

1 Polygenic prediction across populations is influenced 2 by ancestry, genetic architecture, and methodology

3 Ying Wang^{1,2,*}, Masahiro Kanai^{1,2,3,4}, Taotao Tan⁵, Mireille Kamariza⁶, Kristin Tsuo^{1,2}, Kai Yuan^{1,2},
4 Wei Zhou^{1,2}, Yukinori Okada^{4,7,8,9}, the BioBank Japan Project, Hailiang Huang^{1,2}, Patrick Turley¹⁰,
5 Elizabeth G. Atkinson⁵, Alicia R. Martin^{1,2,*}

6
7 1. Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
8 2. Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard,
9 Cambridge, MA 02142, USA

10 3. Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
11 4. Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
12 5. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
13 6. Society of Fellows, Harvard University, Cambridge, MA, 02138 USA

14 7. Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
15 8. Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC); Center for Infectious Disease Education
16 and Research (CiDER); and Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary
17 Research Initiatives, Osaka University, Suita 565-0871, Japan

18 9. Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan.
19 10. Department of Economics, and Center for Economic and Social Research, University of Southern California, Los Angeles, CA,
20 USA

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Summary

Polygenic risk scores (PRS) developed from multi-ancestry genome-wide association studies (GWAS), $\text{PRS}_{\text{multi}}$, hold promise for improving PRS accuracy and generalizability across populations. To establish best practices for leveraging the increasing diversity of genomic studies, we investigated how various factors affect the performance of $\text{PRS}_{\text{multi}}$ compared to PRS constructed from single-ancestry GWAS ($\text{PRS}_{\text{single}}$). Through extensive simulations and empirical analyses, we showed that $\text{PRS}_{\text{multi}}$ overall outperformed $\text{PRS}_{\text{single}}$ in understudied populations, except when the understudied population represented a small proportion of the multi-ancestry GWAS. Notably, for traits with large-effect ancestry-enriched variants, such as mean corpuscular volume, using substantially fewer samples from Biobank Japan achieved comparable accuracies to a much larger European cohort. Furthermore, integrating PRS based on local ancestry-informed GWAS and large-scale European-based PRS improved predictive performance in understudied African populations, especially for less polygenic traits with large ancestry-enriched variants. Our work highlights the importance of diversifying genomic studies to achieve equitable PRS performance across ancestral populations and provides guidance for developing PRS from multiple studies.

Keywords: genome-wide association studies; multi-ancestry; polygenic risk scores; genetic architecture

41

42 Introduction

43 Polygenic risk scores (PRS) have emerged as useful tools for estimating the cumulative genetic
44 susceptibility to complex traits and diseases. PRS are typically calculated by weighting the
45 number of risk alleles based on their associations in genome-wide association studies (GWAS).
46 PRS have shown promising potential in predicting some traits and disease risks, comparable to
47 monogenic variants and traditional clinical risk factors^{1–5}. Achieving the most accurate and
48 generalizable PRS requires access to large-scale and diverse GWAS, especially with
49 representation that matches the specific target population. However, the current landscape of
50 GWAS predominantly focuses on European (EUR) ancestry populations, which have
51 considerably larger sample sizes compared to other populations. Although ongoing efforts are
52 underway to rectify these gaps, achieving global representativeness is a challenging goal.
53 Encouragingly, studies have shown that using GWAS data with even a small proportion of non-
54 European ancestry individuals has the potential to improve the predictive accuracy of PRS in
55 underrepresented populations^{6–8}. This finding could largely be attributed to the substantial
56 contribution of common variants to the heritable variation of complex traits and diseases, and that
57 causal variants are largely shared across ancestries^{9–12}. With the ever-increasing availability and
58 scalability of genomic data from underrepresented and ancestrally diverse populations, we are
59 especially interested in leveraging this greater diversity to improve PRS generalizability.
60

61 In particular, recently admixed populations, consisting of chromosomal segments of mosaic
62 ancestries, are systematically excluded in many existing genomic studies due to their
63 underrepresentation and complicated population structure^{13–15}. However, these populations
64 present unique opportunities to develop more generalizable PRS as their genetic effects can be
65 estimated in more consistent environments, which helps reduce confounding factors compared
66 to estimates across different ancestry groups in different populations¹⁶. Furthermore, the
67 comprehensive characterization of phenotypes is often insufficient or inconsistently performed in
68 different populations. However, in the recently admixed populations, there is a greater potential
69 for consistency and comparability in phenotype measurements, as the genetic factors contributing
70 to phenotypic differences between the source populations can be decoupled in the recently
71 admixed populations^{16,17}. The advancement of methodologies such as local ancestry inference
72 and association testing has further enabled ancestry-specific GWAS in admixed populations^{18–20},
73 allowing for the construction of PRS that leverage genetic information captured by local ancestry
74 inference. With the ongoing accumulation of data from recently admixed populations, particularly
75 through initiatives like the *All of Us* Research Program²¹, expanded resources will provide
76 unparalleled opportunities to explore the performance of PRS derived from local ancestry-
77 informed summary statistics within historically underrepresented populations. Furthermore, such
78 data will facilitate their integration with PRS derived from predominantly EUR-based cohorts.
79

80 Recently developed statistical methodologies leverage the increasing diversity of GWAS data to
81 improve PRS portability^{8,22,23}. However, the effect of genetic architecture, ancestry composition of
82 GWAS discovery cohorts, and PRS construction methodologies on cross-ancestry predictive

83 accuracy remains largely unclear. For example, a recent study found no increase in accuracy
84 when meta-analyzing GWAS from a relatively small Ugandan cohort with larger EUR data²⁴.
85 Furthermore, theoretical frameworks for approximating expected PRS accuracy from multi-
86 ancestry GWAS are lacking. Current theoretical calculations for PRS accuracy rely on the
87 assumption of homogeneity within the ancestral discovery samples^{25,26}, ignoring factors that are
88 likely to play a role with multi-ancestry cohorts. Such factors may include differences in linkage
89 disequilibrium (LD), minor allele frequency (MAF), heritability, sample sizes, and genetic
90 correlation across different ancestries.

91
92 To provide insights into those issues, we explored the impact of ancestry compositions in
93 discovery GWAS on predictive accuracy of PRS constructed using different methodologies. This
94 exploration involved large-scale population genetic simulations as well as the utilization of real
95 genomic data from the BioBank Japan (BBJ)²⁷ and UK Biobank (UKBB)⁶ across traits exhibiting
96 distinct genetic architectures (Figure 1). In what follows, we used **single-ancestry GWAS** to
97 denote studies conducted exclusively within a single ancestry group (defined using genetic data),
98 while **multi-ancestry GWAS** refers to studies encompassing two or more distinct ancestries. In
99 our analyses, we performed meta-analyses of GWAS conducted in European ancestry
100 populations (**EUR GWAS**) and GWAS conducted in other minority populations (**Minor GWAS**) by
101 varying the ratios of sample sizes to mimic multi-ancestry GWAS with varying ancestry
102 compositions. Specifically, we focused on East-Asian (EAS) and African (AFR) minority
103 populations. By comparing the performance of PRS derived from single-ancestry GWAS (referred
104 to as **PRS_{single}**) and multi-ancestry GWAS (referred to as **PRS_{multi}**) through simulations and real
105 data, we consistently observed that **PRS_{multi}** overall exhibited superior performance in comparison
106 to **PRS_{single}** (primarily PRS derived from large-scale EUR GWAS, referred to as **PRS_{EUR_GWAS}**). As
107 admixed populations remain understudied despite disproportionately yielding novel genetic
108 findings²⁸, we further conducted local ancestry inference to explore whether, how, and to what
109 extent PRS performance could be improved using GWAS discovery data from AFR-EUR admixed
110 individuals. While optimal PRS methods are trait- and context-specific, this study
111 comprehensively evaluates PRS accuracy across a wide range of scenarios, facilitating a set of
112 best practices that ultimately reduces the number of analyses necessary to optimize PRS for
113 specific applications.

114

115 Results

116 Evaluating the effects of imbalanced sample sizes across ancestries on PRS 117 accuracy through simulations

118 We simulated genotypes using HapGen2 and phenotypes according to six different scenarios
119 with varying trait heritability ($h^2 = 0.03, 0.05$) and number of causal variants ($M_c = 100, 500, 1000$),
120 such that the polygenicity ranged from ~0.1% to ~1%. We assumed that the causal variants and
121 their effect sizes are shared across ancestries (i.e., cross-ancestry genetic correlation, r_g , is 1) in
122 our initial simulations. For single-ancestry GWAS, we first conducted GWAS within each bin and

123 then meta-analyzed GWAS across different numbers of bins (1-52 per ancestry). Each bin
124 represented 10,000 individuals randomly sampled from the corresponding ancestry. For multi-
125 ancestry GWAS, we meta-analyzed GWAS from EUR and minor populations (EAS or AFR) to
126 evaluate the impact of ancestry composition. We used varying numbers of bins from the EUR
127 GWAS (ranging from 4 to 52 with 4 increments) and varied the contribution from minority
128 populations (1-52 bins) from EAS or AFR GWAS. We constructed PRS using the classic pruning
129 and thresholding (P+T) method with varying *p*-value thresholds. This approach follows a greedy
130 heuristic algorithm wherein variants are sorted based on their *p*-values. The algorithm iteratively
131 descends in significance while retaining only those variants that do not exceed a predetermined
132 LD threshold with previously retained variants. We assessed the accuracy, measured by
133 prediction R^2 , using the optimal threshold through fine-tuning in the validation cohort. Detailed
134 information about the simulation setup is shown in **Figure 1** and **STAR Methods**.
135

136 PRS predictive accuracy improved with more individuals from target populations included
137 in the multi-ancestry GWAS but varied with genetic architecture

138 When developing PRS using single-ancestry GWAS, we found that using ancestry-matched
139 GWAS generally outperformed using GWAS from other discovery populations (**Figure S1**).
140 Compared to using EUR GWAS, the benefit of using ancestry-matched GWAS was more evident
141 for traits with more polygenic genetic architectures and larger GWAS sample sizes. To further
142 evaluate the impact of ancestry composition, we compared the accuracy of $\text{PRS}_{\text{multi}}$ and $\text{PRS}_{\text{single}}$.
143 We constructed $\text{PRS}_{\text{multi}}$ using an LD reference panel consisting of individuals proportional to the
144 ancestry composition of the discovery GWAS. This reference panel yielded approximately optimal
145 accuracy among three different reference panels utilized in our study (**Figure S2 and**
146 **Supplementary Note 1, 2**).
147

148 Relative to the accuracy of $\text{PRS}_{\text{EUR_GWAS}}$, we observed significant improvements in the
149 understudied target population by including more individuals from the target ancestry in multi-
150 ancestry GWAS. Across all simulations, a statistically significant median improvement of 0.008 in
151 R^2 was observed (one-sided Wilcoxon signed-rank test, *p*-value < 2.2e-16, **Table S1**). This trend
152 was more apparent in more polygenic traits. As shown in **Figure 2**, we compared accuracy
153 between $\text{PRS}_{\text{multi}}$ and $\text{PRS}_{\text{EUR_GWAS}}$ derived from 320,000 EUR individuals. For traits with h^2 of
154 0.05, the median improvements in R^2 of $\text{PRS}_{\text{multi}}$ was 0.006, 0.014 and 0.013 with M_c of 100, 500,
155 and 1000, respectively, in the EAS target population. Similarly, corresponding R^2 improvements
156 of 0.009, 0.010 and 0.014 were shown in AFR (**Figure S3**). However, we did not consistently
157 observe such accuracy gains for the majority EUR population, or in scenarios where the other
158 understudied ancestry was not included in the multi-ancestry discovery GWAS. In our simulations
159 but unlike in most GWAS, populations typically understudied in current genomic studies can be
160 the majority in the discovery GWAS. Nevertheless, we still observed significant PRS accuracy
161 improvements, of median improvements in R^2 0.007 across simulations when the proportion of
162 understudied populations in the discovery GWAS was less than 50% (one-sided Wilcoxon signed-
163 rank test, *p*-value < 2.2e-16). We expected to observe similar relative R^2 improvements, which
164 measured the PRS generalizability, in the target populations using $\text{PRS}_{\text{multi}}$ compared to using
165 $\text{PRS}_{\text{EUR_GWAS}}$ with the same number of bins from EUR populations (**Supplementary Note 3**).

166
167 Compared with using $\text{PRS}_{\text{EUR_GWAS}}$, we found that $\text{PRS}_{\text{multi}}$ derived from GWAS with much smaller
168 sample sizes could achieve comparable or better predictive accuracy (**Table S1**). For example,
169 in the scenario with M_c of 1000 and h^2 of 0.03, the meta-analysis of 16 EUR and 2 AFR bins
170 achieved a comparable accuracy of 0.008 to that of using 32 EUR bins in the AFR population.
171 Overall, adding fewer individuals from the target populations saturated accuracy improvements
172 for less polygenic traits faster than more polygenic traits. Similarly, larger sample sizes from AFR
173 populations were required to achieve comparable PRS accuracy to EAS populations especially
174 for more polygenic traits, likely due to the larger effective population size in AFR populations and
175 larger genetic divergence between EUR and AFR populations. As shown in **Figure S3**, when h^2
176 was 0.03, the accuracy improvement of $\text{PRS}_{\text{multi}}$ in the AFR population plateaued to ~ 0.005 with
177 11 and 20 AFR bins for M_c of 100 and 500, respectively, but continued to increase with more AFR
178 bins for M_c of 1000. Similarly, when h^2 was 0.03, including 2 and 12 EAS bins in $\text{PRS}_{\text{multi}}$ yielded
179 an accuracy improvement of > 0.005 in EAS for M_c of 100 and 500, respectively (**Figure 2**). In
180 comparison to PRS derived from Minor GWAS alone ($\text{PRS}_{\text{Minor_GWAS}}$), we found that the accuracy
181 improvement of $\text{PRS}_{\text{multi}}$ gradually diminished as the sample size of Minor GWAS increased
182 (**Figure S4 and Table S1**). We showed that for more polygenic traits, $\text{PRS}_{\text{multi}}$ achieved little to
183 no improvement when the understudied target populations accounted for more than half of the
184 sample size in multi-ancestry GWAS (**Supplementary Note 4**).
185

186 Because genetic correlation estimates between populations can be significantly less than 1, we
187 also modified our simulations by varying the r_g to be 0.6 and 0.8. We investigated two simulation
188 scenarios that represent the extremes in per-variant variance explained: the least polygenic
189 scenario 1 with $M_c = 100$ and $h^2 = 0.05$, and the most polygenic scenario 2 with $M_c = 1000$ and
190 $h^2 = 0.03$ (**STAR Method**). Consistent with our previous findings, $\text{PRS}_{\text{multi}}$ exhibited improved
191 predictive accuracy in the target population when a greater number of individuals from the same
192 ancestry were included, as compared to relying solely on large-scale EUR GWAS (**Figure S5-A, B**). This
193 improvement was more pronounced for scenario 2. Moreover, we needed a larger
194 number of individuals from the target ancestry to saturate accuracy improvements in scenario 1
195 when r_g was moderately reduced. Furthermore, as the sample sizes of the Minor GWAS
196 increased and the values of r_g decreased, the advantage of utilizing $\text{PRS}_{\text{multi}}$ over $\text{PRS}_{\text{Minor_GWAS}}$
197 diminished and eventually vanished (**Figure S5-C, D**). Details are shown in **Table S2** and
198 **Supplementary Note 5**.
199

200 Empirical analysis of PRS accuracy within and across ancestries using 17
201 quantitative phenotypes

202 Genetic architecture of 17 studied phenotypes

203 To understand how trait genetic architecture influences predictive accuracy of PRS across
204 ancestries, we conducted a comprehensive analysis involving 17 phenotypes in the UKBB and
205 BBJ. Specifically, we estimated key parameters influencing different aspects of genetic
206 architecture, including SNP-based heritability, polygenicity (the proportion of SNPs with nonzero

207 effects) and a coefficient of negative selection (S , measuring the relationship between MAF and
208 estimated effect sizes). To obtain these estimates, we employed a Bayesian method called
209 summary-data-based BayesS (SBayesS), which leverages GWAS summary statistics as input
210 data²⁹.

211
212 The phenotypes included in this study varied widely in genetic architecture across these estimated
213 parameters (**Figure 3**, **Table S3** and **Table S4**). The polygenicity estimates spanned a broad
214 range, from low values (0.001-0.005) for traits like mean corpuscular hemoglobin concentration
215 (MCHC), basophil count (basophil), mean corpuscular hemoglobin (MCH), and mean corpuscular
216 volume (MCV), to higher values (0.012-0.047) for traits such as height and body mass index
217 (BMI). SNP-based heritability estimates similarly ranged from <0.1 for basophil and MCHC to 0.54
218 and 0.33 for height using UKBB and BBJ, respectively, regardless of polygenicity. The median S
219 parameters were -0.63 and -0.47 using UKBB and BBJ, respectively. While the negative S values
220 indicate negative selection (i.e., rarer variants have larger effects), it remains unclear to what
221 degree population stratification could confound such estimates^{30,31}. We found that the polygenicity
222 estimates using UKBB were mostly higher than those using BBJ, which could be due to the higher
223 statistical power with larger sample sizes in the UKBB resulting in the detection of more variants
224 with small effects. Similarly, we observed significantly higher SNP-based heritability in the UKBB
225 compared to BBJ with the exception of MCHC and basophil, indicating possible phenotype
226 heterogeneity between the two cohorts. These results are expected from the biobank designs, as
227 BBJ is a hospital-based cohort with participants recruited with certain diseases, whereas UKBB
228 is a population-based cohort with overall healthier participants and thus a wider range of natural
229 variation in complete blood counts. This finding is also consistent with the previous study using
230 estimates from LD score regression (LDSC) and stratified-LDSC³². Moreover, as described
231 previously³², the estimated cross-ancestry genetic correlations between UKBB and BBJ for those
232 traits were not statistically different from 1 (p -value > 0.05/17) except for a few including basophil
233 ($r_g = 0.5945$, SE = 0.1221), height ($r_g = 0.6932$, SE = 0.0172), BMI, ($r_g = 0.7474$, SE = 0.0230),
234 diastolic blood pressure (DBP, $r_g = 0.8354$, SE = 0.0509), and systolic blood pressure (SBP, $r_g =$
235 0.8469, SE = 0.0430).

236
237 Multi-ancestry GWAS-derived PRS usually improves predictive performance compared
238 to single-ancestry GWAS-derived PRS

239 We constructed PRS_{single} using the P+T and PRS-CS methods with GWAS from UKBB and BBJ,
240 respectively. The GWAS sample sizes varied based on the number of Bin_{Total}, which represented
241 the total number of bins specific to each trait as shown in **Table S3**. Each bin consisted of 5,000
242 individuals randomly selected from the respective cohort. We found that employing target
243 ancestry-matched GWAS, even with smaller sample sizes, yielded comparable accuracy to
244 utilizing large-scale EUR GWAS but depended on PRS methodology and trait-specific genetic
245 architecture (**Figure S6**, **Figure S7**, **Table S5** and **Supplementary Note 6**). We evaluated
246 predictive accuracy by computing incremental R^2 using linear regression, while accounting for the
247 potential impact of covariates (**STAR Methods**).
248

249 For comparison, we developed PRS_{multi} using both P+T and PRS-CS, where we meta-analyzed
250 single-ancestry GWAS from UKBB and BBJ. Similar to the simulation setup, we mimicked
251 proportional ancestry composition in the multi-ancestry GWAS by meta-analyzing EUR GWAS in
252 the UKBB with GWAS in the BBJ while varying number of bins (each bin of 5,000 individuals,
253 UKBB bins ranging from 8 to 64 with an increment of 8, see **STAR Methods** and **Figure 1**). The
254 ratio of EUR/EAS samples in the multi-ancestry GWAS varied from 64:1 to 8/Bin_{Total}. Thus, 85%
255 of the multi-ancestry GWAS had a higher proportion of EUR samples (>50% EUR). Consistent
256 with our findings from the simulations, where we observed that the choice of LD reference panel
257 had a limited impact on the predictive accuracy of more polygenic traits, we observed only a slight
258 improvement of median R^2 of 0.002 for P+T when employing a combined LD reference panel that
259 was proportional to the ancestries represented in the multi-ancestry GWAS. We compared this
260 result with PRS developed using a reference panel that was matched with the majority population
261 of the discovery GWAS (**Figure S8 and Table S6**). Because the majority of PRS was constructed
262 from GWAS predominantly composed of EUR individuals, we hereafter reported the results using
263 1KG-EUR as the LD reference.

264
265 In our analysis comprising 3,160 comparisons between single-ancestry PRS derived from UKBB
266 GWAS (PRS_{EUR_GWAS}) and multi-ancestry PRS (PRS_{multi}), we observed encouraging results.
267 Specifically, in the UK Biobank East-Asian population (UKBB-EAS), PRS_{multi} showed accuracy
268 improvements in 99.7% and 92.4% of these comparisons when using P+T and PRS-CS,
269 respectively (**Table S7 and Figure S9**). Accuracy increased with more EAS samples in the multi-
270 ancestry GWAS (**Figure 4**). For example, when comparing PRS_{multi} with PRS_{EUR_GWAS} using P+T,
271 the largest relative improvements in R^2 were 80.9% (0.085 vs. 0.047) for platelet count (PLT),
272 152.2% (0.058 vs. 0.023) for BMI and 91.9% (0.071 vs. 0.037) for height. We observed these
273 improvements when using multi-ancestry GWAS including EAS bins from BBJ, which were either
274 concordant with or proximal to Bin_{Total}, along with 64 EUR bins from UKBB. Similarly, the
275 corresponding relative R^2 improvements for these same three traits were 19.8% (0.0126 vs.
276 0.101), 50.0% (0.075 vs. 0.050) and 15.5% (0.097 vs. 0.084) when using PRS-CS. We did not
277 consistently observe the upward trend for white blood cell count (WBC) with PRS-CS, which can
278 be attributed to the lack of accuracy improvement with larger sample sizes of BBJ (**Figure S6**).
279 We also found that P+T showed greater improvement compared to PRS-CS but worse accuracy
280 overall, regardless of the number of bins from EUR GWAS; the median improvements in R^2 across
281 traits were 0.014 and 0.008, respectively. However, the upward trend in PRS accuracy was not
282 consistently shown in the UKBB-EUR, particularly when using PRS-CS (**Figure S10 and Table**
283 **S7**). This pattern aligned with our simulation results and previous reports that PRS accuracy for
284 minority populations included in the multi-ancestry GWAS benefited more from adding more
285 ancestry-matched individuals compared to other populations, including EUR populations³³. We
286 noted that the accuracy of PRS_{multi} remained largely unchanged or slightly decreased when the
287 number of bins from BBJ was small (e.g., 1 or 2 bins), which was consistent with previous
288 studies^{6,33}. In contrast to PRS derived from BBJ (PRS_{Minor_GWAS}), we noted a diminishing trend in
289 accuracy improvements of PRS_{multi} as the sample sizes of BBJ increased, especially for traits such
290 as height, PLT, MCH and MCV (**Figure S11**). Furthermore, we observed greater variation in
291 accuracy among traits from real data compared to simulations, which could be attributed to the
292 smaller sample sizes and the more complicated genetic architecture.

293

294 PRS derived from meta-analyzed multi-ancestry GWAS versus weighted PRS from
295 single-ancestry GWAS in understudied populations

296 In contrast to PRS_{multi}, an alternative approach proposed in previous studies to enhance predictive
297 accuracy in diverse populations is the linear combination of PRS derived from GWAS conducted
298 on populations with different ancestries³⁴. Here, we implemented this approach by developing a
299 weighted PRS (**PRS_{weighted}**) using P+T and PRS-CS. This combination involved linearly weighting
300 PRS derived from single-ancestry GWAS conducted in the UKBB and BBJ. Additionally, we
301 employed a more advanced Bayesian method called PRS-CSx⁸, which jointly models GWAS and
302 LD information from multiple populations. Similarly, we constructed PRS_{weighted} using ancestry-
303 specific posterior SNP effects. Furthermore, we developed PRS by integrating ancestry-specific
304 posterior SNP effects using the inverse-variance weighted meta-analysis strategy, also referred
305 to as PRS_{multi} (see **STAR Methods**).
306

307 Among the three PRS methods evaluated in the UKBB-EAS, PRS-CSx exhibited the highest
308 performance, followed by PRS-CS and P+T. Specifically, for PRS_{multi}, the corresponding median
309 R^2 values across traits were 0.051, 0.048 and 0.037, while for PRS_{weighted}, they were 0.051, 0.045
310 and 0.021, respectively (**Figure 5, Table S8 and Table S9**). Notably, we observed that PRS_{multi}
311 for BMI using PRS-CS yielded significantly better accuracy compared to PRS-CSx (median R^2 :
312 0.057 vs. 0.055, p -value < 2.2e-16, one-sided Wilcoxon signed-rank test). Out of the 3,160
313 comparisons between PRS_{multi} and PRS_{weighted} in the UKBB-EAS, 91.4% and 78.0% showed higher
314 accuracy of PRS_{multi} when using P+T and PRS-CS, respectively, with median improvements in
315 R^2 of 0.011 (p -value < 2.2e-16) and 0.003 (p -value < 2.2e-16). Although we found better
316 performance overall with PRS_{multi}, we found that PRS_{weighted} significantly outperformed PRS_{multi} for
317 PLT using P+T (median R^2 : 0.086 vs. 0.081, p -value < 2.2e-16) and for height using PRS-CS
318 (median R^2 : 0.091 vs. 0.082, p -value = 2.6e-04). Contrary to trends observed with other methods,
319 in 59.7% of the comparisons, PRS_{weighted} outperformed PRS_{multi} when using PRS-CSx, although
320 we observed no significant accuracy difference across traits. However, PRS_{weighted} showed
321 superior performance compared to PRS_{multi} (p -value < 0.05/17) for several traits, including MCV
322 (median R^2 : 0.079 vs. 0.072), MCH (median R^2 : 0.079 vs. 0.073), Basophil (median R^2 : 0.010 vs.
323 0.007) and hemoglobin concentration (HB, median R^2 : 0.025 vs. 0.024).
324

325 Moreover, the extent of accuracy improvements using PRS_{multi}, in contrast to PRS_{weighted}, largely
326 varied across traits and ancestry compositions. For example, when evaluating accuracy within
327 the UKBB-EAS using P+T, we observed 3.25-fold increase in R^2 with PRS_{multi} compared to
328 PRS_{weighted} for monocyte count (monocyte, 0.065 vs. 0.020). This improvement was achieved with
329 a bin ratio 56:15 for the discovery GWAS, consisting of 56 bins from UKBB and 15 bins from BBJ.
330 Similarly, using a bin ratio of 40:25, we achieved a 4-fold increase in R^2 for DBP (0.048 vs. 0.012)
331 with PRS_{multi} compared to PRS_{weighted}. When developing PRS_{multi} using PRS-CS, we observed
332 notable relative improvements in R^2 when compared to PRS_{weighted}, specifically a 24.7% increase
333 for PLT (0.091 vs. 0.073) with bin ratio of 24:1, and a 57.1% increase for lymphocyte (0.044 vs.
334 0.028) with a bin ratio of 16:1. Additionally, we found that PRS-CSx showed better performance
335 in comparison to PRS-CS, especially when EUR GWAS was smaller or Minor GWAS was larger.

336 However, such improvements were less pronounced with large-scale EUR GWAS or small Minor
337 GWAS (**Figure S12**). While sharing ancestry-specific GWAS summary statistics is highly
338 beneficial for determining optimal approaches, our findings highlight the value of pragmatic
339 approaches that directly construct PRS from large-scale meta-analyzed multi-ancestry GWAS.
340 Such studies are often more accessible than ancestry-specific GWAS summary statistics.
341

342 PRS derived from local ancestry-informed GWAS can improve accuracy for
343 some less polygenic traits

344 We next conducted a comparative analysis to evaluate the optimal PRS approaches for admixed
345 populations, utilizing local ancestry-informed GWAS. Specifically, we used Tractor¹⁹ to perform
346 GWAS in AFR tracts within admixed AFR-EUR individuals, referred to as **AFR_{Tractor}**. This
347 approach enabled us to construct ancestry-specific PRS across 17 traits in the understudied AFR
348 population. We developed PRS using both P+T and PRS-CS, and subsequently compared the
349 accuracies of PRS derived from AFR_{Tractor} with those derived from large-scale EUR GWAS
350 performed with standard linear regression (**EUR_{Standard}**). To maximize discovery sample size, we
351 also developed PRS_{weighted} by combining EUR_{Standard}-derived PRS and AFR_{Tractor}-derived PRS
352 through linear weighting; we compared its performance to PRS derived from multi-ancestry meta-
353 analyzed GWAS (referred to as **Meta_{Standard}**, see **STAR Methods**).
354

355 Local ancestry-informed ancestry-specific GWAS had a much smaller sample size relative to the
356 EUR-inclusive GWAS, as is typical for GWAS of underrepresented populations. As expected, we
357 did not observe significant predictive accuracy of AFR_{Tractor}-derived PRS for most traits such as
358 height and BMI (**Figure 6 and Table S10**). However, we observed notable improvements for 5
359 traits, including WBC, neutrophil count (neutrophil), MCV, MCH and MCHC, where AFR_{Tractor}-
360 derived PRS achieved significantly higher R^2 compared to EUR_{Standard}-derived PRS when using
361 P+T (0.040 vs. 0.007, one-sided paired *t*-test, *p*-value = 0.038), despite a much larger sample
362 size for EUR_{Standard}. This improvement might be attributed to the presence of large-effect AFR-
363 enriched variants, particularly for MCV, MCH and MCHC, which are effectively captured by
364 Tractor GWAS^{6,19}. Consistent with our previous findings, P+T generally outperformed PRS-CS
365 for these traits characterized by much sparser genetic architectures, with a mean R^2 of 0.040
366 compared to 0.022. Given that heritability bounds predictive accuracy, which can vary among
367 populations and contexts, we also compared SNP-based heritability estimates between the AFR
368 and EUR populations in the Pan-UK Biobank Project
369 (<https://pan.ukbb.broadinstitute.org/docs/heritability/index.html>). In line with our PRS accuracy
370 results, we observed higher estimates of SNP-based heritability for WBC (h^2 = 0.41, SE = 0.19
371 vs. h^2 = 0.17, SE = 0.01), neutrophil (h^2 = 0.44, SE = 0.26 vs. h^2 = 0.15, SE = 0.01), and MCHC
372 (h^2 = 0.15, SE = 0.11 vs. h^2 = 0.06, SE = 0.01) in the AFR population compared to the EUR
373 population. However, these differences did not reach statistical significance, which can be
374 attributed to the large standard errors resulting from the limited small sample size of AFR
375 population and the sparser genetic architectures, leading to less stable heritability estimates using
376 LDSC.
377

378 The best local ancestry-informed PRS approach that we evaluated for the 5 less polygenic traits
379 with large ancestry-specific effects was a weighted linear regression approach. This approach
380 combined PRS derived from AFR_{Tractor} and EUR_{Standard} using linear regression and outperformed
381 predictive accuracy compared to using Meta_{Standard}-derived PRS. This finding aligns with our
382 earlier observations, where PRS_{weighted} outperformed PRS_{multi} for traits with large effect ancestry-
383 enriched variants, while PRS_{multi} exhibited superior overall performance for traits lacking such
384 variants. Specifically, the mean accuracies of PRS_{weighted} using P+T, PRS-CS and PRS-CSx for
385 those 5 traits were 0.044, 0.031, and 0.028, respectively, with no significant differences observed
386 among the three PRS methods. The mean accuracies of Meta_{Standard} were 0.016 and 0.008 using
387 PRS-CS and P+T, respectively. Additionally, we did not observe significant accuracy differences
388 between PRS derived from GWAS conducted using standard linear regression in admixed
389 populations and AFR_{Tractor}-derived PRS (**Table S10**). It is worth noting that the effective sample
390 size of local ancestry-informed GWAS is approximately 20% smaller due to the reduction from
391 deconvolving ancestral tracts. Moreover, PRS derived from traditional GWAS in admixed
392 populations necessitate an in-sample LD reference panel. In contrast, local ancestry-informed
393 GWAS-based PRS, as shown in this study, can leverage external LD reference panels,
394 eliminating the need for direct access to individual-level genotypes of admixed populations.
395

396 Discussion

397 In this study, we extensively evaluated PRS performance through a combination of simulation
398 and empirical analyses to explore the impact of various factors on PRS predictive accuracy and
399 generalizability across populations. We demonstrated that increasing genetic diversity of
400 discovery GWAS improved predictive accuracy in understudied populations. The extent of
401 improvement was influenced by factors such as sample size ratios between EUR GWAS and
402 Minor GWAS, genetic architecture, PRS methodology, and LD reference panels. Among those
403 factors, between-ancestry genetic architecture differences, such as ancestry-enriched variants
404 with large effects, affected accuracy improvement more than other factors. While leveraging large-
405 scale EUR GWAS continues to benefit PRS accuracy given the current scale of understudied
406 populations, we may not expect accuracy improvement when meta-analyzing extremely small
407 Minor GWAS²⁴.

408 Our study also revealed that directly meta-analyzing datasets from diverse ancestral groups could
409 yield greater accuracy improvements than linearly combining PRS through an optimized weighting
410 strategy, especially for P+T. Such improvements from meta-analyzed GWAS supports the
411 common implicit assumption that causal variants are shared between ancestries. Consistent with
412 this assumption, when smaller target populations lack representation, leveraging genetic
413 information from a different population with larger sample sizes improves PRS accuracy, even
414 when it is ancestrally diverged. Notably, when employing the more sophisticated genome-wide
415 PRS method, PRS-CSx, accuracy differences between PRS_{multi} and PRS_{weighted} were marginal.
416 Moreover, PRS-CSx generally outperformed PRS-CS, with the exception of BMI. The
417 improvement was most pronounced for traits with ancestry-specific variants, such as MCV and
418 MCH.
419

420
421 We have comprehensively evaluated characteristics that impact PRS performance, including in
422 recently admixed populations. We have shown the advantage of leveraging GWAS in admixed
423 populations by accounting for local ancestry, which could improve PRS predictive performance in
424 understudied populations even without direct access to individual genotypes of admixed
425 populations. Specifically, we found that PRS_{weighted} consistently outperformed PRS_{multi} for traits
426 with ancestry-enriched variants. However, the sample size of admixed individuals here was
427 relatively small, and we anticipate that future analyses incorporating larger datasets, such as the
428 *All of Us* Research Program, will provide further insights into optimal PRS strategies for improved
429 accuracy and generalizability using PRS derived from local ancestry-informed GWAS.
430
431 While previous studies have shown the advantages of leveraging increased genetic diversity to
432 improve PRS accuracy in global populations^{7,35}, most have used GWAS with primarily European
433 ancestry. Here, we have provided additional best practices for developing PRS for understudied
434 populations using diverse discovery cohorts, particularly when GWAS encompass different
435 ancestry compositions across various trait genetic architectures (Figure 7). Our
436 recommendations primarily revolve around general guidelines for constructing PRS_{single} and
437 PRS_{multi} (or PRS_{weighted}), depending on factors examined in this study (Figure S13).
438
439 First, in the development of PRS_{single}, we employed a theoretical equation³⁶ to enhance the
440 selection of input GWAS (**Supplementary Note 7**), as a function of the cross-ancestry genetic
441 correlation, SNP-based heritability in discovery and target populations, discovery GWAS sample
442 size, and the number of genome-wide independent segments in the discovery population³⁶. For
443 traits with relatively low r_g and a sizable ancestry-matched GWAS (e.g., > 20-40% of EUR
444 GWAS), such as BMI and height, PRS accuracy in the target population improves when ancestry-
445 matched GWAS are utilized. On the other hand, for traits with high r_g and SNP-based heritability,
446 we expect larger-scale EUR GWAS to outperform smaller-scale ancestry-matched GWAS.
447 However, it is important to consider the characteristics of the target cohort and phenotype
448 precision. Additionally, we expect Bayesian methods tailored to trait-specific genetic architecture
449 to outperform classic P+T methods. However, this superior performance may not hold true for
450 traits that exhibit large-effect ancestry-enriched variants or with a very sparse genetic architecture,
451 which are attributes typically informed by prior knowledge or information gleaned from literature
452 and public resources^{35,37-39}. To enhance accuracy in such scenarios, we recommend employing
453 a grid-search approach with a finer-scale adjustment of the hyper-parameters in Bayesian
454 methods.
455
456 Second, in comparison to PRS_{single} derived from large-scale EUR GWAS, we recommend using
457 PRS_{multi}, unless the target ancestry-matched GWAS is extremely small (<10,000). PRS_{multi} is
458 generally preferred for traits with high r_g , SNP-based heritability, and large sample sizes. We find
459 increasing evidence supporting the notion that the effects of most common variants are shared
460 between ancestries, indicating a high r_g for most traits^{9,11}. However, estimates of r_g can be
461 affected by phenotypic and environmental heterogeneity across populations^{10,40}. When
462 constructing PRS_{multi} using summary-level based methods such as P+T and PRS-CS,
463 researchers should carefully consider which LD reference panel best approximates the LD

464 structure between SNPs while being most readily accessible. We have shown that when EUR
465 remains the majority population in the discovery GWAS, using the EUR-based reference panel
466 effectively approximates the LD of discovery GWAS, consistent with our previous findings⁷.
467

468 Third, our findings indicate the advantages of PRS_{multi} compared to PRS_{weighted}, particularly when
469 employing P+T and PRS-CS. However, there are some notable exceptions, such as the higher
470 accuracy observed when using PRS_{weighted} with PRS-CS for traits with low r_g , such as height.
471 Furthermore, when incorporating local ancestry-informed GWAS and large-scale EUR GWAS,
472 PRS_{weighted} outperformed PRS_{multi} for traits with AFR-enriched variants, such as WBC and MCHC,
473 in the UKBB-AFR. On the other hand, we note that the accuracy of PRS_{multi} could be more affected
474 by the choice of LD reference panel, while PRS_{weighted} was not limited in this regard due to its easy
475 accessibility of external ancestry-matched reference panels. PRS-CSx, which accounts for
476 variations in allele frequencies and LD structures across ancestries, is recommended when
477 ancestry-specific GWAS from multiple populations are available, especially with considerable
478 sample sizes (e.g., > 25,000~50,000) in the Minor GWAS. These results highlight the importance
479 of making ancestry-specific GWAS summary statistics publicly available.
480

481 In summary, there is no one-size-fits all approach for constructing PRS, as the optimal approach
482 depends on genetic architecture, ancestry composition, statistical power, and other factors. These
483 factors can be complex, particularly as a deluge of methods are being developed to address the
484 PRS generalizability problem. To inform optimal approaches across a wide range of scenarios,
485 we have distilled the results of extensive simulations and empirical analyses across trait genetic
486 architectures, ancestries, and methods into a set of guidelines from parameters that are typically
487 evaluated at the outset of a genetic study.
488

489 Limitations of the study

490 We acknowledge some limitations and future directions in our study. First, we focused on common
491 variants in different populations, while population-enriched variants have lower frequencies and
492 larger effect sizes in some populations. The role of such variants in polygenic prediction are worth
493 exploring across phenotypes when there are sufficient sample sizes for different ancestral
494 populations. Second, as we used external LD reference panels for PRS construction, PRS
495 performance decreases with LD mismatch between the discovery population and LD reference
496 panel, especially using multi-ancestry GWAS. While we show that LD reference panel differences
497 have a relatively modest effect on PRS accuracy, they have a much larger effect on fine-
498 mapping⁴¹, so future efforts are warranted to share in-sample LD without direct access to
499 individual-level genotypes, especially for large consortia with numerous and diverse cohorts.
500 Alternatively, developing more sophisticated individual-level PRS methods that preserve privacy
501 and are scalable to current biobank-scale data is also promising. Third, while our primary focus
502 pertains to quantitative phenotypes characterized by diverse genetic architectures, we expect our
503 findings can be broadly applied to binary traits, as we have investigated previously⁷. However,
504 binary phenotypes introduce additional complexities due to factors such as variable case/control
505 ratios, phenotype definitions, environmental differences, and smaller effective sample sizes or

506 lower statistical power. Fourth, while we have provided theoretical expectations of cross-ancestry
507 prediction, the reliability of parameter estimates such as cross-ancestry genetic correlation and
508 the effective number of independent genome-wide segments poses significant challenges,
509 particularly in the context of multi-ancestry GWAS with highly imbalanced sample sizes. Finally,
510 it is important to acknowledge that our study focused on selected methods, which consistently
511 exhibit similar trends⁴². Although we anticipate that our findings are broadly applicable to
512 alternative methods, such as XPASS⁴³ and XP-BLUP⁴², further research is needed to explore the
513 generalizability of our findings to other polygenic prediction approaches. Despite the limitations,
514 our study highlights the advantages of leveraging the increasing diversity of current genomics
515 studies to improve polygenic prediction across populations. We emphasize the necessity of
516 diversifying not only the ancestry but also phenotypic spectrum when collecting genomic data
517 from global populations, which will contribute to achieve a more equitable and effective use of
518 PRS for traits with varying genetic architectures.
519

520 Acknowledgements

521 A.R.M. and Y.W. were supported by funding from the National Institutes of Health
522 (K99/R00MH117229 to A.R.M.) as well as funding from European Union's Horizon 2020 research
523 and innovation program under grant agreement 101016775. A.R.M. was also supported by
524 funding from U01HG011719. H.H. acknowledges support from NIDDK K01DK114379, NIDDK
525 1R01DK129364, NIMH U01MH109539, the Zhengxu and Ying He Foundation, and the Stanley
526 Center for Psychiatric Research. E.G.A. is supported by K01MH121659 from NIMH, the Caroline
527 Wiess Law Fund for Research in Molecular Medicine, and the ARCO Foundation Young Teacher-
528 Investigator Fund at Baylor College of Medicine. P.T. is supported by funding from NIH/NIA (R00
529 AG062787) and by the Good Ventures Foundation (010623-00001).
530

531 Author Contributions

532 Conceptualization: Y.W., A.R.M., E.G.A., M.Kanai.
533 Formal analysis: Y.W., M.Kanai., T.T., M.Kamariza., K.Y., W.Z., P.T.
534 Writing – Original Draft: Y.W., A.R.M., E.G.A., M.Kanai., T.T.
535 Writing – Review & Editing: Y.W., M.Kanai., T.T., M.Kamariza, K.T., K.Y., W.Z., Y.O., H.H., P.T.,
536 K.T., E.G.A., A.R.M.
537

538 Declaration of interests

539 H.H. received consultancy fees from Ono Pharmaceutical and honorarium from Xian Janssen
540 Pharmaceutical. All other authors declare no competing interests.
541

542 Figure Legends

543 Figure 1. Study design in both simulations and empirical analyses

544 1) In the context of single-ancestry GWAS, we randomly split individuals in European (EUR) and
545 other minority populations, including East-Asian and African populations, into equally sized bins.
546 Simulations involved a total of 52 bins per population, each containing 10,000 individuals. For
547 empirical analysis, bin number was dependent on the sample size of respective phenotype in that
548 population (**Table S3**), with 5,000 individuals per bin. GWAS was conducted within each bin for
549 each individual population, followed by meta-analysis of GWAS from various numbers of bins
550 within each population. To construct PRS derived from single-ancestry GWAS (**PRS_{single}**) in the
551 target population, we applied P+T for both simulations and empirical analyses, utilizing PRS-CS
552 for the latter. Subsequently, we combined PRS_{single} developed from EUR GWAS (**PRS_{EUR_GWAS}**)
553 and other minority population-based GWAS (**PRS_{Minor_GWAS}**) through a linear weighted strategy
554 (denoted as **PRS_{weighted}**, highlighted in red box) for empirical analyses. Note that PRS_{weighted} was
555 also developed using PRS-CSx, which utilizes GWAS summary statistics from multiple
556 populations. 2) For meta-analyzed multi-ancestry GWAS (referred to as **Meta**), we ran meta-
557 analyses on EUR GWAS and Minor GWAS with varying ancestry compositions. In simulations,
558 we incrementally included 4 bins from EUR GWAS for the meta-analysis, while in empirical
559 analyses, we increased the number to 8 bins. Simultaneously, we varied the number of bins in
560 Minor GWAS from 1 to the total number. Following the meta-analysis, we constructed PRS based
561 on Meta (referred to as **PRS_{multi}**), using the P+T method for simulations, and employing both P+T
562 and PRS-CS for empirical analyses.

563

564 Figure 2. Improvement of PRS accuracy through meta-analyzed multi- 565 ancestry GWAS compared to large-scale European GWAS across 6 566 simulated genetic architectures.

567 The multi-ancestry GWAS included populations of European (EUR) and East-Asian (EAS)
568 ancestry, with the EAS sample size varying as indicated on the x-axis. For illustrative purposes,
569 we present the results using 32 EUR bins, each consisting of 10,000 individuals, which were
570 included in both EUR GWAS and multi-ancestry GWAS. PRS was separately evaluated in African
571 (AFR), EAS and EUR populations. Full results are shown in **Table S1**. M_c indicates the number
572 of causal variants and h^2 refers to SNP-based heritability. In each panel, the red vertical dashed
573 line indicates the point where an equal number of bins from EUR and EAS populations were
574 included in the multi-ancestry GWAS. The error bars represent the standard errors of predictive
575 accuracy differences between PRS derived from multi-ancestry GWAS (**PRS_{multi}**) and PRS
576 derived from EUR GWAS (**PRS_{EUR_GWAS}**).

577

578 Figure 3: Genetic architecture of 17 studied traits between Biobank Japan
579 (BBJ) and UK Biobank (UKBB).

580 The error bar is the standard deviation of the corresponding estimate. The vertical dashed line
581 was the median estimate. Full results are shown in **Table S4**. The phenotypes were ranked
582 according to their polygenicity estimates using GWAS from UKBB, including: BMI (body mass
583 index), Height, DBP (diastolic blood pressure), SBP (systolic blood pressure), WBC (white blood
584 cell count), Lymphocyte (lymphocyte count), RBC (red blood cell count), Neutrophil (neutrophil
585 count), HB (hemoglobin concentration), HT (hematocrit percentage), Eosinophil (eosinophil
586 count), PLT (platelet count), Monocyte (monocyte count), MCV (mean corpuscular volume), MCH
587 (mean corpuscular hemoglobin), Basophil (basophil count), MCHC (mean corpuscular
588 hemoglobin concentration).

589

590 Figure 4. Accuracy improvement of PRS in the UK Biobank East-Asian
591 population (UKBB-EAS) using multi-ancestry GWAS compare to using
592 European (EUR) GWAS for P+T and PRS-CS.

593 The multi-ancestry GWAS were obtained by meta-analyzing EUR GWAS and EAS GWAS, with
594 the EAS sample size from the Biobank Japan (BBJ) varying as indicated on the x-axis. For
595 illustrative purposes, we present the results using 64 EUR bins, each containing 5,000 individuals,
596 which were included in both EUR GWAS and multi-ancestry GWAS. PRS were constructed using
597 P+T and PRS-CS and evaluated in the UKBB-EAS. The y-axis is the accuracy difference of PRS
598 when using multi-ancestry GWAS (PRS_{multi}) compared to using EUR GWAS (PRS_{EUR_GWAS}). The
599 error bars indicate the standard error of accuracy improvement. The red dashed line is y=0. We
600 showed the results for 7 traits with SNP-based heritability > 0.1 in both BBJ and UKBB, and they
601 were ranked by polygenicity estimates using UKBB (**Figure 3**). Full results are shown in **Table**
602 **S7**.

603

604 Figure 5. Predictive accuracy using different PRS methods in the UK Biobank
605 East-Asian population (UKBB-EAS).

606 PRS_{multi} represents PRS derived from multi-ancestry GWAS, while PRS_{weighted} denotes PRS
607 constructed from a weighted linear combination (see **STAR Methods** for details). PRS were
608 constructed with three methods, including P+T, PRS-CS and PRS-CSx. We showed the results
609 for 7 traits with SNP-based heritability > 0.1 in both Biobank Japan (BBJ) and UKBB. Traits were
610 ranked by polygenicity estimates using UKBB (**Figure 3**). Boxes represent the first and third
611 quartiles, with the whiskers extending to 1.5-fold the interquartile range. Full results are shown in
612 **Table S8 and Table S9**.

613

614 Figure 6. Accuracy of PRS derived from local-ancestry informed GWAS
615 versus other discovery GWAS in the UK Biobank African population (UKBB-
616 AFR)

617 We evaluated PRS performance in the UKBB-AFR by utilizing various methods on different
618 discovery GWAS. Specifically, $AFR_{Tractor}$ denotes the AFR-specific GWAS performed using
619 Tractor on the UKBB admixed African-European individuals. $EUR_{Standard}$ refers to standard GWAS
620 performed on the European (EUR) population in the UKBB. $Meta_{Standard}$ is the meta-analysis
621 performed on $AFR_{Tractor}$ and $EUR_{Standard}$. Furthermore, we constructed a weighted PRS by
622 combining PRS generated from $AFR_{Tractor}$ and $EUR_{Standard}$ through a linear weighted approach.
623 The figure shows the results for traits with SNP-based heritability > 0.1 in the UKBB-AFR. Full
624 results are shown in **Table S10**.
625

626 Figure 7. General practices for developing PRS using different discovery
627 GWAS.

628 We summarized the general practice for developing PRS A) using single-ancestry GWAS
629 (PRS_{single}); and B) using GWAS from multiple ancestries (PRS_{multi} or $PRS_{weighted}$). Abbreviations:
630 Cross-ancestry genetic correlation (r_g), SNP-based heritability in discovery (h_d^2) and target
631 populations (h_t^2), discovery GWAS sample size (N_d) and the number of genome-wide independent
632 segments in the discovery population (M_d).
633

634 STAR Methods

635 Resources Availability

636 Lead Contact

637 Further information and requests for resources and reagents should be directed to and will be
638 fulfilled by the lead contact, Ying Wang (yiwang@broadinstitute.org).
639

640 Materials Availability

641 This study did not generate new unique reagents.
642

643 Data and code availability

644 1000 Genome Phase 3 data can be accessed at
645 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/data. We used
646 UK Biobank data via application 31063. The software used in this study can be found at: Plink
647 (<https://www.cog-genomics.org/plink/>), PRS-CS (<https://github.com/getian107/PRScs>), PRS-
648 CSx (<https://github.com/getian107/PRScsx>), Tractor (<https://github.com/Atkinson-Lab/Tractor>),
649 HapGen2 (https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/hapgen2.html) and
650 SBayesS/GCTB (<https://cnsgenomics.com/software/gctb/>). The Pan UK Biobank Project can be

651 accessed at: Pan-UK Biobank Project <https://pan.ukbb.broadinstitute.org>. The codes used in this
652 study have been deposited to <https://github.com/ywangleo/multi-ancestry-PRS>.

653

654 Methods Details

655 Simulations

656 Simulated genotypes in three populations

657 To explore the potential improvement of predictive accuracy within an underrepresented target
658 ancestry through the inclusion of additional samples included in the multi-ancestry discovery
659 GWAS, we simulated genotypes of chromosome 22 for 560,000 individuals in each population
660 including European ancestry (EUR), East Asian ancestry (EAS) and African ancestry (AFR) using
661 the software HapGen2 v2.1.2⁴⁴. We used the haplotypes from 1000 Genome Project (1KG, Phase
662 3)⁴⁵ as the sample pool. We excluded Americans of African Ancestry in SW USA and African
663 Caribbeans in Barbados from the AFR samples due to their high degree of recent admixture. We
664 used default parameters in HapGen2 with effective sample sizes of 11,375, 12,239 and 17,380
665 for EUR, EAS and AFR, respectively⁴⁴. After simulating the genotypes on chromosome 22, we
666 ran analyses with a total of 87,938 overlapping SNPs across the three ancestries which passed
667 quality control filters: minor allele frequency (MAF) > 0.01, Hardy-Weinberg Equilibrium (HWE) *p*-
668 value > 10⁻⁶ and genotype missingness rates across individuals < 0.05. We then removed 2nd-
669 degree related individuals using the software KING⁴⁶, resulting in 534,352, 533,996 and 537,498
670 unrelated individuals from EUR, EAS and AFR, separately. We randomly sampled 10,000 and
671 520,000 individuals from each ancestry as the withheld target population and discovery
672 population, respectively.

673

674 Simulated phenotypes with varying trait genetic architecture

675 For the sake of simplicity, we assumed that causal variants are shared across populations and
676 their effect sizes are perfectly correlated (cross-ancestry genetic correlation, $r_g = 1$) in our initial
677 simulations. The pairwise r_g among K populations is represented by a $K * K$ matrix, denoted as
678 \mathbf{R} , where the off-diagonal elements of \mathbf{R} had the value of r_g and diagonal elements of \mathbf{R} were set
679 to 1. In our study, K was equal to 3, indicating the number of populations considered. We
680 simulated phenotypes based on the simple additive model: $y = g + e$, where $g = \sum_{j=1}^{M_c} x_{ij} \beta_j$.
681 M_c is the number of causal variants, x_{ij} is the genotype coded as 0, 1, or 2 for the j th SNP in the
682 i th population. The effect size of j th SNP across K populations is drawn from a multivariate normal
683 distribution, $\beta \sim MVN(0, \Sigma)$, where for the $K * K$ variance-covariance matrix, Σ , the diagonal and
684 off-diagonal elements were $\frac{h^2}{2f_{ij}(1-f_{ij})M_c}$ and $\mathbf{R} \cdot \frac{h^2}{2f_{ij}(1-f_{ij})M_c}$, respectively. We denoted f_{ij} as the
685 MAF of j th SNP in the i th population and h^2 as the trait heritability. We simulated the
686 environmental effects to follow a normal distribution with 0 mean and $1 - h^2$ variance, $e \sim N(0, 1 -$

687 h^2). We simulated different levels of heritability for chromosome 22 ($h^2 = 0.03$ and 0.05).
688 Additionally, we randomly sampled various numbers of causal variants ($M_c = 100, 500$, and 1000)
689 from all the 87,938 SNPs. As a result, we defined a total of 6 distinct simulation scenarios that
690 encompass a realistic spectrum of polygenicity, ranging from $\sim 0.1\%$ to $\sim 1\%$ of causal variants.
691 To assess the impact of r_g on PRS performance, we expanded our simulation study by
692 considering two scenarios. These scenarios aimed to capture different levels of per-variant
693 variance explained. In scenario 1 characterized by $M_c = 100$ and $h^2 = 0.05$, the per-variant
694 variance explained was higher. Conversely, scenario 2 involved $M_c = 1000$ and $h^2 = 0.03$,
695 resulting in a lower per-variant variance explained. For each scenario, we varied the values of r_g
696 to 0.6 and 0.8 , respectively.

697 Downsampling and meta-analyzed GWAS in simulations

698 To provide the requisite discovery data for constructing PRS, we proceeded to perform GWAS on
699 the simulated phenotypes. Specifically, we split the discovery population, which consisted of
700 520,000 unrelated individuals, into 52 evenly distributed bins, each comprising 10,000 individuals
701 (denoted as $\text{Bin}_1, \text{Bin}_2, \dots, \text{Bin}_{\text{total}}$). Subsequently, we ran GWAS on each of those 52 bins
702 independently within the three populations, using simple linear regression implemented in PLINK
703 v2.0⁴⁷. We excluded the causal variants when running GWAS to mimic the phenomenon of
704 imperfect tagging. We then employed an iterative process of meta-analysis, employing the
705 inverse-variance weighted method using METAL⁴⁸, gradually incorporating a varying number of
706 bins. Specifically, we commenced the meta-analysis with $\text{Bin}_1 + \text{Bin}_2$, subsequently progressing to
707 $\text{Bin}_1 + \text{Bin}_2 + \text{Bin}_3$, and so forth, until we encompassed the complete set of bins
708 ($\text{Bin}_1 + \text{Bin}_2 + \text{Bin}_3 + \dots + \text{Bin}_{\text{total}}$) for each population.

709
710 To simulate a scenario resembling a meta-analysis involving multiple ancestries with varying
711 proportions, we opted for an arbitrary selection of subsets from EUR GWAS. Specifically, we
712 chose a range of bins, from 4 to 52 bins, with increments of 4. Subsequently, we systematically
713 incorporated different numbers of bins, spanning from 1 to 52, from EAS and AFR populations
714 into the EUR GWAS dataset via meta-analysis. The meta-analysis was conducted utilizing the
715 inverse-variance weighted fixed effects model implemented in the METAL software. This iterative
716 process allowed us to achieve a range of sample size ratios between EUR and EAS as well as
717 EUR and AFR, encompassing ratios from 52:1 to 4:52, in the meta-analyzed multi-ancestry
718 GWAS (referred to as **Meta**). The simulation configuration is visually depicted in **Figure 1**.
719

720 Pruning and Thresholding (P+T) in simulations

721 We employed PLINK v1.90 to clump quasi-independent SNPs within 500Kb windows, utilizing a
722 LD threshold of $r^2 < 0.1$. To explore the impact of various LD reference panels on predictive
723 accuracy of PRS, we used a total of four different LD reference panels: one for single-ancestry
724 and three for multi-ancestry GWAS, with consideration to the ancestry composition of the
725 discovery GWAS and the target population.
726

727 For the single-ancestry GWAS, we used a LD reference panel consisting of 10,000 individuals
728 from the target population that were matched to the ancestry of the discovery GWAS. In the case
729 of multi-ancestry GWAS, we used three LD reference panels. These panels included two
730 composed of a single ancestry that did not mirror the ancestral makeup of the discovery GWAS.
731 Specifically, one panel comprised 10,000 withheld EUR individuals, while the other panel
732 encompassed individuals from understudied populations, either 10,000 EAS or 10,000 AFR
733 individuals, consistent with the minority population represented in the discovery GWAS. The third
734 LD reference panel consisted of individuals from different ancestries in proportions proportional
735 to the discovery GWAS, amounting to a total of 10,000 samples.

736
737 We calculated PRS in the target population using 8 different *p*-value thresholds: 5×10^{-8} , 1×10^{-6} ,
738 1×10^{-4} , 1×10^{-3} , 0.01, 0.05, 0.1, and 1. We denoted PRS constructed from single-ancestry
739 GWAS as single-ancestry PRS ($\text{PRS}_{\text{single}}$) and those from meta-analyzed multi-ancestry GWAS
740 as multi-ancestry PRS ($\text{PRS}_{\text{multi}}$). We calculated the predictive accuracy as the variance explained
741 by the PRS (R^2) through linear regression: $y \sim \text{PRS}$ and computed corresponding 95%
742 confidence intervals (CIs) through bootstrap. To identify the optimal *p*-value threshold associated
743 with the highest predictive accuracy, we evenly divided the target population into a test cohort
744 and a validation cohort. The *p*-value threshold was optimized through a process of
745 hyperparameter tuning in the validation cohort, and subsequently, the accuracy of the model was
746 assessed using the test cohort.

747

748 Empirical analysis of 17 quantitative traits in the UK Biobank (UKBB) and
749 Biobank Japan (BBJ)

750 We further explored how the findings from simulations generalized in real data using 17
751 quantitative traits shared between UKBB and BBJ, including anthropometric traits (BMI and
752 height) and blood panel traits studied previously (**Table S3**)³². The selection of these traits was
753 motivated by their widespread availability within biobanks and their substantial statistical power,
754 attributable to their quantitative properties.

755 Datasets and Quality Control (QC)

756 **UK Biobank (UKBB):** The details of assigning ancestry for each individual in the UKBB are
757 described in the Pan-UK Biobank Project (Pan UKBB: <https://pan.ukbb.broadinstitute.org/>).
758 Briefly, a random forest classifier trained on reference data from 1KG and Human Genome
759 Diversity Project (HGDP)⁴⁹ was used to classify cohort individuals under continental population
760 labels based on the top 6 principal components (PCs). In this study, we used a total of 361,144
761 and 2,684 unrelated EUR and EAS participants, respectively. We obtained unrelated individuals
762 through running hl.maximal_independent_set using Hail (<https://hail.is/>). Specifically, within each
763 population, we ran PC-Relate⁵⁰ with k=10 and min_individual_maf=0.05. We used the individuals
764 assigned EAS ancestry as the target dataset. For EUR samples, we first randomly retained 5,000
765 individuals with complete phenotype information for all 17 studied phenotypes as the target
766 population. Subsequently, we split the remaining individuals into evenly distributed bins, each
767 containing 5,000 individuals, for each phenotype. The number of total bins for each studied

768 phenotype ranged from 68 to 71, depending on phenotype missingness (**Table S3**). The bins
769 were labeled sequentially from 1 to the total number of bins, following the same procedure as
770 described in our simulations.
771

772 **BioBank Japan (BBJ):** BBJ is a multi-institutional hospital-based biobank which has recruited
773 approximately 200,000 participants from 12 medical institutions in Japan between fiscal years
774 2003 and 2007²⁷. Written informed consents were obtained from all the participants, as approved
775 by the ethics committees of the RIKEN Center for Integrative Medical Sciences, and the Institute
776 of Medical Sciences, the University of Tokyo. The participants were genotyped using either (i) the
777 Illumina HumanOmniExpressExome BeadChip or (ii) a combination of the Illumina
778 HumanOmniExpress and HumanExome BeadChips. The genotypes were then prephased using
779 Eagle⁵¹ and imputed using Minimac3⁵² with a reference panel that consists of 1KG samples (N =
780 2,504) and whole-genome sequencing (WGS) data of Japanese individuals (N = 1,037)⁵³.
781 Standard quality controls of participants and genotypes were applied as described elsewhere⁵³.
782 Briefly, we excluded samples with low call rates (< 98%), closely related individuals (PLINK
783 PI_HAT > 0.175), or non-Japanese outliers based on the principal component analysis (PCA).
784 We then excluded genotyped variants with call rate < 98%, HWE P-value < 1.0 × 10⁻⁶, number of
785 heterozygotes < 5, or low concordance rate (< 99.5%) with WGS for a subset of individuals (N =
786 939). Phenotypes were retrieved from medical records and prepared as described previously⁵⁴.
787

788 **1000 Genomes Project Phase 3 (1KG):** We used 1KG phase 3 data as LD reference panels in
789 this study. Specifically, we kept 495 unrelated EUR, 498 unrelated EAS, and 484 unrelated AFR
790 individuals from 1KG. The AFR individuals were solely utilized for analyses pertaining to recently
791 admixed populations.
792

793 **Quality Controls:** The imputation strategies for UKBB and BBJ have been described in detail
794 elsewhere^{55,56}. After imputation, we first excluded ambiguous variants (e.g., A/T and C/G) and
795 further filtered to keep those variants with imputation INFO score > 0.3, MAF > 0.01, HWE p-
796 value > 10⁻⁶, and genotyping missing rates across individuals < 0.05. Consequently,
797 approximately 8.6 million and 6.6 million SNPs were retained for the UKBB and BBJ, respectively.
798 For our analyses, we exclusively utilized SNPs that passed these quality control measures,
799 resulting in approximately 3.6 million SNPs that were shared among both biobanks and 1KG.
800

801 PRS construction for 17 traits in empirical analysis

802 **Discovery GWAS:** All phenotypes were curated and transformed to be normally distributed as
803 described previously³². Subsequently, we performed GWAS on the rank normalized phenotypes
804 using simple linear regression implemented in PLINK v2.0. We included age, sex, age², age ×
805 sex, age² × sex, and the first 20 PCs as the covariates. In line with the GWAS strategy outlined
806 in the *Simulations* section, we initially performed GWAS within individual bins and then engaged
807 in an iterative meta-analysis, employing inverse-variance weighted meta-analysis in METAL,
808 separately for UKBB and BBJ cohorts. For the meta-analysis of GWAS results derived from
809 single-ancestry analyses in the UKBB and BBJ (referred to as "Meta"), we incorporated a variable

810 number of EUR bins from UKBB, ranging from 8 to 64 with an increment of 8. Subsequently, we
811 systematically integrated additional EAS bins from BBJ.

812
813 **PRS construction methods:** We used different methods to construct PRS in the target
814 populations, specifically UKBB-EAS and UKBB-EUR. In accordance with *Simulations*, we also
815 explored the impact of LD reference panels on PRS performance by utilizing multiple panels from
816 1KG, while taking into account the ancestry composition of discovery GWAS for P+T. Additionally,
817 we implemented PRS-CS³⁹, a Bayesian regression framework that integrates a continuous
818 shrinkage prior to infer the posterior mean effects of SNPs. To ensure computational efficiency,
819 we employed the auto model in the PRS-CS framework, which automatically estimates the hyper-
820 parameter *phi* (the proportion of SNPs with non-zero effects) based on the input GWAS (see
821 **Supplementary Note 8**). For both UKBB and Meta, we used 1KG-EUR as the LD reference
822 panel, while for BBJ, we utilized 1KG-EAS reference panel.

823
824 To further explore the performance of PRS incorporating GWAS from multiple ancestries, we
825 constructed a weighted PRS by linearly combining PRS derived from single-ancestry GWAS³⁴.
826 Specifically, the weighted PRS was calculated as $\text{PRS}_{\text{weighted}} = w_1 * \text{PRS}_{\text{EUR_GWAS}} + w_2 * \text{PRS}_{\text{Minor_GWAS}}$, where w_1 and w_2 were weights attached to individual PRS. Furthermore, we used
827 a more sophisticated method, PRS-CSx⁸, to generate ancestry-specific posterior SNP effects
828 using multiple GWAS summary statistics. PRS-CSx, an extension of PRS-CS, can model
829 ancestry-specific allele frequencies and LD patterns. Similar to PRS-CS, we used the ancestry-
830 matched LD reference panel from 1KG and performed the auto model implemented in PRS-CSx.
831 We also incorporated the *--meta* flag, which enables inverse-variance weighted meta-analysis in
832 the Gibbs sampler. Consequently, we developed two types of PRS from PRS-CSx, one was
833 based on the meta-analyzed effects (referred to as PRS_{multi}) and the other, PRS_{weighted}, was
834 dependent on the ancestry-specific posterior SNP effects.

835
836
837 **PRS performance evaluation:** We assessed the predictive accuracy of PRS by measuring the
838 incremental R^2 using linear regression, where we accounted for the influence of covariates. Two
839 models were compared: 1) $H_0: \text{Phenotype} \sim \text{covariates}$, representing the baseline model, and 2)
840 $H_1: \text{Phenotype} \sim \text{PRS} + \text{covariates}$, incorporating PRS as the full model. The incremental R^2 was
841 utilized to quantify the improvement in model accuracy resulting from the inclusion of PRS, thus
842 providing a measure of the specific contribution made by PRS to the predictive power of the
843 model. We computed the corresponding 95% confidence intervals (CIs) through bootstrap. To
844 maximize the predictive accuracy of P+T and PRS_{weighted}, we employed an optimization strategy
845 to identify the optimal *p*-value thresholds for P+T and the weights (w_1 and w_2) assigned to various
846 PRS components for PRS_{weighted}. This optimization process entailed a random partitioning of the
847 target population into two equally sized subsets, namely the validation dataset and the test
848 dataset. The hyperparameter was identified in the validation dataset, and subsequently, the
849 accuracy of the model was assessed using the test dataset. We replicated the process 100 times
850 and calculated the standard error of predictive accuracy across 100 replicates. This approach
851 allowed us to maximize the performance of P+T and PRS_{weighted} by iteratively refining the *p*-value
852 thresholds and weight parameters, thereby enhancing their predictive capabilities.

853

854 Measures of genetic architecture using summary-data-based BayesS (SBayesS)²⁹
855 To better understand the impact of trait genetic architecture on PRS predictive performance, we
856 evaluated three parameters including the polygenicity (proportion of SNPs with nonzero effects),
857 SNP-based heritability and S (the relationship between MAF and effect sizes) for 17 studied
858 phenotypes (**Table S3**). These parameters were estimated using SBayesS implemented in the
859 GCTB software (<https://cnsgenomics.com/software/gctb/>). For the analysis, we employed meta-
860 analyzed GWAS data obtained from the comprehensive UKBB and BBJ datasets. Specifically,
861 the number of bins included in the GWAS was equal to the total number of bins associated with
862 the respective phenotype (**Table S3**). We used the LD reference panel provided by GCTB for
863 UKBB GWAS. We constructed a shrunk LD matrix using 50,000 unrelated individuals from BBJ
864 as the LD reference panel for BBJ GWAS. We used 4 chains for the Markov Chain Monte Carlo
865 process, which calculated the Gelman-Rubin convergence diagnostic (also known as potential
866 scale reduction factor) for these three parameters. We performed the analyses using other default
867 settings for SBayesS. Given the potential convergence issues associated with Bayesian models,
868 we deemed a threshold value of less than 1.2 for the Gelman-Rubin convergence diagnostic as
869 indicative of good convergence for the estimated parameters.
870

871 UK Biobank recent admixture ancestry analysis

872 To investigate one explanation for poor transferability of PRS across populations – genetic
873 divergence between the discovery and target cohorts – we further explored whether PRS
874 constructed from ancestry-specific summary statistics generated with local ancestry-informed
875 GWAS in admixed populations improves predictive performance in underrepresented
876 populations. Specifically, we used the Tractor method¹⁹, accounting for both local ancestry and
877 risk allele information, to run GWAS in two-way admixed AFR-EUR individuals from the UKBB (N
878 = 4,576). The average AFR proportion was 62.9%. We used 4,022 unrelated relatively
879 homogeneous AFR individuals, which are independent from the admixed individuals, as the target
880 cohort.
881

882 We followed the same criteria for QC and individual selection as described in Atkinson et al.¹⁹.
883 For sample QC, we excluded individuals that had <95% call rate, withdrew from the study, had
884 closer than 2nd degree relatives present in the sample, or that had sex chromosome aneuploidies.
885 For variant QC we restricted to biallelic SNPs with >90% call rate, HWE p -value $> 10^{-6}$, and MAF
886 of at least 0.5%. We selected two-way admixed AFR-EUR individuals from the UKBB by first using
887 the PC loadings from the reference dataset described previously for ancestry inference (1KG +
888 HGDP) to project UKBB individuals into the same PC space. We applied the same random forest
889 ancestry classifier described previously to the projected UK Biobank PCA data and assigned AFR
890 ancestry if the probability was >50%. We restricted to only two-way admixed AFR-EUR ancestry
891 individuals by selecting those individuals assigned the 'AFR' population label, then filtering to
892 those with at least 12.5% European ancestry, at least 10% African ancestry, and who did not
893 deviate more than 1 standard deviation from the AFR-EUR cline based on their PC loadings. This
894 process resulted in 4,576 individuals.
895

896 We ran local ancestry deconvolution on this set of admixed individuals using RFmix v2¹⁸ with 1
897 EM iteration and a window size of 0.2 cM with the HapMap combined recombination map⁵⁷ to
898 inform switch locations. The -n 5 flag (terminal node size for random forest trees) was included to
899 account for an unequal number of reference individuals per reference population. We used the --
900 reanalyze-reference flag, which recalculates admixture in the reference samples for improved
901 ability to distinguish ancestries. As a reference panel, we used continental AFR and EUR
902 individuals from the 1KG.

903
904 Subsequently, we performed GWAS for the 17 quantitative traits utilizing the Tractor method on
905 the 4,576 individuals with mixed AFR-EUR ancestry from the UKBB. This analysis yielded the
906 generation of ancestry-specific summary statistics for the AFR (AFR_{Tractor}) and EUR (EUR_{Tractor})
907 ancestry components. To evaluate the performance of PRS in the UKBB-AFR, we developed
908 PRS using Tractor GWAS. Furthermore, we compared these local-ancestry informed PRS with
909 those derived from GWAS conducted using standard methodologies. Specifically, we constructed
910 PRS using GWAS performed on the same set of admixed individuals utilizing the simple linear
911 regression model (ADM_{Standard}). Additionally, GWAS summary statistics obtained from UKBB
912 (EUR_{Standard}, N = 320,000) from the previous section were utilized, and a meta-analysis was
913 conducted to combine the AFR_{Tractor} with EUR_{Standard} (Meta_{Standard}, N = 324,576). We constructed
914 PRS based on HapMap3 SNPs, as previous studies have shown comparable performance
915 between using reliable HapMap3 SNPs exclusively and the use of genome-wide SNPs^{7,58}.
916 Additionally, we constructed weighted PRS by incorporating GWAS of AFR_{Tractor} and EUR_{Standard},
917 for P+T, PRS-CS and PRS-CSx, respectively. Considering the ancestry composition of the
918 discovery GWAS, we used different sets of reference panels for each respective GWAS.
919 Specifically, we used 1KG-EUR as the LD reference panel for EUR_{Tractor}, EUR_{Standard} and
920 Meta_{Standard}, while using 1KG-AFR for AFR_{Tractor}. We used an in-sample LD panel for ADM_{Standard}.
921 We calculated the predictive accuracy in the UKBB-AFR using incremental R^2 as described
922 above. We repeated the process 100 times and reported the standard error of predictive accuracy
923 across 100 estimates.

924

925 Excel Table Title and Legends

926 Table S1. The comparison of using different LD reference panels across various
927 simulation scenarios. Related to Figure S2, Figure 2, Figure S3 and Figure S4.

928 Table S2. Impact of cross-ancestry genetic correlation on predictive performance.
929 Related to Figure S5.

930 Table S5. Predictive accuracy for P+T and PRS-CS across phenotypes using single-
931 ancestry discovery GWAS from UKBB and BBJ. Related to Figure S6 and Figure S11.

932 Table S6. Impact of LD reference panel on P+T performance using multi-ancestry GWAS
933 for 17 traits. Related to Figure S7, Figure S8 and Figure S11.

934 Table S7. Accuracy differences between using PRS derived from multi-ancestry GWAS
935 and using PRS derived from EUR GWAS. Related to Figure S9 and Figure S10.

936 Table S8. Accuracy differences between PRS derived from multi-ancestry GWAS and
937 using PRS from weighted linear combination. Related to Figure 5 and Figure S12.

938 Table S9. Predictive accuracy in the UKBB using PRS-CSx for 17 traits. Related to Figure
939 5 and Figure S12.

940 Table S10. Predictive accuracy in the UKBB-AFR using various discovery GWAS.
941 Related to Figure 6.

942

943 References

944 1. Inouye, M. *et al.* Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults:
945 Implications for Primary Prevention. *J. Am. Coll. Cardiol.* **72**, 1883–1893 (2018).

946 2. Khera, A. V. *et al.* Genome-wide polygenic scores for common diseases identify individuals
947 with risk equivalent to monogenic mutations. *Nat. Genet.* **50**, 1219–1224 (2018).

948 3. Mars, N. *et al.* The role of polygenic risk and susceptibility genes in breast cancer over the
949 course of life. *Nat. Commun.* **11**, 6383 (2020).

950 4. Maas, P. *et al.* Breast Cancer Risk From Modifiable and Nonmodifiable Risk Factors
951 Among White Women in the United States. *JAMA Oncol.* **2**, 1295–1302 (2016).

952 5. Craig, J. E. *et al.* Multitrait analysis of glaucoma identifies new risk loci and enables
953 polygenic prediction of disease susceptibility and progression. *Nat. Genet.* **52**, 160–166
954 (2020).

955 6. Majara, L. *et al.* Low generalizability of polygenic scores in African populations due to
956 genetic and environmental diversity. *Cold Spring Harbor Laboratory* 2021.01.12.426453
957 (2021) doi:10.1101/2021.01.12.426453.

958 7. Wang, Y. *et al.* Global biobank analyses provide lessons for computing polygenic risk
959 scores across diverse cohorts. *bioRxiv* (2021) doi:10.1101/2021.11.18.21266545.

960 8. Ruan, Y. *et al.* Improving polygenic prediction in ancestrally diverse populations. *Nat.*
961 *Genet.* **54**, 573–580 (2022).

962 9. Wang, Y. *et al.* Theoretical and empirical quantification of the accuracy of polygenic scores
963 in ancestry divergent populations. *Nat. Commun.* **11**, 3865 (2020).

964 10. Guo, J. *et al.* Quantifying genetic heterogeneity between continental populations for human
965 height and body mass index. *Sci. Rep.* **11**, 5240 (2021).

966 11. Shi, H. *et al.* Localizing Components of Shared Transetnic Genetic Architecture of
967 Complex Traits from GWAS Summary Data. *Am. J. Hum. Genet.* **106**, 805–817 (2020).

968 12. Ding, Y. *et al.* Polygenic scoring accuracy varies across the genetic ancestry continuum in
969 all human populations. *bioRxiv* 2022.09.28.509988 (2022).

970 13. Pfaff, C. L. *et al.* Population structure in admixed populations: effect of admixture dynamics
971 on the pattern of linkage disequilibrium. *Am. J. Hum. Genet.* **68**, 198–207 (2001).

972 14. Pritchard, J. K. & Przeworski, M. Linkage disequilibrium in humans: models and data. *Am.*
973 *J. Hum. Genet.* **69**, 1–14 (2001).

974 15. Fatumo, S. *et al.* A roadmap to increase diversity in genomic studies. *Nat. Med.* **28**, 243–
975 250 (2022).

976 16. Hou, K. *et al.* Causal effects on complex traits are similar for common variants across
977 segments of different continental ancestries within admixed individuals. *Nat. Genet.* **55**,

978 549–558 (2023).

979 17. Kim, J., Edge, M. D., Goldberg, A. & Rosenberg, N. A. Skin deep: The decoupling of
980 genetic admixture levels from phenotypes that differed between source populations. *Am. J.*
981 *Phys. Anthropol.* **175**, 406–421 (2021).

982 18. Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: a discriminative
983 modeling approach for rapid and robust local-ancestry inference. *Am. J. Hum. Genet.* **93**,
984 278–288 (2013).

985 19. Atkinson, E. G. *et al.* Tractor uses local ancestry to enable the inclusion of admixed
986 individuals in GWAS and to boost power. *Nat. Genet.* **53**, 195–204 (2021).

987 20. Pasaniuc, B. *et al.* Enhanced statistical tests for GWAS in admixed populations:
988 assessment using African Americans from CARe and a Breast Cancer Consortium. *PLoS*
989 *Genet.* **7**, e1001371 (2011).

990 21. Ramirez, A. H. *et al.* The All of Us Research Program: Data quality, utility, and diversity.
991 *Patterns (N Y)* **3**, 100570 (2022).

992 22. Weissbrod, O. *et al.* Leveraging fine-mapping and multipopulation training data to improve
993 cross-population polygenic risk scores. *Nat. Genet.* **54**, 450–458 (2022).

994 23. Zhang, H. *et al.* Novel Methods for Multi-ancestry Polygenic Prediction and their
995 Evaluations in 3.7 Million Individuals of Diverse Ancestry. Preprint at
996 <https://doi.org/10.1101/2022.03.24.485519>.

997 24. Majara, L. *et al.* Low and differential polygenic score generalizability among African
998 populations due largely to genetic diversity. *HGG Adv* **4**, 100184 (2023).

999 25. Wray, N. R. *et al.* Pitfalls of predicting complex traits from SNPs. *Nat. Rev. Genet.* **14**, 507–
1000 515 (2013).

1001 26. Daetwyler, H. D., Villanueva, B. & Woolliams, J. A. Accuracy of predicting the genetic risk
1002 of disease using a genome-wide approach. *PLoS One* **3**, e3395 (2008).

1003 27. Nagai, A. *et al.* Overview of the BioBank Japan Project: Study design and profile. *J.*

1004 1004 *Epidemiol.* **27**, S2–S8 (2017).

1005 1005 28. Morales, J. *et al.* A standardized framework for representation of ancestry data in genomics
1006 studies, with application to the NHGRI-EBI GWAS Catalog. *Genome Biol.* **19**, 21 (2018).

1007 1007 29. Zeng, J. *et al.* Widespread signatures of natural selection across human complex traits and
1008 functional genomic categories. *Nat. Commun.* **12**, 1164 (2021).

1009 1009 30. Berg, J. J. *et al.* Reduced signal for polygenic adaptation of height in UK Biobank. *Elife* **8**,
1010 (2019).

1011 1011 31. Sohail, M. *et al.* Polygenic adaptation on height is overestimated due to uncorrected
1012 stratification in genome-wide association studies. *Elife* **8**, (2019).

1013 1013 32. Martin, A. R. *et al.* Clinical use of current polygenic risk scores may exacerbate health
1014 disparities. *Nat. Genet.* **51**, 584–591 (2019).

1015 1015 33. Lehmann, B. C. L., Mackintosh, M., McVean, G. & Holmes, C. C. Optimal strategies for
1016 learning multi-ancestry polygenic scores vary across traits. Preprint at
1017 <https://doi.org/10.1101/2021.01.15.426781>.

1018 1018 34. Márquez-Luna, C., Loh, P.-R., South Asian Type 2 Diabetes (SAT2D) Consortium, SIGMA
1019 Type 2 Diabetes Consortium & Price, A. L. Multiethnic polygenic risk scores improve risk
1020 prediction in diverse populations. *Genet. Epidemiol.* **41**, 811–823 (2017).

1021 1021 35. Graham, S. E. *et al.* The power of genetic diversity in genome-wide association studies of
1022 lipids. *Nature* **600**, 675–679 (2021).

1023 1023 36. de Vlaming, R. *et al.* Meta-GWAS Accuracy and Power (MetaGAP) Calculator Shows that
1024 Hiding Heritability Is Partially Due to Imperfect Genetic Correlations across Studies. *PLoS
1025 Genet.* **13**, e1006495 (2017).

1026 1026 37. Ni, G. *et al.* A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders
1027 Applied Across Multiple Cohorts. *Biol. Psychiatry* **90**, 611–620 (2021).

1028 1028 38. Lloyd-Jones, L. R. *et al.* Improved polygenic prediction by Bayesian multiple regression on
1029 summary statistics. *Nat. Commun.* **10**, 5086 (2019).

1030 39. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via
1031 Bayesian regression and continuous shrinkage priors. *Nat. Commun.* **10**, 1776 (2019).

1032 40. Hou, K. *et al.* Causal effects on complex traits are similar across segments of different
1033 continental ancestries within admixed individuals. *bioRxiv* (2022)
1034 doi:10.1101/2022.08.16.22278868.

1035 41. Kanai, M. *et al.* Meta-analysis fine-mapping is often miscalibrated at single-variant
1036 resolution. *Cell Genomics* 100210 (2022).

1037 42. Coram, M. A., Fang, H., Candille, S. I., Assimes, T. L. & Tang, H. Leveraging Multi-ethnic
1038 Evidence for Risk Assessment of Quantitative Traits in Minority Populations. *Am. J. Hum.*
1039 *Genet.* **101**, 218–226 (2017).

1040 43. Cai, M. *et al.* A unified framework for cross-population trait prediction by leveraging the
1041 genetic correlation of polygenic traits. *Am. J. Hum. Genet.* **108**, 632–655 (2021).

1042 44. Su, Z., Marchini, J. & Donnelly, P. HAPGEN2: simulation of multiple disease SNPs.
1043 *Bioinformatics* **27**, 2304–2305 (2011).

1044 45. 1000 Genomes Project Consortium *et al.* A global reference for human genetic variation.
1045 *Nature* **526**, 68–74 (2015).

1046 46. Manichaikul, A. *et al.* Robust relationship inference in genome-wide association studies.
1047 *Bioinformatics* **26**, 2867–2873 (2010).

1048 47. Chang, C. C. *et al.* Second-generation PLINK: rising to the challenge of larger and richer
1049 datasets. *Gigascience* **4**, 7 (2015).

1050 48. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of
1051 genomewide association scans. *Bioinformatics* **26**, 2190–2191 (2010).

1052 49. Li, J. Z. *et al.* Worldwide human relationships inferred from genome-wide patterns of
1053 variation. *Science* **319**, 1100–1104 (2008).

1054 50. Conomos, M. P., Reiner, A. P., Weir, B. S. & Thornton, T. A. Model-free Estimation of
1055 Recent Genetic Relatedness. *Am. J. Hum. Genet.* **98**, 127–148 (2016).

1056 51. Loh, P.-R., Palamara, P. F. & Price, A. L. Fast and accurate long-range phasing in a UK
1057 Biobank cohort. *Nat. Genet.* **48**, 811–816 (2016).

1058 52. Das, S. *et al.* Next-generation genotype imputation service and methods. *Nat. Genet.* **48**,
1059 1284–1287 (2016).

1060 53. Akiyama, M. *et al.* Characterizing rare and low-frequency height-associated variants in the
1061 Japanese population. *Nat. Commun.* **10**, 4393 (2019).

1062 54. Sakaue, S. *et al.* A cross-population atlas of genetic associations for 220 human
1063 phenotypes. *Nat. Genet.* **53**, 1415–1424 (2021).

1064 55. Bycroft, C. *et al.* The UK Biobank resource with deep phenotyping and genomic data.
1065 *Nature* **562**, 203–209 (2018).

1066 56. Kanai, M. *et al.* Genetic analysis of quantitative traits in the Japanese population links cell
1067 types to complex human diseases. *Nat. Genet.* **50**, 390–400 (2018).

1068 57. International HapMap 3 Consortium *et al.* Integrating common and rare genetic variation in
1069 diverse human populations. *Nature* **467**, 52–58 (2010).

1070 58. Privé, F., Vilhjálmsdóttir, B. J., Aschard, H. & Blum, M. G. B. Making the Most of Clumping
1071 and Thresholding for Polygenic Scores. *Am. J. Hum. Genet.* **105**, 1213–1221 (2019).

1072

1073

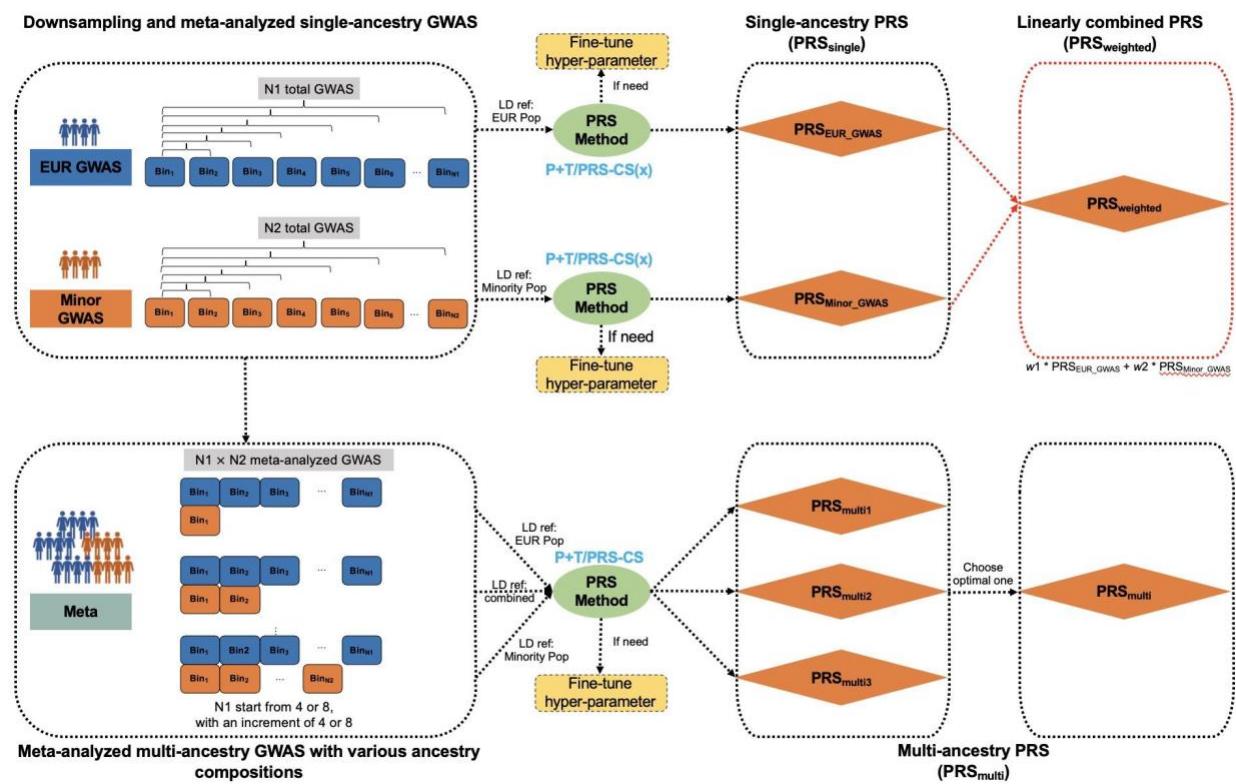


Figure 1. Study design in both simulations and empirical analyses

1) In the context of single-ancestry GWAS, we randomly split individuals in European (EUR) and other minority populations, including East-Asian and African populations, into equally sized bins. Simulations involved a total of 52 bins per population, each containing 10,000 individuals. For empirical analysis, bin number was dependent on the sample size of respective phenotype in that population (**Table S3**), with 5,000 individuals per bin. GWAS was conducted within each bin for each individual population, followed by meta-analysis of GWAS from various numbers of bins within each population. To construct PRS derived from single-ancestry GWAS (PRS_{single}) in the target population, we applied P+T for both simulations and empirical analyses, utilizing PRS-CS for the latter. Subsequently, we combined PRS_{single} developed from EUR GWAS (PRS_{EUR_GWAS}) and other minority population-based GWAS (PRS_{Minor_GWAS}) through a linear weighted strategy (denoted as $PRS_{weighted}$, highlighted in red box) for empirical analyses. Note that $PRS_{weighted}$ was also developed using PRS-CSx, which utilizes GWAS summary statistics from multiple populations. 2) For meta-analyzed multi-ancestry GWAS (referred to as **Meta**), we ran meta-analyses on EUR GWAS and Minor GWAS with varying ancestry compositions. In simulations, we incrementally included 4 bins from EUR GWAS for the meta-analysis, while in empirical analyses, we increased the number to 8 bins. Simultaneously, we varied the number of bins in Minor GWAS from 1 to the total number. Following the meta-analysis, we constructed PRS based on Meta (referred to as $PRSmulti$), using the P+T method for simulations, and employing both P+T and PRS-CS for empirical analyses.

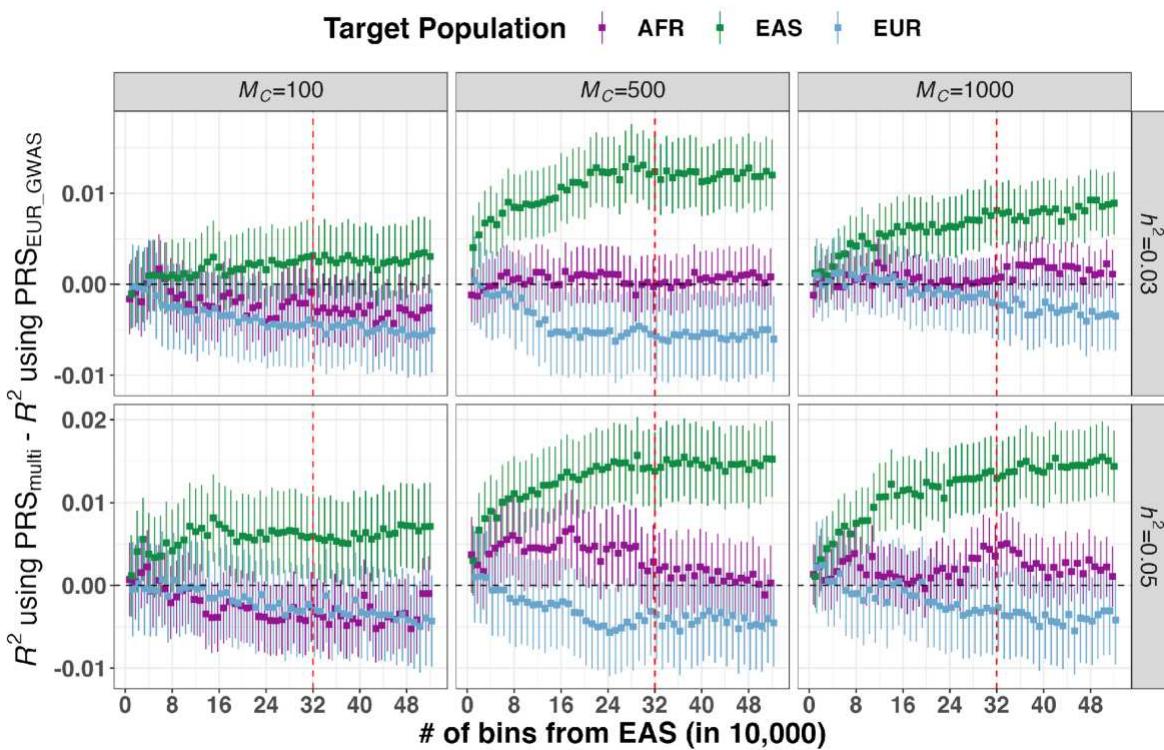


Figure 2. Improvement of PRS accuracy through meta-analyzed multi-ancestry GWAS compared to large-scale European GWAS across 6 simulated genetic architectures.

The multi-ancestry GWAS included populations of European (EUR) and East-Asian (EAS) ancestry, with the EAS sample size varying as indicated on the x-axis. For illustrative purposes, we present the results using 32 EUR bins, each consisting of 10,000 individuals, which were included in both EUR GWAS and multi-ancestry GWAS. PRS was separately evaluated in African (AFR), EAS and EUR populations. Full results are shown in **Table S1**. M_c indicates the number of causal variants and h^2 refers to SNP-based heritability. In each panel, the red vertical dashed line indicates the point where an equal number of bins from EUR and EAS populations were included in the multi-ancestry GWAS. The error bars represent the standard errors of predictive accuracy differences between PRS derived from multi-ancestry GWAS ($\text{PRS}_{\text{multi}}$) and PRS derived from EUR GWAS ($\text{PRS}_{\text{EUR_GWAS}}$).

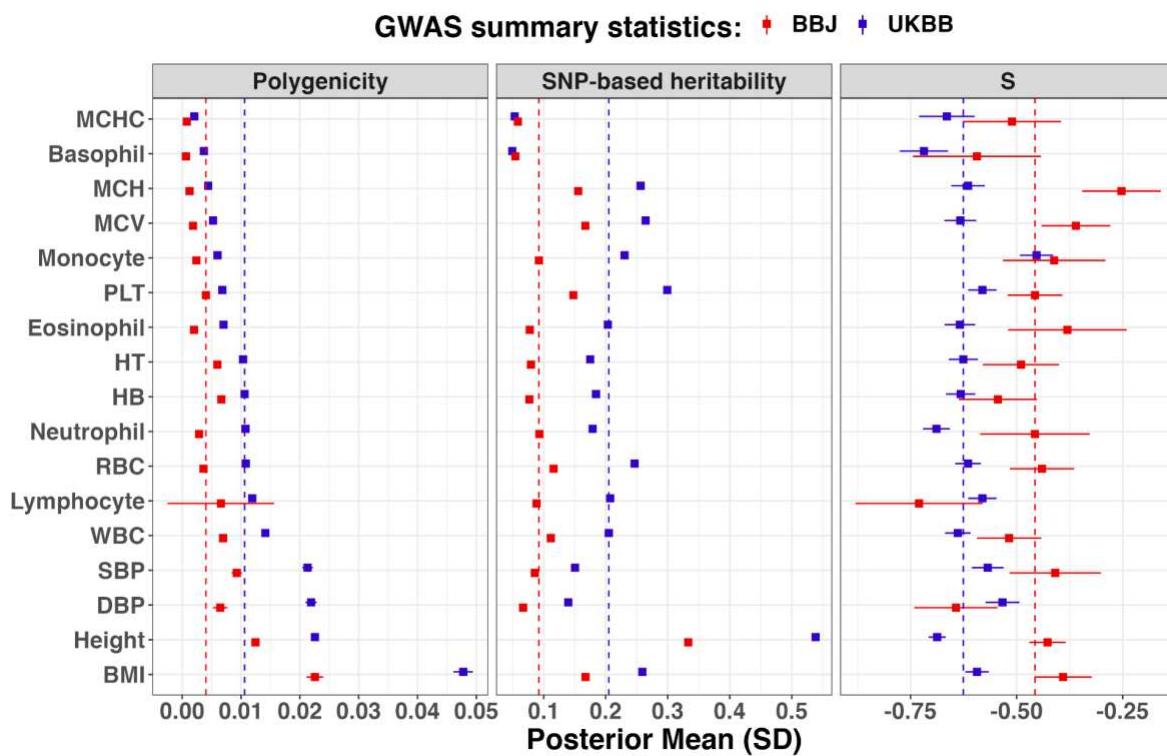


Figure 3: Genetic architecture of 17 studied traits between Biobank Japan (BBJ) and UK Biobank (UKBB).

The error bar is the standard deviation of the corresponding estimate. The vertical dashed line was the median estimate. Full results are shown in **Table S4**. The phenotypes were ranked according to their polygenicity estimates using GWAS from UKBB, including: BMI (body mass index), Height, DBP (diastolic blood pressure), SBP (systolic blood pressure), WBC (white blood cell count), Lymphocyte (lymphocyte count), RBC (red blood cell count), Neutrophil (neutrophil count), HB (hemoglobin concentration), HT (hematocrit percentage), Eosinophil (eosinophil count), PLT (platelet count), Monocyte (monocyte count), MCV (mean corpuscular volume), MCH (mean corpuscular hemoglobin), Basophil (basophil count), MCHC (mean corpuscular hemoglobin concentration).

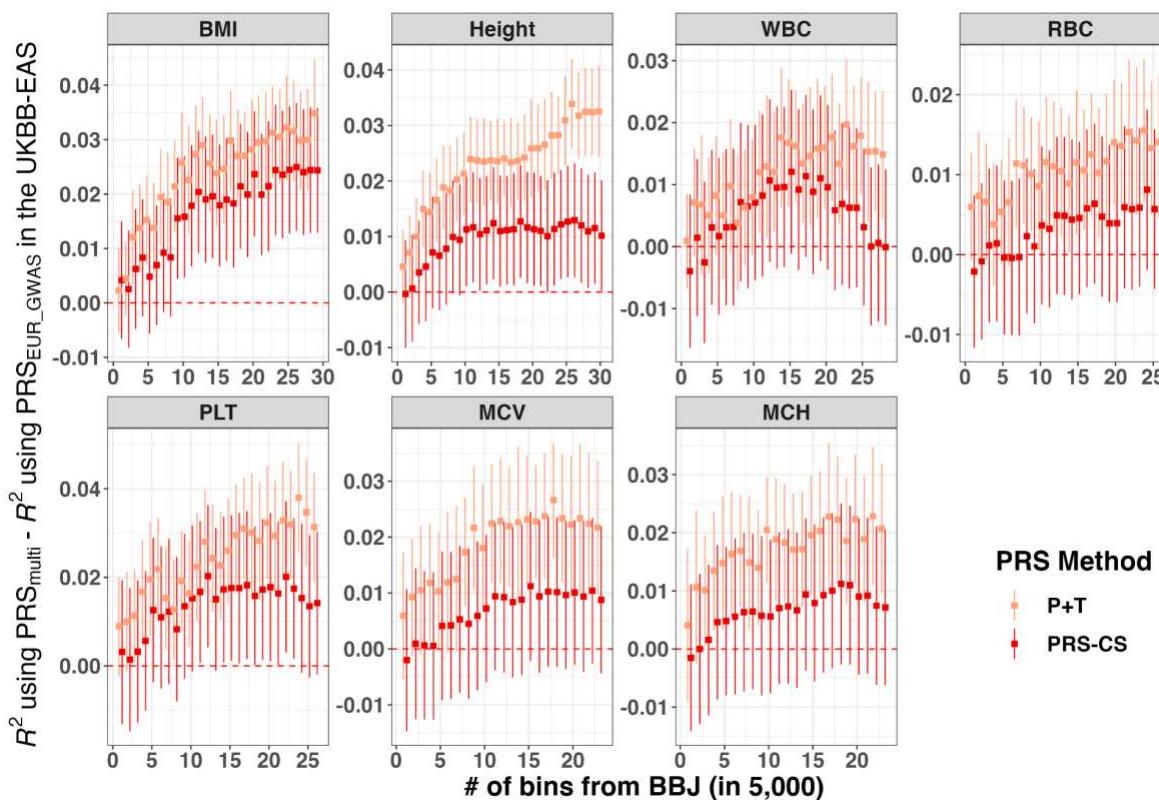


Figure 4. Accuracy improvement of PRS in the UK Biobank East-Asian population (UKBB-EAS) using multi-ancestry GWAS compare to using European (EUR) GWAS for P+T and PRS-CS.

The multi-ancestry GWAS were obtained by meta-analyzing EUR GWAS and EAS GWAS, with the EAS sample size from the Biobank Japan (BBJ) varying as indicated on the x-axis. For illustrative purposes, we present the results using 64 EUR bins, each containing 5,000 individuals, which were included in both EUR GWAS and multi-ancestry GWAS. PRS were constructed using P+T and PRS-CS and evaluated in the UKBB-EAS. The y-axis is the accuracy difference of PRS when using multi-ancestry GWAS (PRS_{multi}) compared to using EUR GWAS (PRS_{EUR_GWAS}). The error bars indicate the standard error of accuracy improvement. The red dashed line is $y=0$. We showed the results for 7 traits with SNP-based heritability > 0.1 in both BBJ and UKBB, and they were ranked by polygenicity estimates using UKBB (Figure 3). Full results are shown in Table S7.

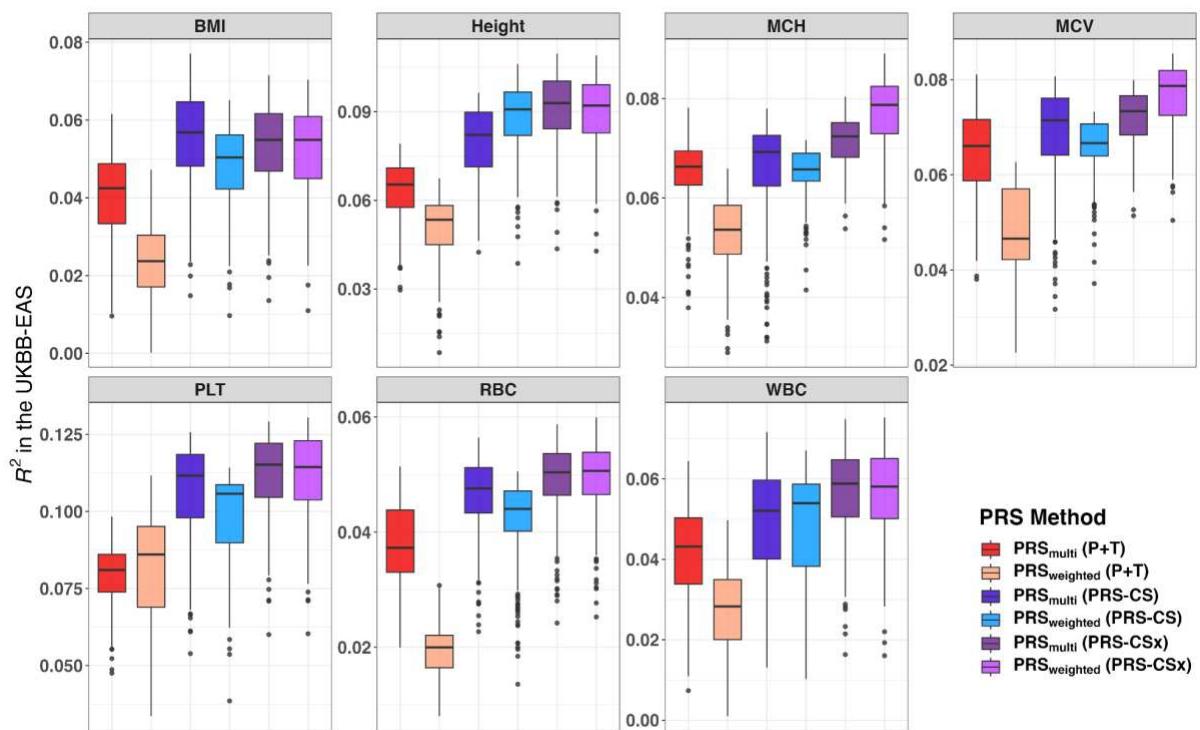


Figure 5. Predictive accuracy using different PRS methods in the UK Biobank East-Asian population (UKBB-EAS).

PRS_{multi} represents PRS derived from multi-ancestry GWAS, while PRS_{weighted} denotes PRS constructed from a weighted linear combination (see **STAR Methods** for details). PRS were constructed with three methods, including P+T, PRS-CS and PRS-CSx. We showed the results for 7 traits with SNP-based heritability > 0.1 in both Biobank Japan (BBJ) and UKBB. Traits were ranked by polygenicity estimates using UKBB (**Figure 3**). Boxes represent the first and third quartiles, with the whiskers extending to 1.5-fold the interquartile range. Full results are shown in **Table S8** and **Table S9**.

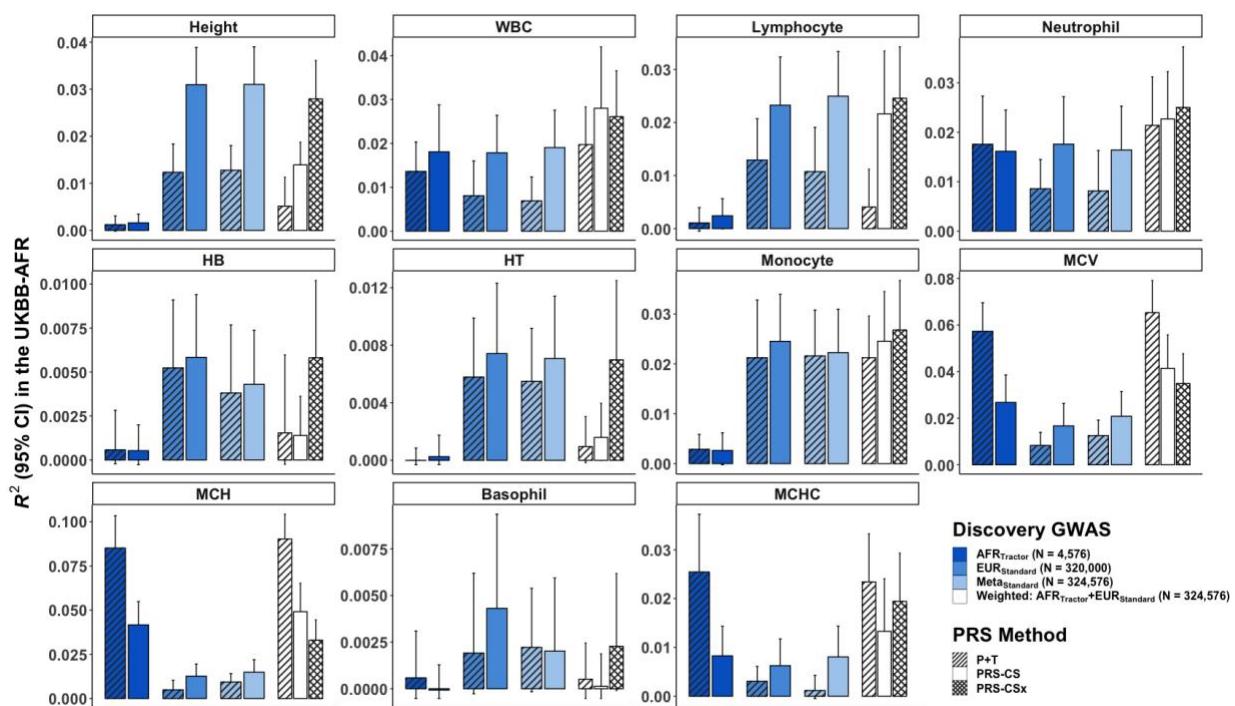


Figure 6. Accuracy of PRS derived from local-ancestry informed GWAS versus other discovery GWAS in the UK Biobank African population (UKBB-AFR)

We evaluated PRS performance in the UKBB-AFR by utilizing various methods on different discovery GWAS. Specifically, $AFR_{Tractor}$ denotes the AFR-specific GWAS performed using Tractor on the UKBB admixed African-European individuals. $EUR_{Standard}$ refers to standard GWAS performed on the European (EUR) population in the UKBB. $Meta_{Standard}$ is the meta-analysis performed on $AFR_{Tractor}$ and $EUR_{Standard}$. Furthermore, we constructed a weighted PRS by combining PRS generated from $AFR_{Tractor}$ and $EUR_{Standard}$ through a linear weighted approach. The figure shows the results for traits with SNP-based heritability > 0.1 in the UKBB-AFR. Full results are shown in **Table S10**.

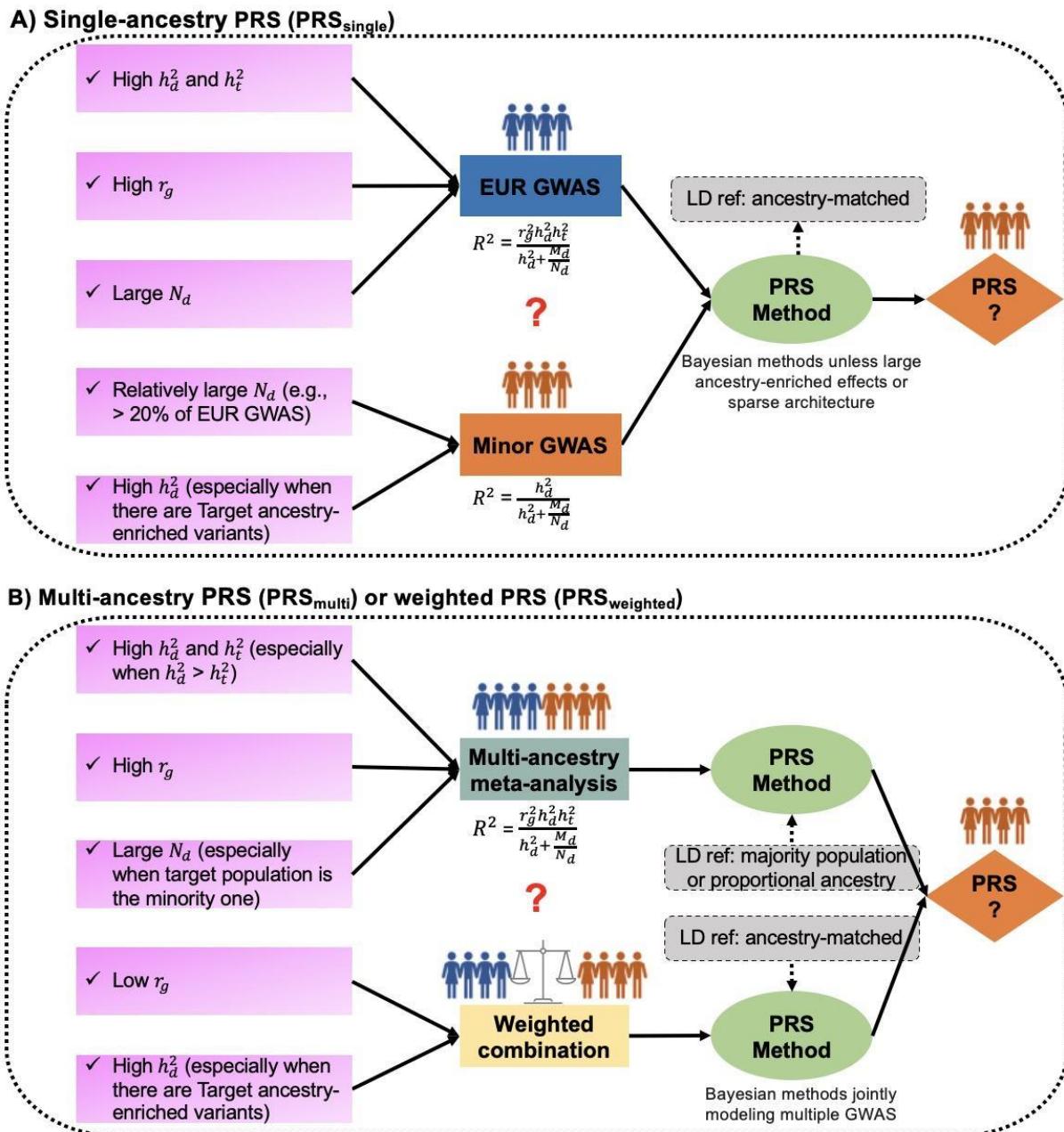


Figure 7. General practices for developing PRS using different discovery GWAS.

We summarized the general practice for developing PRS A) using single-ancestry GWAS (PRS_{single}); and B) using GWAS from multiple ancestries (PRS_{multi} or PRS_{weighted}). Abbreviations: Cross-ancestry genetic correlation (r_g), SNP-based heritability in discovery (h_d^2) and target populations (h_t^2), discovery GWAS sample size (N_d) and the number of genome-wide independent segments in the discovery population (M_d).