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Polygenic prediction across populations is influenced
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Summary

Polygenic risk scores (PRS) developed from multi-ancestry genome-wide association studies
(GWAS), PRSmui, hold promise for improving PRS accuracy and generalizability across
populations. To establish best practices for leveraging the increasing diversity of genomic studies,
we investigated how various factors affect the performance of PRSmui compared to PRS
constructed from single-ancestry GWAS (PRSsingie). Through extensive simulations and empirical
analyses, we showed that PRSyur overall outperformed PRSsingie in understudied populations,
except when the understudied population represented a small proportion of the multi-ancestry
GWAS. Notably, for traits with large-effect ancestry-enriched variants, such as mean corpuscular
volume, using substantially fewer samples from Biobank Japan achieved comparable accuracies
to a much larger European cohort. Furthermore, integrating PRS based on local ancestry-
informed GWAS and large-scale European-based PRS improved predictive performance in
understudied African populations, especially for less polygenic traits with large ancestry-enriched
variants. Our work highlights the importance of diversifying genomic studies to achieve equitable
PRS performance across ancestral populations and provides guidance for developing PRS from
multiple studies.

Keywords: genome-wide association studies; multi-ancestry; polygenic risk scores; genetic
architecture
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Introduction

Polygenic risk scores (PRS) have emerged as useful tools for estimating the cumulative genetic
susceptibility to complex traits and diseases. PRS are typically calculated by weighting the
number of risk alleles based on their associations in genome-wide association studies (GWAS).
PRS have shown promising potential in predicting some traits and disease risks, comparable to
monogenic variants and traditional clinical risk factors'®. Achieving the most accurate and
generalizable PRS requires access to large-scale and diverse GWAS, especially with
representation that matches the specific target population. However, the current landscape of
GWAS predominantly focuses on European (EUR) ancestry populations, which have
considerably larger sample sizes compared to other populations. Although ongoing efforts are
underway to rectify these gaps, achieving global representativeness is a challenging goal.
Encouragingly, studies have shown that using GWAS data with even a small proportion of non-
European ancestry individuals has the potential to improve the predictive accuracy of PRS in
underrepresented populations®®. This finding could largely be attributed to the substantial
contribution of common variants to the heritable variation of complex traits and diseases, and that
causal variants are largely shared across ancestries®'2. With the ever-increasing availability and
scalability of genomic data from underrepresented and ancestrally diverse populations, we are
especially interested in leveraging this greater diversity to improve PRS generalizability.

In particular, recently admixed populations, consisting of chromosomal segments of mosaic
ancestries, are systematically excluded in many existing genomic studies due to their
underrepresentation and complicated population structure-'°. However, these populations
present unique opportunities to develop more generalizable PRS as their genetic effects can be
estimated in more consistent environments, which helps reduce confounding factors compared
to estimates across different ancestry groups in different populations'®. Furthermore, the
comprehensive characterization of phenotypes is often insufficient or inconsistently performed in
different populations. However, in the recently admixed populations, there is a greater potential
for consistency and comparability in phenotype measurements, as the genetic factors contributing
to phenotypic differences between the source populations can be decoupled in the recently
admixed populations'®'”. The advancement of methodologies such as local ancestry inference
and association testing has further enabled ancestry-specific GWAS in admixed populations-2°,
allowing for the construction of PRS that leverage genetic information captured by local ancestry
inference. With the ongoing accumulation of data from recently admixed populations, particularly
through initiatives like the All of Us Research Program?!, expanded resources will provide
unparalleled opportunities to explore the performance of PRS derived from local ancestry-
informed summary statistics within historically underrepresented populations. Furthermore, such
data will facilitate their integration with PRS derived from predominantly EUR-based cohorts.

Recently developed statistical methodologies leverage the increasing diversity of GWAS data to
improve PRS portability®2223, However, the effect of genetic architecture, ancestry composition of
GWAS discovery cohorts, and PRS construction methodologies on cross-ancestry predictive
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83  accuracy remains largely unclear. For example, a recent study found no increase in accuracy
84  when meta-analyzing GWAS from a relatively small Ugandan cohort with larger EUR data?*.
85  Furthermore, theoretical frameworks for approximating expected PRS accuracy from multi-
86 ancestry GWAS are lacking. Current theoretical calculations for PRS accuracy rely on the
87  assumption of homogeneity within the ancestral discovery samples®>2¢, ignoring factors that are
88 likely to play a role with multi-ancestry cohorts. Such factors may include differences in linkage
89  disequilibrium (LD), minor allele frequency (MAF), heritability, sample sizes, and genetic
90 correlation across different ancestries.
91
92 To provide insights into those issues, we explored the impact of ancestry compositions in
93 discovery GWAS on predictive accuracy of PRS constructed using different methodologies. This
94  exploration involved large-scale population genetic simulations as well as the utilization of real
95 genomic data from the BioBank Japan (BBJ)?” and UK Biobank (UKBB)® across traits exhibiting
96  distinct genetic architectures (Figure 1). In what follows, we used single-ancestry GWAS to
97  denote studies conducted exclusively within a single ancestry group (defined using genetic data),
98  while multi-ancestry GWAS refers to studies encompassing two or more distinct ancestries. In
99 our analyses, we performed meta-analyses of GWAS conducted in European ancestry
100  populations (EUR GWAS) and GWAS conducted in other minority populations (Minor GWAS) by
101 varying the ratios of sample sizes to mimic multi-ancestry GWAS with varying ancestry
102  compositions. Specifically, we focused on East-Asian (EAS) and African (AFR) minority
103  populations. By comparing the performance of PRS derived from single-ancestry GWAS (referred
104  to as PRSsingle) and multi-ancestry GWAS (referred to as PRSmuni) through simulations and real
105 data, we consistently observed that PRSmur overall exhibited superior performance in comparison
106  to PRSsingle (primarily PRS derived from large-scale EUR GWAS, referred to as PRSeur gwas). As
107 admixed populations remain understudied despite disproportionately yielding novel genetic
108  findings®®, we further conducted local ancestry inference to explore whether, how, and to what
109  extent PRS performance could be improved using GWAS discovery data from AFR-EUR admixed
110  individuals. While optimal PRS methods are trait- and context-specific, this study
111 comprehensively evaluates PRS accuracy across a wide range of scenarios, facilitating a set of
112  best practices that ultimately reduces the number of analyses necessary to optimize PRS for
118  specific applications.
114

115 Results

116  Evaluating the effects of imbalanced sample sizes across ancestries on PRS
117 accuracy through simulations

118  We simulated genotypes using HapGen2 and phenotypes according to six different scenarios
119  with varying trait heritability (h? = 0.03, 0.05) and number of causal variants (M, = 100, 500, 1000),
120  such that the polygenicity ranged from ~0.1% to ~1%. We assumed that the causal variants and
121 their effect sizes are shared across ancestries (i.e., cross-ancestry genetic correlation, 7, is 1) in
122 our initial simulations. For single-ancestry GWAS, we first conducted GWAS within each bin and
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123  then meta-analyzed GWAS across different numbers of bins (1-52 per ancestry). Each bin
124  represented 10,000 individuals randomly sampled from the corresponding ancestry. For multi-
125  ancestry GWAS, we meta-analyzed GWAS from EUR and minor populations (EAS or AFR) to
126  evaluate the impact of ancestry composition. We used varying numbers of bins from the EUR
127  GWAS (ranging from 4 to 52 with 4 increments) and varied the contribution from minority
128  populations (1-52 bins) from EAS or AFR GWAS. We constructed PRS using the classic pruning
129  and thresholding (P+T) method with varying p-value thresholds. This approach follows a greedy
130 heuristic algorithm wherein variants are sorted based on their p-values. The algorithm iteratively
131  descends in significance while retaining only those variants that do not exceed a predetermined
132 LD threshold with previously retained variants. We assessed the accuracy, measured by
133  prediction R?, using the optimal threshold through fine-tuning in the validation cohort. Detailed
134  information about the simulation setup is shown in Figure 1 and STAR Methods.

135

136  PRS predictive accuracy improved with more individuals from target populations included
137  in the multi-ancestry GWAS but varied with genetic architecture

138  When developing PRS using single-ancestry GWAS, we found that using ancestry-matched
139  GWAS generally outperformed using GWAS from other discovery populations (Figure S1).
140  Compared to using EUR GWAS, the benefit of using ancestry-matched GWAS was more evident
141  for traits with more polygenic genetic architectures and larger GWAS sample sizes. To further
142  evaluate the impact of ancestry composition, we compared the accuracy of PRSmui and PRSgingie.
143  We constructed PRSnmuii using an LD reference panel consisting of individuals proportional to the
144 ancestry composition of the discovery GWAS. This reference panel yielded approximately optimal
145 accuracy among three different reference panels utilized in our study (Figure S2 and
146  Supplementary Note 1, 2).

147

148 Relative to the accuracy of PRSeur cwas, we observed significant improvements in the
149  understudied target population by including more individuals from the target ancestry in multi-
150 ancestry GWAS. Across all simulations, a statistically significant median improvement of 0.008 in
151 R? was observed (one-sided Wilcoxon signed-rank test, p-value < 2.2e-16, Table S1). This trend
152  was more apparent in more polygenic traits. As shown in Figure 2, we compared accuracy
153  between PRSmui and PRSeur awas derived from 320,000 EUR individuals. For traits with h? of
154  0.05, the median improvements in R? of PRSmuiwas 0.006, 0.014 and 0.013 with M, of 100, 500,
155 and 1000, respectively, in the EAS target population. Similarly, corresponding R? improvements
156  of 0.009, 0.010 and 0.014 were shown in AFR (Figure S3). However, we did not consistently
157  observe such accuracy gains for the majority EUR population, or in scenarios where the other
158  understudied ancestry was not included in the multi-ancestry discovery GWAS. In our simulations
159  but unlike in most GWAS, populations typically understudied in current genomic studies can be
160  the majority in the discovery GWAS. Nevertheless, we still observed significant PRS accuracy
161  improvements, of median improvements in A% 0.007 across simulations when the proportion of
162  understudied populations in the discovery GWAS was less than 50% (one-sided Wilcoxon signed-
163  rank test, p-value < 2.2e-16). We expected to observe similar relative A? improvements, which
164  measured the PRS generalizability, in the target populations using PRSmui compared to using
165  PRStur cwas with the same number of bins from EUR populations (Supplementary Note 3).
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166

167  Compared with using PRSeur cwas, we found that PRSmuri derived from GWAS with much smaller
168  sample sizes could achieve comparable or better predictive accuracy (Table S1). For example,
169 in the scenario with M, of 1000 and h? of 0.03, the meta-analysis of 16 EUR and 2 AFR bins
170  achieved a comparable accuracy of 0.008 to that of using 32 EUR bins in the AFR population.
171 Overall, adding fewer individuals from the target populations saturated accuracy improvements
172  for less polygenic traits faster than more polygenic traits. Similarly, larger sample sizes from AFR
173  populations were required to achieve comparable PRS accuracy to EAS populations especially
174 for more polygenic traits, likely due to the larger effective population size in AFR populations and
175  larger genetic divergence between EUR and AFR populations. As shown in Figure S3, when h?
176  was 0.03, the accuracy improvement of PRSnuiiin the AFR population plateaued to ~0.005 with
177 11 and 20 AFR bins for M, of 100 and 500, respectively, but continued to increase with more AFR
178  bins for M, of 1000. Similarly, when h? was 0.03, including 2 and 12 EAS bins in PRSn.i yielded
179  an accuracy improvement of >0.005 in EAS for M, of 100 and 500, respectively (Figure 2). In
180 comparison to PRS derived from Minor GWAS alone (PRSwinor cwas), we found that the accuracy
181  improvement of PRSnuii gradually diminished as the sample size of Minor GWAS increased
182  (Figure S4 and Table S1). We showed that for more polygenic traits, PRSmuri achieved little to
183  no improvement when the understudied target populations accounted for more than half of the
184  sample size in multi-ancestry GWAS (Supplementary Note 4).

185

186  Because genetic correlation estimates between populations can be significantly less than 1, we
187  also modified our simulations by varying the 7, to be 0.6 and 0.8. We investigated two simulation
188  scenarios that represent the extremes in per-variant variance explained: the least polygenic
189  scenario 1 with M, = 100 and h? =0.05, and the most polygenic scenario 2 with M, = 1000 and
190  h? =0.03 (STAR Method). Consistent with our previous findings, PRSmuii exhibited improved
191  predictive accuracy in the target population when a greater number of individuals from the same
192  ancestry were included, as compared to relying solely on large-scale EUR GWAS (Figure S5-A,
193  B). This improvement was more pronounced for scenario 2. Moreover, we needed a larger
194  number of individuals from the target ancestry to saturate accuracy improvements in scenario 1
195  when 7; was moderately reduced. Furthermore, as the sample sizes of the Minor GWAS
196  increased and the values of 7; decreased, the advantage of utilizing PRSmuti over PRSwinor_awas
197  diminished and eventually vanished (Figure S5-C, D). Details are shown in Table S2 and
198  Supplementary Note 5.

199

200 Empirical analysis of PRS accuracy within and across ancestries using 17
201 quantitative phenotypes

202  Genetic architecture of 17 studied phenotypes

203 To understand how trait genetic architecture influences predictive accuracy of PRS across
204  ancestries, we conducted a comprehensive analysis involving 17 phenotypes in the UKBB and
205 BBJ. Specifically, we estimated key parameters influencing different aspects of genetic
206  architecture, including SNP-based heritability, polygenicity (the proportion of SNPs with nonzero
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207  effects) and a coefficient of negative selection (S, measuring the relationship between MAF and
208 estimated effect sizes). To obtain these estimates, we employed a Bayesian method called
209 summary-data-based BayesS (SBayesS), which leverages GWAS summary statistics as input
210  data®.

211

212  The phenotypes included in this study varied widely in genetic architecture across these estimated
213  parameters (Figure 3, Table S3 and Table S4). The polygenicity estimates spanned a broad
214  range, from low values (0.001-0.005) for traits like mean corpuscular hemoglobin concentration
215  (MCHC), basophil count (basophil), mean corpuscular hemoglobin (MCH), and mean corpuscular
216  volume (MCV), to higher values (0.012-0.047) for traits such as height and body mass index
217  (BMI). SNP-based heritability estimates similarly ranged from <0.1 for basophil and MCHC to 0.54
218  and 0.33 for height using UKBB and BBJ, respectively, regardless of polygenicity. The median S
219  parameters were -0.63 and -0.47 using UKBB and BBJ, respectively. While the negative Svalues
220 indicate negative selection (i.e., rarer variants have larger effects), it remains unclear to what
221  degree population stratification could confound such estimates®*3'. We found that the polygenicity
222  estimates using UKBB were mostly higher than those using BBJ, which could be due to the higher
223  statistical power with larger sample sizes in the UKBB resulting in the detection of more variants
224  with small effects. Similarly, we observed significantly higher SNP-based heritability in the UKBB
225 compared to BBJ with the exception of MCHC and basophil, indicating possible phenotype
226  heterogeneity between the two cohorts. These results are expected from the biobank designs, as
227  BBJ is a hospital-based cohort with participants recruited with certain diseases, whereas UKBB
228 is a population-based cohort with overall healthier participants and thus a wider range of natural
229  variation in complete blood counts. This finding is also consistent with the previous study using
230 estimates from LD score regression (LDSC) and stratified-LDSC?*2. Moreover, as described
231  previously®, the estimated cross-ancestry genetic correlations between UKBB and BBJ for those
232 traits were not statistically different from 1 (p-value > 0.05/17) except for a few including basophil
233  (r; = 0.5945, SE = 0.1221), height (r; = 0.6932, SE = 0.0172), BMI, (r, = 0.7474, SE = 0.0230),
234  diastolic blood pressure (DBP, r, = 0.8354, SE = 0.0509), and systolic blood pressure (SBP, r; =
235  0.8469, SE = 0.0430).

236

237  Multi-ancestry GWAS-derived PRS usually improves predictive performance compared
238  to single-ancestry GWAS-derived PRS

239  We constructed PRSsingle using the P+T and PRS-CS methods with GWAS from UKBB and BBJ,
240 respectively. The GWAS sample sizes varied based on the number of Bintota, Which represented
241  the total number of bins specific to each trait as shown in Table S3. Each bin consisted of 5,000
242 individuals randomly selected from the respective cohort. We found that employing target
243  ancestry-matched GWAS, even with smaller sample sizes, yielded comparable accuracy to
244  tilizing large-scale EUR GWAS but depended on PRS methodology and trait-specific genetic
245  architecture (Figure S6, Figure S7, Table S5 and Supplementary Note 6). We evaluated
246  predictive accuracy by computing incremental R? using linear regression, while accounting for the
247  potential impact of covariates (STAR Methods).

248
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249  For comparison, we developed PRSnuii using both P+T and PRS-CS, where we meta-analyzed
250  single-ancestry GWAS from UKBB and BBJ. Similar to the simulation setup, we mimicked
251  proportional ancestry composition in the multi-ancestry GWAS by meta-analyzing EUR GWAS in
252  the UKBB with GWAS in the BBJ while varying number of bins (each bin of 5,000 individuals,
253  UKBB bins ranging from 8 to 64 with an increment of 8, see STAR Methods and Figure 1). The
254  ratio of EUR/EAS samples in the multi-ancestry GWAS varied from 64:1 to 8/Bintota. Thus, 85%
255  of the multi-ancestry GWAS had a higher proportion of EUR samples (>50% EUR). Consistent
256  with our findings from the simulations, where we observed that the choice of LD reference panel
257  had alimited impact on the predictive accuracy of more polygenic traits, we observed only a slight
258  improvement of median R? of 0.002 for P+T when employing a combined LD reference panel that
259  was proportional to the ancestries represented in the multi-ancestry GWAS. We compared this
260 result with PRS developed using a reference panel that was matched with the majority population
261  ofthe discovery GWAS (Figure S8 and Table S6). Because the majority of PRS was constructed
262  from GWAS predominantly composed of EUR individuals, we hereafter reported the results using
263 1KG-EUR as the LD reference.

264

265  In our analysis comprising 3,160 comparisons between single-ancestry PRS derived from UKBB
266 GWAS (PRSeur ewas) and multi-ancestry PRS (PRSmuii), we observed encouraging results.
267  Specifically, in the UK Biobank East-Asian population (UKBB-EAS), PRSmui showed accuracy
268 improvements in 99.7% and 92.4% of these comparisons when using P+T and PRS-CS,
269 respectively (Table S7 and Figure S9). Accuracy increased with more EAS samples in the multi-
270  ancestry GWAS (Figure 4). For example, when comparing PRSmuii with PRSeur cwas using P+T,
271  the largest relative improvements in R? were 80.9% (0.085 vs. 0.047) for platelet count (PLT),
272  152.2% (0.058 vs. 0.023) for BMI and 91.9% (0.071 vs. 0.037) for height. We observed these
273  improvements when using multi-ancestry GWAS including EAS bins from BBJ, which were either
274  concordant with or proximal to Bintow, along with 64 EUR bins from UKBB. Similarly, the
275  corresponding relative R? improvements for these same three traits were 19.8% (0.0126 vs.
276  0.101), 50.0% (0.075 vs. 0.050) and 15.5% (0.097 vs. 0.084) when using PRS-CS. We did not
277  consistently observe the upward trend for white blood cell count (WBC) with PRS-CS, which can
278  be attributed to the lack of accuracy improvement with larger sample sizes of BBJ (Figure S6).
279  We also found that P+T showed greater improvement compared to PRS-CS but worse accuracy
280  overall, regardless of the number of bins from EUR GWAS; the median improvements in R?across
281  traits were 0.014 and 0.008, respectively. However, the upward trend in PRS accuracy was not
282  consistently shown in the UKBB-EUR, particularly when using PRS-CS (Figure S10 and Table
283  S7). This pattern aligned with our simulation results and previous reports that PRS accuracy for
284  minority populations included in the multi-ancestry GWAS benefited more from adding more
285  ancestry-matched individuals compared to other populations, including EUR populations®. We
286  noted that the accuracy of PRSmui remained largely unchanged or slightly decreased when the
287  number of bins from BBJ was small (e.g., 1 or 2 bins), which was consistent with previous
288  studies®33, In contrast to PRS derived from BBJ (PRSwinor cwas), we noted a diminishing trend in
289  accuracy improvements of PRSmurias the sample sizes of BBJ increased, especially for traits such
290 as height, PLT, MCH and MCV (Figure S11). Furthermore, we observed greater variation in
291  accuracy among traits from real data compared to simulations, which could be attributed to the
292  smaller sample sizes and the more complicated genetic architecture.
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293

294 PRS derived from meta-analyzed multi-ancestry GWAS versus weighted PRS from
295  single-ancestry GWAS in understudied populations

296 In contrast to PRSmuii, an alternative approach proposed in previous studies to enhance predictive
297  accuracy in diverse populations is the linear combination of PRS derived from GWAS conducted
298  on populations with different ancestries34. Here, we implemented this approach by developing a
299  weighted PRS (PRSweighted) Using P+T and PRS-CS. This combination involved linearly weighting
300 PRS derived from single-ancestry GWAS conducted in the UKBB and BBJ. Additionally, we
301  employed a more advanced Bayesian method called PRS-CSx8, which jointly models GWAS and
302 LD information from multiple populations. Similarly, we constructed PRSueighted USINg ancestry-
303  specific posterior SNP effects. Furthermore, we developed PRS by integrating ancestry-specific
304 posterior SNP effects using the inverse-variance weighted meta-analysis strategy, also referred
305 to as PRSmuii (see STAR Methods).

306

307 Among the three PRS methods evaluated in the UKBB-EAS, PRS-CSx exhibited the highest
308 performance, followed by PRS-CS and P+T. Specifically, for PRSmuni, the corresponding median
309 R? values across traits were 0.051, 0.048 and 0.037, while for PRSueighted, they were 0.051, 0.045
310 and 0.021, respectively (Figure 5, Table S8 and Table S9). Notably, we observed that PRSmuxi
311 for BMI using PRS-CS yielded significantly better accuracy compared to PRS-CSx (median R?:
312  0.057 vs. 0.055, p-value < 2.2e-16, one-sided Wilcoxon signed-rank test). Out of the 3,160
313  comparisons between PRSmuriand PRSueightedin the UKBB-EAS, 91.4% and 78.0% showed higher
314  accuracy of PRSnui when using P+T and PRS-CS, respectively, with median improvements in
315  R? of 0.011 (p-value < 2.2e-16) and 0.003 (p-value < 2.2e-16). Although we found better
316  performance overall with PRSmuii, we found that PRSueigntea Significantly outperformed PRS i for
317  PLT using P+T (median R?: 0.086 vs. 0.081, p-value < 2.2e-16) and for height using PRS-CS
318  (median R?: 0.091 vs. 0.082, p-value = 2.6e-04). Contrary to trends observed with other methods,
319  in 59.7% of the comparisons, PRSueighted OUtperformed PRSmui when using PRS-CSx, although
320 we observed no significant accuracy difference across traits. However, PRSyeightea Showed
321  superior performance compared to PRSmun (p-value < 0.05/17) for several traits, including MCV
322  (median R?: 079 vs. 0.072), MCH (median R?: 0.079 vs. 0.073), Basophil (median A?: 0.010 vs.
323  0.007) and hemoglobin concentration (HB, median A?: 0.025 vs. 0.024).

324

325  Moreover, the extent of accuracy improvements using PRSmuti, in contrast to PRSweignted, largely
326  varied across traits and ancestry compositions. For example, when evaluating accuracy within
327 the UKBB-EAS using P+T, we observed 3.25-fold increase in R? with PRSmui compared to
328  PRSueighted for monocyte count (monocyte, 0.065 vs. 0.020). This improvement was achieved with
329 abinratio 56:15 for the discovery GWAS, consisting of 56 bins from UKBB and 15 bins from BBJ.
330  Similarly, using a bin ratio of 40:25, we achieved a 4-fold increase in R?for DBP (0.048 vs. 0.012)
331  with PRSmui compared to PRSweighied. When developing PRSnhuii using PRS-CS, we observed
332  notable relative improvements in A2 when compared to PRSueighted, Specifically a 24.7% increase
333  for PLT (0.091 vs. 0.073) with bin ratio of 24:1, and a 57.1% increase for lymphocyte (0.044 vs.
334  0.028) with a bin ratio of 16:1. Additionally, we found that PRS-CSx showed better performance
335 incomparison to PRS-CS, especially when EUR GWAS was smaller or Minor GWAS was larger.
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336  However, such improvements were less pronounced with large-scale EUR GWAS or small Minor
337 GWAS (Figure S12). While sharing ancestry-specific GWAS summary statistics is highly
338 beneficial for determining optimal approaches, our findings highlight the value of pragmatic
339 approaches that directly construct PRS from large-scale meta-analyzed multi-ancestry GWAS.
340  Such studies are often more accessible than ancestry-specific GWAS summary statistics.

341

342 PRS derived from local ancestry-informed GWAS can improve accuracy for
343 some less polygenic traits

344  We next conducted a comparative analysis to evaluate the optimal PRS approaches for admixed
345  populations, utilizing local ancestry-informed GWAS. Specifically, we used Tractor'® to perform
346 GWAS in AFR tracts within admixed AFR-EUR individuals, referred to as AFRtractor. This
347  approach enabled us to construct ancestry-specific PRS across 17 traits in the understudied AFR
348  population. We developed PRS using both P+T and PRS-CS, and subsequently compared the
349  accuracies of PRS derived from AFRTwacior With those derived from large-scale EUR GWAS
350 performed with standard linear regression (EURstandard). TO maximize discovery sample size, we
351 also developed PRSweighted by combining EURstancara-derived PRS and AFRrracior-derived PRS
352  through linear weighting; we compared its performance to PRS derived from multi-ancestry meta-
353 analyzed GWAS (referred to as Metastandard, Se€ STAR Methods).

354

355  Local ancestry-informed ancestry-specific GWAS had a much smaller sample size relative to the
356  EUR-inclusive GWAS, as is typical for GWAS of underrepresented populations. As expected, we
357  did not observe significant predictive accuracy of AFRcor-derived PRS for most traits such as
358 height and BMI (Figure 6 and Table S10). However, we observed notable improvements for 5
359 traits, including WBC, neutrophil count (neutrophil), MCV, MCH and MCHC, where AFR tractor-
360 derived PRS achieved significantly higher R? compared to EURSstandarar-derived PRS when using
361 P+T (0.040 vs. 0.007, one-sided paired ttest, p-value = 0.038), despite a much larger sample
362  size for EURswandard- This improvement might be attributed to the presence of large-effect AFR-
363  enriched variants, particularly for MCV, MCH and MCHC, which are effectively captured by
364  Tractor GWAS® . Consistent with our previous findings, P+T generally outperformed PRS-CS
365 for these traits characterized by much sparser genetic architectures, with a mean A2 of 0.040
366 compared to 0.022. Given that heritability bounds predictive accuracy, which can vary among
367  populations and contexts, we also compared SNP-based heritability estimates between the AFR
368 and EUR populations in the Pan-UK Biobank Project
369  (https:/pan.ukbb.broadinstitute.org/docs/heritability/index.html). In line with our PRS accuracy
370 results, we observed higher estimates of SNP-based heritability for WBC (h? = 0.41, SE = 0.19
371  vs. h? =0.17, SE = 0.01), neutrophil (h? = 0.44, SE = 0.26 vs. h? = 0.15, SE = 0.01), and MCHC
372 (h? = 0.15, SE = 0.11 vs. h? = 0.06, SE = 0.01) in the AFR population compared to the EUR
373 population. However, these differences did not reach statistical significance, which can be
374  attributed to the large standard errors resulting from the limited small sample size of AFR
375  population and the sparser genetic architectures, leading to less stable heritability estimates using
376 LDSC.

377
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378  The best local ancestry-informed PRS approach that we evaluated for the 5 less polygenic traits
379  with large ancestry-specific effects was a weighted linear regression approach. This approach
380 combined PRS derived from AFRtactor and EURSstandara USING linear regression and outperformed
381 predictive accuracy compared to using Metasundars-derived PRS. This finding aligns with our
382  earlier observations, where PRSyeighteds OUtperformed PRSmyni for traits with large effect ancestry-
383 enriched variants, while PRSmuri exhibited superior overall performance for traits lacking such
384  variants. Specifically, the mean accuracies of PRSueignhted Using P+T, PRS-CS and PRS-CSx for
385 those 5 traits were 0.044, 0.031, and 0.028, respectively, with no significant differences observed
386 among the three PRS methods. The mean accuracies of Metasiandara Were 0.016 and 0.008 using
387 PRS-CS and P+T, respectively. Additionally, we did not observe significant accuracy differences
388 between PRS derived from GWAS conducted using standard linear regression in admixed
389  populations and AFRacor-derived PRS (Table S10). It is worth noting that the effective sample
390 size of local ancestry-informed GWAS is approximately 20% smaller due to the reduction from
391  deconvolving ancestral tracts. Moreover, PRS derived from traditional GWAS in admixed
392 populations necessitate an in-sample LD reference panel. In contrast, local ancestry-informed
393 GWAS-based PRS, as shown in this study, can leverage external LD reference panels,
394  eliminating the need for direct access to individual-level genotypes of admixed populations.

395

396 Discussion

397 In this study, we extensively evaluated PRS performance through a combination of simulation
398 and empirical analyses to explore the impact of various factors on PRS predictive accuracy and
399 generalizability across populations. We demonstrated that increasing genetic diversity of
400 discovery GWAS improved predictive accuracy in understudied populations. The extent of
401 improvement was influenced by factors such as sample size ratios between EUR GWAS and
402  Minor GWAS, genetic architecture, PRS methodology, and LD reference panels. Among those
403 factors, between-ancestry genetic architecture differences, such as ancestry-enriched variants
404  with large effects, affected accuracy improvement more than other factors. While leveraging large-
405 scale EUR GWAS continues to benefit PRS accuracy given the current scale of understudied
406 populations, we may not expect accuracy improvement when meta-analyzing extremely small
407  Minor GWAS?,

408

409  Our study also revealed that directly meta-analyzing datasets from diverse ancestral groups could
410 vyield greater accuracy improvements than linearly combining PRS through an optimized weighting
411  strategy, especially for P+T. Such improvements from meta-analyzed GWAS supports the
412  common implicit assumption that causal variants are shared between ancestries. Consistent with
413  this assumption, when smaller target populations lack representation, leveraging genetic
414  information from a different population with larger sample sizes improves PRS accuracy, even
415 when it is ancestrally diverged. Notably, when employing the more sophisticated genome-wide
416  PRS method, PRS-CSx, accuracy differences between PRSnui and PRSweightes WEre marginal.
417  Moreover, PRS-CSx generally outperformed PRS-CS, with the exception of BMI. The
418 improvement was most pronounced for traits with ancestry-specific variants, such as MCV and
419  MCH.
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420

421  We have comprehensively evaluated characteristics that impact PRS performance, including in
422  recently admixed populations. We have shown the advantage of leveraging GWAS in admixed
423  populations by accounting for local ancestry, which could improve PRS predictive performance in
424  understudied populations even without direct access to individual genotypes of admixed
425  populations. Specifically, we found that PRSueighted cOnsistently outperformed PRSyuii for traits
426  with ancestry-enriched variants. However, the sample size of admixed individuals here was
427  relatively small, and we anticipate that future analyses incorporating larger datasets, such as the
428  All of Us Research Program, will provide further insights into optimal PRS strategies for improved
429  accuracy and generalizability using PRS derived from local ancestry-informed GWAS.

430

431  While previous studies have shown the advantages of leveraging increased genetic diversity to
432  improve PRS accuracy in global populations”, most have used GWAS with primarily European
433  ancestry. Here, we have provided additional best practices for developing PRS for understudied
434  populations using diverse discovery cohorts, particularly when GWAS encompass different
435 ancestry compositions across various trait genetic architectures (Figure 7). Our
436 recommendations primarily revolve around general guidelines for constructing PRSsinge and
437  PRSmuii (or PRSweighted), depending on factors examined in this study (Figure S13).

438

439  First, in the development of PRSsinge, We employed a theoretical equation® to enhance the
440  selection of input GWAS (Supplementary Note 7), as a function of the cross-ancestry genetic
441 correlation, SNP-based heritability in discovery and target populations, discovery GWAS sample
442  size, and the number of genome-wide independent segments in the discovery population®. For
443  traits with relatively low 7; and a sizable ancestry-matched GWAS (e.g., > 20-40% of EUR
444  GWAS), such as BMI and height, PRS accuracy in the target population improves when ancestry-
445  matched GWAS are utilized. On the other hand, for traits with high r, and SNP-based heritability,
446  we expect larger-scale EUR GWAS to outperform smaller-scale ancestry-matched GWAS.
447  However, it is important to consider the characteristics of the target cohort and phenotype
448  precision. Additionally, we expect Bayesian methods tailored to trait-specific genetic architecture
449  to outperform classic P+T methods. However, this superior performance may not hold true for
450 traits that exhibit large-effect ancestry-enriched variants or with a very sparse genetic architecture,
451  which are attributes typically informed by prior knowledge or information gleaned from literature
452  and public resources®=-, To enhance accuracy in such scenarios, we recommend employing
453 a grid-search approach with a finer-scale adjustment of the hyper-parameters in Bayesian
454  methods.

455

456  Second, in comparison to PRSsingle derived from large-scale EUR GWAS, we recommend using
457  PRSmui, unless the target ancestry-matched GWAS is extremely small (<10,000). PRSmuni is
458  generally preferred for traits with high r,, SNP-based heritability, and large sample sizes. We find
459 increasing evidence supporting the notion that the effects of most common variants are shared
460 between ancestries, indicating a high r; for most traits®''. However, estimates of r, can be
461  affected by phenotypic and environmental heterogeneity across populations™®4. When
462  constructing PRSmuii using summary-level based methods such as P+T and PRS-CS,
463 researchers should carefully consider which LD reference panel best approximates the LD
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464  structure between SNPs while being most readily accessible. We have shown that when EUR
465 remains the majority population in the discovery GWAS, using the EUR-based reference panel
466  effectively approximates the LD of discovery GWAS, consistent with our previous findings”.

467

468  Third, our findings indicate the advantages of PRSmui compared to PRSweighted, particularly when
469 employing P+T and PRS-CS. However, there are some notable exceptions, such as the higher
470  accuracy observed when using PRSuweigntea With PRS-CS for traits with low 7, such as height.
471  Furthermore, when incorporating local ancestry-informed GWAS and large-scale EUR GWAS,
472  PRSuweighted OUtperformed PRSmui for traits with AFR-enriched variants, such as WBC and MCHC,
473  inthe UKBB-AFR. On the other hand, we note that the accuracy of PRSmuiicould be more affected
474 by the choice of LD reference panel, while PRSueighted Was not limited in this regard due to its easy
475  accessibility of external ancestry-matched reference panels. PRS-CSx, which accounts for
476  variations in allele frequencies and LD structures across ancestries, is recommended when
477  ancestry-specific GWAS from multiple populations are available, especially with considerable
478  sample sizes (e.g., > 25,000~50,000) in the Minor GWAS. These results highlight the importance
479  of making ancestry-specific GWAS summary statistics publicly available.

480

481 In summary, there is no one-size-fits all approach for constructing PRS, as the optimal approach
482  depends on genetic architecture, ancestry composition, statistical power, and other factors. These
483 factors can be complex, particularly as a deluge of methods are being developed to address the
484  PRS generalizability problem. To inform optimal approaches across a wide range of scenarios,
485  we have distilled the results of extensive simulations and empirical analyses across trait genetic
486  architectures, ancestries, and methods into a set of guidelines from parameters that are typically
487  evaluated at the outset of a genetic study.

488

489 Limitations of the study

490 We acknowledge some limitations and future directions in our study. First, we focused on common
491  variants in different populations, while population-enriched variants have lower frequencies and
492  larger effect sizes in some populations. The role of such variants in polygenic prediction are worth
493  exploring across phenotypes when there are sufficient sample sizes for different ancestral
494  populations. Second, as we used external LD reference panels for PRS construction, PRS
495  performance decreases with LD mismatch between the discovery population and LD reference
496 panel, especially using multi-ancestry GWAS. While we show that LD reference panel differences
497 have a relatively modest effect on PRS accuracy, they have a much larger effect on fine-
498 mapping*', so future efforts are warranted to share in-sample LD without direct access to
499 individual-level genotypes, especially for large consortia with numerous and diverse cohorts.
500 Alternatively, developing more sophisticated individual-level PRS methods that preserve privacy
501 and are scalable to current biobank-scale data is also promising. Third, while our primary focus
502  pertains to quantitative phenotypes characterized by diverse genetic architectures, we expect our
503 findings can be broadly applied to binary traits, as we have investigated previously’. However,
504  binary phenotypes introduce additional complexities due to factors such as variable case/control
505 ratios, phenotype definitions, environmental differences, and smaller effective sample sizes or
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506 lower statistical power. Fourth, while we have provided theoretical expectations of cross-ancestry
507 prediction, the reliability of parameter estimates such as cross-ancestry genetic correlation and
508 the effective number of independent genome-wide segments poses significant challenges,
509 particularly in the context of multi-ancestry GWAS with highly imbalanced sample sizes. Finally,
510 it is important to acknowledge that our study focused on selected methods, which consistently
511 exhibit similar trends*?. Although we anticipate that our findings are broadly applicable to
512  alternative methods, such as XPASS*® and XP-BLUP*2, further research is needed to explore the
513  generalizability of our findings to other polygenic prediction approaches. Despite the limitations,
514  our study highlights the advantages of leveraging the increasing diversity of current genomics
515  studies to improve polygenic prediction across populations. We emphasize the necessity of
516  diversifying not only the ancestry but also phenotypic spectrum when collecting genomic data
517  from global populations, which will contribute to achieve a more equitable and effective use of
518 PRS for traits with varying genetic architectures.

519
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542 Figure Legends

543  Figure 1. Study design in both simulations and empirical analyses

544 1) In the context of single-ancestry GWAS, we randomly split individuals in European (EUR) and
545  other minority populations, including East-Asian and African populations, into equally sized bins.
546  Simulations involved a total of 52 bins per population, each containing 10,000 individuals. For
547  empirical analysis, bin number was dependent on the sample size of respective phenotype in that
548  population (Table S3), with 5,000 individuals per bin. GWAS was conducted within each bin for
549  each individual population, followed by meta-analysis of GWAS from various numbers of bins
550  within each population. To construct PRS derived from single-ancestry GWAS (PRSsingie) in the
551  target population, we applied P+T for both simulations and empirical analyses, utilizing PRS-CS
552  for the latter. Subsequently, we combined PRSsingie developed from EUR GWAS (PRSeur gwas)
553  and other minority population-based GWAS (PRSwinor awas) through a linear weighted strategy
554  (denoted as PRSuweignted, highlighted in red box) for empirical analyses. Note that PRSweightes Was
555 also developed using PRS-CSx, which utilizes GWAS summary statistics from multiple
556  populations. 2) For meta-analyzed multi-ancestry GWAS (referred to as Meta), we ran meta-
557  analyses on EUR GWAS and Minor GWAS with varying ancestry compositions. In simulations,
558 we incrementally included 4 bins from EUR GWAS for the meta-analysis, while in empirical
559  analyses, we increased the number to 8 bins. Simultaneously, we varied the number of bins in
560 Minor GWAS from 1 to the total number. Following the meta-analysis, we constructed PRS based
561  on Meta (referred to as PRSmuni), using the P+T method for simulations, and employing both P+T
562 and PRS-CS for empirical analyses.

563

564 Figure 2. Improvement of PRS accuracy through meta-analyzed multi-
565 ancestry GWAS compared to large-scale European GWAS across 6
566 simulated genetic architectures.

567  The multi-ancestry GWAS included populations of European (EUR) and East-Asian (EAS)
568  ancestry, with the EAS sample size varying as indicated on the x-axis. For illustrative purposes,
569 we present the results using 32 EUR bins, each consisting of 10,000 individuals, which were
570 included in both EUR GWAS and multi-ancestry GWAS. PRS was separately evaluated in African
571  (AFR), EAS and EUR populations. Full results are shown in Table S1. M, indicates the number
572  of causal variants and h? refers to SNP-based heritability. In each panel, the red vertical dashed
573 line indicates the point where an equal number of bins from EUR and EAS populations were
574  included in the multi-ancestry GWAS. The error bars represent the standard errors of predictive
575 accuracy differences between PRS derived from multi-ancestry GWAS (PRSmui) and PRS
576  derived from EUR GWAS (PRSeur awas).

577
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578 Figure 3: Genetic architecture of 17 studied traits between Biobank Japan
579 (BBJ) and UK Biobank (UKBB).

580 The error bar is the standard deviation of the corresponding estimate. The vertical dashed line
581 was the median estimate. Full results are shown in Table S4. The phenotypes were ranked
582  according to their polygenicity estimates using GWAS from UKBB, including: BMI (body mass
583 index), Height, DBP (diastolic blood pressure), SBP (systolic blood pressure), WBC (white blood
584  cell count), Lymphocyte ( lymphocyte count), RBC (red blood cell count), Neutrophil (neutrophil
585 count), HB (hemoglobin concentration), HT (hematocrit percentage), Eosinophil (eosinophil
586  count), PLT (platelet count), Monocyte (monocyte count), MCV (mean corpuscular volume), MCH
587 (mean corpuscular hemoglobin), Basophil (basophil count), MCHC (mean corpuscular
588  hemoglobin concentration).

589

590 Figure 4. Accuracy improvement of PRS in the UK Biobank East-Asian
591  population (UKBB-EAS) using multi-ancestry GWAS comprare to using
592  European (EUR) GWAS for P+T and PRS-CS.

593  The multi-ancestry GWAS were obtained by meta-analyzing EUR GWAS and EAS GWAS, with
594  the EAS sample size from the Biobank Japan (BBJ) varying as indicated on the x-axis. For
595 illustrative purposes, we present the results using 64 EUR bins, each containing 5,000 individuals,
596  which were included in both EUR GWAS and multi-ancestry GWAS. PRS were constructed using
597  P+T and PRS-CS and evaluated in the UKBB-EAS. The y-axis is the accuracy difference of PRS
598  when using multi-ancestry GWAS (PRSnuti) compared to using EUR GWAS (PRSEeur gwas). The
599 error bars indicate the standard error of accuracy improvement. The red dashed line is y=0. We
600 showed the results for 7 traits with SNP-based heritability > 0.1 in both BBJ and UKBB, and they
601  were ranked by polygenicity estimates using UKBB (Figure 3). Full results are shown in Table
602 S7.

603

604 Figure 5. Predictive accuracy using different PRS methods in the UK Biobank
605 East-Asian population (UKBB-EAS).

606  PRSmui represents PRS derived from multi-ancestry GWAS, while PRSueignted denotes PRS
607  constructed from a weighted linear combination (see STAR Methods for details). PRS were
608 constructed with three methods, including P+T, PRS-CS and PRS-CSx. We showed the results
609 for 7 traits with SNP-based heritability > 0.1 in both Biobank Japan (BBJ) and UKBB. Traits were
610 ranked by polygenicity estimates using UKBB (Figure 3). Boxes represent the first and third
611  quartiles, with the whiskers extending to 1.5-fold the interquartile range. Full results are shown in
612 Table S8 and Table S9.

613
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614 Figure 6. Accuracy of PRS derived from local-ancestry informed GWAS
615 versus other discovery GWAS in the UK Biobank African population (UKBB-
616 AFR)

617  We evaluated PRS performance in the UKBB-AFR by utilizing various methods on different
618  discovery GWAS. Specifically, AFRtacior denotes the AFR-specific GWAS performed using
619  Tractor on the UKBB admixed African-European individuals. EURstandard refers to standard GWAS
620 performed on the European (EUR) population in the UKBB. Metastandard is the meta-analysis
621  performed on AFRtwacor and EURSsundard. Furthermore, we constructed a weighted PRS by
622 combining PRS generated from AFRTractor and EURstandard through a linear weighted approach.
623  The figure shows the results for traits with SNP-based heritability > 0.1 in the UKBB-AFR. Full
624  results are shown in Table S10.

625

626 Figure 7. General practices for developing PRS using different discovery

627 GWAS.

628 We summarized the general practice for developing PRS A) using single-ancestry GWAS
629  (PRSsingie); and B) using GWAS from multiple ancestries (PRSmuti or PRSweighted). Abbreviations:
630  Cross-ancestry genetic correlation (r;), SNP-based heritability in discovery (h3) and target
631  populations (h?), discovery GWAS sample size (N;) and the number of genome-wide independent

632 segments in the discovery population (My).
633

634 STAR Methods

635 Resources Availability
636 Lead Contact

637  Further information and requests for resources and reagents should be directed to and will be
638 fulfilled by the lead contact, Ying Wang (yiwang@broadinstitute.orq).

639

640 Materials Availability

641  This study did not generate new unique reagents.
642
643 Data and code availability

644 1000 Genome Phase 3 data can be accessed at
645  ftp://fip.1000genomes.ebi.ac.uk/voli/ftp/data collections/1000 genomes project/data. We used
646 UK Biobank data via application 31063. The software used in this study can be found at: Plink
647  (https://www.cog-genomics.org/plink/), PRS-CS (https:/github.com/getian107/PRScs), PRS-
648 CSx (https:/qgithub.com/getian107/PRScsx), Tractor (https:/github.com/Atkinson-Lab/Tractor),
649 HapGen2 (https://mathgen.stats.ox.ac.uk/genetics software/hapgen/hapgen2.html) and
650 SBayesS/GCTB (https://cnsgenomics.com/software/gctb/). The Pan UK Biobank Project can be
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651  accessed at: Pan-UK Biobank Project https://pan.ukbb.broadinstitute.org. The codes used in this
652  study have been deposited to https:/github.com/ywangleo/multi-ancestry-PRS.

653
654 Methods Details

655 Simulations

656 Simulated genotypes in three populations

657  To explore the potential improvement of predictive accuracy within an underrepresented target
658 ancestry through the inclusion of additional samples included in the multi-ancestry discovery
659 GWAS, we simulated genotypes of chromosome 22 for 560,000 individuals in each population
660 including European ancestry (EUR), East Asian ancestry (EAS) and African ancestry (AFR) using
661  the software HapGen2 v2.1.2%*. We used the haplotypes from 1000 Genome Project (1KG, Phase
662 3)* as the sample pool. We excluded Americans of African Ancestry in SW USA and African
663  Caribbeans in Barbados from the AFR samples due to their high degree of recent admixture. We
664  used default parameters in HapGen2 with effective sample sizes of 11,375, 12,239 and 17,380
665 for EUR, EAS and AFR, respectively**. After simulating the genotypes on chromosome 22, we
666 ran analyses with a total of 87,938 overlapping SNPs across the three ancestries which passed
667  quality control filters: minor allele frequency (MAF) > 0.01, Hardy-Weinberg Equilibrium (HWE) p-
668 value > 107° and genotype missingness rates across individuals < 0.05. We then removed 2nd-
669  degree related individuals using the software KING*¢, resulting in 534,352, 533,996 and 537,498
670 unrelated individuals from EUR, EAS and AFR, separately. We randomly sampled 10,000 and
671 520,000 individuals from each ancestry as the withheld target population and discovery
672  population, respectively.

673

674  Simulated phenotypes with varying trait genetic architecture

675  For the sake of simplicity, we assumed that causal variants are shared across populations and
676 their effect sizes are perfectly correlated (cross-ancestry genetic correlation, r, = 1) in our initial
677  simulations. The pairwise r, among K populations is represented by a K * K matrix, denoted as
678 R, where the off-diagonal elements of R had the value of r, and diagonal elements of R were set
679 to 1. In our study, K was equal to 3, indicating the number of populations considered. We
680 simulated phenotypes based on the simple additive model: y = g + e, where g = Zyglxuﬁj.
681 M, is the number of causal variants, x;; is the genotype coded as 0, 1, or 2 for the jth SNP in the
682  ith population. The effect size of jth SNP across K populations is drawn from a multivariate normal
683  distribution, B~MVN(0, 2), where for the K = K variance-covariance matrix, X, the diagonal and

2 2

. h
684  off-diagonal elements were ——— and Re———
9 2fij(1—fij)Mc 2fij(A—fij)Mc

685 MAF of jth SNP in the ith population and h? as the trait heritability. We simulated the
686  environmental effects to follow a normal distribution with 0 mean and 1 — h? variance, e ~ N(0,1 —

, respectively. We denoted f;; as the
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687  h?). We simulated different levels of heritability for chromosome 22 (h? =0.03 and 0.05).
688  Additionally, we randomly sampled various numbers of causal variants (M, = 100, 500, and 1000)
689  from all the 87,938 SNPs. As a result, we defined a total of 6 distinct simulation scenarios that
690 encompass a realistic spectrum of polygenicity, ranging from ~0.1% to ~1% of causal variants.
691 To assess the impact of 7; on PRS performance, we expanded our simulation study by
692  considering two scenarios. These scenarios aimed to capture different levels of per-variant
693 variance explained. In scenario 1 characterized by M, = 100 and h? =0.05, the per-variant
694  variance explained was higher. Conversely, scenario 2 involved M, = 1000 and h? =0.03,
695  resulting in a lower per-variant variance explained. For each scenario, we varied the values of 7
696 to 0.6 and 0.8, respectively.

697 Downsampling and meta-analyzed GWAS in simulations

698  To provide the requisite discovery data for constructing PRS, we proceeded to perform GWAS on
699 the simulated phenotypes. Specifically, we split the discovery population, which consisted of
700 520,000 unrelated individuals, into 52 evenly distributed bins, each comprising 10,000 individuals
701  (denoted as Biny, Biny, ..., Binwwm). Subsequently, we ran GWAS on each of those 52 bins
702  independently within the three populations, using simple linear regression implemented in PLINK
703  v2.0. We excluded the causal variants when running GWAS to mimic the phenomenon of
704  imperfect tagging. We then employed an iterative process of meta-analysis, employing the
705 inverse-variance weighted method using METAL*®, gradually incorporating a varying number of
706  bins. Specifically, we commenced the meta-analysis with Bini+Binz, subsequently progressing to
707  Bini+Bin2+Bins, and so forth, untii we encompassed the complete set of bins
708  (Biny+Bin2+Bins+...+Binwta) for each population.

709

710  To simulate a scenario resembling a meta-analysis involving multiple ancestries with varying
711 proportions, we opted for an arbitrary selection of subsets from EUR GWAS. Specifically, we
712  chose a range of bins, from 4 to 52 bins, with increments of 4. Subsequently, we systematically
713  incorporated different numbers of bins, spanning from 1 to 52, from EAS and AFR populations
714 into the EUR GWAS dataset via meta-analysis. The meta-analysis was conducted utilizing the
715 inverse-variance weighted fixed effects model implemented in the METAL software. This iterative
716  process allowed us to achieve a range of sample size ratios between EUR and EAS as well as
717  EUR and AFR, encompassing ratios from 52:1 to 4:52, in the meta-analyzed multi-ancestry
718  GWAS (referred to as Meta). The simulation configuration is visually depicted in Figure 1.

719

720  Pruning and Thresholding (P+T) in simulations

721 We employed PLINK v1.90 to clump quasi-independent SNPs within 500Kb windows, utilizing a
722 LD threshold of # < 0.1. To explore the impact of various LD reference panels on predictive
723  accuracy of PRS, we used a total of four different LD reference panels: one for single-ancestry
724  and three for multi-ancestry GWAS, with consideration to the ancestry composition of the
725  discovery GWAS and the target population.

726
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727  For the single-ancestry GWAS, we used a LD reference panel consisting of 10,000 individuals
728  from the target population that were matched to the ancestry of the discovery GWAS. In the case
729  of multi-ancestry GWAS, we used three LD reference panels. These panels included two
730 composed of a single ancestry that did not mirror the ancestral makeup of the discovery GWAS.
731 Specifically, one panel comprised 10,000 withheld EUR individuals, while the other panel
732  encompassed individuals from understudied populations, either 10,000 EAS or 10,000 AFR
733 individuals, consistent with the minority population represented in the discovery GWAS. The third
734 LD reference panel consisted of individuals from different ancestries in proportions proportional
735  to the discovery GWAS, amounting to a total of 10,000 samples.

736

737  We calculated PRS in the target population using 8 different p-value thresholds: 5 x 108, 1 x 10
738 % 1x 10% 1 x 103, 0.01, 0.05, 0.1, and 1. We denoted PRS constructed from single-ancestry
739  GWAS as single-ancestry PRS (PRSsinge) and those from meta-analyzed multi-ancestry GWAS
740  as multi-ancestry PRS (PRSmuri). We calculated the predictive accuracy as the variance explained
741 by the PRS (R?) through linear regression: y ~PRS and computed corresponding 95%
742  confidence intervals (Cls) through bootstrap. To identify the optimal p-value threshold associated
743  with the highest predictive accuracy, we evenly divided the target population into a test cohort
744 and a validation cohort. The p-value threshold was optimized through a process of
745  hyperparameter tuning in the validation cohort, and subsequently, the accuracy of the model was
746  assessed using the test cohort.

747

748 Empirical analysis of 17 quantitative traits in the UK Biobank (UKBB) and
749  Biobank Japan (BBJ)

750  We further explored how the findings from simulations generalized in real data using 17
751 quantitative traits shared between UKBB and BBJ, including anthropometric traits (BMI and
752  height) and blood panel traits studied previously (Table S$3)%2. The selection of these traits was
753  motivated by their widespread availability within biobanks and their substantial statistical power,
754  attributable to their quantitative properties.

755 Datasets and Quality Control (QC)

756 UK Biobank (UKBB): The details of assigning ancestry for each individual in the UKBB are
757  described in the Pan-UK Biobank Project (Pan UKBB: https:/pan.ukbb.broadinstitute.org/).
758  Briefly, a random forest classifier trained on reference data from 1KG and Human Genome
759  Diversity Project (HGDP)*® was used to classify cohort individuals under continental population
760 labels based on the top 6 principal components (PCs). In this study, we used a total of 361,144
761  and 2,684 unrelated EUR and EAS participants, respectively. We obtained unrelated individuals
762  through running hl.maximal_independent_set using Hail (https:/hail.is/). Specifically, within each
763  population, we ran PC-Relate® with k=10 and min_individual_maf=0.05. We used the individuals
764  assigned EAS ancestry as the target dataset. For EUR samples, we first randomly retained 5,000
765 individuals with complete phenotype information for all 17 studied phenotypes as the target
766  population. Subsequently, we split the remaining individuals into evenly distributed bins, each
767  containing 5,000 individuals, for each phenotype. The number of total bins for each studied
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768  phenotype ranged from 68 to 71, depending on phenotype missingness (Table S3). The bins
769  were labeled sequentially from 1 to the total number of bins, following the same procedure as
770  described in our simulations.

771

772  BioBank Japan (BBJ): BBJ is a multi-institutional hospital-based biobank which has recruited
773  approximately 200,000 participants from 12 medical institutions in Japan between fiscal years
774 2003 and 2007%. Written informed consents were obtained from all the participants, as approved
775 by the ethics committees of the RIKEN Center for Integrative Medical Sciences, and the Institute
776  of Medical Sciences, the University of Tokyo. The participants were genotyped using either (i) the
777  lllumina HumanOmniExpressExome BeadChip or (i) a combination of the Illumina
778  HumanOmniExpress and HumanExome BeadChips. The genotypes were then prephased using
779  Eagle® and imputed using Minimac3°%? with a reference panel that consists of 1KG samples (N =
780 2,504) and whole-genome sequencing (WGS) data of Japanese individuals (N = 1,037)5%.
781  Standard quality controls of participants and genotypes were applied as described elsewhere®2.
782  Briefly, we excluded samples with low call rates (< 98%), closely related individuals (PLINK
783  PI_HAT > 0.175), or non-Japanese outliers based on the principal component analysis (PCA).

784  We then excluded genotyped variants with call rate < 98%, HWE P-value < 1.0 x 1076, number of

785  heterozygotes < 5, or low concordance rate (< 99.5%) with WGS for a subset of individuals (N =
786  939). Phenotypes were retrieved from medical records and prepared as described previously5*.
787

788 1000 Genomes Project Phase 3 (1KG): We used 1KG phase 3 data as LD reference panels in
789 this study. Specifically, we kept 495 unrelated EUR, 498 unrelated EAS, and 484 unrelated AFR
790 individuals from 1KG. The AFR individuals were solely utilized for analyses pertaining to recently
791 admixed populations.

792

793  Quality Controls: The imputation strategies for UKBB and BBJ have been described in detail
794  elsewhere®%. After imputation, we first excluded ambiguous variants (e.g., A/T and C/G) and
795  further filtered to keep those variants with imputation INFO score > 0.3, MAF > 0.01, HWE p-
796 value > 10° and genotyping missing rates across individuals < 0.05. Consequently,
797  approximately 8.6 million and 6.6 million SNPs were retained for the UKBB and BBJ, respectively.
798  For our analyses, we exclusively utilized SNPs that passed these quality control measures,
799  resulting in approximately 3.6 million SNPs that were shared among both biobanks and 1KG.
800

801  PRS construction for 17 traits in empirical analysis

802 Discovery GWAS: All phenotypes were curated and transformed to be normally distributed as
803  described previously®2. Subsequently, we performed GWAS on the rank normalized phenotypes
804  using simple linear regression implemented in PLINK v2.0. We included age, sex, age?, age x
805 sex, age? x sex, and the first 20 PCs as the covariates. In line with the GWAS strategy outlined
806 in the Simulations section, we initially performed GWAS within individual bins and then engaged
807 in an iterative meta-analysis, employing inverse-variance weighted meta-analysis in METAL,
808 separately for UKBB and BBJ cohorts. For the meta-analysis of GWAS results derived from
809  single-ancestry analyses in the UKBB and BBJ (referred to as "Meta"), we incorporated a variable
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810  number of EUR bins from UKBB, ranging from 8 to 64 with an increment of 8. Subsequently, we
811 systematically integrated additional EAS bins from BBJ.

812

813 PRS construction methods: We used different methods to construct PRS in the target
814  populations, specifically UKBB-EAS and UKBB-EUR. In accordance with Simulations, we also
815 explored the impact of LD reference panels on PRS performance by utilizing multiple panels from
816  1KG, while taking into account the ancestry composition of discovery GWAS for P+T. Additionally,
817 we implemented PRS-CS®, a Bayesian regression framework that integrates a continuous
818  shrinkage prior to infer the posterior mean effects of SNPs. To ensure computational efficiency,
819  we employed the auto model in the PRS-CS framework, which automatically estimates the hyper-
820 parameter phi (the proportion of SNPs with non-zero effects) based on the input GWAS (see
821  Supplementary Note 8). For both UKBB and Meta, we used 1KG-EUR as the LD reference
822  panel, while for BBJ, we utilized 1KG-EAS reference panel.

823

824  To further explore the performance of PRS incorporating GWAS from multiple ancestries, we
825  constructed a weighted PRS by linearly combining PRS derived from single-ancestry GWAS3*.
826  Specifically, the weighted PRS was calculated as PRSweightea = w;* PRSEur gwas + wy *
827  PRSwinor gwas, Where w; and w, were weights attached to individual PRS. Furthermore, we used
828 a more sophisticated method, PRS-CSx8, to generate ancestry-specific posterior SNP effects
829 using multiple GWAS summary statistics. PRS-CSx, an extension of PRS-CS, can model
830 ancestry-specific allele frequencies and LD patterns. Similar to PRS-CS, we used the ancestry-
831 matched LD reference panel from 1KG and performed the auto model implemented in PRS-CSx.
832  We also incorporated the --meta flag, which enables inverse-variance weighted meta-analysis in
833 the Gibbs sampler. Consequently, we developed two types of PRS from PRS-CSx, one was
834  based on the meta-analyzed effects (referred to as PRSmui) and the other, PRSueighted, Was
835 dependent on the ancestry-specific posterior SNP effects.

836

837 PRS performance evaluation: We assessed the predictive accuracy of PRS by measuring the
838 incremental R? using linear regression, where we accounted for the influence of covariates. Two
839  models were compared: 1) Hy: Phenotype ~ covariates, representing the baseline model, and 2)
840  H,: Phenotype ~ PRS + covariates, incorporating PRS as the full model. The incremental R? was
841  utilized to quantify the improvement in model accuracy resulting from the inclusion of PRS, thus
842  providing a measure of the specific contribution made by PRS to the predictive power of the
843 model. We computed the corresponding 95% confidence intervals (Cls) through bootstrap. To
844  maximize the predictive accuracy of P+T and PRSueighted, We employed an optimization strategy
845  to identify the optimal p-value thresholds for P+T and the weights (w; and w,) assigned to various
846  PRS components for PRSueigniea- This optimization process entailed a random partitioning of the
847  target population into two equally sized subsets, namely the validation dataset and the test
848  dataset. The hyperparameter was identified in the validation dataset, and subsequently, the
849  accuracy of the model was assessed using the test dataset. We replicated the process 100 times
850 and calculated the standard error of predictive accuracy across 100 replicates. This approach
851  allowed us to maximize the performance of P+T and PRSweighted by iteratively refining the p-value
852  thresholds and weight parameters, thereby enhancing their predictive capabilities.

853
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854  Measures of genetic architecture using summary-data-based BayesS (SBayesS)?°

855  To better understand the impact of trait genetic architecture on PRS predictive performance, we
856  evaluated three parameters including the polygenicity (proportion of SNPs with nonzero effects),
857  SNP-based heritability and S (the relationship between MAF and effect sizes) for 17 studied
858 phenotypes (Table S3). These parameters were estimated using SBayesS implemented in the
859  GCTB software (https://cnsgenomics.com/software/gctb/). For the analysis, we employed meta-
860 analyzed GWAS data obtained from the comprehensive UKBB and BBJ datasets. Specifically,
861  the number of bins included in the GWAS was equal to the total number of bins associated with
862 the respective phenotype (Table S3). We used the LD reference panel provided by GCTB for
863 UKBB GWAS. We constructed a shrunk LD matrix using 50,000 unrelated individuals from BBJ
864  as the LD reference panel for BBJ GWAS. We used 4 chains for the Markov Chain Monte Carlo
865  process, which calculated the Gelman-Rubin convergence diagnostic (also known as potential
866  scale reduction factor) for these three parameters. We performed the analyses using other default
867  settings for SBayesS. Given the potential convergence issues associated with Bayesian models,
868  we deemed a threshold value of less than 1.2 for the Gelman-Rubin convergence diagnostic as
869 indicative of good convergence for the estimated parameters.

870

871 UK Biobank recent admixture ancestry analysis

872 To investigate one explanation for poor transferability of PRS across populations — genetic
873  divergence between the discovery and target cohorts — we further explored whether PRS
874  constructed from ancestry-specific summary statistics generated with local ancestry-informed
875 GWAS in admixed populations improves predictive performance in underrepresented
876  populations. Specifically, we used the Tractor method'®, accounting for both local ancestry and
877  risk allele information, to run GWAS in two-way admixed AFR-EUR individuals from the UKBB (N
878 = 4,576). The average AFR proportion was 62.9%. We used 4,022 unrelated relatively
879  homogeneous AFR individuals, which are independent from the admixed individuals, as the target
880 cohort.

881

882  We followed the same criteria for QC and individual selection as described in Atkinson et al.'®.
883  For sample QC, we excluded individuals that had <95% call rate, withdrew from the study, had
884  closerthan 2nd degree relatives present in the sample, or that had sex chromosome aneuploidies.
885  For variant QC we restricted to biallelic SNPs with >90% call rate, HWE p-value > 10, and MAF
886  ofatleast0.5%. We selected two-way admixed AFR-EUR individuals from the UKBB by first using
887 the PC loadings from the reference dataset described previously for ancestry inference (1KG +
888 HGDP) to project UKBB individuals into the same PC space. We applied the same random forest
889  ancestry classifier described previously to the projected UK Biobank PCA data and assigned AFR
890 ancestry if the probability was >50%. We restricted to only two-way admixed AFR-EUR ancestry
891 individuals by selecting those individuals assigned the ‘AFR’ population label, then filtering to
892 those with at least 12.5% European ancestry, at least 10% African ancestry, and who did not
893  deviate more than 1 standard deviation from the AFR-EUR cline based on their PC loadings. This
894  process resulted in 4,576 individuals.

895
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896  We ran local ancestry deconvolution on this set of admixed individuals using RFmix v2'8 with 1
897  EM iteration and a window size of 0.2 cM with the HapMap combined recombination map®’ to
898 inform switch locations. The -n 5 flag (terminal node size for random forest trees) was included to
899  account for an unequal number of reference individuals per reference population. We used the --
900 reanalyze-reference flag, which recalculates admixture in the reference samples for improved
901 ability to distinguish ancestries. As a reference panel, we used continental AFR and EUR
902 individuals from the 1KG.

903

904  Subsequently, we performed GWAS for the 17 quantitative traits utilizing the Tractor method on
905 the 4,576 individuals with mixed AFR-EUR ancestry from the UKBB. This analysis yielded the
906 generation of ancestry-specific summary statistics for the AFR (AFRTactor) and EUR (EURTractor)
907  ancestry components. To evaluate the performance of PRS in the UKBB-AFR, we developed
908 PRS using Tractor GWAS. Furthermore, we compared these local-ancestry informed PRS with
909 those derived from GWAS conducted using standard methodologies. Specifically, we constructed
910 PRS using GWAS performed on the same set of admixed individuals utilizing the simple linear
911  regression model (ADMstandard). Additionally, GWAS summary statistics obtained from UKBB
912  (EURstandard, N = 320,000) from the previous section were utilized, and a meta-analysis was
913  conducted to combine the AFRtacior With EURGtandard (Méetastandad, N = 324,576). We constructed
914 PRS based on HapMap3 SNPs, as previous studies have shown comparable performance
915  Dbetween using reliable HapMap3 SNPs exclusively and the use of genome-wide SNPs”%.
916  Additionally, we constructed weighted PRS by incorporating GWAS of AFRTractor and EURSstandard,
917 for P+T, PRS-CS and PRS-CSx, respectively. Considering the ancestry composition of the
918 discovery GWAS, we used different sets of reference panels for each respective GWAS.
919  Specifically, we used 1KG-EUR as the LD reference panel for EURTwactorr, EURstandars @nd
920  Metasiandarg, While using 1KG-AFR for AFRTractor. We used an in-sample LD panel for ADMstangard-
921  We calculated the predictive accuracy in the UKBB-AFR using incremental R? as described
922 above. We repeated the process 100 times and reported the standard error of predictive accuracy
923  across 100 estimates.

924
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925 Excel Table Title and Legends

926 Table S1. The comparison of using different LD reference panels across various
927  simulation scenarios. Related to Figure S2, Figure 2, Figure S3 and Figure S4.

928 Table S2. Impact of cross-ancestry genetic correlation on predictive performance.
929 Related to Figure S5.

930 Table S5. Predictive accuracy for P+T and PRS-CS across phenotypes using single-
931  ancestry discovery GWAS from UKBB and BBJ. Related to Figure S6 and Figure S11.

932 Table S6. Impact of LD reference panel on P+T performance using multi-ancestry GWAS
933 for 17 traits. Related to Figure S7, Figure S8 and Figure S11.

934 Table S7. Accuracy differences between using PRS derived from multi-ancestry GWAS
935 and using PRS derived from EUR GWAS. Related to Figure S9 and Figure S10.

936 Table S8. Accuracy differences between PRS derived from multi-ancestry GWAS and
937 using PRS from weighted linear combination. Related to Figure 5 and Figure S12.

938 Table S9. Predictive accuracy in the UKBB using PRS-CSx for 17 traits. Related to Figure
939 5 and Figure S12.

940 Table S10. Predictive accuracy in the UKBB-AFR using various discovery GWAS.
941  Related to Figure 6.
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Figure 1. Study design in both simulations and empirical analyses

1) In the context of single-ancestry GWAS, we randomly split individuals in European (EUR) and
other minority populations, including East-Asian and African populations, into equally sized bins.
Simulations involved a total of 52 bins per population, each containing 10,000 individuals. For
empirical analysis, bin number was dependent on the sample size of respective phenotype in that
population (Table S3), with 5,000 individuals per bin. GWAS was conducted within each bin for
each individual population, followed by meta-analysis of GWAS from various numbers of bins
within each population. To construct PRS derived from single-ancestry GWAS (PRSsingie) in the
target population, we applied P+T for both simulations and empirical analyses, utilizing PRS-CS
for the latter. Subsequently, we combined PRSgsinge developed from EUR GWAS (PRSeur_cwas)
and other minority population-based GWAS (PRSwminor gwas) through a linear weighted strategy
(denoted as PRSweignted, highlighted in red box) for empirical analyses. Note that PRSweightes Was
also developed using PRS-CSx, which utilizes GWAS summary statistics from multiple
populations. 2) For meta-analyzed multi-ancestry GWAS (referred to as Meta), we ran meta-
analyses on EUR GWAS and Minor GWAS with varying ancestry compositions. In simulations,
we incrementally included 4 bins from EUR GWAS for the meta-analysis, while in empirical
analyses, we increased the number to 8 bins. Simultaneously, we varied the number of bins in
Minor GWAS from 1 to the total number. Following the meta-analysis, we constructed PRS based
on Meta (referred to as PRSmuii), using the P+T method for simulations, and employing both P+T
and PRS-CS for empirical analyses.
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Figure 2. Improvement of PRS accuracy through meta-analyzed multi-
ancestry GWAS compared to large-scale European GWAS across 6
simulated genetic architectures.

The multi-ancestry GWAS included populations of European (EUR) and East-Asian (EAS)
ancestry, with the EAS sample size varying as indicated on the x-axis. For illustrative purposes,
we present the results using 32 EUR bins, each consisting of 10,000 individuals, which were
included in both EUR GWAS and multi-ancestry GWAS. PRS was separately evaluated in African
(AFR), EAS and EUR populations. Full results are shown in Table S1. M, indicates the number
of causal variants and h? refers to SNP-based heritability. In each panel, the red vertical dashed
line indicates the point where an equal number of bins from EUR and EAS populations were
included in the multi-ancestry GWAS. The error bars represent the standard errors of predictive
accuracy differences between PRS derived from multi-ancestry GWAS (PRSmui) and PRS
derived from EUR GWAS (PRSeur awas).
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Figure 3: Genetic architecture of 17 studied traits between Biobank Japan
(BBJ) and UK Biobank (UKBB).

The error bar is the standard deviation of the corresponding estimate. The vertical dashed line
was the median estimate. Full results are shown in Table S4. The phenotypes were ranked
according to their polygenicity estimates using GWAS from UKBB, including: BMI (body mass
index), Height, DBP (diastolic blood pressure), SBP (systolic blood pressure), WBC (white blood
cell count), Lymphocyte ( lymphocyte count), RBC (red blood cell count), Neutrophil (neutrophil
count), HB (hemoglobin concentration), HT (hematocrit percentage), Eosinophil (eosinophil
count), PLT (platelet count), Monocyte (monocyte count), MCV (mean corpuscular volume), MCH
(mean corpuscular hemoglobin), Basophil (basophil count), MCHC (mean corpuscular
hemoglobin concentration).
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Figure 4. Accuracy improvement of PRS in the UK Biobank East-Asian
population (UKBB-EAS) using multi-ancestry GWAS comprare to using
European (EUR) GWAS for P+T and PRS-CS.

The multi-ancestry GWAS were obtained by meta-analyzing EUR GWAS and EAS GWAS, with
the EAS sample size from the Biobank Japan (BBJ) varying as indicated on the x-axis. For
illustrative purposes, we present the results using 64 EUR bins, each containing 5,000 individuals,
which were included in both EUR GWAS and multi-ancestry GWAS. PRS were constructed using
P+T and PRS-CS and evaluated in the UKBB-EAS. The y-axis is the accuracy difference of PRS
when using multi-ancestry GWAS (PRSnui) compared to using EUR GWAS (PRSeur_gwas). The
error bars indicate the standard error of accuracy improvement. The red dashed line is y=0. We
showed the results for 7 traits with SNP-based heritability > 0.1 in both BBJ and UKBB, and they

were ranked by polygenicity estimates using UKBB (Figure 3). Full results are shown in Table
S7.
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Figure 5. Predictive accuracy using different PRS methods in the UK

Biobank East-Asian population (UKBB-EAS).

PRSmuti represents PRS derived from multi-ancestry GWAS, while PRSueignted denotes PRS
constructed from a weighted linear combination (see STAR Methods for details). PRS were
constructed with three methods, including P+T, PRS-CS and PRS-CSx. We showed the results
for 7 traits with SNP-based heritability > 0.1 in both Biobank Japan (BBJ) and UKBB. Traits were
ranked by polygenicity estimates using UKBB (Figure 3). Boxes represent the first and third
quartiles, with the whiskers extending to 1.5-fold the interquartile range. Full results are shown in
Table S8 and Table S9.
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Figure 6. Accuracy of PRS derived from local-ancestry informed GWAS
versus other discovery GWAS in the UK Biobank African population
(UKBB-AFR)

We evaluated PRS performance in the UKBB-AFR by utilizing various methods on different
discovery GWAS. Specifically, AFRtactor denotes the AFR-specific GWAS performed using
Tractor on the UKBB admixed African-European individuals. EURstandard refers to standard GWAS
performed on the European (EUR) population in the UKBB. Metastandard is the meta-analysis
performed on AFRtmacor and EURstwndarg. Furthermore, we constructed a weighted PRS by
combining PRS generated from AFRtractor and EURstandard through a linear weighted approach.
The figure shows the results for traits with SNP-based heritability > 0.1 in the UKBB-AFR. Full
results are shown in Table S10.
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Figure 7. General practices for developing PRS using different discovery
GWAS.

We summarized the general practice for developing PRS A) using single-ancestry GWAS
(PRSsingle); and B) using GWAS from multiple ancestries (PRSmui or PRSweighted). Abbreviations:
Cross-ancestry genetic correlation (r;), SNP-based heritability in discovery (h3) and target
populations (h?), discovery GWAS sample size (N;) and the number of genome-wide independent
segments in the discovery population (M,).
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