,11 ..., Br,nx} be a vector of
755 parameters that define the shape of each component in the mixture. We used the
756  expectation—-maximization (EM) algorithm?® to iteratively maximize the log-likelihood
757 and update the conditional probability that y; comes from the k th component.

758

759  To determine the best number of components K, we used The Bayesian Information

760  Criterion (BIC) for model selection and to avoid overfitting:

761 BIC =log(n) (3K) — 2 X Zlog {(fY; = yi)}

762  This process involves iteratively adding a new mixture component if the BIC improves.
763 Each mixture component represents a subset of samples for whom a particular
764 DNAme state is observed.

765

766 ldentifications of differentially methylated CpGs

767

768  If data of a control group are provided, we can determine whether a CpG site (or CpG
769  site cluster) was hypo- or hyper-methylated by comparing its methylation levels in the
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770  experimental group to its counterpart in the control group. We first performed beta
771 mixture modeling on each CpG site (or CpG site cluster) to identify the mixture
772  components using data from the experimental group, and the methylation levels of
773  each of the mixture components were compared to the mean methylation levels of the
774  control group. This methodology is based on the assumption that the DNAme profile
775 is heterogenous across different subjects in the experimental (i.e., disease) group but
776  is homogenous in the control group. For instance, the DNAme profile is expected to
777  be different across cancer patients due to the difference in subtypes or driver
778  mutations, but in normal tissues the DNAme should be relatively homogenous. In
779  addition, the number of subjects in the experimental group is typically higher than the
780 control group (e.g., TCGA projects). To determine the significant difference between
781  the experimental and the control group, we used a Wilcoxon rank-sum to calculate the
782  P-value, and multiple comparison was corrected with the false discovery rate (FDR).
783  The Q-value threshold was set to 0.05. In addition, we required a minimum difference
784  of 0.10 based on the platform sensitivity reported previously’”.

785

786 Ildentifications of differential DNAme that was associated with transcription

787

788  If sample-matched gene expression data are provided, we can select the CpGs whose
789  methylation states were significantly associated with gene expression. In this study,
790 we focused on the identification of DNAme that represses gene expression. However,
791 users have the option to identify DNAme that is positively correlated with gene
792  expression. For each CpG-gene pair, we used a one-tailed Wilcoxon rank-sum test to
793 compare the mean levels of gene expression in patients showing an abnormal

794  methylation state (hypo- or hyper-methylation state) to those with a normal methylation
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795 state. If a CpG was hypomethylated, we examined that the hypomethylated patients
796 have higher gene expression levels compared to the normally methylated patients.
797 Vice versa, if a CpG was hypermethylated, we tested that the hypermethylated
798 patients have lower gene expression levels compared to the normally methylated
799 patients. If a CpG was dual methylated (i.e., some samples were hypomethylated,
800 while some others were hypermethylated), we tested that the hypomethylated patients
801  have higher gene expression levels compared to the hypermethylated patients. Since
802 a gene is typically paired with multiple CpGs, we adjusted the P-value using FDR to
803  correct multiple comparisons. To select functionally significant CpG-gene pairs, we set
804 the maximum threshold of the adjusted P-value to 0.01.

805

806 Simulation study

807

808 The goal of the simulation studies was to assess the sensitivity of EpiMix to detect
809 differential DNAme present in only specific subsets of a population. The studies were
810 performed by creating synthetic CpG sites and synthetic populations. First, we filtered
811  CpGs showing statistically similar DNAme levels that fit a unimodal beta distribution
812  from the activation group and from the quiescent group (n = 103 samples per group).
813  We then randomly sampled a subset of CpGs (n = 300) from the quiescent group as
814 the baselines. The average DNAme levels (beta values) of the CpGs in the baseline
815 group ranged from 0.1 to 0.9, with a mean DNAme level of 0.6. Second, since the
816  magnitude of changes in DNAme levels can be a critical factor affecting sensitivity, we
817 created synthetic CpGs. For each CpG of the baseline group, we paired it with a
818 subset of CpGs from the activation group, such that the differences in the mean beta

819 values (4beta) between the the activation group and the baseline group ranged from
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820 0.1 to 0.7, where Abeta € {0.10,0.15,0.20,0.25,0.30,0.40,0.50,0.60,0.70} . This
821 resulted in a total of 2,700 synthetic CpGs. Third, since our goal was to detect
822  differential DNAme that was present in only a subset of the population, we created
823  synthetic populations. For each synthetic CpG, we controlled the number of samples
824  from the activation group to be combined with the baseline group, such that the final
825  proportion (P) of samples from the activation group in the combined datasets ranged
826 from 0.01 to 0.50, where P €
827 {0.01,0.02,0.05,0.08,0.10,0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45,0.50} . Finally, we ran
828 the EpiMix algorithm on each synthetic CpG and assessed whether it could pick up
829 the differentially methylated signals in the synthetic populations.

830

831 Benchmark with existing methods

832

833 We benchmarked the performance of EpiMix with other existing methods, including
834  Minfi'?, iEVORA?” and RnBeads'2%%.

835

836  Minfi includes a differential methylation step based on an F-test. We first transformed
837 beta values to M values, and the differential methylation analysis was performed with
838 the dmpFinder function. We set the significant P-value and Q-value thresholds to 0.05.
839

840 IEVORA is a two-step algorithm that selects differentially variable and differentially
841 methylated CpGs. The first step is to identify differentially variable CpGs using a
842 Bartlett’'s test. The Bartlett’'s test assesses the equity of variances between the
843 experimental and the control group. If in the experimental group, there are samples

844  showing large differences (outliers) in DNAme versus other samples, the Bartlett’s test
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845 can detect such abnormality. The second step is to select the differentially variable
846 CpGs that were also differentially methylated. The differential methylation analysis is
847 performed by comparing the mean levels of DNAme of all the samples in the
848 experimental group to the control group. We used the default parameters of the
849 functions, with a Q-value (FDR) threshold of 0.001 for testing differential variability and
850 P-value threshold of 0.05 for testing differential methylation means. In our stimulation
851 studies, we found that iEVORA was able to identify differentially variable CpGs even
852  when the abnormal methylation was present in only a small subset of the experimental
853  group. However, since the algorithm does not identify which subjects were abnormally
854 methylated, and in the differential methylation step, it still compares the mean levels
855 of DNAme of the entire experimental group to the control group, the differential
856 methylation test could not generate statistically significant results.

857

858 RnBeads uses hierarchical linear models as implemented in the limma package to
859 identify differential methylated CpGs. We set the differential methylation P-value
860 threshold to 0.05.

861

862 Imputation of cell-type-specific DNAme and gene expression data

863

864 DNAme and gene expression are known to be cell-type specific. When the DNAme
865 were measured at the tissue (“bulk”) level, the differential DNAme profiles between
866  patient subjects may result from the differences in tissue compositions. From a clinical
867  perspective, tissue composition is meaningful in classifications of tumor subtypes and
868  prediction of treatment response. However, from a biological perspective, users may

869 be interested in identifying the differential DNAme present in specific cell types. EpiMix
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870 focuses on the identification of differential DNAme across patient individuals. To
871  resolve the confounding effect from tissue heterogeneity, we used previously validated
872 algorithms to infer cell-type proportions and cell-type specific methylomes and
873 transcriptomes (Supplementary Fig.3). First, we used CIBERSORTx*, a reference-
874 based computational algorithm, to estimate cell-type proportions from bulk gene
875 expression data in each tumor and normal tissue, and deconvolute bulk gene
876  expression data into cell-type specific signals. This method leveraged the established
877 signature gene expression matrices for experimentally purified cells from normal
878 tissues and lung cancers®. Second, we used Tensor Composition Analysis (TCA)*
879 to deconvolute bulk DNAme data into cell-type-specific data based on the estimated
880 cell-type proportions in each tissue. The output from TCA was the methylome of each
881  cell type in each individual. In addition to these methods, users can leverage other
882  existing tools to adjust the effects from tissue compositions before inputting the data
883  to EpiMix"8-83,

884

885 Genomic distribution of the differentially methylated CpGs

886

887  Genomic coordinates of the TSSs of the methylation-driven genes were retrieved from
888 Ensembl using the biomaRt R package (version 2.50)%. Exons and Introns of the
889  protein-coding genes were retrieved from the TxDb object
890 (TxDb.Hsapiens.UCSC.hg38.knownGene) (version 3.14)%. The GenomicRanges R
891 package (version 1.46)%° was used to identify the differentially methylated CpGs
892 located within promoters, exons and introns.

893

894  Motif enrichment analysis
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895

896 TF binding motifs were retrieved from HOCOMOCO, a comprehensive database for
897 TF binding sites®. HOMER (Hypergeometric Optimization of Motif EnRichment) was
898 used to find motif occurrences in a +250bp region around each differentially
899 methylated regions (DMRs). We then combined all the DMRs to identify enriched
900 motifs. Enrichments were quantified using Fisher's exact test and multiple
901  comparisons were adjusted with the Benjamini-Hochberg procedure. To calculate the
902 enrichment Odds Ratio, we used all the distal CpGs as the background probes and
903 the functional CpGs of enhancers as the target probes. We set the significant P value
904  cutoff to 0.05 and the smallest lower boundary of 95% confidence interval for Odds
905 Ratio to 1.1. The enrichment analysis was performed using the get.enriched.motif
906 function from the ELMER library (version 3.14) in R'.

907

908 Enrichment analysis of chromatin modifications

909

910 Enrichment analysis of histone modifications at the DMRs was performed using the
911  Genomic Hyperbrowser GSUITE of tools®”. A suite of tracks representing different
912 chromatin features for human naive T cells (Epigenome ID: E038) and lung
913 (Epigenome ID: EO096) were retrieved from the ENCODE and ROADMAP
914  consortiums®®. To determine which tracks in the suite exhibit the strongest similarity
915 by co-occurrence to the DMRs, the Forbes coefficient was used to obtain rankings of
916 tracks, and Monte Carlo simulations were used to define a statistical assessment of
917 the robustness of the rankings using randomization of genomic regions covered by
918 the entire HM450 or EPIC array, and compute test statistics.

919
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920 Functional enrichment analysis

921

922  Protein-coding genes

923

924  EpiMix provides an user interface to the enrichGO and enrichKEGG functions of the
925 clusterProfiler R package (version 4.2.1)8. This enables gene set analysis of the
926 methylation-driven genes using the gene ontology (GO) and KEGG datasets. Over-
927 represented biological pathways in the methylation-driven genes were identified using
928 the hypergeometric testing®. Enrichment results can be retrieved in a tabular format
929 or visualized in several different ways. To perform the GO analysis, we set the
930 significant P value to 0.05 and Q value to 0.20. Highly similar GO terms were removed
931  with a cutoff P value of 0.60 to retain the most representative terms.

932

933 miRNAs

934

935 To obtain the target genes of the differentially methylated miRNAs, we queried
936 miRTarBase with the miRnetR package®. Of the 144 differentially methylated miRNAs
937 in lung cancer, we identified 7,088 target protein-coding genes of 26 miRNAs. We
938 simplified this network by selecting the genes that were targeted by at least five
939 miRNAs. KEGG pathway analysis was then performed on the miRNA target genes
940  with hypergeometric testing.

941

942 IncRNAs

943

42
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944  To carry out functional annotation and pathway analysis of the differentially methylated

945 IncRNAs, we used the ncFANs V2.0 server (http://ncfans.gene.ac/)®®. The genes in

946 the significant CpG-gene pair matrix generated from EpiMix can be directly used as
947 aninputto ncFANs. NcFANs assigns the functions of protein-coding genes to IncRNAs
948  based on pre-built co-expression networks in various normal tissues and cancers. We
949  used the co-expression network built in the lung adenocarcinoma dataset from TCGA,
950 and we set the correlation coefficient between INcCRNAs and proteins-genes to 0.4 and
951 the cutoff of the topological overlap measure similarity to 0.01.

952

953 Biomarker identification and survival analysis

954

955  Patient clinical data were retrieved from TCGA using the Firehose tool®. Alternatively,
956 users can provide EpiMix with survival data if using their own datasets. We selected
957 the CpGs with at least two methylation states. For each CpG, we fit a Cox proportional
958 hazards regression model to assess the effect of methylation states on patient survival
959 time. The log-rank test was used to compare the survival curve and to calculate the
960 significant P-value. P < 0.05 was considered as significant. The Kaplan-Meier survival
961 plots were generated with the survminer R package (version 0.4.9).

962

963 Genome browser-style visualization

964

965 EpiMix enables genome browser-style visualization of the genomic coordinates and
966 chromatin states of the differentially methylated genes and regions. We implemented
967 two different forms of visualization. The gene-centric form shows the DM values of all

968 the CpGs associated with a specific gene (e.g., Fig.3f). The CpG-centric form shows
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969 adifferentially methylated CpG and its upstream and downstream genes (e.g., Fig.4e).
970 Users can specify the number of nearby genes to display. Genes whose expression
971 levels were significantly associated with the DNAme levels of the CpG are shown in
972  red.

973

974 DNase | sensitivity and histone modification levels were retrieved from the ENCODE
975 and ROADMAP consortiums®. By providing the Epigenome ID, users can retrieve
976 data corresponding to the investigated tissue or cell type. In this study, we extracted
977 the chromatin features for human naive T cells (Epigenome ID: E038) and fetal lung
978 (Epigenome ID: E088). The genomic coordinates (X-axis) were established on the
979 hg19 genome built, and the enrichment signal (Y-axis) represents negative log10 of
980 the Poisson P-values. Human transcript annotation was retrieved from the TxDb object
981  (TxDb.Hsapiens.UCSC.hg19.knownGene) (version 3.2.2)%. The genomic coordinates
982 of the adjacent genes of the differentially methylated CpGs were retrieved from
983 Ensembl using the biomaRt R package (version 2.50.1)8. The visualization was
984 implemented with the karyoploteR package (version 1.20.0)°".

985

986 Identifications of DNAme subtypes

987

988 DNAme subtypes can be discovered by applying consensus clustering to the DM-
989 value matrix, where patients were clustered into robust and homogenous groups
990 (putative subtypes) based on their abnormal methylation profiles. Consensus
991 clustering was performed with the ConsensusClusterPlus R package (version

992 1.58.0)%. We used 1,000 rounds of k-means clustering and a maximum of K=10
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clusters. Selection of the best number of clusters was based on the visual inspection

of ConsensusClusterPlus output plots.

Code availability

EpiMix is available as an R package on Bioconductor
(https://bioconductor.org/packages/devel/bioc/html/EpiMix.html). In addition, we also
developed a web application (https://epimix.stanford.edu) for users to interactively

visualize and explore the results from EpiMix.
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