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Abstract 

Memory problems are common among older adults with a history of alcohol use disorder (AUD). 

Employing a machine learning framework, the current study investigates the use of multi-domain 

features to classify individuals with and without alcohol-induced memory problems. A group of 

94 individuals (ages 50-81 years) with alcohol-induced memory problems (Memory group) were 

compared with a matched Control group who did not have memory problems. The Random Forests 

model identified specific features from each domain that contributed to the classification of 

Memory vs. Control group (AUC=88.29%). Specifically, individuals from the Memory group 

manifested a predominant pattern of hyperconnectivity across the default mode network regions 

except some connections involving anterior cingulate cortex which were predominantly 

hypoconnected. Other significant contributing features were (i) polygenic risk scores for AUD, (ii) 

alcohol consumption and related health consequences during the past 5 years, such as health 

problems, past negative experiences, withdrawal symptoms, and the largest number of drinks in a 

day during the past 12 months, and (iii) elevated neuroticism and increased harm avoidance, and 

fewer positive <uplift= life events. At the neural systems level, hyperconnectivity across the default 
mode network regions, including the connections across the hippocampal hub regions, in 

individuals with memory problems may indicate dysregulation in neural information processing. 

Overall, the study outlines the importance of utilizing multidomain features, consisting of resting-

state brain connectivity collected ~18 years ago, together with personality, life experiences, 

polygenic risk, and alcohol consumption and related consequences, to predict alcohol-related 

memory problems that arise in later life. 

 

Key Words: Alcohol use disorder (AUD); EEG source functional connectivity; default mode 

network; alcohol-related memory problems; random forests.  
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1. Introduction 

Alcohol use disorder (AUD) is a chronic, relapsing disorder [1,2] with a range of neurocognitive 

anomalies, including memory deficits [3]. Memory impairments due to heavy drinking, among 

other cognitive impairments, have been widely reported [4,5], and may interfere with social and 

occupational performance [6,7]. Since the etiology of AUD and related memory problems 

involves multiple domains, including the combination of neurocognitive, personality, behavioral, 

and genomic factors [8-10], a better understanding of these potential predictors may aid in 

prevention and treatment strategies.  

Brain oscillations representing electrical signals of neural activity, as recorded by 

electroencephalogram (EEG), index specific circuit-level mechanisms during cognitive 

processing [11]. Oscillatory signals in different EEG frequency bands representing 

communications between specific brain regions underlie memory processes, including encoding, 

consolidation, storage, and retrieval processes [12,13]. Studies have indicated that memory 

processes are supported by oscillatory dynamics and communication across the hippocampus, 

entorhinal cortex and other cortical regions [13-15]. Both human and animal studies have 

implicated the theta band, generated within the hippocampus and also prevalent in the cerebral 

cortex, as the major frequencies associated with various memory processes [16,17]. 

Hippocampal theta rhythm is also involved in communication with other higher frequencies 

(e.g., beta and gamma oscillations) through various coupling mechanisms, including neural 

synchrony during sensory and cognitive processing [18-21]. 

 Recent studies have used source localization methods, such as the exact low-resolution brain 

electromagnetic tomography (eLORETA) [22] to compute functional connectivity a measure of 

temporal synchrony or correlation between signals of two or more spatially separated brain 

regions representing functional integration between these areas [cf. 23]. These studies have used 

lagged connectivity [24] to overcome volume conduction artifacts [23,25].  While the 

eLORETA-based functional connectivity method has been utilized to study cognitive functioning 

in neuropsychiatric disorders [23,26-29], very few studies have utilized these approaches to 

investigate AUD [30] and none of these studies have examined alcohol-induced neurocognitive 

outcomes, such as memory. Since the default mode network supports memory functions [31-34], 

we will employ functional connectivity across the default mode network regions to examine 
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alcohol-induced memory problems. 

 AUD is a multi-factorial disorder, and therefore it is important for the predictive models of 

alcohol-related neurocognitive outcomes such as memory impairment to include features from 

multiple domains, including polygenic risk scores (PRS) [35,36] and personality dimensions [36-

41]. Therefore, the goal of the present study was to identify a set of multi-domain factors that can 

differentiate individuals with alcohol-related memory impairments from those without, using (i) 

resting EEG-based functional connectivity measures of default mode network as derived from 

eLORETA, (ii) PRS related to alcohol outcomes, (iii) personality and life experience measures 

derived from established questionnaires, and (iv) measures of alcohol consumption and 

associated health consequences from the recent follow-up interview. Identifying specific default 

mode network functional connections underlying alcohol-induced memory problems may be 

useful for early preventive measures and for brain-based treatment strategies such as 

neuromodulation therapies for addiction [42] and memory/cognitive impairment or decline [43]. 

Similarly, other domains, including PRS, behavioral, personality, and clinical features, may have 

implications for prevention and treatment of alcohol-induced memory problems (e.g., cognitive-

behavior therapy, brain stimulation, cognitive remediation, etc.). 

 

2. Material and Methods 

2.1. Sample 

The sample for the present study was drawn from a recent follow-up assessment study [44,45] of 

participants from the Collaborative Study on Genetics of Alcoholism (COGA) [46-48]. 

Participants aged 50 or older who met lifetime criteria for alcohol dependence, as assessed with 

the Semi-Structured Assessment for the Genetics of Alcohol (SSAGA) [49,50], were drawn from 

data collected at six COGA sites. Details on screening and selection of participants for the 

current study are described the supplemental material [see Section 1.1. Sample Description and 

Fig. S1 in the Supplementary Material]. The Memory and Control groups were also matched for 

age at assessments, sex, self-reported race, genetic ancestry, and the following alcohol use 

patterns assessed by their last SSAGA interview conducted ~18 years prior to the recent 

telephone interview (see Table 1): (i) continued high-risk drinking (men with 5+ drinks/day or 
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15+ drinks/week and women with 4+ drinks/day or 8+ drinks/week) and meeting criteria for 

DSM-5 AUD diagnosis derived from SSAGA items (N=68/group), (ii) low-risk drinking (fewer 

than 5 drinks/day for men and 4 drinks/day for women) without meeting criteria for AUD 

diagnosis (N=9/group), and (iii) abstinence from drinking (N=17/group).  

 

Table 1: Demographic characteristics, AUD remission status during the latest SSAGA interview 

before the follow up telephone interview, and details of alcohol consumption from the recent 

telephone interview for the EEG functional connectivity analysis. 

Variable Measure / Category Parameter 
Study Group 

Memory (N=94) Control (N=94) 

Age during 

assessment 

EEG* 
Min–Max 29.21–60.71 28.17–62.19 

Mean (SD) 39.42 (6.18) 40.11 (6.74) 

Follow-up Interview 
Min–Max 50.55–81.86 50.34–81.49 

Mean (SD) 57.84 (5.77) 58.75 (6.07) 

Sex 
Male N (%) 52 (55.30) 52 (55.30) 

Female N (%) 42 (44.70) 42 (44.70) 

Self-reported race 

White N (%) 67 (71.30) 67 (71.30) 

Black N (%) 24 (25.50) 24 (25.5) 

Other N (%) 3 (3.20) 3 (3.20) 

Genetic ancestry 

European N (%) 63 (50.40) 62 (49.60) 

African N (%) 23 (47.92) 25 (52.08) 

Other N (%) 8 (53.33) 7 (46.67) 

Alcohol use pattern 

during the latest 

SSAGA interview* 

AUD diagnosis N (%) 68 (72.30) 68 (72.30) 

Low Risk Drinking N (%) 9 (9.60) 9 (9.60) 

Abstinence N (%) 17 (18.10) 17 (18.10) 

Time lag** Years Mean (SD) 18.42 (3.84) 18.63 (3.90) 

*The latest SSAGA interviews were also closer in time to the EEG recording used for the current 

study. Note that the SSAGA interview is longer and more comprehensive than the recent follow-up 

phone interview. 

** Time lag (years) between the latest past (baseline) assessments (EEG, SSAGA, and 

clinical/personality) and the recent follow-up telephone interview.  

 

2.2. Recent Telephone Interview 

The recent follow-up telephone interview (10-20 minutes) was designed to collect information 

regarding participants' alcohol use and current social and health status using a 31-items 

questionnaire [45] administered via the REDCap system [51,52]. Details about this interview 

items are available in Section 1.2 of the Supplementary Material. Three items that elicited self-

reported alcohol-related memory problems have been listed in Table 2. Memory impairment was 

coded if the participant endorsed at least two of the three items (Table 2): the first item and 
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either the second or third item.  

 

Table 2: Items related to memory problems in the follow-up interview questionnaire. 

Domain Question Memory-related response* 

Alcohol-

related 

memory 

problems 

Compared to most people your age, is your 

memory currently better, about the same, or 

worse than theirs? 

o Worse 

**There are several other health problems that 

can result from heavy drinking. In the last 5 

years did drinking. (Check all that apply) 

o Impair your memory even when you were 

not drinking (not including blackouts)? 

**There are several other health problems that 

can result from heavy drinking. In the last 10 

years did drinking. (Check all that apply) 

o Impair your memory even when you were 

not drinking (not including blackouts)? 

 * Response option related to memory problems. 

** These items are the same for the categories eliciting alcohol use during the past 5 years and past 10 

years. 

 

2.3. EEG Data Acquisition and Preprocessing  

Details of assessments and EEG recording in COGA, which is identical at all sites, can be found 

in our previous reports [46,53,54]. The EEG session that was closest to the latest SSAGA 

interview was used for this study. Detailed descriptions of EEG data acquisition and 

preprocessing steps are available in Section 1.3 of the Supplementary Material. 

2.4. EEG Functional Connectivity Analysis using eLORETA 

EEG functional connectivity was computed using the eLORETA software [22,55], a validated 

tool for localizing the electrical activity in the brain. Detailed descriptions of EEG functional 

connectivity analysis using eLORETA are available in the Section 1.4 of the Supplementary 

Material. 

2.5. Functional Connectivity Across the Default Mode Network 

The default mode network regions analyzed in the study are posterior cingulate cortex (PCC), 

anterior cingulate cortex, inferior parietal cortex, prefrontal cortex, lateral temporal cortex, and 

hippocampal formation [see Table 3 below and Fig. S2 in the Supplementary Material], in line 

with the functional connectivity studies of both fMRI and EEG [28,56,57] and our previous work 

on default mode network [58,59].  
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Table 3. Regions of interest (ROI), region code/abbreviation, Brodmann area (BA) and the MNI 

coordinates for the default mode network are listed. 

ROI Region Name Region Code BA MNI (X) MNI (Y) MNI (Z) 

1 Left posterior cingulate cortex L.PCC 23 -10 -45 25 

2 Right posterior cingulate cortex R.PCC 23 10 -45 25 

3 Left anterior cingulate cortex L.ACC 32 -10 45 10 

4 Right anterior cingulate cortex R.ACC 32 10 45 10 

5 Left inferior parietal lobule L.IPL 40 -55 -55 20 

6 Right inferior parietal lobule R.IPL 40 55 -55 20 

7 Left prefrontal cortex L.PFC 46 -45 25 25 

8 Right prefrontal cortex R.PFC 46 45 25 25 

9 Left lateral temporal cortex L.LTC 21 -55 -15 -20 

10 Right lateral temporal cortex R.LTC 21 55 -15 -20 

11 Left parahippocampal gyrus L.PHG 36 -25 -30 -20 

12 Right parahippocampal gyrus R.PHG 36 25 -30 -20 

 

 

2.6. Assessment of Temperament, Personality, and Alcohol Experience 

The temperament, personality, and life experiences data included scores from seven 

questionnaires and their subscales, and scores included for the current study are described in 

Section 1.6 of the Supplementary Material. These data were collected during the previous 

interviews (~18 years ago) at/around the same time as the SSAGA assessment.  

2.7. Genomic Data and Polygenic Risk Scores (PRS) 

Genotyping, imputation, and quality control of COGA genomic data have been described 

previously [48] and in the Section 1.7 of the Supplementary Material. The publicly available 

Genome-wide Association Studies (GWAS) for alcohol use phenotypes, derived from studies 

including both individuals of European ancestry (EA) and African ancestry (AA), that were used 

in PRS calculations in this study are listed in Table 4.  
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Table 4. List of Polygenic Risk Scores (PRS) datasets from recently published GWAS 

 

We created PRS using PRS-CSx [63-67], which is a recent, validated method for cross-

ancestry polygenic prediction [68]. The PRS-CSx computation method is detailed elsewhere 

(https://github.com/getian107/PRScsx) and also briefly described in the Section 1.7 of the 

Supplementary Material.  

2.8. Feature selection of EEG functional connectivity variables 

In keeping with recent machine learning approaches, including our previous study [69], we used 

a two-stage approach consisting of feature selection followed by a predictive algorithm using 

selected sets of variables [70-74]. A detailed description of this method is available in Section 

1.8 of the Supplementary Material.  

2.9. Random Forests classification model and parameters 

The Random Forests classification analysis was performed using R-packages "randomForest" 

[75], "caret" [76], and "randomForestExplainer" [77] to classify Memory vs. Control group using 

multi-domain predictors. The details of these predictors, which include 29 functional 

connectivity, 27 personality and life experience, 12 alcohol outcomes, and 4 PRS variables, are 

listed in the Materials and Methods section of the Supplementary Material. The random forests 

model, as implemented in the current study, has been detailed in Section 1.9 of the 

Supplementary Material.  

 

3. Results 

3.1. Feature Selection of EEG functional connectivity variables 

The input data for the feature selection included a total of 330 EEG functional connectivity 

Phenotype 
Discovery 

Sample/Consortium 

Sample Size 

EA AA 

AUD diagnosis (ICD-9/ICD-10) MVP [60] 202,004 56,648 

AUDIT-C symptoms MVP [60] 200,680 56,495 

Max alcohol intake MVP [61] 126,936 17,029 

Alcohol Dependence (DSM-IV) PGC [62] 46,568 6,280 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2022.12.30.522330doi: bioRxiv preprint 

https://github.com/getian107/PRScsx
https://doi.org/10.1101/2022.12.30.522330
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 

  

 

variables consisting of 66 connectivity features for each of five frequency bands. The model 

identified a total of 29 functional connectivity variables from multiple frequency bands 

connecting across the twelve default mode network seeds (Refer Table 3 in Methods section and 

Fig. S2 in Supplementary Material). These connections included Delta – 12 connections, Theta – 

6 connections, Alpha – 4 connections, Beta – 5 connections, and Gamma – 2 connections. The 

10-fold cross-validation for the λ1se threshold included all the 29 selected features, which were 

included in the subsequent implementation of the Random Forests classification model. The 

classification performance (to differentiate individuals with memory problems from those 

without) of the selected features as indicated by the area under the ROC curve (AUC) was 

88.48%. 

3.2. Random Forests Classification Accuracy 

The overall prediction accuracy of the Random Forests model to classify Memory and Control 

group using functional connectivity, PRS, behavioral and clinical predictors, as estimated by the 

AUC, was 88.29%. The 72 predictors inputted in the model include 29 functional connectivity, 27 

personality and life experience, 12 alcohol outcomes, and 4 PRS variables (see Materials and 

Methods section of the Supplementary Material). Additional details about the classification 

accuracy are available in Section 2.2. of the Supplementary Material.  

3.3. Top Significant Features Contributed to the Classification 

Out of the 72 input variables of the Random Forest model (see Materials and Methods section of 

the Supplementary Material for details), 29 significant features that contributed to classifying 

Memory group from those from the Control group were identified: 21 default mode network 

connections, 4 alcohol-related items, 3 personality and life experience factors, and 1 PRS (Table 

5).  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2022.12.30.522330doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522330
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 

  

 

Table 5. Random Forest importance parameters and direction of significance for the top 

significant variables (p < 0.05) are shown. The variables are sorted based on Gini decrease. 

Details of these features are available in Materials and Methods section of the 

Supplementary Material. 

Feature 
Measure / 

Source 

Gini 

Decrease 

Accuracy 

Decrease 
# Trees # Nodes 

Times a 

Root 

Min. 

Depth 
P value Direction 

AlcHlthProb5yrs FU Interview 7.7281 0.0449 545 610 111 2.3303 8.26E-47 MEM > CTL 

AlcWthSx5yrs FU Interview 4.8291 0.0196 430 459 109 3.8230 4.09E-13 MEM > CTL 

AlcExp5yrs FU Interview 4.8134 0.0176 417 468 95 4.0144 1.42E-14 MEM > CTL 

Drk24Hr FU Interview 2.7318 0.0097 385 440 70 5.0280 2.75E-10 MEM > CTL 

*NEO_N Questionnaire 1.9701 0.0029 334 382 47 5.6475 6.84E-04 MEM > CTL 

FC_Ga_2_10 R.PCC–R.LTC 1.9574 0.0019 402 486 5 5.5047 1.02E-17 MEM > CTL 

FC_Th_2_11 R.PCC–L.PHG 1.8902 0.0020 377 463 11 5.7415 9.38E-14 MEM > CTL 

FC_Be_1_4 L.PCC–R.ACC 1.8699 0.0030 378 463 6 5.8232 9.38E-14 CTL > MEM 

FC_Th_2_5 R.PCC–L.IPL 1.7564 0.0039 356 424 16 5.8446 3.53E-08 MEM > CTL 

FC_Th_9_11 L.LTC–L.PHG 1.7206 0.0010 362 437 17 5.8282 7.15E-10 MEM > CTL 

FC_De_1_5 L.PCC–L.IPL 1.6655 0.0011 346 412 12 6.0057 9.11E-07 MEM > CTL 

*TPQ_HA Questionnaire 1.6312 0.0026 318 363 37 6.1333 1.44E-02 MEM > CTL 

FC_Al_2_5 R.PCC–L.IPL 1.6034 0.0013 376 455 9 5.9314 1.72E-12 MEM > CTL 

FC_De_2_5 R.PCC–L.IPL 1.5614 0.0004 366 437 18 5.8339 7.15E-10 MEM > CTL 

FC_De_1_6 L.PCC–R.IPL 1.5384 0.0009 310 383 27 6.2101 5.68E-04 MEM > CTL 

FC_Be_4_9 R.ACC–L.LTC 1.4901 0.0009 344 402 12 6.2038 1.05E-05 CTL > MEM 

FC_Ga_4_12 R.ACC–R.PHG 1.4605 0.0016 376 451 3 5.6709 6.99E-12 CTL > MEM 

FC_De_7_11 L.PFC–L.PHG 1.4543 0.0019 342 407 13 6.1891 3.19E-06 MEM > CTL 

*DHU_UPL Questionnaire 1.4497 0.0021 315 368 15 6.4736 7.06E-03 CTL > MEM 

FC_Th_4_10 R.ACC–R.LTC 1.4211 0.0006 345 422 8 6.2084 6.21E-08 CTL > MEM 

FC_De_8_12 R.PFC–R.PHG 1.3844 0.0010 333 394 15 6.0851 6.29E-05 MEM > CTL 

FC_Al_2_11 R.PCC–L.PHG 1.3805 0.0006 360 443 3 6.2337 1.04E-10 MEM > CTL 

PRS_MVP_AUD PRS 1.2987 0.0002 363 432 1 6.2696 3.35E-09 CTL > MEM 

FC_De_5_6 L.IPL–R.IPL 1.2964 0.0009 320 378 11 6.4012 1.40E-03 MEM > CTL 

FC_De_6_11 R.IPL–L.PHG 1.2959 -0.0001 317 381 10 6.3433 8.21E-04 MEM > CTL 

FC_Th_4_6 R.ACC–R.IPL 1.2955 0.0002 342 404 2 6.3120 6.59E-06 CTL > MEM 

FC_De_2_12 R.PCC–R.PHG 1.2581 0.0007 319 380 9 6.4407 9.83E-04 MEM > CTL 

FC_De_4_8 R.ACC–R.PFC 1.1741 0.0015 315 364 6 6.5837 1.26E-02 MEM > CTL 

FC_De_3_7 L.ACC–L.PFC 1.1278 0.0000 319 391 6 6.7618 1.18E-04 CTL > MEM 

Abbreviations: FC–Functional Connectivity; De–Delta; Th–Theta; Al–Alpha; Be–Beta; Ga–Gamma; 

Numbers in functional connectivity variables: 1-12 of the default mode network; AlcHlthProb5yrs–
Alcohol-related health problems in the past 5 years; AlcWthSx5yrs–Alcohol withdrawal symptoms in the 

past 5 years; AlcExp5y–Alcohol related negative experiences (symptoms) related to alcohol consumption 

in the past 5 years; Drk24Hr–The largest number of drinks in 24 hours during the past 12 months; 

PRS_MVP_AUD–PRS derived from the MVP GWAS of AUD; *Measures from personality and life 

experience questionnaires: TPQ_HA–Harm avoidance assessed by TPQ questionnaire; DHU_UPL–Uplift 

assessed by DHU questionnaire; and NEO_N–Neuroticism assessed by NEO questionnaire [See Table 3 

in Methods and Fig. S2 in the Supplementary Material for the details of the ROIs of the default mode 

network]. MEM–Memory group; CTL–Control group 
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The multi-way importance plot [Fig. 1] displays all significant variables (labeled and 

marked with black circles) that contributed to the classification of the Memory group from the 

Control subjects and ranked based on the importance for classification as derived from Gini 

decrease, number of trees, and p-value. A chart showing distribution of minimal depth in 

classification against number of decision trees [see Fig. S4 in the Supplementary Material]. 

While both multi-way importance plot and distribution plot can be created for any set of random 

forest parameters, the importance ranking for the features is likely to be similar owing to high 

correlations among these parameters (see Fig. S5 in Supplementary Material). 

 

 

Fig. 1. The multi-way importance plot showing the top significant variables (labeled and marked with 

black circles) that contributed to the classification of the Memory group from the Control subjects 

based on the measures Gini decrease, number of trees, and p-value: Features related to alcohol-related 
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clinical/health outcomes stood top in the importance list, followed by functional connectivity, personality, 

and PRS measures. Note that the variables that were not significant (purple dots) are not highlighted. [See 

footnote of Table 5 for the list of abbreviations for the measures shown here]. 

 

3.3.1. EEG Source Functional Connectivity of the Default Mode Network 

Significant default mode network connections which contributed to the Random Forest 

classification of the Memory group from Control individuals have been illustrated in Fig. 2. 

Memory group showed a predominant pattern of hyperconnectivity across the default mode 

network regions, primarily contributed by delta band (10 connections) followed by theta band (5 

connections) band, along with fewer hypoconnectivity (1 in delta band and 2 in theta band). 

Other significant functional connectivity features specific to each frequency band are (i) 9 

hyperconnected paths and 1 hypoconnected path in delta band, (ii) 3 hyperconnected and 2 

hypoconnected paths in theta band, (iii) 2 hyperconnected paths with no hypoconnected paths in 

alpha band, (iv) 2 hypoconnected paths with no hyperconnected paths in beta band, and (v) 1 

hyperconnected path and 1 hypoconnected path gamma band (Fig. 2, Panels A-E). Number of 

significant connections from each ROI node (in descending order) was as follows: R.PCC = 7; 

R.ACC = 6; L.PHG = 5; L.IPL = 5; R.IPL = 4; L.PCC = 3; R.PHG = 3; L.PFC = 2; R.PFC = 2; 

L.LTC = 2; R.LTC = 2; L.ACC = 1. The number of significant connections for the ROIs 

involving both hemispheres (in ascending order) was: PCC = 10; IPL = 9; PHG = 8; ACC = 7; 

PFC = 4; LTC = 4. Individuals from Memory group showed predominant hyperconnectivity 

between hippocampal region (PHG) and other default mode network regions involving multiple 

frequencies except beta band compared with the Control group (Fig. 2, Panel F). Only a single 

hippocampal connection (R.PHG–R.ACC) of the gamma band oscillation was hypoconnected in 

the Memory group. 
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Fig. 2: Panels A-E: Significant default mode network connections within each frequency band, which 

contributed to the Random Forest classification of Memory group from Control individuals. The blue and 

brown beads represent ROIs of the left and right hemisphere, respectively, while the blue and brown lines 

represent hypoconnectivity and hyperconnectivity, respectively, in the Memory group. Panel F: Significant 

hippocampal connections that contributed to the Memory vs. Control classification. Seven of the eight 

hippocampal connections showed hyperconnectivity in the Memory group. Note that all hypoconnected 

networks involved an anterior cingulate node. Refer to Fig. S2 in the Supplementary Material for the ROI 

locations and anatomical views/axes. 

 

3.3.2. Recent Alcohol Consumption and Health Outcomes 

Significant alcohol-related health outcome variables that contributed to classifying Memory 

individuals from the Control subjects included (i) alcohol-related health problems in the past 5 

years (Memorymean=0.77; Controlmean=0.01), (ii) alcohol withdrawal symptoms in the past 5 

years (Memorymean=1.20; Controlmean=0.11), (iii) negative experiences related to alcohol 

consumption in the past 5 years (Memorymean=2.65; Controlmean=0.78), and (iv) the largest 

number of drinks within 24 hours during the past 12 months (Memorymean=13.64; 

Controlmean=6.00). Interestingly, the features concerning alcohol-related outcomes over the past 

10 years, physical health outcomes, other drinking patterns, and demographic variables were not 

significant.  
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3.3.3. Measures of Personality, Behavior, and Life Experiences 

Out of 27 variables of personality and behavioral features, only the following three variables 

significantly contributed to the Memory vs. Control classification: (i) Harm avoidance 

representing internalizing traits and negative mood states as assessed by TPQ 

(Memorymean=16.16; Controlmean=12.61), (ii) Uplift experience indicating "feel good" aspects as 

assessed by DHU (Memorymean=51.25; Controlmean=58.99), and (iii) Neuroticism represented by 

dysregulated emotions and maladjusted behaviors as assessed by NEO (Memorymean=59.00; 

Controlmean=52.11), and higher scores mean more neurotic traits. 

3.3.4. Polygenic Risk Scores 

PRS for the AUD diagnosis (based on the ICD codes) created using GWAS data from the MVP 

[60] was a significant contributor to the classification of Memory vs. Control group 

(Memorymean=8.25 × 10-7 and Controlmean=7.87 × 10-7). PRSs for the other phenotypes, i.e., 

AUDIT-C scores from the GWAS of MVP dataset [60], Maximum habitual alcohol intake from 

the GWAS of MVP dataset [61], and DSM-IV alcohol dependence diagnosis from the GWAS of 

PGC dataset [62], were not significant contributors in the classification. 
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3.4. Correlations across Significant Predictors 

 

Fig. 3: Correlation matrix showing associations among the top significant variables. Values of the cells in 

red/pink shades represent negative r-values, and those in blue/cyan shades indicate positive r-values 

between variables that correspond to the vertical and horizontal axis. Darker color represents a higher 

magnitude of r-values. Significant correlations (before Bonferroni correction) have been marked with 

asterisks in black font [*p < 0.05; **p < 0.01; and ***p < 0.001], and those survived Bonferroni correction 

have been marked with a triple plus sign (+++) in white font. For the abbreviations in the variable labels, 

see the footnote of Table 5. 

 

Exploratory (descriptive) analysis of correlations among the top significant variables is 

shown in Fig. 3. As shown in the correction matrix, there were significant positive correlations 

relationships among the functional connectivity variables within and between different frequency 

bands. Overall, most of the low-frequency connections in the delta and theta frequencies were 

highly correlated with one another. Specifically, those connections that shared a common node 

showed much higher correlations with each other than with other connections, regardless of their 

frequency band. Beta band connections had significant positive correlations between themselves 
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as well as with low-frequency connections, especially that of theta band connections. However, 

alpha and gamma band connections showed significant correlations only within the frequency 

but not across the frequencies. Highly significant positive correlations were observed among the 

alcohol-related health consequences. Among the personality factors, there was a significant 

positive correlation between neuroticism and harm avoidance. However, no significant 

correlations were observed across the domains (e.g., functional connectivity vs. personality, or 

functional connectivity vs. alcohol-related features). 

 

4. Discussion 

The current study suggests that alcohol-related memory problems can be predicted using a multi-

domain set of features from neural, behavioral, genomic, and alcohol-related measures in a 

machine learning framework. It was found that the Memory group showed a predominant pattern 

of hyperconnectivity across the default mode network regions, including the hippocampal 

subnetworks, while showing hypoconnected anterior cingulate cortex subnetworks based on the 

EEG recorded about 18 years ago. Features from other domains that significantly contributed to 

the classification were (i) higher counts of alcohol-related consequences during the past 5 years, 

such as health problems, other alcohol-related adverse past negative experiences, withdrawal 

symptoms, and higher max number of drinks (the largest number of drinks per day), (iii) 

personality factors such as high neuroticism, high harm avoidance, and low positive/uplift 

experience, and (iv) high genetic liability, as reflected in variations in PRS for AUD across the 

Memory and Control groups. It should also be noted that the classification accuracy was better 

for the Control individuals (85/94 = 90.43%) than for the Memory group (68/94 = 72.34%). 

Although the reasons could be many, we speculate that the Memory group may have high 

variability in their clinical presentations and/or neurocognitive functioning. 

4.1. Altered Functional Connectivity in the Memory group 

Findings of resting-state EEG connectivity showed that those with alcohol-related memory 

problems, relative to matched controls, showed (i) a predominant pattern of hyperconnectivity of 

low-frequency (delta and theta) oscillations across most of the default mode network cortical 

regions, (ii) hyperconnected hippocampal sub-networks in multiple frequency bands, and (iii) 
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hypoconnectivity in subnetworks involving anterior cingulate cortex hub regions. In general, 

alterations in brain networks (in both low and high frequencies) due to alcohol-induced memory 

deficits could be interpreted as compromised memory engrams and changes in neural plasticity 

during encoding and recall processes. The neural basis of memory processes was first theorized 

by Richard Semon’s engram theory [78] and Donald Hebb's synaptic plasticity theory [79] and 

here is a vast literature spanning several decades on memory functions. The connectivity 

differences observed between Memory and Control groups are discussed below in light of 

findings from the literature as well as our previous studies.  

4.1.1. Predominant hyperconnectivity of low-frequency oscillations in the Memory group 

The finding that individuals with alcohol-induced memory problems during their recent 

interview (i.e., Memory group) manifested a predominant pattern of hyperconnectivity across the 

default mode network nodes in their resting state EEG [Fig. 2] may indicate aberrations in neural 

communication. Specifically, EEG hyperconnectivity may indicate a brain signature related to an 

early stage of cognitive decline possibly leading to dementia [80]. While the EEG-based 

functional connectivity findings attributable to a specific diagnosis or outcome is far from clear, 

increased EEG connectivity during the resting state may be a sign of abnormal brain 

communication, since studies have reported this feature in several neuropsychiatric disorders. 

For example, individuals with schizophrenia had increased EEG coherence in delta and theta 

bands relative to controls [81]. Similarly, patients with major depressive disorder exhibited 

significantly higher EEG coherence as compared to controls in several frequencies, including 

delta and theta bands [82]. Such alterations in resting-state EEG connectivity in slow rhythms 

(delta and theta) has also been reported in childhood developmental disorders, such as autism 

spectrum disorders [83] and specific learning disorders [84]. On the contrary, healthy aging is 

marked by decreased slow frequency activity (band power) in the delta and theta bands during 

the resting state [85] as well as by reduced EEG network connectivity [86]. On the other hand, 

during the task performance, both delta and theta band oscillations predominantly contribute to 

the generation of P300 or P3 [87], a prominent event-related potential (ERP) component that is a 

marker of contextual neural processing, the amplitude of which is reduced abnormal in 

individuals with and/or at risk for AUD, who have shown reduced amplitudes [9]. Interestingly, 

the slow delta and theta oscillations are often found to be attenuated during task performance in 

individuals with chronic AUD relative to healthy individuals [88], while these slow theta 
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oscillations are also involved in episodic memory maintenance processes during cognitive 

processing [89].  

At the neural level, it is possible that the hyperconnectivity seen in the Memory group may 

contribute to aberrant synaptic pruning in specific cortical regions [90] in these individuals who 

have also reported having increased alcohol-related consequences compared to the comparison 

group. It is also possible that damage to a specific network can enhance connectivity across other 

regions that are anticorrelated to the damaged network, such as that as it happens in 

neurodegenerative conditions [91]. Physiologically, alcohol can impact pre- and postsynaptic 

mechanisms during secretion/recycling of neurotransmitters, leading to the disruption of 

excitatory and inhibitory neurotransmission [92,93], potentially caused by detrimental effects of 

alcohol on glial cells [94]. Recent animal studies confirm that chronic and heavy alcohol 

consumption can cause aberrant synaptic pruning and substantial loss of excitatory synapses in 

the prefrontal cortex, resulting in disruption of brain connectivity and dysregulated neural 

communication across the cortical networks [95]. However, it remains to be confirmed whether 

the connectivity differences observed in the Memory group are the direct consequence of alcohol 

consumption or indicators of predisposed genetic risk in these individuals, or the interaction of 

both. 

4.1.2. Hyperconnectivity across the hippocampal-cortical networks in the Memory group 

Findings reveal that individuals who endorsed alcohol-related memory problems have also 

shown a predominant pattern of hyperconnectivity across the hippocampal network in their 

resting EEG, which was recorded about 18 years ago. Specifically, these hyperconnected 

hippocampal networks (7 out of 8 connections) involved bilateral PHG, bilateral PFC, left LTC, 

right PCC, and right IPL nodes, spanning delta, theta, and alpha bands [Fig 7, Panel F]. Further, 

majority of the hyper-connected paths (6 out of 7 connections) represented low-frequency 

(delta/theta) oscillations. Although direct evidence linking EEG-based hyperconnectivity of 

parahippocampal-cortical network to alcohol-related memory problems is lacking in the 

literature, some of the available findings may help interpret the findings of the present study. 

Interestingly, intracranial EEG recordings at the hippocampus and medial temporal regions 

revealed the existence of independent delta/theta rhythms in different subregions of the human 

hippocampus and surrounding cortical regions associated with memory encoding and retrieval 
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[96]. Therefore, it is possible that dysregulation (i.e., hyperconnected low frequency paths) in the 

hippocampal-cortical network, which underlies memory processing [97], may have directly 

contributed to the alcohol-related memory problems in the Memory group. At the neural level, 

elevated hippocampal resting-state connectivity may be associated with age-related decline in 

white matter integrity of the fornix as well as deficient neurocognitive function in human adults 

[98]. Converging findings indicate that memories for recent events underlie dynamic interplay 

across multiple cortical brain regions and networks, in which the hippocampus acts as a hub 

integrating information from these subnetworks [99]. Recent studies reveal hippocampal 

involvement in the default mode network activity. default mode network may mediate 

interactions between the hippocampus and the neocortex in memory formation and replay [100]. 

A large neuroimaging study revealed that subregions within default mode network contain fornix 

fibers from the hippocampus, and thus relating the network to its memory functions [101]. 

Specifically, the hyperconnected bilateral hippocampal-prefrontal network of slow frequency 

(delta band) may indicate a dysregulated long-range neural communication involving learning 

and memory processes, as these networks are crucial for the coordination of activity during 

memory-guided decision making [102]. Further, the theta band hyperconnectivity of left 

hippocampal with left temporal cortex and right PCC in Memory group may indicate 

disturbances in verbal [103] and episodic memory [104], respectively. This finding in theta band 

hippocampal connectivity is important as hippocampal theta rhythm is critical for the optimal 

functionality of memory networks [105]. It may also be interesting to note that theta band 

hyperconnectivity across cortical regions was also observed in the APOE-4 carriers of patients 

with Alzheimer’s disease [106]. Lastly, it needs to be mentioned that a single connection with 

decreased connectivity at the gamma band in the Memory group was observed between ACC and 

PHG in the right hemisphere. Weaker resting-state connectivity between the hippocampus and 

ACC may suggest disruption of mood regulation [107], possibly due to compromised structural 

connectivity between these major structures [108]. Another explanation for lower connectivity 

between hippocampus and ACC in the Memory groups, as it happens in patients with traumatic 

axonal injury [109], is alcohol-induced microstructural alterations in neuronal fiber tracts 

connecting brain structures in AUD individuals [110], causing damage to axonal fiber tracts 

across and within the hemispheres including the hippocampal-cortical bundles [111]. As 

mentioned earlier, given that the Memory group has reported more occasions of heavy drinking 
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and alcohol-related health consequences than the Control group, it is expected that neuronal 

damage, including the compromised hippocampal-cortical connectivity, is more pronounced in 

these individuals resulting in memory problems along with other neurocognitive and health 

issues. In sum, it is possible that alcohol-induced hippocampal atrophy [112] may underlie the 

disruption of cortical hippocampal network subserving memory formation and retrieval 

processes [113,114]. 

4.1.3. Hypoconnectivity across the anterior cingulate hub networks in the Memory group 

Findings of the present study have also revealed that the Memory group, in addition to the 

predominant hyperconnectivity across the default mode network nodes in multiple frequencies, 

manifested six hypoconnected paths (i.e., reduced connectivity strength) across bilateral ACC 

and other cortical regions (left PFC, bilateral LTC, R.IPL, left PCC, and right PHG) in all 

frequency bands except the alpha band. All except the connections in the beta band were intra-

hemispheric. Broadly, since ACC hub networks within the default mode network are associated 

with the prediction of outcome for a given choice [115], planning of future actions [116], and 

social cognition [117], hypoconnectivity of ACC with other cortical regions, including the 

hippocampal region, may indicate disrupted neural communication leading to less efficient 

action plans and decision making. ACC also contributes to reward-based action selection or 

decision-making [118-120] as well as monitoring of action, conflict, error, and outcome [121-

124]. In our previous study on EEG source connectivity in abstinent AUD individuals [58], we 

had also reported hypoconnected prefrontal nodes (PFC and ACC) relaying other cortical regions 

(LTC, IPL, and PHG) suggesting weaker top-down processing.  

Specifically, the hypoconnected ACC–PFC subnetwork in the Memory group may suggest 

compromised top-down cognitive control mediated by the PFC as it happens in individuals 

addicted to drugs [125]. On the other hand, reduced connectivity of ACC with LTC in the 

Memory group may represent impaired semantic memory processing related to personally 

relevant action plans in these individuals, as the LTC is related to short-term verbal memory and 

language processes [126,127] as well as conceptual representations of actions and behaviors 

[128,129]. Further, hypoconnectivity between ACC and IPL in the right hemisphere may 

indicate a lack of spatial and computational processing for the task at hand, as dictated by the 

role of right IPL in spatial attention and mathematical cognition [130]. Taken together, these 
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alterations in the brain network may underlie alcohol-induced memory deficits in individuals 

from the Memory group, who have also shown more health problems due to their chronic and/or 

hazardous alcohol consumption (see Section 4.2. below). 

4.2. Alcohol Consumption and Health Problems in the Memory group 

The top-most predictors of memory problems as revealed by the Random Forests model 

were alcohol-related consequences during the past 5 years, such as health problems, past 

negative experiences, withdrawal symptoms, and the largest number of drinks per day. This 

finding indicates that the individuals with alcohol-related memory problems not only consumed 

larger quantities of alcohol during the last five years, but also suffered drinking-related adverse 

consequences such as withdrawal symptoms, negative experiences, and health issues. It is quite 

possible that the memory problems endorsed by the individuals from the Memory group could be 

one of the health and neurocognitive outcomes due to chronic and/or hazardous alcohol 

consumption as supported by relevant literature [131-133]. Relatedly, there is also a vast 

literature documenting alcohol-induced brain damage and cognitive impairments, including 

memory deficits, in chronic and hazardous drinkers [134-136]. Taken together, alcohol-induced 

memory problems could be a part of the larger picture of a gross brain damage in chronic 

and/heavy users of alcohol. Future longitudinal studies combining both structural and functional 

MRI, along with various EEG and neuropsychological measures, may clarify the exact nature of 

alcohol-induced neurocognitive deficits. 

4.3. Personality Features in the Memory group 

Among the host of personality and life experience factors included in the Random Forests model, 

only three factors, namely, harm avoidance, neuroticism, and uplift experiences, were identified 

as key features that contributed to classifying the Memory group from the controls. Our finding 

suggests increased harm avoidance in the Memory group, evidenced by higher endorsement of 

internalizing traits and negative mood states by these individuals. Although the past studies have 

shown mixed findings for the harm avoidance subscale of the TPQ in predicting AUD/SUD and 

risk [38,137], some of the latter studies have associated these internalizing traits with harmful 

use of alcohol and other substances [138,139] and with risk to develop AUD [140-142]. 

Interestingly, alcohol and other psychoactive substances are often used to self-medicate the 
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negative mood states such as depression [143,144]. Further, higher neuroticism in the Memory 

group may be related to a variety of alcohol-related outcomes, including relapse [145]. Further, 

neuroticism has been associated with ineffective use of coping strategies [146], while also 

mediating the relationship between AUD and neural connectivity [147]. Empirically, neuroticism 

was has also been found to be associated with internalizing factors related to lifetime diagnosis 

of mood and anxiety [148]. On the other hand, individuals from the Memory group also endorsed 

fewer uplifting experiences than comparison controls, reflecting less pleasurable experiences at 

work and home. Lack of adequate uplifting experiences represents a lower buffer against stress 

and coping [149], which can also contribute to both AUD [146,150] and internalizing outcomes 

such as depression [151,152]. Alternatively, negative mood states may lead to the assessment of 

fewer experiences as uplifting. Taken together, it is clear that personality and life experience-

related factors are important determinants in alcohol-related outcomes, possibly mediated by 

neural as well as stress-coping dyad mechanisms. However, further studies are necessary to 

disentangle specific mechanisms involved in the complex etiological pathways of risk, 

symptoms, and recovery in AUD and related disorders. 

4.4. Genomic Risk in the Memory group 

The only significant PRS measure in the Random Forests model to classifying Memory and 

Control groups was derived from the MVP study of DSM-5 AUD, suggesting the importance of 

AUD-PRS, rather than the consumption related PRS, in predicting neurocognitive outcomes such 

as alcohol-induced memory problems. This could be partly because individuals from both 

Memory and Control groups had a lifetime diagnosis of DSM-IV alcohol dependence. While the 

DSM-IV alcohol dependence PRS derived from the PGC was not found to be significant, it is 

possible that it could be because of its relatively smaller GWAS sample size, compared to that of 

the MVP dataset, and fewer participants of non-European ancestry in the discovery GWAS (see 

Table 4), and/or the more inclusive diagnosis of DSM-5 AUD versus DSM-IV AD. 

Nevertheless, the finding that AUD-PRS significantly contributed to the classification suggests 

that alcohol-induced memory, at least in part, is associated with genomic liability. In general, 

family studies, twin studies, and GWAS have all demonstrated the heritability of AUD [153-

155], and utility of PRS to identify and quantify the risk of developing AUD and related 

outcomes [65,67,156]. Recently, Lai et al. [67] reported that individuals with AUD had higher 
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PRS than controls and the PRS magnitude increased as the number of DSM-5 diagnostic criteria 

increased. Further, PRS for alcohol dependence was found to be associated with neural 

connectivity [36,157] and cognitive functions, such as verbal fluency, vocabulary, digit-symbol 

coding, and logical memory [158], as well as brain structure [159]. Unfortunately, PRS related to 

neurocognitive phenotypes, which could have improved the predictive model, were not included 

in the study due to a lack of neurocognitive GWAS on AA populations for calculating PRS-CSx 

for the study sample. Further studies using neurocognitive PRS in multi-ethnic samples are 

needed to ascertain and quantify the genomic contribution of alcohol-induced memory problems 

for predictive purposes. 

4.5. Correlations among the Significant Features 

It may be of interest to understand how the significant features, which contributed to the 

classification of Memory individuals from controls, are related to each other. As shown in Fig. 3, 

the correlation matrix revealed some interesting associations. Most obviously, most of the low-

frequency connections in the delta and theta frequencies were highly correlated with one another. 

As mentioned earlier (Section 4.1.2), hippocampal EEG oscillations are mainly represented by 

delta and theta frequencies, which interact with each other in the memory processes, such as 

mnemonic encoding and retrieval [96]. Empirically, it is known that delta and theta rhythms are 

not only correlated with each other but involved in hippocampal-prefrontal communication, 

which underlies memory and other higher-order cognitive functions such as executive functions 

[160,161]. Another interesting finding was that the connections that shared a common node 

(brain region) between themselves were also significantly correlated with each other, regardless 

of their frequency band. It is possible that the common node forms a subnetwork that can 

facilitate information flow across the regions of the subnetwork as well as other connected 

regions in the brain [162]. Further, correlational results also showed that the beta band 

connections had highly significant correlations with other connections within the same frequency 

as well as among low-frequency connections (p < 0.001), especially with the theta band 

connections (p < 0.001 and survived Bonferroni correction). This could be because low-

frequencies (delta/theta) synchronously work together with high-frequencies (beta/gamma) 

during cognitive processing, including working memory processes [163-165]. However, alpha 

and gamma band connections showed only within frequency correlations but no cross-frequency 
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correlations, partly because the magnitude of correlations is smaller warranting more statistical 

power to identify meaningful alpha-gamma associations.  

Correlations among the alcohol-related outcome variables were also found to be highly 

significant with one another, which is in line with the research showing heavy and high-intensity 

drinking is associated with alcohol-related negative consequences such as withdrawal symptoms 

and health issues [166,167]. Further, the significant positive correlation between the two 

personality traits, namely, neuroticism and harm avoidance, is also backed by the evidence that 

both traits underlie negative emotions such as fear, shyness, and worry and are regulated by 

serotonin and opiate pathways [168]. Lastly, it was a rather unexpected finding that there were 

no highly significant correlations across the domains (e.g., functional connectivity vs. 

personality), likely because of very low correlation across the domains due to lack of adequate 

statistical power to detect the subtle associations among features from different categories of 

predictors. 

4.6. Limitations and Suggestions 

 While this is the first multi-modal study including EEG based source connectivity to 

examine alcohol-related memory problems, which is an important alcohol-related neurocognitive 

outcome, it has some limitations: (i) the sample size of the study groups is rather small and the 

findings are therefore only preliminary, (ii) while the groups are matched based on important 

variables, stratified analyses based on age, sex, and self-reported race, and genetic ancestry, may 

identify more relevant features specific to each category; (iii) some of the variables were not 

considered for matching (e.g., memory status during baseline, relatedness among group 

members, comorbid diagnoses such as substance use, anti-social personality disorder, attention-

deficit hyperactivity disorder, etc.), which may have impacted the results; (iv) the memory 

problems reported by the study sample can be heterogeneous and the assessment of alcohol-

related memory problems was only based on oral self-report and not a psychometric measure; 

studies are currently underway in this sample with comprehensive neurocognitive assessments 

including memory function and will be more objective and quantitative; (v) the study has not 

considered genomic or other trait related baseline effects which could have influenced the 

results, and future large scale studies may consider this aspect into the study design; (vi) recent 

EEG recordings and neurocognitive assessments, including memory function, in the same 
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sample, which are missing in the current study, but are underway in our lab will further add to 

predictive modeling; (vii) other specific networks and regions related to memory (e.g., attention 

and memory networks) have not been explored in the current study, although studies are 

underway in our lab to explore these networks; (viii) PRS for neurocognitive phenotypes 

including memory functions have not been included due to lack of availability of multi-ethnic 

GWAS data. Future studies may attempt to overcome the shortcomings of the study by using a 

larger sample size and stratified analyses, longitudinal design, multimodal imaging (e.g., fMRI, 

DTI), and neurocognitive PRS data. 

 

5. Conclusions 

Our study has elucidated key multimodal features of brain connectivity, personality, life 

experiences, genomic, and alcohol-related measures that can serve as predictors of later 

occurring alcohol-related memory problems after about 18 years. Dysregulated brain 

connectivity, computed from the EEG data collected 18 years ago, in the form of hyper- and 

hypo-connectivity in specific subnetworks, including the hippocampal-cortical connections, 

represents potential neural correlates of alcohol-related memory problems. Personality and life 

experience features such as higher neuroticism and excessive harm avoidance, and fewer 

uplifting experiences in daily life also contributed to identifying individuals with memory 

problems from the controls. Importantly, alcohol-related negative consequences during the past 5 

years, such as health problems, past negative experiences, withdrawal symptoms, and the largest 

number of drinks in a day during the past 12 months were the top-most predictors of memory 

problems. These findings will require confirmation in future studies to: (i) validate these multi-

domain features for the use of early identification of individuals who may develop alcohol-

induced memory problems in chronic and/or heavy drinkers; and (ii) use EEG-source 

connectivity measures to further identify/validate specific targets of brain networks underlying 

AUD related outcomes in general and memory deficits in particular for planning 

neuromodulation-based treatments (e.g., transcranial magnetic stimulation) as guided by the 

neural signatures related to dysregulated brain networks in affected individuals. However, in 

conclusion, the study has many limitations, and the results are only preliminary, warranting 

large-scale future studies to confirm the current findings by adopting better experimental designs 

within predictive modeling. 
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