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Abstract

Memory problems are common among older adults with a history of alcohol use disorder (AUD).
Employing a machine learning framework, the current study investigates the use of multi-domain
features to classify individuals with and without alcohol-induced memory problems. A group of
94 individuals (ages 50-81 years) with alcohol-induced memory problems (Memory group) were
compared with a matched Control group who did not have memory problems. The Random Forests
model identified specific features from each domain that contributed to the classification of
Memory vs. Control group (AUC=88.29%). Specifically, individuals from the Memory group
manifested a predominant pattern of hyperconnectivity across the default mode network regions
except some connections involving anterior cingulate cortex which were predominantly
hypoconnected. Other significant contributing features were (i) polygenic risk scores for AUD, (ii)
alcohol consumption and related health consequences during the past 5 years, such as health
problems, past negative experiences, withdrawal symptoms, and the largest number of drinks in a
day during the past 12 months, and (iii) elevated neuroticism and increased harm avoidance, and
fewer positive “uplift” life events. At the neural systems level, hyperconnectivity across the default
mode network regions, including the connections across the hippocampal hub regions, in
individuals with memory problems may indicate dysregulation in neural information processing.
Overall, the study outlines the importance of utilizing multidomain features, consisting of resting-
state brain connectivity collected ~18 years ago, together with personality, life experiences,
polygenic risk, and alcohol consumption and related consequences, to predict alcohol-related
memory problems that arise in later life.

Key Words: Alcohol use disorder (AUD); EEG source functional connectivity; default mode
network; alcohol-related memory problems; random forests.
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1. Introduction

Alcohol use disorder (AUD) is a chronic, relapsing disorder [1,2] with a range of neurocognitive
anomalies, including memory deficits [3]. Memory impairments due to heavy drinking, among
other cognitive impairments, have been widely reported [4,5], and may interfere with social and
occupational performance [6,7]. Since the etiology of AUD and related memory problems
involves multiple domains, including the combination of neurocognitive, personality, behavioral,
and genomic factors [8-10], a better understanding of these potential predictors may aid in

prevention and treatment strategies.

Brain oscillations representing electrical signals of neural activity, as recorded by
electroencephalogram (EEG), index specific circuit-level mechanisms during cognitive
processing [11]. Oscillatory signals in different EEG frequency bands representing
communications between specific brain regions underlie memory processes, including encoding,
consolidation, storage, and retrieval processes [12,13]. Studies have indicated that memory
processes are supported by oscillatory dynamics and communication across the hippocampus,
entorhinal cortex and other cortical regions [13-15]. Both human and animal studies have
implicated the theta band, generated within the hippocampus and also prevalent in the cerebral
cortex, as the major frequencies associated with various memory processes [16,17].
Hippocampal theta rhythm is also involved in communication with other higher frequencies
(e.g., beta and gamma oscillations) through various coupling mechanisms, including neural

synchrony during sensory and cognitive processing [18-21].

Recent studies have used source localization methods, such as the exact low-resolution brain
electromagnetic tomography (eLORETA) [22] to compute functional connectivity a measure of
temporal synchrony or correlation between signals of two or more spatially separated brain
regions representing functional integration between these areas [cf. 23]. These studies have used
lagged connectivity [24] to overcome volume conduction artifacts [23,25]. While the
eLORETA-based functional connectivity method has been utilized to study cognitive functioning
in neuropsychiatric disorders [23,26-29], very few studies have utilized these approaches to
investigate AUD [30] and none of these studies have examined alcohol-induced neurocognitive
outcomes, such as memory. Since the default mode network supports memory functions [31-34],

we will employ functional connectivity across the default mode network regions to examine
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alcohol-induced memory problems.

AUD is a multi-factorial disorder, and therefore it is important for the predictive models of
alcohol-related neurocognitive outcomes such as memory impairment to include features from
multiple domains, including polygenic risk scores (PRS) [35,36] and personality dimensions [36-
41]. Therefore, the goal of the present study was to identify a set of multi-domain factors that can
differentiate individuals with alcohol-related memory impairments from those without, using (i)
resting EEG-based functional connectivity measures of default mode network as derived from
eLORETA, (ii) PRS related to alcohol outcomes, (iii) personality and life experience measures
derived from established questionnaires, and (iv) measures of alcohol consumption and
associated health consequences from the recent follow-up interview. Identifying specific default
mode network functional connections underlying alcohol-induced memory problems may be
useful for early preventive measures and for brain-based treatment strategies such as
neuromodulation therapies for addiction [42] and memory/cognitive impairment or decline [43].
Similarly, other domains, including PRS, behavioral, personality, and clinical features, may have
implications for prevention and treatment of alcohol-induced memory problems (e.g., cognitive-

behavior therapy, brain stimulation, cognitive remediation, etc.).

2. Material and Methods

2.1. Sample

The sample for the present study was drawn from a recent follow-up assessment study [44,45] of
participants from the Collaborative Study on Genetics of Alcoholism (COGA) [46-48].
Participants aged 50 or older who met lifetime criteria for alcohol dependence, as assessed with
the Semi-Structured Assessment for the Genetics of Alcohol (SSAGA) [49,50], were drawn from
data collected at six COGA sites. Details on screening and selection of participants for the
current study are described the supplemental material [see Section 1.1. Sample Description and
Fig. S1 in the Supplementary Material]. The Memory and Control groups were also matched for
age at assessments, sex, self-reported race, genetic ancestry, and the following alcohol use
patterns assessed by their last SSAGA interview conducted ~18 years prior to the recent

telephone interview (see Table 1): (i) continued high-risk drinking (men with 5+ drinks/day or


https://doi.org/10.1101/2022.12.30.522330
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.30.522330; this version posted January 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

15+ drinks/week and women with 4+ drinks/day or 8+ drinks/week) and meeting criteria for
DSM-5 AUD diagnosis derived from SSAGA items (N=68/group), (ii) low-risk drinking (fewer
than 5 drinks/day for men and 4 drinks/day for women) without meeting criteria for AUD

diagnosis (N=9/group), and (iii) abstinence from drinking (N=17/group).

Table 1: Demographic characteristics, AUD remission status during the latest SSAGA interview
before the follow up telephone interview, and details of alcohol consumption from the recent
telephone interview for the EEG functional connectivity analysis.

Variable Measure / Category | Parameter ]S‘;E:l);’(;z;ui 4 Control (N=94)
EEG* Min-Max 29.21-60.71 28.17-62.19
Age during Mean (SD) 39.42 (6.18) 40.11 (6.74)
assessment Follow-up Interview Min—Max 50.55-81.86 50.34-81.49
Mean (SD) 57.84 (5.77) 58.75 (6.07)
Sex Male N (%) 52 (55.30) 52 (55.30)
Female N (%) 42 (44.70) 42 (44.70)
White N (%) 67 (71.30) 67 (71.30)
Self-reported race Black N (%) 24 (25.50) 24 (25.5)
Other N (%) 3 (3.20) 3(3.20)
European N (%) 63 (50.40) 62 (49.60)
Genetic ancestry African N (%) 23 (47.92) 25 (52.08)
Other N (%) 8 (53.33) 7 (46.67)
Alcohol use pattern | AUD diagnosis N (%) 68 (72.30) 68 (72.30)
during the latest Low Risk Drinking N (%) 9 (9.60) 9 (9.60)
SSAGA interview* | Abstinence N (%) 17 (18.10) 17 (18.10)
Time lag** Years Mean (SD) 18.42 (3.84) 18.63 (3.90)

*The latest SSAGA interviews were also closer in time to the EEG recording used for the current
study. Note that the SSAGA interview is longer and more comprehensive than the recent follow-up
phone interview.

** Time lag (years) between the latest past (baseline) assessments (EEG, SSAGA, and
clinical/personality) and the recent follow-up telephone interview.

2.2. Recent Telephone Interview

The recent follow-up telephone interview (10-20 minutes) was designed to collect information
regarding participants' alcohol use and current social and health status using a 31-items
questionnaire [45] administered via the REDCap system [51,52]. Details about this interview
items are available in Section 1.2 of the Supplementary Material. Three items that elicited self-
reported alcohol-related memory problems have been listed in Table 2. Memory impairment was

coded if the participant endorsed at least two of the three items (Table 2): the first item and
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either the second or third item.

Table 2: Items related to memory problems in the follow-up interview questionnaire.

Domain Question Memory-related response*

Compared to most people your age, is your
memory currently better, about the same, or o Worse
worse than theirs?

Alcohol- s

related Therelarfe sevli:ral otge.r Ill(e?althlpr(;lblfims ;hat o Impair your memory even when you were
memory can result trom heavy drinking. In the ast not drinking (not including blackouts)?
problems years did drinking. (Check all that apply)

**There are several other health problems that
can result from heavy drinking. In the last 10
years did drinking. (Check all that apply)

* Response option related to memory problems.

** These items are the same for the categories eliciting alcohol use during the past 5 years and past 10
years.

o Impair your memory even when you were
not drinking (not including blackouts)?

2.3. EEG Data Acquisition and Preprocessing

Details of assessments and EEG recording in COGA, which is identical at all sites, can be found
in our previous reports [46,53,54]. The EEG session that was closest to the latest SSAGA
interview was used for this study. Detailed descriptions of EEG data acquisition and

preprocessing steps are available in Section 1.3 of the Supplementary Material.

2.4. EEG Functional Connectivity Analysis using e LORETA

EEG functional connectivity was computed using the eLORETA software [22,55], a validated
tool for localizing the electrical activity in the brain. Detailed descriptions of EEG functional
connectivity analysis using eLORETA are available in the Section 1.4 of the Supplementary

Material.

2.5. Functional Connectivity Across the Default Mode Network

The default mode network regions analyzed in the study are posterior cingulate cortex (PCC),
anterior cingulate cortex, inferior parietal cortex, prefrontal cortex, lateral temporal cortex, and
hippocampal formation [see Table 3 below and Fig. S2 in the Supplementary Material], in line
with the functional connectivity studies of both fMRI and EEG [28,56,57] and our previous work
on default mode network [58,59].
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Table 3. Regions of interest (ROI), region code/abbreviation, Brodmann area (BA) and the MNI
coordinates for the default mode network are listed.

ROI  Region Name Region Code BA MNI(X) MNI(Y) MNI(Z)
1 Left posterior cingulate cortex L.PCC 23 -10 -45 25
2 Right posterior cingulate cortex | R.PCC 23 10 -45 25
3 Left anterior cingulate cortex L.ACC 32 -10 45 10
4 Right anterior cingulate cortex R.ACC 32 10 45 10
5 Left inferior parietal lobule L.IPL 40 -55 -55 20
6 Right inferior parietal lobule R.IPL 40 55 -55 20
7 Left prefrontal cortex L.PFC 46 -45 25 25
8 Right prefrontal cortex R.PFC 46 45 25 25
9 Left lateral temporal cortex L.LTC 21 -55 -15 -20
10 Right lateral temporal cortex R.LTC 21 55 -15 -20
11 Left parahippocampal gyrus L.PHG 36 -25 -30 -20
12 Right parahippocampal gyrus R.PHG 36 25 -30 -20

2.6. Assessment of Temperament, Personality, and Alcohol Experience

The temperament, personality, and life experiences data included scores from seven
questionnaires and their subscales, and scores included for the current study are described in
Section 1.6 of the Supplementary Material. These data were collected during the previous

interviews (~18 years ago) at/around the same time as the SSAGA assessment.

2.7. Genomic Data and Polygenic Risk Scores (PRS)

Genotyping, imputation, and quality control of COGA genomic data have been described
previously [48] and in the Section 1.7 of the Supplementary Material. The publicly available
Genome-wide Association Studies (GWAS) for alcohol use phenotypes, derived from studies
including both individuals of European ancestry (EA) and African ancestry (AA), that were used

in PRS calculations in this study are listed in Table 4.
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Table 4. List of Polygenic Risk Scores (PRS) datasets from recently published GWAS

Di r Sample Size
Phenotype Samplej(cj(:);eso);'tium EA . AA
AUD diagnosis (ICD-9/ICD-10) MVP [60] 202,004 56,648
AUDIT-C symptoms MVP [60] 200,680 56,495
Max alcohol intake MVP [61] 126,936 17,029
Alcohol Dependence (DSM-1V) PGC [62] 46,568 6,280

We created PRS using PRS-CSx [63-67], which is a recent, validated method for cross-
ancestry polygenic prediction [68]. The PRS-CSx computation method is detailed elsewhere
(https://github.com/getian107/PRScsx) and also briefly described in the Section 1.7 of the

Supplementary Material.

2.8. Feature selection of EEG functional connectivity variables

In keeping with recent machine learning approaches, including our previous study [69], we used
a two-stage approach consisting of feature selection followed by a predictive algorithm using
selected sets of variables [70-74]. A detailed description of this method is available in Section

1.8 of the Supplementary Material.

2.9. Random Forests classification model and parameters

The Random Forests classification analysis was performed using R-packages "randomForest"
[75], "caret" [76], and "randomForestExplainer" [77] to classify Memory vs. Control group using
multi-domain predictors. The details of these predictors, which include 29 functional
connectivity, 27 personality and life experience, 12 alcohol outcomes, and 4 PRS variables, are
listed in the Materials and Methods section of the Supplementary Material. The random forests
model, as implemented in the current study, has been detailed in Section 1.9 of the

Supplementary Material.

3. Results

3.1. Feature Selection of EEG functional connectivity variables

The input data for the feature selection included a total of 330 EEG functional connectivity
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variables consisting of 66 connectivity features for each of five frequency bands. The model
identified a total of 29 functional connectivity variables from multiple frequency bands
connecting across the twelve default mode network seeds (Refer Table 3 in Methods section and
Fig. S2 in Supplementary Material). These connections included Delta — 12 connections, Theta —
6 connections, Alpha — 4 connections, Beta — 5 connections, and Gamma — 2 connections. The
10-fold cross-validation for the Aise threshold included all the 29 selected features, which were
included in the subsequent implementation of the Random Forests classification model. The
classification performance (to differentiate individuals with memory problems from those
without) of the selected features as indicated by the area under the ROC curve (AUC) was
88.48%.

3.2. Random Forests Classification Accuracy

The overall prediction accuracy of the Random Forests model to classify Memory and Control
group using functional connectivity, PRS, behavioral and clinical predictors, as estimated by the
AUC, was 88.29%. The 72 predictors inputted in the model include 29 functional connectivity, 27
personality and life experience, 12 alcohol outcomes, and 4 PRS variables (see Materials and
Methods section of the Supplementary Material). Additional details about the classification

accuracy are available in Section 2.2. of the Supplementary Material.

3.3. Top Significant Features Contributed to the Classification

Out of the 72 input variables of the Random Forest model (see Materials and Methods section of
the Supplementary Material for details), 29 significant features that contributed to classifying
Memory group from those from the Control group were identified: 21 default mode network
connections, 4 alcohol-related items, 3 personality and life experience factors, and 1 PRS (Table

5).
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Table 5. Random Forest importance parameters and direction of significance for the top
significant variables (p < 0.05) are shown. The variables are sorted based on Gini decrease.
Details of these features are available in Materials and Methods section of the
Supplementary Material.

Feature Measure / Gini | Accuracy # Trees # Nodes Timesa) Min. P value Direction
Source Decrease Decrease Root | Depth

AlcHIthProbSyrs FU Interview 7.7281 0.0449 545 610 111 2.3303 8.26E-47 MEM > CTL
AlcWthSxSyrs FU Interview 4.8291 0.0196 430 459 109 3.8230  4.09E-13 MEM > CTL
AlcExpSyrs FU Interview 4.8134 0.0176 417 468 95 4.0144 1.42E-14 MEM > CTL
Drk24Hr FU Interview 2.7318 0.0097 385 440 70 5.0280 2.75E-10 MEM > CTL
*NEO_N Questionnaire 1.9701 0.0029 334 382 47 5.6475 6.84E-04 MEM > CTL
FC_Ga_2_10 R.PCC-R.LTC 19574 0.0019 402 486 5 5.5047 1.02E-17 MEM > CTL
FC_Th_2_11 R.PCC-L.PHG 1.8902 0.0020 377 463 11 5.7415 9.38E-14 MEM > CTL
FC_Be_1_4 L.PCC-R.ACC | 1.8699 0.0030 378 463 6 5.8232  9.38E-14 CTL > MEM
FC_Th_2_5 R.PCC-L.IPL 1.7564 0.0039 356 424 16 5.8446  3.53E-08 MEM > CTL
FC_Th_9_11 L.LTC-L.PHG 1.7206 0.0010 362 437 17 5.8282  7.15E-10 MEM > CTL
FC_De_1_5 L.PCC-L.IPL 1.6655 0.0011 346 412 12 6.0057 9.11E-07 MEM > CTL
*TPQ_HA Questionnaire 1.6312 0.0026 318 363 37 6.1333  1.44E-02 MEM > CTL
FC_Al_2_5 R.PCC-L.IPL 1.6034 0.0013 376 455 9 5.9314 1.72E-12 MEM > CTL
FC_De_2_5 R.PCC-L.IPL 1.5614 0.0004 366 437 18 5.8339 7.15E-10 MEM > CTL
FC_De_1_6 L.PCC-R.IPL 1.5384 0.0009 310 383 27 6.2101 5.68E-04 MEM > CTL
FC_Be_4_9 R.ACC-L.LTC 1.4901 0.0009 344 402 12 6.2038  1.05E-05 CTL > MEM
FC_Ga_4_12 R.ACC-R.PHG 1.4605 0.0016 376 451 3 5.6709 6.99E-12 CTL > MEM
FC_De_7_11 L.PFC-L.PHG @ 1.4543 0.0019 342 407 13 6.1891 3.19E-06 MEM > CTL
*DHU_UPL Questionnaire 1.4497 0.0021 315 368 15 6.4736  7.06E-03 CTL > MEM
FC_Th_4_10 R.ACC-R.LTC 1.4211 0.0006 345 422 8 6.2084 6.21E-08 CTL > MEM
FC_De_8_12 R.PFC-R.PHG  1.3844 0.0010 333 394 15 6.0851 6.29E-05 MEM > CTL
FC_Al_2_11 R.PCC-L.PHG  1.3805 0.0006 360 443 3 6.2337 1.04E-10 MEM > CTL
PRS_MVP_AUD PRS 1.2987 0.0002 363 432 1 6.2696 3.35E-09 CTL > MEM
FC_De_5_6 L.IPL-R.IPL 1.2964 0.0009 320 378 11 6.4012  1.40E-03 MEM > CTL
FC_De_6_11 R.IPL-L.PHG 1.2959 -0.0001 317 381 10 6.3433 8.21E-04 MEM > CTL
FC_Th_4_6 R.ACC-R.IPL = 1.2955 0.0002 342 404 2 6.3120  6.59E-06 CTL > MEM
FC_De_2_12 R.PCC-R.PHG 1.2581 0.0007 319 380 9 6.4407  9.83E-04 MEM > CTL
FC_De_4_8 R.ACC-R.PFC 1.1741 0.0015 315 364 6 6.5837 1.26E-02 MEM > CTL
FC_De_3_7 L.ACC-L.PFC | 1.1278 0.0000 319 391 6 6.7618 1.18E-04 CTL > MEM

Abbreviations: FC—Functional Connectivity; De—Delta; Th—Theta; Al-Alpha; Be—Beta; Ga—Gamma;
Numbers in functional connectivity variables: 1-12 of the default mode network; AlcHIthProbSyrs—
Alcohol-related health problems in the past 5 years; AlcWthSx5Syrs—Alcohol withdrawal symptoms in the
past 5 years; AlcExpSy—Alcohol related negative experiences (symptoms) related to alcohol consumption
in the past 5 years; Drk24Hr—The largest number of drinks in 24 hours during the past 12 months;
PRS_MVP_AUD-PRS derived from the MVP GWAS of AUD; *Measures from personality and life
experience questionnaires: TPQ_HA—Harm avoidance assessed by TPQ questionnaire; DHU_UPL-Uplift
assessed by DHU questionnaire; and NEO_N—Neuroticism assessed by NEO questionnaire [See Table 3
in Methods and Fig. S2 in the Supplementary Material for the details of the ROIs of the default mode
network]. MEM-Memory group; CTL—Control group
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The multi-way importance plot [Fig. 1] displays all significant variables (labeled and
marked with black circles) that contributed to the classification of the Memory group from the
Control subjects and ranked based on the importance for classification as derived from Gini
decrease, number of trees, and p-value. A chart showing distribution of minimal depth in
classification against number of decision trees [see Fig. S4 in the Supplementary Material].
While both multi-way importance plot and distribution plot can be created for any set of random
forest parameters, the importance ranking for the features is likely to be similar owing to high

correlations among these parameters (see Fig. S5 in Supplementary Material).
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Fig. 1. The multi-way importance plot showing the top significant variables (labeled and marked with

black circles) that contributed to the classification of the Memory group from the Control subjects
based on the measures Gini decrease, number of trees, and p-value: Features related to alcohol-related
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clinical/health outcomes stood top in the importance list, followed by functional connectivity, personality,
and PRS measures. Note that the variables that were not significant (purple dots) are not highlighted. [See
footnote of Table 5 for the list of abbreviations for the measures shown here].

3.3.1. EEG Source Functional Connectivity of the Default Mode Network

Significant default mode network connections which contributed to the Random Forest
classification of the Memory group from Control individuals have been illustrated in Fig. 2.
Memory group showed a predominant pattern of hyperconnectivity across the default mode
network regions, primarily contributed by delta band (10 connections) followed by theta band (5
connections) band, along with fewer hypoconnectivity (1 in delta band and 2 in theta band).
Other significant functional connectivity features specific to each frequency band are (i) 9
hyperconnected paths and 1 hypoconnected path in delta band, (ii) 3 hyperconnected and 2
hypoconnected paths in theta band, (iii) 2 hyperconnected paths with no hypoconnected paths in
alpha band, (iv) 2 hypoconnected paths with no hyperconnected paths in beta band, and (v) 1
hyperconnected path and 1 hypoconnected path gamma band (Fig. 2, Panels A-E). Number of
significant connections from each ROI node (in descending order) was as follows: R.PCC = 7;
R.ACC = 6; L.PHG = 5; L.IPL = 5; R.IPL = 4; L.PCC = 3; R.PHG = 3; L.PFC = 2; R.PFC = 2;
LLTC=2; R.LTC =2; L.ACC = 1. The number of significant connections for the ROIs
involving both hemispheres (in ascending order) was: PCC = 10; IPL = 9; PHG = 8; ACC =7,
PFC = 4; LTC = 4. Individuals from Memory group showed predominant hyperconnectivity
between hippocampal region (PHG) and other default mode network regions involving multiple
frequencies except beta band compared with the Control group (Fig. 2, Panel F). Only a single
hippocampal connection (R.PHG-R.ACC) of the gamma band oscillation was hypoconnected in

the Memory group.
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Fig. 2: Panels A-E: Significant default mode network connections within each frequency band, which
contributed to the Random Forest classification of Memory group from Control individuals. The blue and
brown beads represent ROIs of the left and right hemisphere, respectively, while the blue and brown lines
represent hypoconnectivity and hyperconnectivity, respectively, in the Memory group. Panel F: Significant
hippocampal connections that contributed to the Memory vs. Control classification. Seven of the eight
hippocampal connections showed hyperconnectivity in the Memory group. Note that all hypoconnected
networks involved an anterior cingulate node. Refer to Fig. S2 in the Supplementary Material for the ROI
locations and anatomical views/axes.

3.3.2. Recent Alcohol Consumption and Health Outcomes

Significant alcohol-related health outcome variables that contributed to classifying Memory
individuals from the Control subjects included (i) alcohol-related health problems in the past 5
years (Memorymean=0.77; Controlmean=0.01), (ii) alcohol withdrawal symptoms in the past 5
years (Memorymean=1.20; Controlmean=0.11), (ii1) negative experiences related to alcohol
consumption in the past 5 years (Menorymean=2.65; Controlmean=0.78), and (iv) the largest
number of drinks within 24 hours during the past 12 months (Memorymean=13.64;
Controlmean=6.00). Interestingly, the features concerning alcohol-related outcomes over the past
10 years, physical health outcomes, other drinking patterns, and demographic variables were not

significant.
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3.3.3. Measures of Personality, Behavior, and Life Experiences

Out of 27 variables of personality and behavioral features, only the following three variables
significantly contributed to the Memory vs. Control classification: (i) Harm avoidance
representing internalizing traits and negative mood states as assessed by TPQ
(Memorymean=16.16; Controlmean=12.61), (i1) Uplift experience indicating "feel good" aspects as
assessed by DHU (Memorymean=51.25; Controlmean=58.99), and (iii) Neuroticism represented by
dysregulated emotions and maladjusted behaviors as assessed by NEO (Memorymean=59.00;

Controlmean=52.11), and higher scores mean more neurotic traits.

3.3.4. Polygenic Risk Scores
PRS for the AUD diagnosis (based on the ICD codes) created using GWAS data from the MVP

[60] was a significant contributor to the classification of Memory vs. Control group
(Memorymean=8.25 x 107 and Controlmea=7.87 x 107"). PRSs for the other phenotypes, i.e.,
AUDIT-C scores from the GWAS of MVP dataset [60], Maximum habitual alcohol intake from
the GWAS of MVP dataset [61], and DSM-IV alcohol dependence diagnosis from the GWAS of

PGC dataset [62], were not significant contributors in the classification.
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3.4. Correlations across Significant Predictors
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Fig. 3: Correlation matrix showing associations among the top significant variables. Values of the cells in
red/pink shades represent negative r-values, and those in blue/cyan shades indicate positive r-values
between variables that correspond to the vertical and horizontal axis. Darker color represents a higher
magnitude of r-values. Significant correlations (before Bonferroni correction) have been marked with
asterisks in black font [*p < 0.05; **p < 0.01; and ***p < 0.001], and those survived Bonferroni correction
have been marked with a triple plus sign (+++) in white font. For the abbreviations in the variable labels,
see the footnote of Table 5.

Exploratory (descriptive) analysis of correlations among the top significant variables is
shown in Fig. 3. As shown in the correction matrix, there were significant positive correlations
relationships among the functional connectivity variables within and between different frequency
bands. Overall, most of the low-frequency connections in the delta and theta frequencies were
highly correlated with one another. Specifically, those connections that shared a common node
showed much higher correlations with each other than with other connections, regardless of their

frequency band. Beta band connections had significant positive correlations between themselves
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as well as with low-frequency connections, especially that of theta band connections. However,
alpha and gamma band connections showed significant correlations only within the frequency
but not across the frequencies. Highly significant positive correlations were observed among the
alcohol-related health consequences. Among the personality factors, there was a significant
positive correlation between neuroticism and harm avoidance. However, no significant
correlations were observed across the domains (e.g., functional connectivity vs. personality, or

functional connectivity vs. alcohol-related features).

4. Discussion

The current study suggests that alcohol-related memory problems can be predicted using a multi-
domain set of features from neural, behavioral, genomic, and alcohol-related measures in a
machine learning framework. It was found that the Memory group showed a predominant pattern
of hyperconnectivity across the default mode network regions, including the hippocampal
subnetworks, while showing hypoconnected anterior cingulate cortex subnetworks based on the
EEG recorded about 18 years ago. Features from other domains that significantly contributed to
the classification were (i) higher counts of alcohol-related consequences during the past 5 years,
such as health problems, other alcohol-related adverse past negative experiences, withdrawal
symptoms, and higher max number of drinks (the largest number of drinks per day), (iii)
personality factors such as high neuroticism, high harm avoidance, and low positive/uplift
experience, and (iv) high genetic liability, as reflected in variations in PRS for AUD across the
Memory and Control groups. It should also be noted that the classification accuracy was better
for the Control individuals (85/94 = 90.43%) than for the Memory group (68/94 = 72.34%).
Although the reasons could be many, we speculate that the Memory group may have high

variability in their clinical presentations and/or neurocognitive functioning.

4.1. Altered Functional Connectivity in the Memory group

Findings of resting-state EEG connectivity showed that those with alcohol-related memory
problems, relative to matched controls, showed (i) a predominant pattern of hyperconnectivity of
low-frequency (delta and theta) oscillations across most of the default mode network cortical

regions, (ii) hyperconnected hippocampal sub-networks in multiple frequency bands, and (iii)
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hypoconnectivity in subnetworks involving anterior cingulate cortex hub regions. In general,
alterations in brain networks (in both low and high frequencies) due to alcohol-induced memory
deficits could be interpreted as compromised memory engrams and changes in neural plasticity
during encoding and recall processes. The neural basis of memory processes was first theorized
by Richard Semon’s engram theory [78] and Donald Hebb's synaptic plasticity theory [79] and
here is a vast literature spanning several decades on memory functions. The connectivity
differences observed between Memory and Control groups are discussed below in light of

findings from the literature as well as our previous studies.

4.1.1. Predominant hyperconnectivity of low-frequency oscillations in the Memory group

The finding that individuals with alcohol-induced memory problems during their recent
interview (i.e., Memory group) manifested a predominant pattern of hyperconnectivity across the
default mode network nodes in their resting state EEG [Fig. 2] may indicate aberrations in neural
communication. Specifically, EEG hyperconnectivity may indicate a brain signature related to an
early stage of cognitive decline possibly leading to dementia [80]. While the EEG-based
functional connectivity findings attributable to a specific diagnosis or outcome is far from clear,
increased EEG connectivity during the resting state may be a sign of abnormal brain
communication, since studies have reported this feature in several neuropsychiatric disorders.
For example, individuals with schizophrenia had increased EEG coherence in delta and theta
bands relative to controls [81]. Similarly, patients with major depressive disorder exhibited
significantly higher EEG coherence as compared to controls in several frequencies, including
delta and theta bands [82]. Such alterations in resting-state EEG connectivity in slow rhythms
(delta and theta) has also been reported in childhood developmental disorders, such as autism
spectrum disorders [83] and specific learning disorders [84]. On the contrary, healthy aging is
marked by decreased slow frequency activity (band power) in the delta and theta bands during
the resting state [85] as well as by reduced EEG network connectivity [86]. On the other hand,
during the task performance, both delta and theta band oscillations predominantly contribute to
the generation of P300 or P3 [87], a prominent event-related potential (ERP) component that is a
marker of contextual neural processing, the amplitude of which is reduced abnormal in
individuals with and/or at risk for AUD, who have shown reduced amplitudes [9]. Interestingly,
the slow delta and theta oscillations are often found to be attenuated during task performance in

individuals with chronic AUD relative to healthy individuals [88], while these slow theta


https://doi.org/10.1101/2022.12.30.522330
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.30.522330; this version posted January 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

oscillations are also involved in episodic memory maintenance processes during cognitive

processing [89].

At the neural level, it is possible that the hyperconnectivity seen in the Memory group may
contribute to aberrant synaptic pruning in specific cortical regions [90] in these individuals who
have also reported having increased alcohol-related consequences compared to the comparison
group. It is also possible that damage to a specific network can enhance connectivity across other
regions that are anticorrelated to the damaged network, such as that as it happens in
neurodegenerative conditions [91]. Physiologically, alcohol can impact pre- and postsynaptic
mechanisms during secretion/recycling of neurotransmitters, leading to the disruption of
excitatory and inhibitory neurotransmission [92,93], potentially caused by detrimental effects of
alcohol on glial cells [94]. Recent animal studies confirm that chronic and heavy alcohol
consumption can cause aberrant synaptic pruning and substantial loss of excitatory synapses in
the prefrontal cortex, resulting in disruption of brain connectivity and dysregulated neural
communication across the cortical networks [95]. However, it remains to be confirmed whether
the connectivity differences observed in the Memory group are the direct consequence of alcohol
consumption or indicators of predisposed genetic risk in these individuals, or the interaction of

both.

4.1.2. Hyperconnectivity across the hippocampal-cortical networks in the Memory group

Findings reveal that individuals who endorsed alcohol-related memory problems have also
shown a predominant pattern of hyperconnectivity across the hippocampal network in their
resting EEG, which was recorded about 18 years ago. Specifically, these hyperconnected
hippocampal networks (7 out of 8 connections) involved bilateral PHG, bilateral PFC, left LTC,
right PCC, and right IPL nodes, spanning delta, theta, and alpha bands [Fig 7, Panel F]. Further,
majority of the hyper-connected paths (6 out of 7 connections) represented low-frequency
(delta/theta) oscillations. Although direct evidence linking EEG-based hyperconnectivity of
parahippocampal-cortical network to alcohol-related memory problems is lacking in the
literature, some of the available findings may help interpret the findings of the present study.
Interestingly, intracranial EEG recordings at the hippocampus and medial temporal regions
revealed the existence of independent delta/theta rhythms in different subregions of the human

hippocampus and surrounding cortical regions associated with memory encoding and retrieval
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[96]. Therefore, it is possible that dysregulation (i.e., hyperconnected low frequency paths) in the
hippocampal-cortical network, which underlies memory processing [97], may have directly
contributed to the alcohol-related memory problems in the Memory group. At the neural level,
elevated hippocampal resting-state connectivity may be associated with age-related decline in
white matter integrity of the fornix as well as deficient neurocognitive function in human adults
[98]. Converging findings indicate that memories for recent events underlie dynamic interplay
across multiple cortical brain regions and networks, in which the hippocampus acts as a hub
integrating information from these subnetworks [99]. Recent studies reveal hippocampal
involvement in the default mode network activity. default mode network may mediate
interactions between the hippocampus and the neocortex in memory formation and replay [100].
A large neuroimaging study revealed that subregions within default mode network contain fornix
fibers from the hippocampus, and thus relating the network to its memory functions [101].
Specifically, the hyperconnected bilateral hippocampal-prefrontal network of slow frequency
(delta band) may indicate a dysregulated long-range neural communication involving learning
and memory processes, as these networks are crucial for the coordination of activity during
memory-guided decision making [102]. Further, the theta band hyperconnectivity of left
hippocampal with left temporal cortex and right PCC in Memory group may indicate
disturbances in verbal [103] and episodic memory [104], respectively. This finding in theta band
hippocampal connectivity is important as hippocampal theta rhythm is critical for the optimal
functionality of memory networks [105]. It may also be interesting to note that theta band
hyperconnectivity across cortical regions was also observed in the APOE-4 carriers of patients
with Alzheimer’s disease [106]. Lastly, it needs to be mentioned that a single connection with
decreased connectivity at the gamma band in the Memory group was observed between ACC and
PHG in the right hemisphere. Weaker resting-state connectivity between the hippocampus and
ACC may suggest disruption of mood regulation [107], possibly due to compromised structural
connectivity between these major structures [108]. Another explanation for lower connectivity
between hippocampus and ACC in the Memory groups, as it happens in patients with traumatic
axonal injury [109], is alcohol-induced microstructural alterations in neuronal fiber tracts
connecting brain structures in AUD individuals [110], causing damage to axonal fiber tracts
across and within the hemispheres including the hippocampal-cortical bundles [111]. As

mentioned earlier, given that the Memory group has reported more occasions of heavy drinking
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and alcohol-related health consequences than the Control group, it is expected that neuronal
damage, including the compromised hippocampal-cortical connectivity, is more pronounced in
these individuals resulting in memory problems along with other neurocognitive and health
issues. In sum, it is possible that alcohol-induced hippocampal atrophy [112] may underlie the
disruption of cortical hippocampal network subserving memory formation and retrieval

processes [113,114].

4.1.3. Hypoconnectivity across the anterior cingulate hub networks in the Memory group

Findings of the present study have also revealed that the Memory group, in addition to the
predominant hyperconnectivity across the default mode network nodes in multiple frequencies,
manifested six hypoconnected paths (i.e., reduced connectivity strength) across bilateral ACC
and other cortical regions (left PFC, bilateral LTC, R.IPL, left PCC, and right PHG) in all
frequency bands except the alpha band. All except the connections in the beta band were intra-
hemispheric. Broadly, since ACC hub networks within the default mode network are associated
with the prediction of outcome for a given choice [115], planning of future actions [116], and
social cognition [117], hypoconnectivity of ACC with other cortical regions, including the
hippocampal region, may indicate disrupted neural communication leading to less efficient
action plans and decision making. ACC also contributes to reward-based action selection or
decision-making [118-120] as well as monitoring of action, conflict, error, and outcome [121-
124]. In our previous study on EEG source connectivity in abstinent AUD individuals [58], we
had also reported hypoconnected prefrontal nodes (PFC and ACC) relaying other cortical regions
(LTC, IPL, and PHG) suggesting weaker top-down processing.

Specifically, the hypoconnected ACC-PFC subnetwork in the Memory group may suggest
compromised top-down cognitive control mediated by the PFC as it happens in individuals
addicted to drugs [125]. On the other hand, reduced connectivity of ACC with LTC in the
Memory group may represent impaired semantic memory processing related to personally
relevant action plans in these individuals, as the LTC is related to short-term verbal memory and
language processes [126,127] as well as conceptual representations of actions and behaviors
[128,129]. Further, hypoconnectivity between ACC and IPL in the right hemisphere may
indicate a lack of spatial and computational processing for the task at hand, as dictated by the

role of right IPL in spatial attention and mathematical cognition [130]. Taken together, these
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alterations in the brain network may underlie alcohol-induced memory deficits in individuals
from the Memory group, who have also shown more health problems due to their chronic and/or

hazardous alcohol consumption (see Section 4.2. below).

4.2. Alcohol Consumption and Health Problems in the Memory group

The top-most predictors of memory problems as revealed by the Random Forests model
were alcohol-related consequences during the past 5 years, such as health problems, past
negative experiences, withdrawal symptoms, and the largest number of drinks per day. This
finding indicates that the individuals with alcohol-related memory problems not only consumed
larger quantities of alcohol during the last five years, but also suffered drinking-related adverse
consequences such as withdrawal symptoms, negative experiences, and health issues. It is quite
possible that the memory problems endorsed by the individuals from the Memory group could be
one of the health and neurocognitive outcomes due to chronic and/or hazardous alcohol
consumption as supported by relevant literature [131-133]. Relatedly, there is also a vast
literature documenting alcohol-induced brain damage and cognitive impairments, including
memory deficits, in chronic and hazardous drinkers [134-136]. Taken together, alcohol-induced
memory problems could be a part of the larger picture of a gross brain damage in chronic
and/heavy users of alcohol. Future longitudinal studies combining both structural and functional
MRI, along with various EEG and neuropsychological measures, may clarify the exact nature of

alcohol-induced neurocognitive deficits.

4.3. Personality Features in the Memory group

Among the host of personality and life experience factors included in the Random Forests model,
only three factors, namely, harm avoidance, neuroticism, and uplift experiences, were identified
as key features that contributed to classifying the Memory group from the controls. Our finding
suggests increased harm avoidance in the Memory group, evidenced by higher endorsement of
internalizing traits and negative mood states by these individuals. Although the past studies have
shown mixed findings for the harm avoidance subscale of the TPQ in predicting AUD/SUD and
risk [38,137], some of the latter studies have associated these internalizing traits with harmful
use of alcohol and other substances [138,139] and with risk to develop AUD [140-142].

Interestingly, alcohol and other psychoactive substances are often used to self-medicate the
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negative mood states such as depression [143,144]. Further, higher neuroticism in the Memory
group may be related to a variety of alcohol-related outcomes, including relapse [145]. Further,
neuroticism has been associated with ineffective use of coping strategies [146], while also
mediating the relationship between AUD and neural connectivity [147]. Empirically, neuroticism
was has also been found to be associated with internalizing factors related to lifetime diagnosis
of mood and anxiety [148]. On the other hand, individuals from the Memory group also endorsed
fewer uplifting experiences than comparison controls, reflecting less pleasurable experiences at
work and home. Lack of adequate uplifting experiences represents a lower buffer against stress
and coping [149], which can also contribute to both AUD [146,150] and internalizing outcomes
such as depression [151,152]. Alternatively, negative mood states may lead to the assessment of
fewer experiences as uplifting. Taken together, it is clear that personality and life experience-
related factors are important determinants in alcohol-related outcomes, possibly mediated by
neural as well as stress-coping dyad mechanisms. However, further studies are necessary to
disentangle specific mechanisms involved in the complex etiological pathways of risk,

symptoms, and recovery in AUD and related disorders.

4.4. Genomic Risk in the Memory group

The only significant PRS measure in the Random Forests model to classifying Memory and
Control groups was derived from the MVP study of DSM-5 AUD, suggesting the importance of
AUD-PRS, rather than the consumption related PRS, in predicting neurocognitive outcomes such
as alcohol-induced memory problems. This could be partly because individuals from both
Memory and Control groups had a lifetime diagnosis of DSM-IV alcohol dependence. While the
DSM-IV alcohol dependence PRS derived from the PGC was not found to be significant, it is
possible that it could be because of its relatively smaller GWAS sample size, compared to that of
the MVP dataset, and fewer participants of non-European ancestry in the discovery GWAS (see
Table 4), and/or the more inclusive diagnosis of DSM-5 AUD versus DSM-1V AD.
Nevertheless, the finding that AUD-PRS significantly contributed to the classification suggests
that alcohol-induced memory, at least in part, is associated with genomic liability. In general,
family studies, twin studies, and GWAS have all demonstrated the heritability of AUD [153-
155], and utility of PRS to identify and quantify the risk of developing AUD and related
outcomes [65,67,156]. Recently, Lai et al. [67] reported that individuals with AUD had higher
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PRS than controls and the PRS magnitude increased as the number of DSM-5 diagnostic criteria
increased. Further, PRS for alcohol dependence was found to be associated with neural
connectivity [36,157] and cognitive functions, such as verbal fluency, vocabulary, digit-symbol
coding, and logical memory [158], as well as brain structure [159]. Unfortunately, PRS related to
neurocognitive phenotypes, which could have improved the predictive model, were not included
in the study due to a lack of neurocognitive GWAS on AA populations for calculating PRS-CSx
for the study sample. Further studies using neurocognitive PRS in multi-ethnic samples are
needed to ascertain and quantify the genomic contribution of alcohol-induced memory problems

for predictive purposes.

4.5. Correlations among the Significant Features

It may be of interest to understand how the significant features, which contributed to the
classification of Memory individuals from controls, are related to each other. As shown in Fig. 3,
the correlation matrix revealed some interesting associations. Most obviously, most of the low-
frequency connections in the delta and theta frequencies were highly correlated with one another.
As mentioned earlier (Section 4.1.2), hippocampal EEG oscillations are mainly represented by
delta and theta frequencies, which interact with each other in the memory processes, such as
mnemonic encoding and retrieval [96]. Empirically, it is known that delta and theta rhythms are
not only correlated with each other but involved in hippocampal-prefrontal communication,
which underlies memory and other higher-order cognitive functions such as executive functions
[160,161]. Another interesting finding was that the connections that shared a common node
(brain region) between themselves were also significantly correlated with each other, regardless
of their frequency band. It is possible that the common node forms a subnetwork that can
facilitate information flow across the regions of the subnetwork as well as other connected
regions in the brain [162]. Further, correlational results also showed that the beta band
connections had highly significant correlations with other connections within the same frequency
as well as among low-frequency connections (p < 0.001), especially with the theta band
connections (p < 0.001 and survived Bonferroni correction). This could be because low-
frequencies (delta/theta) synchronously work together with high-frequencies (beta/gamma)
during cognitive processing, including working memory processes [163-165]. However, alpha

and gamma band connections showed only within frequency correlations but no cross-frequency
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correlations, partly because the magnitude of correlations is smaller warranting more statistical

power to identify meaningful alpha-gamma associations.

Correlations among the alcohol-related outcome variables were also found to be highly
significant with one another, which is in line with the research showing heavy and high-intensity
drinking is associated with alcohol-related negative consequences such as withdrawal symptoms
and health issues [166,167]. Further, the significant positive correlation between the two
personality traits, namely, neuroticism and harm avoidance, is also backed by the evidence that
both traits underlie negative emotions such as fear, shyness, and worry and are regulated by
serotonin and opiate pathways [168]. Lastly, it was a rather unexpected finding that there were
no highly significant correlations across the domains (e.g., functional connectivity vs.
personality), likely because of very low correlation across the domains due to lack of adequate
statistical power to detect the subtle associations among features from different categories of

predictors.

4.6. Limitations and Suggestions

While this is the first multi-modal study including EEG based source connectivity to
examine alcohol-related memory problems, which is an important alcohol-related neurocognitive
outcome, it has some limitations: (i) the sample size of the study groups is rather small and the
findings are therefore only preliminary, (ii) while the groups are matched based on important
variables, stratified analyses based on age, sex, and self-reported race, and genetic ancestry, may
identify more relevant features specific to each category; (iii) some of the variables were not
considered for matching (e.g., memory status during baseline, relatedness among group
members, comorbid diagnoses such as substance use, anti-social personality disorder, attention-
deficit hyperactivity disorder, etc.), which may have impacted the results; (iv) the memory
problems reported by the study sample can be heterogeneous and the assessment of alcohol-
related memory problems was only based on oral self-report and not a psychometric measure;
studies are currently underway in this sample with comprehensive neurocognitive assessments
including memory function and will be more objective and quantitative; (v) the study has not
considered genomic or other trait related baseline effects which could have influenced the
results, and future large scale studies may consider this aspect into the study design; (vi) recent

EEG recordings and neurocognitive assessments, including memory function, in the same
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sample, which are missing in the current study, but are underway in our lab will further add to
predictive modeling; (vii) other specific networks and regions related to memory (e.g., attention
and memory networks) have not been explored in the current study, although studies are
underway in our lab to explore these networks; (viii) PRS for neurocognitive phenotypes
including memory functions have not been included due to lack of availability of multi-ethnic
GWAS data. Future studies may attempt to overcome the shortcomings of the study by using a
larger sample size and stratified analyses, longitudinal design, multimodal imaging (e.g., fMRI,

DTI), and neurocognitive PRS data.

5. Conclusions

Our study has elucidated key multimodal features of brain connectivity, personality, life
experiences, genomic, and alcohol-related measures that can serve as predictors of later
occurring alcohol-related memory problems after about 18 years. Dysregulated brain
connectivity, computed from the EEG data collected 18 years ago, in the form of hyper- and
hypo-connectivity in specific subnetworks, including the hippocampal-cortical connections,
represents potential neural correlates of alcohol-related memory problems. Personality and life
experience features such as higher neuroticism and excessive harm avoidance, and fewer
uplifting experiences in daily life also contributed to identifying individuals with memory
problems from the controls. Importantly, alcohol-related negative consequences during the past 5
years, such as health problems, past negative experiences, withdrawal symptoms, and the largest
number of drinks in a day during the past 12 months were the top-most predictors of memory
problems. These findings will require confirmation in future studies to: (i) validate these multi-
domain features for the use of early identification of individuals who may develop alcohol-
induced memory problems in chronic and/or heavy drinkers; and (ii) use EEG-source
connectivity measures to further identify/validate specific targets of brain networks underlying
AUD related outcomes in general and memory deficits in particular for planning
neuromodulation-based treatments (e.g., transcranial magnetic stimulation) as guided by the
neural signatures related to dysregulated brain networks in affected individuals. However, in
conclusion, the study has many limitations, and the results are only preliminary, warranting
large-scale future studies to confirm the current findings by adopting better experimental designs

within predictive modeling.
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