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Summary 22 

Polygenic risk scores (PRS) developed from multi-ancestry genome-wide association studies 23 

(GWAS), PRSmulti, hold promise for improving PRS accuracy and generalizability across 24 

populations. To establish best practices for leveraging the increasing diversity of genomic studies, 25 

we investigated how various factors affect the performance of PRSmulti compared to PRS 26 

constructed from single-ancestry GWAS (PRSsingle). Through extensive simulations and empirical 27 

analyses, we showed that PRSmulti overall outperformed PRSsingle in understudied populations, 28 

except when the understudied population represented a small proportion of the multi-ancestry 29 

GWAS. Notably, for traits with large-effect ancestry-enriched variants, such as mean corpuscular 30 

volume, using substantially fewer samples from Biobank Japan achieved comparable accuracies 31 

to a much larger European cohort. Furthermore, integrating PRS based on local ancestry-32 

informed GWAS and large-scale European-based PRS improved predictive performance in 33 

understudied African populations, especially for less polygenic traits with large ancestry-enriched 34 

variants. Our work highlights the importance of diversifying genomic studies to achieve equitable 35 

PRS performance across ancestral populations and provides guidance for developing PRS from 36 

multiple studies. 37 

 38 
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 41 

Introduction 42 

Polygenic risk scores (PRS) have emerged as useful tools for estimating the cumulative genetic 43 

susceptibility to complex traits and diseases. PRS are typically calculated by weighting the 44 

number of risk alleles based on their associations in genome-wide association studies (GWAS). 45 

PRS have shown promising potential in predicting some traits and disease risks, comparable to 46 

monogenic variants and traditional clinical risk factors1–5. Achieving the most accurate and 47 

generalizable PRS requires access to large-scale and diverse GWAS, especially with 48 

representation that matches the specific target population. However, the current landscape of 49 

GWAS predominantly focuses on European (EUR) ancestry populations, which have 50 

considerably larger sample sizes compared to other populations. Although ongoing efforts are 51 

underway to rectify these gaps, achieving global representativeness is a challenging goal. 52 

Encouragingly, studies have shown that using GWAS data with even a small proportion of non-53 

European ancestry individuals has the potential to improve the predictive accuracy of PRS in 54 

underrepresented populations6–8. This finding could largely be attributed to the substantial 55 

contribution of common variants to the heritable variation of complex traits and diseases, and that 56 

causal variants are largely shared across ancestries9–12. With the ever-increasing availability and 57 

scalability of genomic data from underrepresented and ancestrally diverse populations, we are 58 

especially interested in leveraging this greater diversity to improve PRS generalizability.  59 

 60 

In particular, recently admixed populations, consisting of chromosomal segments of mosaic 61 

ancestries, are systematically excluded in many existing genomic studies due to their 62 

underrepresentation and complicated population structure13–15. However, these populations 63 

present unique opportunities to develop more generalizable PRS as their genetic effects can be 64 

estimated in more consistent environments, which helps reduce confounding factors compared 65 

to estimates across different ancestry groups in different populations16. Furthermore, the 66 

comprehensive characterization of phenotypes is often insufficient or inconsistently performed in 67 

different populations. However, in the recently admixed populations, there is a greater potential 68 

for consistency and comparability in phenotype measurements, as the genetic factors contributing 69 

to phenotypic differences between the source populations can be decoupled in the recently 70 

admixed populations16,17. The advancement of methodologies such as local ancestry inference 71 

and association testing has further enabled ancestry-specific GWAS in admixed populations18–20, 72 

allowing for the construction of PRS that leverage genetic information captured by local ancestry 73 

inference. With the ongoing accumulation of data from recently admixed populations, particularly 74 

through initiatives like the All of Us Research Program21, expanded resources will provide 75 

unparalleled opportunities to explore the performance of PRS derived from local ancestry-76 

informed summary statistics within historically underrepresented populations. Furthermore, such 77 

data will facilitate their integration with PRS derived from predominantly EUR-based cohorts.  78 

 79 

Recently developed statistical methodologies leverage the increasing diversity of GWAS data to 80 

improve PRS portability8,22,23. However, the effect of genetic architecture, ancestry composition of 81 

GWAS discovery cohorts, and PRS construction methodologies on cross-ancestry predictive 82 
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accuracy remains largely unclear. For example, a recent study found no increase in accuracy 83 

when meta-analyzing GWAS from a relatively small Ugandan cohort with larger EUR data24. 84 

Furthermore, theoretical frameworks for approximating expected PRS accuracy from multi-85 

ancestry GWAS are lacking. Current theoretical calculations for PRS accuracy rely on the 86 

assumption of homogeneity within the ancestral discovery samples25,26, ignoring factors that are 87 

likely to play a role with multi-ancestry cohorts. Such factors may include differences in linkage 88 

disequilibrium (LD), minor allele frequency (MAF), heritability, sample sizes, and genetic 89 

correlation across different ancestries. 90 

 91 

To provide insights into those issues, we explored the impact of ancestry compositions in 92 

discovery GWAS on predictive accuracy of PRS constructed using different methodologies. This 93 

exploration involved large-scale population genetic simulations as well as the utilization of real 94 

genomic data from the BioBank Japan (BBJ)27 and UK Biobank (UKBB)6 across traits exhibiting 95 

distinct genetic architectures (Figure 1). In what follows, we used single-ancestry GWAS to 96 

denote studies conducted exclusively within a single ancestry group (defined using genetic data), 97 

while multi-ancestry GWAS refers to studies encompassing two or more distinct ancestries. In 98 

our analyses, we performed meta-analyses of GWAS conducted in European ancestry 99 

populations (EUR GWAS) and GWAS conducted in other minority populations (Minor GWAS) by 100 

varying the ratios of sample sizes to mimic multi-ancestry GWAS with varying ancestry 101 

compositions. Specifically, we focused on East-Asian (EAS) and African (AFR) minority 102 

populations. By comparing the performance of PRS derived from single-ancestry GWAS (referred 103 

to as PRSsingle) and multi-ancestry GWAS (referred to as PRSmulti) through simulations and real 104 

data, we consistently observed that PRSmulti overall exhibited superior performance in comparison 105 

to PRSsingle (primarily PRS derived from large-scale EUR GWAS, referred to as PRSEUR_GWAS). As 106 

admixed populations remain understudied despite disproportionately yielding novel genetic 107 

findings28, we further conducted local ancestry inference to explore whether, how, and to what 108 

extent PRS performance could be improved using GWAS discovery data from AFR-EUR admixed 109 

individuals. While optimal PRS methods are trait- and context-specific, this study 110 

comprehensively evaluates PRS accuracy across a wide range of scenarios, facilitating a set of 111 

best practices that ultimately reduces the number of analyses necessary to optimize PRS for 112 

specific applications.  113 

 114 

Results 115 

Evaluating the effects of imbalanced sample sizes across ancestries on PRS 116 

accuracy through simulations 117 

We simulated genotypes using HapGen2 and phenotypes according to six different scenarios 118 

with varying trait heritability (/2 = 0.03, 0.05) and number of causal variants (ýý  = 100, 500, 1000), 119 

such that the polygenicity ranged from ~0.1% to ~1%. We assumed that the causal variants and 120 

their effect sizes are shared across ancestries (i.e., cross-ancestry genetic correlation, ÿĀ, is 1) in 121 

our initial simulations. For single-ancestry GWAS, we first conducted GWAS within each bin and 122 
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then meta-analyzed GWAS across different numbers of bins (1-52 per ancestry). Each bin 123 

represented 10,000 individuals randomly sampled from the corresponding ancestry. For multi-124 

ancestry GWAS, we meta-analyzed GWAS from EUR and minor populations (EAS or AFR) to 125 

evaluate the impact of ancestry composition. We used varying numbers of bins from the EUR 126 

GWAS (ranging from 4 to 52 with 4 increments) and varied the contribution from minority 127 

populations (1-52 bins) from EAS or AFR GWAS. We constructed PRS using the classic pruning 128 

and thresholding (P+T) method with varying p-value thresholds. This approach follows a greedy 129 

heuristic algorithm wherein variants are sorted based on their p-values. The algorithm iteratively 130 

descends in significance while retaining only those variants that do not exceed a predetermined 131 

LD threshold with previously retained variants. We assessed the accuracy, measured by 132 

prediction R2, using the optimal threshold through fine-tuning in the validation cohort. Detailed 133 

information about the simulation setup is shown in Figure 1 and STAR Methods. 134 

 135 

PRS predictive accuracy improved with more individuals from target populations included 136 

in the multi-ancestry GWAS but varied with genetic architecture 137 

When developing PRS using single-ancestry GWAS, we found that using ancestry-matched 138 

GWAS generally outperformed using GWAS from other discovery populations (Figure S1). 139 

Compared to using EUR GWAS, the benefit of using ancestry-matched GWAS was more evident 140 

for traits with more polygenic genetic architectures and larger GWAS sample sizes. To further 141 

evaluate the impact of ancestry composition, we compared the accuracy of PRSmulti and PRSsingle. 142 

We constructed PRSmulti using an LD reference panel consisting of individuals proportional to the 143 

ancestry composition of the discovery GWAS. This reference panel yielded approximately optimal 144 

accuracy among three different reference panels utilized in our study (Figure S2 and 145 

Supplementary Note 1, 2).  146 

 147 

Relative to the accuracy of PRSEUR_GWAS, we observed significant improvements in the 148 

understudied target population by including more individuals from the target ancestry in multi-149 

ancestry GWAS. Across all simulations, a statistically significant median improvement of 0.008 in 150 

R2 was observed (one-sided Wilcoxon signed-rank test, p-value < 2.2e-16, Table S1). This trend 151 

was more apparent in more polygenic traits. As shown in Figure 2, we compared accuracy 152 

between PRSmulti and PRSEUR_GWAS derived from 320,000 EUR individuals. For traits with /2 of 153 

0.05, the median improvements in R2 of PRSmulti was 0.006, 0.014 and 0.013 with  ýý  of 100, 500, 154 

and 1000, respectively, in the EAS target population. Similarly, corresponding R2 improvements 155 

of 0.009, 0.010 and 0.014 were shown in AFR (Figure S3). However, we did not consistently 156 

observe such accuracy gains for the majority EUR population, or in scenarios where the other 157 

understudied ancestry was not included in the multi-ancestry discovery GWAS. In our simulations 158 

but unlike in most GWAS, populations typically understudied in current genomic studies can be 159 

the majority in the discovery GWAS. Nevertheless, we still observed significant PRS accuracy 160 

improvements, of median improvements in R2 0.007 across simulations when the proportion of 161 

understudied populations in the discovery GWAS was less than 50% (one-sided Wilcoxon signed-162 

rank test, p-value < 2.2e-16). We expected to observe similar relative R2 improvements, which 163 

measured the PRS generalizability, in the target populations using PRSmulti compared to using 164 

PRSEUR_GWAS with the same number of bins from EUR populations (Supplementary Note 3).  165 
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 166 

Compared with using PRSEUR_GWAS, we found that PRSmulti derived from GWAS with much smaller 167 

sample sizes could achieve comparable or better predictive accuracy (Table S1). For example, 168 

in the scenario with ýý  of 1000 and /2 of 0.03, the meta-analysis of 16 EUR and 2 AFR bins 169 

achieved a comparable accuracy of 0.008 to that of using 32 EUR bins in the AFR population. 170 

Overall, adding fewer individuals from the target populations saturated accuracy improvements 171 

for less polygenic traits faster than more polygenic traits. Similarly, larger sample sizes from AFR 172 

populations were required to achieve comparable PRS accuracy to EAS populations especially 173 

for more polygenic traits, likely due to the larger effective population size in AFR populations and 174 

larger genetic divergence between EUR and AFR populations. As shown in Figure S3, when /2 175 

was 0.03, the accuracy improvement of PRSmulti in the AFR population plateaued to ~0.005 with 176 

11 and 20 AFR bins for ýý  of 100 and 500, respectively, but continued to increase with more AFR 177 

bins for ýý  of 1000. Similarly, when /2 was 0.03, including 2 and 12 EAS bins in PRSmulti yielded 178 

an accuracy improvement of >0.005 in EAS for ýý  of 100 and 500, respectively (Figure 2). In 179 

comparison to PRS derived from Minor GWAS alone (PRSMinor_GWAS), we found that the accuracy 180 

improvement of PRSmulti gradually diminished as the sample size of Minor GWAS increased 181 

(Figure S4 and Table S1). We showed that for more polygenic traits, PRSmulti achieved little to 182 

no improvement when the understudied target populations accounted for more than half of the 183 

sample size in multi-ancestry GWAS (Supplementary Note 4).  184 

 185 

Because genetic correlation estimates between populations can be significantly less than 1, we 186 

also modified our simulations by varying the ÿĀ to be 0.6 and 0.8. We investigated two simulation 187 

scenarios that represent the extremes in per-variant variance explained: the least polygenic 188 

scenario 1 with ý�  = 100 and /2 =0.05, and the most polygenic scenario 2 with ý�  = 1000 and 189 /2 =0.03 (STAR Method). Consistent with our previous findings, PRSmulti exhibited improved 190 

predictive accuracy in the target population when a greater number of individuals from the same 191 

ancestry were included, as compared to relying solely on large-scale EUR GWAS (Figure S5-A, 192 

B). This improvement was more pronounced for scenario 2. Moreover, we needed a larger 193 

number of individuals from the target ancestry to saturate accuracy improvements in scenario 1 194 

when ÿĀ was moderately reduced. Furthermore, as the sample sizes of the Minor GWAS 195 

increased and the values of ÿĀ decreased, the advantage of utilizing PRSmulti over PRSMinor_GWAS 196 

diminished and eventually vanished (Figure S5-C, D). Details are shown in Table S2 and 197 

Supplementary Note 5. 198 

  199 

Empirical analysis of PRS accuracy within and across ancestries using 17 200 

quantitative phenotypes 201 

Genetic architecture of 17 studied phenotypes 202 

To understand how trait genetic architecture influences predictive accuracy of PRS across 203 

ancestries, we conducted a comprehensive analysis involving 17 phenotypes in the UKBB and 204 

BBJ. Specifically, we estimated key parameters influencing different aspects of genetic 205 

architecture, including SNP-based heritability, polygenicity (the proportion of SNPs with nonzero 206 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2023. ; https://doi.org/10.1101/2022.12.29.522270doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.29.522270
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

effects) and a coefficient of negative selection (S, measuring the relationship between MAF and 207 

estimated effect sizes). To obtain these estimates, we employed a Bayesian method called 208 

summary-data-based BayesS (SBayesS), which leverages GWAS summary statistics as input 209 

data29.  210 

 211 

The phenotypes included in this study varied widely in genetic architecture across these estimated 212 

parameters (Figure 3, Table S3 and Table S4). The polygenicity estimates spanned a broad 213 

range, from low values (0.001-0.005) for traits like mean corpuscular hemoglobin concentration 214 

(MCHC), basophil count (basophil), mean corpuscular hemoglobin (MCH), and mean corpuscular 215 

volume (MCV), to higher values (0.012-0.047) for traits such as height and body mass index 216 

(BMI). SNP-based heritability estimates similarly ranged from <0.1 for basophil and MCHC to 0.54 217 

and 0.33 for height using UKBB and BBJ, respectively, regardless of polygenicity. The median S 218 

parameters were -0.63 and -0.47 using UKBB and BBJ, respectively. While the negative S values 219 

indicate negative selection (i.e., rarer variants have larger effects), it remains unclear to what 220 

degree population stratification could confound such estimates30,31. We found that the polygenicity 221 

estimates using UKBB were mostly higher than those using BBJ, which could be due to the higher 222 

statistical power with larger sample sizes in the UKBB resulting in the detection of more variants 223 

with small effects. Similarly, we observed significantly higher SNP-based heritability in the UKBB 224 

compared to BBJ with the exception of MCHC and basophil, indicating possible phenotype 225 

heterogeneity between the two cohorts. These results are expected from the biobank designs, as 226 

BBJ is a hospital-based cohort with participants recruited with certain diseases, whereas UKBB 227 

is a population-based cohort with overall healthier participants and thus a wider range of natural 228 

variation in complete blood counts. This finding is also consistent with the previous study using 229 

estimates from LD score regression (LDSC) and stratified-LDSC32. Moreover, as described 230 

previously32, the estimated cross-ancestry genetic correlations between UKBB and BBJ for those 231 

traits were not statistically different from 1 (p-value > 0.05/17) except for a few including basophil 232 

(ÿĀ = 0.5945, SE = 0.1221), height (ÿĀ = 0.6932, SE = 0.0172), BMI, (ÿĀ = 0.7474, SE = 0.0230), 233 

diastolic blood pressure (DBP, ÿĀ = 0.8354, SE = 0.0509), and systolic blood pressure (SBP, ÿĀ = 234 

0.8469, SE = 0.0430).  235 

 236 

Multi-ancestry GWAS-derived PRS usually improves predictive performance compared 237 

to single-ancestry GWAS-derived PRS 238 

We constructed PRSsingle using the P+T and PRS-CS methods with GWAS from UKBB and BBJ, 239 

respectively. The GWAS sample sizes varied based on the number of BinTotal, which represented 240 

the total number of bins specific to each trait as shown in Table S3. Each bin consisted of 5,000 241 

individuals randomly selected from the respective cohort. We found that employing target 242 

ancestry-matched GWAS, even with smaller sample sizes, yielded comparable accuracy to 243 

utilizing large-scale EUR GWAS but depended on PRS methodology and trait-specific genetic 244 

architecture (Figure S6, Figure S7, Table S5 and Supplementary Note 6). We evaluated 245 

predictive accuracy by computing incremental R2 using linear regression, while accounting for the 246 

potential impact of covariates (STAR Methods). 247 

 248 
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For comparison, we developed PRSmulti using both P+T and PRS-CS, where we meta-analyzed 249 

single-ancestry GWAS from UKBB and BBJ. Similar to the simulation setup, we mimicked 250 

proportional ancestry composition in the multi-ancestry GWAS by meta-analyzing EUR GWAS in 251 

the UKBB with GWAS in the BBJ while varying number of bins (each bin of 5,000 individuals, 252 

UKBB bins ranging from 8 to 64 with an increment of 8, see STAR Methods and Figure 1). The 253 

ratio of EUR/EAS samples in the multi-ancestry GWAS varied from 64:1 to 8/BinTotal. Thus, 85% 254 

of the multi-ancestry GWAS had a higher proportion of EUR samples (>50% EUR). Consistent 255 

with our findings from the simulations, where we observed that the choice of LD reference panel 256 

had a limited impact on the predictive accuracy of more polygenic traits, we observed only a slight 257 

improvement of median R2 of 0.002 for P+T when employing a combined LD reference panel that 258 

was proportional to the ancestries represented in the multi-ancestry GWAS. We compared this 259 

result with PRS developed using a reference panel that was matched with the majority population 260 

of the discovery GWAS (Figure S8 and Table S6). Because the majority of PRS was constructed 261 

from GWAS predominantly composed of EUR individuals, we hereafter reported the results using 262 

1KG-EUR as the LD reference. 263 

 264 

In our analysis comprising 3,160 comparisons between single-ancestry PRS derived from UKBB 265 

GWAS (PRSEUR_GWAS) and multi-ancestry PRS (PRSmulti), we observed encouraging results. 266 

Specifically, in the UK Biobank East-Asian population (UKBB-EAS), PRSmulti showed accuracy 267 

improvements in 99.7% and 92.4% of these comparisons when using P+T and PRS-CS, 268 

respectively (Table S7 and Figure S9). Accuracy increased with more EAS samples in the multi-269 

ancestry GWAS (Figure 4). For example, when comparing PRSmulti with PRSEUR_GWAS using P+T, 270 

the largest relative improvements in R2 were 80.9% (0.085 vs. 0.047) for platelet count (PLT), 271 

152.2% (0.058 vs. 0.023) for BMI and 91.9% (0.071 vs. 0.037) for height. We observed these 272 

improvements when using multi-ancestry GWAS including EAS bins from BBJ, which were either 273 

concordant with or proximal to BinTotal, along with 64 EUR bins from UKBB. Similarly, the 274 

corresponding relative R2 improvements for these same three traits were 19.8% (0.0126 vs. 275 

0.101), 50.0% (0.075 vs. 0.050) and 15.5% (0.097 vs. 0.084) when using PRS-CS. We did not 276 

consistently observe the upward trend for white blood cell count (WBC) with PRS-CS, which can 277 

be attributed to the lack of accuracy improvement with larger sample sizes of BBJ (Figure S6). 278 

We also found that P+T showed greater improvement compared to PRS-CS but worse accuracy 279 

overall, regardless of the number of bins from EUR GWAS; the median improvements in R2 across 280 

traits were 0.014 and 0.008, respectively. However, the upward trend in PRS accuracy was not 281 

consistently shown in the UKBB-EUR, particularly when using PRS-CS (Figure S10 and Table 282 

S7). This pattern aligned with our simulation results and previous reports that PRS accuracy for 283 

minority populations included in the multi-ancestry GWAS benefited more from adding more 284 

ancestry-matched individuals compared to other populations, including EUR populations33. We 285 

noted that the accuracy of PRSmulti remained largely unchanged or slightly decreased when the 286 

number of bins from BBJ was small (e.g., 1 or 2 bins), which was consistent with previous 287 

studies6,33. In contrast to PRS derived from BBJ (PRSMinor_GWAS), we noted a diminishing trend in 288 

accuracy improvements of PRSmulti as the sample sizes of BBJ increased, especially for traits such 289 

as height, PLT, MCH and MCV (Figure S11). Furthermore, we observed greater variation in 290 

accuracy among traits from real data compared to simulations, which could be attributed to the 291 

smaller sample sizes and the more complicated genetic architecture.  292 
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 293 

PRS derived from meta-analyzed multi-ancestry GWAS versus weighted PRS from 294 

single-ancestry GWAS in understudied populations  295 

In contrast to PRSmulti, an alternative approach proposed in previous studies to enhance predictive 296 

accuracy in diverse populations is the linear combination of PRS derived from GWAS conducted 297 

on populations with different ancestries34. Here, we implemented this approach by developing a 298 

weighted PRS (PRSweighted) using P+T and PRS-CS. This combination involved linearly weighting 299 

PRS derived from single-ancestry GWAS conducted in the UKBB and BBJ. Additionally, we 300 

employed a more advanced Bayesian method called PRS-CSx8, which jointly models GWAS and 301 

LD information from multiple populations. Similarly, we constructed PRSweighted using ancestry-302 

specific posterior SNP effects. Furthermore, we developed PRS by integrating ancestry-specific 303 

posterior SNP effects using the inverse-variance weighted meta-analysis strategy, also referred 304 

to as PRSmulti (see STAR Methods).  305 

 306 

Among the three PRS methods evaluated in the UKBB-EAS, PRS-CSx exhibited the highest 307 

performance, followed by PRS-CS and P+T. Specifically, for PRSmulti, the corresponding median 308 

R2 values across traits were 0.051, 0.048 and 0.037, while for PRSweighted, they were 0.051, 0.045 309 

and 0.021, respectively (Figure 5, Table S8 and Table S9). Notably, we observed that PRSmulti 310 

for BMI using PRS-CS yielded significantly better accuracy compared to PRS-CSx (median R2: 311 

0.057 vs. 0.055, p-value < 2.2e-16, one-sided Wilcoxon signed-rank test). Out of the 3,160 312 

comparisons between PRSmulti and PRSweighted in the UKBB-EAS, 91.4% and 78.0% showed higher 313 

accuracy of PRSmulti when using P+T and PRS-CS, respectively, with median  improvements in 314 

R2 of 0.011 (p-value < 2.2e-16) and 0.003 (p-value < 2.2e-16). Although we found better 315 

performance overall with PRSmulti, we found that PRSweighted significantly outperformed PRSmulti for 316 

PLT using P+T (median R2: 0.086 vs. 0.081, p-value < 2.2e-16) and for height using PRS-CS 317 

(median R2: 0.091 vs. 0.082, p-value = 2.6e-04). Contrary to trends observed with other methods, 318 

in 59.7% of the comparisons, PRSweighted outperformed PRSmulti when using PRS-CSx, although 319 

we observed no significant accuracy difference across traits. However, PRSweighted showed 320 

superior performance compared to PRSmulti (p-value < 0.05/17) for several traits, including MCV 321 

(median R2: 079 vs. 0.072), MCH (median R2: 0.079 vs. 0.073), Basophil (median R2: 0.010 vs. 322 

0.007) and hemoglobin concentration (HB, median R2: 0.025 vs. 0.024). 323 

 324 

Moreover, the extent of accuracy improvements using PRSmulti, in contrast to PRSweighted, largely 325 

varied across traits and ancestry compositions. For example, when evaluating accuracy within 326 

the UKBB-EAS using P+T, we observed 3.25-fold increase in R2 with PRSmulti compared to 327 

PRSweighted for monocyte count (monocyte, 0.065 vs. 0.020). This improvement was achieved with 328 

a bin ratio 56:15 for the discovery GWAS, consisting of 56 bins from UKBB and 15 bins from BBJ. 329 

Similarly, using a bin ratio of 40:25, we achieved a 4-fold increase in R2 for DBP (0.048 vs. 0.012) 330 

with PRSmulti compared to PRSweighted. When developing PRSmulti using PRS-CS, we observed 331 

notable relative improvements in R2 when compared to PRSweighted, specifically a 24.7% increase 332 

for PLT (0.091 vs. 0.073) with bin ratio of 24:1, and a 57.1% increase for lymphocyte (0.044 vs. 333 

0.028) with a bin ratio of 16:1. Additionally, we found that PRS-CSx showed better performance 334 

in comparison to PRS-CS, especially when EUR GWAS was smaller or Minor GWAS was larger. 335 
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However, such improvements were less pronounced with large-scale EUR GWAS or small Minor 336 

GWAS (Figure S12). While sharing ancestry-specific GWAS summary statistics is highly 337 

beneficial for determining optimal approaches, our findings highlight the value of pragmatic 338 

approaches that directly construct PRS from large-scale meta-analyzed multi-ancestry GWAS. 339 

Such studies are often more accessible than ancestry-specific GWAS summary statistics. 340 

 341 

PRS derived from local ancestry-informed GWAS can improve accuracy for 342 

some less polygenic traits 343 

We next conducted a comparative analysis to evaluate the optimal PRS approaches for admixed 344 

populations, utilizing local ancestry-informed GWAS. Specifically, we used Tractor19 to perform 345 

GWAS in AFR tracts within admixed AFR-EUR individuals, referred to as AFRTractor. This 346 

approach enabled us to construct ancestry-specific PRS across 17 traits in the understudied AFR 347 

population. We developed PRS using both P+T and PRS-CS, and subsequently compared the 348 

accuracies of PRS derived from AFRTractor with those derived from large-scale EUR GWAS 349 

performed with standard linear regression (EURStandard). To maximize discovery sample size, we 350 

also developed PRSweighted by combining EURStandard-derived PRS and AFRTractor-derived PRS 351 

through linear weighting; we compared its performance to PRS derived from multi-ancestry meta-352 

analyzed GWAS (referred to as MetaStandard, see STAR Methods).  353 

 354 

Local ancestry-informed ancestry-specific GWAS had a much smaller sample size relative to the 355 

EUR-inclusive GWAS, as is typical for GWAS of underrepresented populations. As expected, we 356 

did not observe significant predictive accuracy of AFRTractor-derived PRS for most traits such as 357 

height and BMI (Figure 6 and Table S10). However, we observed notable improvements for 5 358 

traits, including WBC, neutrophil count (neutrophil), MCV, MCH and MCHC, where AFRTractor-359 

derived PRS achieved significantly higher R2 compared to EURStandardr-derived PRS when using 360 

P+T (0.040 vs. 0.007, one-sided paired t-test, p-value = 0.038), despite a much larger sample 361 

size for EURstandard. This improvement might be attributed to the presence of large-effect AFR-362 

enriched variants, particularly for MCV, MCH and MCHC, which are effectively captured by 363 

Tractor GWAS6,19. Consistent with our previous findings, P+T generally outperformed PRS-CS 364 

for these traits characterized by much sparser genetic architectures, with a mean R2 of 0.040 365 

compared to 0.022. Given that heritability bounds predictive accuracy, which can vary among 366 

populations and contexts, we also compared SNP-based heritability estimates between the AFR 367 

and EUR populations in the Pan-UK Biobank Project 368 

(https://pan.ukbb.broadinstitute.org/docs/heritability/index.html). In line with our PRS accuracy 369 

results, we observed higher estimates of SNP-based heritability for WBC (/2 = 0.41, SE = 0.19 370 

vs. /2 = 0.17, SE = 0.01), neutrophil (/2 = 0.44, SE = 0.26 vs. /2 = 0.15, SE = 0.01), and MCHC 371 

(/2 = 0.15, SE = 0.11 vs. /2 = 0.06, SE = 0.01) in the AFR population compared to the EUR 372 

population. However, these differences did not reach statistical significance, which can be 373 

attributed to the large standard errors resulting from the limited small sample size of AFR 374 

population and the sparser genetic architectures, leading to less stable heritability estimates using 375 

LDSC.  376 

 377 
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The best local ancestry-informed PRS approach that we evaluated for the 5 less polygenic traits 378 

with large ancestry-specific effects was a weighted linear regression approach. This approach 379 

combined PRS derived from AFRTractor and EURStandard using linear regression and outperformed 380 

predictive accuracy compared to using MetaStandard-derived PRS. This finding aligns with our 381 

earlier observations, where PRSweighted outperformed PRSmulti for traits with large effect ancestry-382 

enriched variants, while PRSmulti exhibited superior overall performance for traits lacking such 383 

variants. Specifically, the mean accuracies of PRSweighted using P+T, PRS-CS and PRS-CSx for 384 

those 5 traits were 0.044, 0.031, and 0.028, respectively, with no significant differences observed 385 

among the three PRS methods. The mean accuracies of MetaStandard were 0.016 and 0.008 using 386 

PRS-CS and P+T, respectively. Additionally, we did not observe significant accuracy differences 387 

between PRS derived from GWAS conducted using standard linear regression in admixed 388 

populations and AFRTractor-derived PRS (Table S10). It is worth noting that the effective sample 389 

size of local ancestry-informed GWAS is approximately 20% smaller due to the reduction from 390 

deconvolving ancestral tracts. Moreover, PRS derived from traditional GWAS in admixed 391 

populations necessitate an in-sample LD reference panel. In contrast, local ancestry-informed 392 

GWAS-based PRS, as shown in this study, can leverage external LD reference panels, 393 

eliminating the need for direct access to individual-level genotypes of admixed populations.   394 

 395 

Discussion 396 

In this study, we extensively evaluated PRS performance through a combination of simulation 397 

and empirical analyses to explore the impact of various factors on PRS predictive accuracy and 398 

generalizability across populations. We demonstrated that increasing genetic diversity of 399 

discovery GWAS improved predictive accuracy in understudied populations. The extent of 400 

improvement was influenced by factors such as sample size ratios between EUR GWAS and 401 

Minor GWAS, genetic architecture, PRS methodology, and LD reference panels. Among those 402 

factors, between-ancestry genetic architecture differences, such as ancestry-enriched variants 403 

with large effects, affected accuracy improvement more than other factors. While leveraging large-404 

scale EUR GWAS continues to benefit PRS accuracy given the current scale of understudied 405 

populations, we may not expect accuracy improvement when meta-analyzing extremely small 406 

Minor GWAS24.  407 

 408 

Our study also revealed that directly meta-analyzing datasets from diverse ancestral groups could 409 

yield greater accuracy improvements than linearly combining PRS through an optimized weighting 410 

strategy, especially for P+T. Such improvements from meta-analyzed GWAS supports the 411 

common implicit assumption that causal variants are shared between ancestries. Consistent with 412 

this assumption, when smaller target populations lack representation, leveraging genetic 413 

information from a different population with larger sample sizes improves PRS accuracy, even 414 

when it is ancestrally diverged. Notably, when employing the more sophisticated genome-wide 415 

PRS method, PRS-CSx, accuracy differences between PRSmulti and PRSweighted were marginal. 416 

Moreover, PRS-CSx generally outperformed PRS-CS, with the exception of BMI. The 417 

improvement was most pronounced for traits with ancestry-specific variants, such as MCV and 418 

MCH.  419 
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 420 

We have comprehensively evaluated characteristics that impact PRS performance, including in 421 

recently admixed populations. We have shown the advantage of leveraging GWAS in admixed 422 

populations by accounting for local ancestry, which could improve PRS predictive performance in 423 

understudied populations even without direct access to individual genotypes of admixed 424 

populations. Specifically, we found that PRSweighted consistently outperformed PRSmulti for traits 425 

with ancestry-enriched variants. However, the sample size of admixed individuals here was 426 

relatively small, and we anticipate that future analyses incorporating larger datasets, such as the 427 

All of Us Research Program, will provide further insights into optimal PRS strategies for improved 428 

accuracy and generalizability using PRS derived from local ancestry-informed GWAS. 429 

 430 

While previous studies have shown the advantages of leveraging increased genetic diversity to 431 

improve PRS accuracy in global populations7,35, most have used GWAS with primarily European 432 

ancestry. Here, we have provided additional best practices for developing PRS for understudied 433 

populations using diverse discovery cohorts, particularly when GWAS encompass different 434 

ancestry compositions across various trait genetic architectures (Figure 7). Our 435 

recommendations primarily revolve around general guidelines for constructing PRSsingle and 436 

PRSmulti (or PRSweighted), depending on factors examined in this study (Figure S13). 437 

 438 

First, in the development of PRSsingle, we employed a theoretical equation36 to enhance the 439 

selection of input GWAS (Supplementary Note 7), as a function of the cross-ancestry genetic 440 

correlation, SNP-based heritability in discovery and target populations, discovery GWAS sample 441 

size, and the number of genome-wide independent segments in the discovery population36. For 442 

traits with relatively low ÿĀ and a sizable ancestry-matched GWAS (e.g., > 20-40% of EUR 443 

GWAS), such as BMI and height, PRS accuracy in the target population improves when ancestry-444 

matched GWAS are utilized. On the other hand, for traits with high ÿĀ and SNP-based heritability, 445 

we expect larger-scale EUR GWAS to outperform smaller-scale ancestry-matched GWAS. 446 

However, it is important to consider the characteristics of the target cohort and phenotype 447 

precision. Additionally, we expect Bayesian methods tailored to trait-specific genetic architecture 448 

to outperform classic P+T methods. However, this superior performance may not hold true for 449 

traits that exhibit large-effect ancestry-enriched variants or with a very sparse genetic architecture, 450 

which are attributes typically informed by prior knowledge or information gleaned from literature 451 

and public resources35,37–39. To enhance accuracy in such scenarios, we recommend employing 452 

a grid-search approach with a finer-scale adjustment of the hyper-parameters in Bayesian 453 

methods. 454 

 455 

Second, in comparison to PRSsingle derived from large-scale EUR GWAS, we recommend using 456 

PRSmulti, unless the target ancestry-matched GWAS is extremely small (<10,000). PRSmulti is 457 

generally preferred for traits with high ÿĀ, SNP-based heritability, and large sample sizes. We find 458 

increasing evidence supporting the notion that the effects of most common variants are shared 459 

between ancestries, indicating a high ÿĀ for most traits9,11. However, estimates of ÿĀ can be 460 

affected by phenotypic and environmental heterogeneity across populations10,40. When 461 

constructing PRSmulti using summary-level based methods such as P+T and PRS-CS, 462 

researchers should carefully consider which LD reference panel best approximates the LD 463 
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structure between SNPs while being most readily accessible. We have shown that when EUR 464 

remains the majority population in the discovery GWAS, using the EUR-based reference panel 465 

effectively approximates the LD of discovery GWAS, consistent with our previous findings7.  466 

 467 

Third, our findings indicate the advantages of PRSmulti compared to PRSweighted, particularly when 468 

employing P+T and PRS-CS. However, there are some notable exceptions, such as the higher 469 

accuracy observed when using PRSweighted with PRS-CS for traits with low ÿĀ, such as height. 470 

Furthermore, when incorporating local ancestry-informed GWAS and large-scale EUR GWAS, 471 

PRSweighted outperformed PRSmulti for traits with AFR-enriched variants, such as WBC and MCHC, 472 

in the UKBB-AFR. On the other hand, we note that the accuracy of PRSmulti could be more affected 473 

by the choice of LD reference panel, while PRSweighted was not limited in this regard due to its easy 474 

accessibility of external ancestry-matched reference panels. PRS-CSx, which accounts for 475 

variations in allele frequencies and LD structures across ancestries, is recommended when 476 

ancestry-specific GWAS from multiple populations are available, especially with considerable 477 

sample sizes (e.g., > 25,000~50,000) in the Minor GWAS. These results highlight the importance 478 

of making ancestry-specific GWAS summary statistics publicly available. 479 

 480 

In summary, there is no one-size-fits all approach for constructing PRS, as the optimal approach 481 

depends on genetic architecture, ancestry composition, statistical power, and other factors. These 482 

factors can be complex, particularly as a deluge of methods are being developed to address the 483 

PRS generalizability problem. To inform optimal approaches across a wide range of scenarios, 484 

we have distilled the results of extensive simulations and empirical analyses across trait genetic 485 

architectures, ancestries, and methods into a set of guidelines from parameters that are typically 486 

evaluated at the outset of a genetic study. 487 

 488 

Limitations of the study 489 

We acknowledge some limitations and future directions in our study. First, we focused on common 490 

variants in different populations, while population-enriched variants have lower frequencies and 491 

larger effect sizes in some populations. The role of such variants in polygenic prediction are worth 492 

exploring across phenotypes when there are sufficient sample sizes for different ancestral 493 

populations. Second, as we used external LD reference panels for PRS construction, PRS 494 

performance decreases with LD mismatch between the discovery population and LD reference 495 

panel, especially using multi-ancestry GWAS. While we show that LD reference panel differences 496 

have a relatively modest effect on PRS accuracy, they have a much larger effect on fine-497 

mapping41, so future efforts are warranted to share in-sample LD without direct access to 498 

individual-level genotypes, especially for large consortia with numerous and diverse cohorts. 499 

Alternatively, developing more sophisticated individual-level PRS methods that preserve privacy 500 

and are scalable to current biobank-scale data is also promising. Third, while our primary focus 501 

pertains to quantitative phenotypes characterized by diverse genetic architectures, we expect our 502 

findings can be broadly applied to binary traits, as we have investigated previously7. However, 503 

binary phenotypes introduce additional complexities due to factors such as variable case/control 504 

ratios, phenotype definitions, environmental differences, and smaller effective sample sizes or 505 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2023. ; https://doi.org/10.1101/2022.12.29.522270doi: bioRxiv preprint 

https://paperpile.com/c/f12iQy/iGhM7
https://paperpile.com/c/f12iQy/O4EzZ
https://paperpile.com/c/f12iQy/iGhM7
https://doi.org/10.1101/2022.12.29.522270
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

lower statistical power. Fourth, while we have provided theoretical expectations of cross-ancestry 506 

prediction, the reliability of parameter estimates such as cross-ancestry genetic correlation and 507 

the effective number of independent genome-wide segments poses significant challenges, 508 

particularly in the context of multi-ancestry GWAS with highly imbalanced sample sizes. Finally, 509 

it is important to acknowledge that our study focused on selected methods, which consistently 510 

exhibit similar trends42. Although we anticipate that our findings are broadly applicable to 511 

alternative methods, such as XPASS43 and XP-BLUP42, further research is needed to explore the 512 

generalizability of our findings to other polygenic prediction approaches. Despite the limitations, 513 

our study highlights the advantages of leveraging the increasing diversity of current genomics 514 

studies to improve polygenic prediction across populations. We emphasize the necessity of 515 

diversifying not only the ancestry but also phenotypic spectrum when collecting genomic data 516 

from global populations, which will contribute to achieve a more equitable and effective use of 517 

PRS for traits with varying genetic architectures.  518 
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Figure Legends 542 

Figure 1. Study design in both simulations and empirical analyses  543 

1) In the context of single-ancestry GWAS, we randomly split individuals in European (EUR) and 544 

other minority populations, including East-Asian and African populations, into equally sized bins. 545 

Simulations involved a total of 52 bins per population, each containing 10,000 individuals. For 546 

empirical analysis, bin number was dependent on the sample size of respective phenotype in that 547 

population (Table S3), with 5,000 individuals per bin. GWAS was conducted within each bin for 548 

each individual population, followed by meta-analysis of GWAS from various numbers of bins 549 

within each population. To construct PRS derived from single-ancestry GWAS (PRSsingle) in the 550 

target population, we applied P+T for both simulations and empirical analyses, utilizing PRS-CS 551 

for the latter. Subsequently, we combined PRSsingle developed from EUR GWAS (PRSEUR_GWAS) 552 

and other minority population-based GWAS (PRSMinor_GWAS) through a linear weighted strategy 553 

(denoted as PRSweighted, highlighted in red box) for empirical analyses. Note that PRSweighted was 554 

also developed using PRS-CSx, which utilizes GWAS summary statistics from multiple 555 

populations. 2) For meta-analyzed multi-ancestry GWAS (referred to as Meta), we ran meta-556 

analyses on EUR GWAS and Minor GWAS with varying ancestry compositions. In simulations, 557 

we incrementally included 4 bins from EUR GWAS for the meta-analysis, while in empirical 558 

analyses, we increased the number to 8 bins. Simultaneously, we varied the number of bins in 559 

Minor GWAS from 1 to the total number. Following the meta-analysis, we constructed PRS based 560 

on Meta (referred to as PRSmulti), using the P+T method for simulations, and employing both P+T 561 

and PRS-CS for empirical analyses.  562 

 563 

Figure 2. Improvement of PRS accuracy through meta-analyzed multi-564 

ancestry GWAS compared to large-scale European GWAS across 6 565 

simulated genetic architectures.  566 

The multi-ancestry GWAS included populations of European (EUR) and East-Asian (EAS) 567 

ancestry, with the EAS sample size varying as indicated on the x-axis. For illustrative purposes, 568 

we present the results using 32 EUR bins, each consisting of 10,000 individuals, which were 569 

included in both EUR GWAS and multi-ancestry GWAS. PRS was separately evaluated in African 570 

(AFR), EAS and EUR populations. Full results are shown in Table S1. ýý  indicates the number 571 

of causal variants and /2
 refers to SNP-based heritability. In each panel, the red vertical dashed 572 

line indicates the point where an equal number of bins from EUR and EAS populations were 573 

included in the multi-ancestry GWAS. The error bars represent the standard errors of predictive 574 

accuracy differences between PRS derived from multi-ancestry GWAS (PRSmulti) and PRS 575 

derived from EUR GWAS (PRSEUR_GWAS). 576 

 577 
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Figure 3: Genetic architecture of 17 studied traits between Biobank Japan 578 

(BBJ) and UK Biobank (UKBB). 579 

The error bar is the standard deviation of the corresponding estimate. The vertical dashed line 580 

was the median estimate. Full results are shown in Table S4. The phenotypes were ranked 581 

according to their polygenicity estimates using GWAS from UKBB, including: BMI (body mass 582 

index), Height, DBP (diastolic blood pressure), SBP (systolic blood pressure), WBC (white blood 583 

cell count), Lymphocyte ( lymphocyte count), RBC (red blood cell count), Neutrophil (neutrophil 584 

count), HB (hemoglobin concentration), HT (hematocrit percentage), Eosinophil (eosinophil 585 

count), PLT (platelet count), Monocyte (monocyte count), MCV (mean corpuscular volume), MCH 586 

(mean corpuscular hemoglobin), Basophil (basophil count), MCHC (mean corpuscular 587 

hemoglobin concentration).  588 

 589 

Figure 4. Accuracy improvement of PRS in the UK Biobank East-Asian 590 

population (UKBB-EAS) using multi-ancestry GWAS comprare to using 591 

European (EUR) GWAS for P+T and PRS-CS.  592 

The multi-ancestry GWAS were obtained by meta-analyzing EUR GWAS and EAS GWAS, with 593 

the EAS sample size from the Biobank Japan (BBJ) varying as indicated on the x-axis. For 594 

illustrative purposes, we present the results using 64 EUR bins, each containing 5,000 individuals, 595 

which were included in both EUR GWAS and multi-ancestry GWAS. PRS were constructed using 596 

P+T and PRS-CS and evaluated in the UKBB-EAS. The y-axis is the accuracy difference of PRS 597 

when using multi-ancestry GWAS (PRSmulti) compared to using EUR GWAS (PRSEUR_GWAS). The 598 

error bars indicate the standard error of accuracy improvement. The red dashed line is y=0. We 599 

showed the results for 7 traits with SNP-based heritability > 0.1 in both BBJ and UKBB, and they 600 

were ranked by polygenicity estimates using UKBB (Figure 3). Full results are shown in Table 601 

S7.  602 

 603 

Figure 5. Predictive accuracy using different PRS methods in the UK Biobank 604 

East-Asian population (UKBB-EAS). 605 

PRSmutli represents PRS derived from multi-ancestry GWAS, while PRSweighted denotes PRS 606 

constructed from a weighted linear combination (see STAR Methods for details). PRS were 607 

constructed with three methods, including P+T, PRS-CS and PRS-CSx. We showed the results 608 

for 7 traits with SNP-based heritability > 0.1 in both Biobank Japan (BBJ) and UKBB. Traits were 609 

ranked by polygenicity estimates using UKBB (Figure 3). Boxes represent the first and third 610 

quartiles, with the whiskers extending to 1.5-fold the interquartile range. Full results are shown in 611 

Table S8 and Table S9.  612 

 613 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2023. ; https://doi.org/10.1101/2022.12.29.522270doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.29.522270
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

Figure 6. Accuracy of PRS derived from local-ancestry informed GWAS 614 

versus other discovery GWAS in the UK Biobank African population (UKBB-615 

AFR)  616 

We evaluated PRS performance in the UKBB-AFR by utilizing various methods on different 617 

discovery GWAS. Specifically, AFRTractor denotes the AFR-specific GWAS performed using 618 

Tractor on the UKBB admixed African-European individuals. EURStandard refers to standard GWAS 619 

performed on the European (EUR) population in the UKBB. MetaStandard is the meta-analysis 620 

performed on AFRTractor and EURStandard. Furthermore, we constructed a weighted PRS by 621 

combining PRS generated from AFRTractor and EURStandard through a linear weighted approach. 622 

The figure shows the results for traits with SNP-based heritability > 0.1 in the UKBB-AFR. Full 623 

results are shown in Table S10.  624 

 625 

Figure 7. General practices for developing PRS using different discovery 626 

GWAS.  627 

We summarized the general practice for developing PRS A) using single-ancestry GWAS 628 

(PRSsingle); and B) using GWAS from multiple ancestries (PRSmulti or PRSweighted). Abbreviations: 629 

Cross-ancestry genetic correlation (ÿĀ), SNP-based heritability in discovery (/þ2 ) and target 630 

populations (/�2), discovery GWAS sample size (þþ) and the number of genome-wide independent 631 

segments in the discovery population (ýþ).  632 

 633 

STAR Methods 634 

Resources Availability 635 

Lead Contact 636 

Further information and requests for resources and reagents should be directed to and will be 637 

fulfilled by the lead contact, Ying Wang (yiwang@broadinstitute.org). 638 

 639 

Materials Availability 640 

This study did not generate new unique reagents.  641 

 642 

Data and code availability 643 

1000 Genome Phase 3 data can be accessed at 644 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/data. We used 645 

UK Biobank data via application 31063. The software used in this study can be found at: Plink 646 

(https://www.cog-genomics.org/plink/), PRS-CS (https://github.com/getian107/PRScs),  PRS-647 

CSx (https://github.com/getian107/PRScsx), Tractor (https://github.com/Atkinson-Lab/Tractor), 648 

HapGen2 (https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/hapgen2.html) and 649 

SBayesS/GCTB (https://cnsgenomics.com/software/gctb/). The Pan UK Biobank Project can be 650 
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accessed at: Pan-UK Biobank Project https://pan.ukbb.broadinstitute.org. The codes used in this 651 

study have been deposited to https://github.com/ywangleo/multi-ancestry-PRS.  652 

 653 

Methods Details 654 

Simulations 655 

Simulated genotypes in three populations 656 

To explore the potential improvement of predictive accuracy within an underrepresented target 657 

ancestry through the inclusion of additional samples included in the multi-ancestry discovery 658 

GWAS, we simulated genotypes of chromosome 22 for 560,000 individuals in each population 659 

including European ancestry (EUR), East Asian ancestry (EAS) and African ancestry (AFR) using 660 

the software HapGen2 v2.1.244. We used the haplotypes from 1000 Genome Project (1KG, Phase 661 

3)45 as the sample pool. We excluded Americans of African Ancestry in SW USA and African 662 

Caribbeans in Barbados from the AFR samples due to their high degree of recent admixture. We 663 

used default parameters in HapGen2 with effective sample sizes of 11,375, 12,239 and 17,380 664 

for EUR, EAS and AFR, respectively44. After simulating the genotypes on chromosome 22, we 665 

ran analyses with a total of 87,938 overlapping SNPs across the three ancestries which passed 666 

quality control filters: minor allele frequency (MAF) > 0.01, Hardy-Weinberg Equilibrium (HWE) p-667 

value > 1026 and genotype missingness rates across individuals < 0.05. We then removed 2nd-668 

degree related individuals using the software KING46, resulting in 534,352, 533,996 and 537,498 669 

unrelated individuals from EUR, EAS and AFR, separately. We randomly sampled 10,000 and 670 

520,000 individuals from each ancestry as the withheld target population and discovery 671 

population, respectively.  672 

 673 

Simulated phenotypes with varying trait genetic architecture 674 

For the sake of simplicity, we assumed that causal variants are shared across populations and 675 

their effect sizes are perfectly correlated (cross-ancestry genetic correlation, ÿĀ = 1) in our initial 676 

simulations. The pairwise ÿĀ among � populations is represented by a � ∗ � matrix, denoted as 677 

R, where the off-diagonal elements of R had the value of ÿĀ and diagonal elements of R were set 678 

to 1. In our study, � was equal to 3, indicating the number of populations considered. We 679 

simulated phenotypes based on the simple additive model: Ă =  ā +  ÿ, where ā = ∑ āÿĀ�Ā��Ā=1 . 680  ýý  is the number of causal variants, āÿĀ is the genotype coded as 0, 1, or 2 for the Āth SNP in the 681 ÿth population. The effect size of Āth SNP across � populations is drawn from a multivariate normal 682 

distribution, �~ý�þ(0, �), where for the � ∗ � variance-covariance matrix, �, the diagonal and 683 

off-diagonal elements were 
/22ÿÿĀ(12ÿÿĀ)�� and R• /22ÿÿĀ(12ÿÿĀ)��, respectively. We denoted ĀÿĀ as the 684 

MAF of Āth SNP in the ÿth population and /2 as the trait heritability. We simulated the 685 

environmental effects to follow a normal distribution with 0 mean and 1 2 /2 variance, ÿ ~ þ(0, 1 2686 
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/2). We simulated different levels of heritability for chromosome 22 (/2 = 0.03 and 0.05). 687 

Additionally, we randomly sampled various numbers of causal variants (ýý  = 100, 500, and 1000) 688 

from all the 87,938 SNPs. As a result, we defined a total of 6 distinct simulation scenarios that 689 

encompass a realistic spectrum of polygenicity, ranging from ~0.1% to ~1% of causal variants. 690 

To assess the impact of ÿĀ on PRS performance, we expanded our simulation study by 691 

considering two scenarios. These scenarios aimed to capture different levels of per-variant 692 

variance explained. In scenario 1 characterized by ýý  = 100 and /2 = 0.05, the per-variant 693 

variance explained was higher. Conversely, scenario 2 involved ýý  = 1000 and /2 = 0.03, 694 

resulting in a lower per-variant variance explained. For each scenario, we varied the values of ÿĀ 695 

to 0.6 and 0.8, respectively.  696 

Downsampling and meta-analyzed GWAS in simulations 697 

To provide the requisite discovery data for constructing PRS, we proceeded to perform GWAS on 698 

the simulated phenotypes. Specifically, we split the discovery population, which consisted of 699 

520,000 unrelated individuals, into 52 evenly distributed bins, each comprising 10,000 individuals 700 

(denoted as Bin1, Bin2, …, Bintotal). Subsequently, we ran GWAS on each of those 52 bins 701 

independently within the three populations, using simple linear regression implemented in PLINK 702 

v2.047. We excluded the causal variants when running GWAS to mimic the phenomenon of 703 

imperfect tagging. We then employed an iterative process of meta-analysis, employing the 704 

inverse-variance weighted method using METAL48, gradually incorporating a varying number of 705 

bins. Specifically, we commenced the meta-analysis with Bin1+Bin2, subsequently progressing to 706 

Bin1+Bin2+Bin3, and so forth, until we encompassed the complete set of bins 707 

(Bin1+Bin2+Bin3+...+Bintota) for each population. 708 

 709 

To simulate a scenario resembling a meta-analysis involving multiple ancestries with varying 710 

proportions, we opted for an arbitrary selection of subsets from EUR GWAS. Specifically, we 711 

chose a range of bins, from 4 to 52 bins, with increments of 4. Subsequently, we systematically 712 

incorporated different numbers of bins, spanning from 1 to 52, from EAS and AFR populations 713 

into the EUR GWAS dataset via meta-analysis. The meta-analysis was conducted utilizing the 714 

inverse-variance weighted fixed effects model implemented in the METAL software. This iterative 715 

process allowed us to achieve a range of sample size ratios between EUR and EAS as well as 716 

EUR and AFR, encompassing ratios from 52:1 to 4:52, in the meta-analyzed multi-ancestry 717 

GWAS (referred to as Meta). The simulation configuration is visually depicted in Figure 1. 718 

 719 

Pruning and Thresholding (P+T) in simulations 720 

We employed PLINK v1.90 to clump quasi-independent SNPs within 500Kb windows, utilizing a 721 

LD threshold of r2 < 0.1. To explore the impact of various LD reference panels on predictive 722 

accuracy of PRS, we used a total of four different LD reference panels: one for single-ancestry 723 

and three for multi-ancestry GWAS, with consideration to the ancestry composition of the 724 

discovery GWAS and the target population.  725 

 726 
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For the single-ancestry GWAS, we used a LD reference panel consisting of 10,000 individuals 727 

from the target population that were matched to the ancestry of the discovery GWAS. In the case 728 

of multi-ancestry GWAS, we used three LD reference panels. These panels included two 729 

composed of a single ancestry that did not mirror the ancestral makeup of the discovery GWAS. 730 

Specifically, one panel comprised 10,000 withheld EUR individuals, while the other panel 731 

encompassed individuals from understudied populations, either 10,000 EAS or 10,000 AFR 732 

individuals, consistent with the minority population represented in the discovery GWAS. The third 733 

LD reference panel consisted of individuals from different ancestries in proportions proportional 734 

to the discovery GWAS, amounting to a total of 10,000 samples.  735 

 736 

We calculated PRS in the target population using 8 different p-value thresholds: 5 × 10-8, 1 × 10-737 
6, 1× 10-4, 1 × 10-3, 0.01, 0.05, 0.1, and 1. We denoted PRS constructed from single-ancestry 738 

GWAS as single-ancestry PRS (PRSsingle) and those from meta-analyzed multi-ancestry GWAS 739 

as multi-ancestry PRS (PRSmulti). We calculated the predictive accuracy as the variance explained 740 

by the PRS (R2) through linear regression: Ă ~ PRS and computed corresponding 95% 741 

confidence intervals (CIs) through bootstrap. To identify the optimal p-value threshold associated 742 

with the highest predictive accuracy, we evenly divided the target population into a test cohort 743 

and a validation cohort. The p-value threshold was optimized through a process of 744 

hyperparameter tuning in the validation cohort, and subsequently, the accuracy of the model was 745 

assessed using the test cohort. 746 

 747 

Empirical analysis of 17 quantitative traits in the UK Biobank (UKBB) and 748 

Biobank Japan (BBJ) 749 

We further explored how the findings from simulations generalized in real data using 17 750 

quantitative traits shared between UKBB and BBJ, including anthropometric traits (BMI and 751 

height) and blood panel traits studied previously (Table S3)32. The selection of these traits was 752 

motivated by their widespread availability within biobanks and their substantial statistical power, 753 

attributable to their quantitative properties. 754 

Datasets and Quality Control (QC) 755 

UK Biobank (UKBB): The details of assigning ancestry for each individual in the UKBB are 756 

described in the Pan-UK Biobank Project (Pan UKBB: https://pan.ukbb.broadinstitute.org/). 757 

Briefly, a random forest classifier trained on reference data from 1KG and Human Genome 758 

Diversity Project (HGDP)49 was used to classify cohort individuals under continental population 759 

labels based on the top 6 principal components (PCs). In this study, we used a total of 361,144 760 

and 2,684 unrelated EUR and EAS participants, respectively. We obtained unrelated individuals 761 

through running hl.maximal_independent_set using Hail (https://hail.is/). Specifically, within each 762 

population, we ran PC-Relate50 with k=10 and min_individual_maf=0.05. We used the individuals 763 

assigned EAS ancestry as the target dataset. For EUR samples, we first randomly retained 5,000 764 

individuals with complete phenotype information for all 17 studied phenotypes as the target 765 

population. Subsequently, we split the remaining individuals into evenly distributed bins, each 766 

containing 5,000 individuals, for each phenotype. The number of total bins for each studied 767 
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phenotype ranged from 68 to 71, depending on phenotype missingness (Table S3). The bins 768 

were labeled sequentially from 1 to the total number of bins, following the same procedure as 769 

described in our simulations. 770 

 771 

BioBank Japan (BBJ): BBJ is a multi-institutional hospital-based biobank which has recruited 772 

approximately 200,000 participants from 12 medical institutions in Japan between fiscal years 773 

2003 and 200727. Written informed consents were obtained from all the participants, as approved 774 

by the ethics committees of the RIKEN Center for Integrative Medical Sciences, and the Institute 775 

of Medical Sciences, the University of Tokyo. The participants were genotyped using either (i) the 776 

Illumina HumanOmniExpressExome BeadChip or (ii) a combination of the Illumina 777 

HumanOmniExpress and HumanExome BeadChips. The genotypes were then prephased using 778 

Eagle51 and imputed using Minimac352 with a reference panel that consists of 1KG samples (N = 779 

2,504) and whole-genome sequencing (WGS) data of Japanese individuals (N = 1,037)53. 780 

Standard quality controls of participants and genotypes were applied as described elsewhere53. 781 

Briefly, we excluded samples with low call rates (< 98%), closely related individuals (PLINK 782 

PI_HAT > 0.175), or non-Japanese outliers based on the principal component analysis (PCA). 783 

We then excluded genotyped variants with call rate < 98%, HWE P-value < 1.0 × 10−6, number of 784 

heterozygotes < 5, or low concordance rate (< 99.5%) with WGS for a subset of individuals (N = 785 

939). Phenotypes were retrieved from medical records and prepared as described previously54. 786 

 787 

1000 Genomes Project Phase 3 (1KG): We used 1KG phase 3 data as LD reference panels in 788 

this study. Specifically, we kept 495 unrelated EUR, 498 unrelated EAS, and 484 unrelated AFR 789 

individuals from 1KG. The AFR individuals were solely utilized for analyses pertaining to recently 790 

admixed populations. 791 

 792 

Quality Controls: The imputation strategies for UKBB and BBJ have been described in detail 793 

elsewhere55,56. After imputation, we first excluded ambiguous variants (e.g., A/T and C/G) and 794 

further filtered to keep those variants with imputation INFO score > 0.3, MAF > 0.01, HWE p-795 

value > 10-6, and genotyping missing rates across individuals < 0.05. Consequently, 796 

approximately 8.6 million and 6.6 million SNPs were retained for the UKBB and BBJ, respectively. 797 

For our analyses, we exclusively utilized SNPs that passed these quality control measures, 798 

resulting in approximately 3.6 million SNPs that were shared among both biobanks and 1KG. 799 

 800 

PRS construction for 17 traits in empirical analysis 801 

Discovery GWAS: All phenotypes were curated and transformed to be normally distributed as 802 

described previously32. Subsequently, we performed GWAS on the rank normalized phenotypes 803 

using simple linear regression implemented in PLINK v2.0. We included age, sex, age2, age × 804 

sex, age2 × sex, and the first 20 PCs as the covariates. In line with the GWAS strategy outlined 805 

in the Simulations section, we initially performed GWAS within individual bins and then engaged 806 

in an iterative meta-analysis, employing inverse-variance weighted meta-analysis in METAL, 807 

separately for UKBB and BBJ cohorts. For the meta-analysis of GWAS results derived from 808 

single-ancestry analyses in the UKBB and BBJ (referred to as "Meta"), we incorporated a variable 809 
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number of EUR bins from UKBB, ranging from 8 to 64 with an increment of 8. Subsequently, we 810 

systematically integrated additional EAS bins from BBJ. 811 

 812 

PRS construction methods: We used different methods to construct PRS in the target 813 

populations, specifically UKBB-EAS and UKBB-EUR. In accordance with Simulations, we also 814 

explored the impact of LD reference panels on PRS performance by utilizing multiple panels from 815 

1KG, while taking into account the ancestry composition of discovery GWAS for P+T. Additionally, 816 

we implemented PRS-CS39, a Bayesian regression framework that integrates a continuous 817 

shrinkage prior to infer the posterior mean effects of SNPs. To ensure computational efficiency, 818 

we employed the auto model in the PRS-CS framework, which automatically estimates the hyper-819 

parameter phi (the proportion of SNPs with non-zero effects) based on the input GWAS (see 820 

Supplementary Note 8). For both UKBB and Meta, we used 1KG-EUR as the LD reference 821 

panel, while for BBJ, we utilized 1KG-EAS reference panel. 822 

 823 

To further explore the performance of PRS incorporating GWAS from multiple ancestries, we 824 

constructed a weighted PRS by linearly combining PRS derived from single-ancestry GWAS34. 825 

Specifically, the weighted PRS was calculated as PRSweighted = Ā1* PRSEUR_GWAS + Ā2 * 826 

PRSMinor_GWAS, where Ā1 and Ā2 were weights attached to individual PRS. Furthermore, we used 827 

a more sophisticated method, PRS-CSx8, to generate ancestry-specific posterior SNP effects 828 

using multiple GWAS summary statistics. PRS-CSx, an extension of PRS-CS, can model 829 

ancestry-specific allele frequencies and LD patterns. Similar to PRS-CS, we used the ancestry-830 

matched LD reference panel from 1KG and performed the auto model implemented in PRS-CSx. 831 

We also incorporated the --meta flag, which enables inverse-variance weighted meta-analysis in 832 

the Gibbs sampler. Consequently, we developed two types of PRS from PRS-CSx, one was 833 

based on the meta-analyzed effects (referred to as PRSmulti) and the other, PRSweighted, was 834 

dependent on the ancestry-specific posterior SNP effects. 835 

 836 

PRS performance evaluation: We assessed the predictive accuracy of PRS by measuring the 837 

incremental R2 using linear regression, where we accounted for the influence of covariates. Two 838 

models were compared: 1) �0: �/ÿÿĀāĂāÿ ~ �Āÿ�ÿÿ�āÿĀ, representing the baseline model, and 2) 839 �1: �/ÿÿĀāĂāÿ ~ �ýþ + �Āÿ�ÿÿ�āÿĀ, incorporating PRS as the full model. The incremental R2 was 840 

utilized to quantify the improvement in model accuracy resulting from the inclusion of PRS, thus 841 

providing a measure of the specific contribution made by PRS to the predictive power of the 842 

model. We computed the corresponding 95% confidence intervals (CIs) through bootstrap. To 843 

maximize the predictive accuracy of P+T and PRSweighted, we employed an optimization strategy 844 

to identify the optimal p-value thresholds for P+T and the weights (Ā1 and Ā2) assigned to various 845 

PRS components for PRSweighted. This optimization process entailed a random partitioning of the 846 

target population into two equally sized subsets, namely the validation dataset and the test 847 

dataset. The hyperparameter was identified in the validation dataset, and subsequently, the 848 

accuracy of the model was assessed using the test dataset. We replicated the process 100 times 849 

and calculated the standard error of predictive accuracy across 100 replicates. This approach 850 

allowed us to maximize the performance of P+T and PRSweighted by iteratively refining the p-value 851 

thresholds and weight parameters, thereby enhancing their predictive capabilities. 852 

 853 
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Measures of genetic architecture using summary-data-based BayesS (SBayesS)29  854 

To better understand the impact of trait genetic architecture on PRS predictive performance, we 855 

evaluated three parameters including the polygenicity (proportion of SNPs with nonzero effects), 856 

SNP-based heritability and S (the relationship between MAF and effect sizes) for 17 studied 857 

phenotypes (Table S3). These parameters were estimated using SBayesS implemented in the 858 

GCTB software (https://cnsgenomics.com/software/gctb/). For the analysis, we employed meta-859 

analyzed GWAS data obtained from the comprehensive UKBB and BBJ datasets. Specifically, 860 

the number of bins included in the GWAS was equal to the total number of bins associated with 861 

the respective phenotype (Table S3). We used the LD reference panel provided by GCTB for 862 

UKBB GWAS. We constructed a shrunk LD matrix using 50,000 unrelated individuals from BBJ 863 

as the LD reference panel for BBJ GWAS. We used 4 chains for the Markov Chain Monte Carlo 864 

process, which calculated the Gelman-Rubin convergence diagnostic (also known as potential 865 

scale reduction factor) for these three parameters. We performed the analyses using other default 866 

settings for SBayesS. Given the potential convergence issues associated with Bayesian models, 867 

we deemed a threshold value of less than 1.2 for the Gelman-Rubin convergence diagnostic as 868 

indicative of good convergence for the estimated parameters. 869 

 870 

UK Biobank recent admixture ancestry analysis 871 

To investigate one explanation for poor transferability of PRS across populations – genetic 872 

divergence between the discovery and target cohorts – we further explored whether PRS 873 

constructed from ancestry-specific summary statistics generated with local ancestry-informed 874 

GWAS in admixed populations improves predictive performance in underrepresented 875 

populations. Specifically, we used the Tractor method19, accounting for both local ancestry and 876 

risk allele information, to run GWAS in two-way admixed AFR-EUR individuals from the UKBB (N 877 

= 4,576). The average AFR proportion was 62.9%. We used 4,022 unrelated relatively 878 

homogeneous AFR individuals, which are independent from the admixed individuals, as the target 879 

cohort.   880 

 881 

We followed the same criteria for QC and individual selection as described in Atkinson et al.19. 882 

For sample QC, we excluded individuals that had <95% call rate, withdrew from the study, had 883 

closer than 2nd degree relatives present in the sample, or that had sex chromosome aneuploidies. 884 

For variant QC we restricted to biallelic SNPs with >90% call rate, HWE p-value > 10-6, and MAF 885 

of at least 0.5%. We selected two-way admixed AFR-EUR individuals from the UKBB by first using 886 

the PC loadings from the reference dataset described previously for ancestry inference (1KG + 887 

HGDP) to project UKBB individuals into the same PC space. We applied the same random forest 888 

ancestry classifier described previously to the projected UK Biobank PCA data and assigned AFR 889 

ancestry if the probability was >50%. We restricted to only two-way admixed AFR-EUR ancestry 890 

individuals by selecting those individuals assigned the 8AFR9 population label, then filtering to 891 

those with at least 12.5% European ancestry, at least 10% African ancestry, and who did not 892 

deviate more than 1 standard deviation from the AFR-EUR cline based on their PC loadings. This 893 

process resulted in 4,576 individuals. 894 

 895 
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We ran local ancestry deconvolution on this set of admixed individuals using RFmix v218 with 1 896 

EM iteration and a window size of 0.2 cM with the HapMap combined recombination map57 to 897 

inform switch locations. The -n 5 flag (terminal node size for random forest trees) was included to 898 

account for an unequal number of reference individuals per reference population. We used the --899 

reanalyze-reference flag, which recalculates admixture in the reference samples for improved 900 

ability to distinguish ancestries. As a reference panel, we used continental AFR and EUR 901 

individuals from the 1KG.  902 

 903 

Subsequently, we performed GWAS for the 17 quantitative traits utilizing the Tractor method on 904 

the 4,576 individuals with mixed AFR-EUR ancestry from the UKBB. This analysis yielded the 905 

generation of ancestry-specific summary statistics for the AFR (AFRTractor) and EUR (EURTractor) 906 

ancestry components. To evaluate the performance of PRS in the UKBB-AFR, we developed 907 

PRS using Tractor GWAS. Furthermore, we compared these local-ancestry informed PRS with 908 

those derived from GWAS conducted using standard methodologies. Specifically, we constructed 909 

PRS using GWAS performed on the same set of admixed individuals utilizing the simple linear 910 

regression model (ADMStandard). Additionally, GWAS summary statistics obtained from UKBB 911 

(EURstandard, N = 320,000) from the previous section were utilized, and a meta-analysis was 912 

conducted to combine the AFRTractor with EURstandard (Metastandard, N = 324,576). We constructed 913 

PRS based on HapMap3 SNPs, as previous studies have shown comparable performance 914 

between using reliable HapMap3 SNPs exclusively and the use of genome-wide SNPs7,58. 915 

Additionally, we constructed weighted PRS by incorporating GWAS of AFRTractor and EURStandard, 916 

for P+T, PRS-CS and PRS-CSx, respectively. Considering the ancestry composition of the 917 

discovery GWAS, we used different sets of reference panels for each respective GWAS. 918 

Specifically, we used 1KG-EUR as the LD reference panel for EURTractor, EURstandard and 919 

Metastandard, while using 1KG-AFR for AFRTractor. We used an in-sample LD panel for ADMStandard. 920 

We calculated the predictive accuracy in the UKBB-AFR using incremental R2 as described 921 

above. We repeated the process 100 times and reported the standard error of predictive accuracy 922 

across 100 estimates.  923 

 924 
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Excel Table Title and Legends 925 

Table S1. The comparison of using different LD reference panels across various 926 

simulation scenarios. Related to Figure S2, Figure 2, Figure S3 and Figure S4. 927 

Table S2. Impact of cross-ancestry genetic correlation on predictive performance. 928 

Related to Figure S5.  929 

Table S5. Predictive accuracy for P+T and PRS-CS across phenotypes using single-930 

ancestry discovery GWAS from UKBB and BBJ. Related to Figure S6 and Figure S11. 931 

Table S6. Impact of LD reference panel on P+T performance using multi-ancestry GWAS 932 

for 17 traits. Related to Figure S7, Figure S8 and Figure S11. 933 

Table S7. Accuracy differences between using PRS derived from multi-ancestry GWAS 934 

and using PRS derived from EUR GWAS. Related to Figure S9 and Figure S10. 935 

Table S8. Accuracy differences between PRS derived from multi-ancestry GWAS and 936 

using PRS from weighted linear combination. Related to Figure 5 and Figure S12. 937 

Table S9. Predictive accuracy in the UKBB using PRS-CSx for 17 traits. Related to Figure 938 

5 and Figure S12. 939 

Table S10. Predictive accuracy in the UKBB-AFR using various discovery GWAS. 940 

Related to Figure 6. 941 
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Figure 1. Study design in both simulations and empirical analyses  

1) In the context of single-ancestry GWAS, we randomly split individuals in European (EUR) and 

other minority populations, including East-Asian and African populations, into equally sized bins. 

Simulations involved a total of 52 bins per population, each containing 10,000 individuals. For 

empirical analysis, bin number was dependent on the sample size of respective phenotype in that 

population (Table S3), with 5,000 individuals per bin. GWAS was conducted within each bin for 

each individual population, followed by meta-analysis of GWAS from various numbers of bins 

within each population. To construct PRS derived from single-ancestry GWAS (PRSsingle) in the 

target population, we applied P+T for both simulations and empirical analyses, utilizing PRS-CS 

for the latter. Subsequently, we combined PRSsingle developed from EUR GWAS (PRSEUR_GWAS) 

and other minority population-based GWAS (PRSMinor_GWAS) through a linear weighted strategy 

(denoted as PRSweighted, highlighted in red box) for empirical analyses. Note that PRSweighted was 

also developed using PRS-CSx, which utilizes GWAS summary statistics from multiple 

populations. 2) For meta-analyzed multi-ancestry GWAS (referred to as Meta), we ran meta-

analyses on EUR GWAS and Minor GWAS with varying ancestry compositions. In simulations, 

we incrementally included 4 bins from EUR GWAS for the meta-analysis, while in empirical 

analyses, we increased the number to 8 bins. Simultaneously, we varied the number of bins in 

Minor GWAS from 1 to the total number. Following the meta-analysis, we constructed PRS based 

on Meta (referred to as PRSmulti), using the P+T method for simulations, and employing both P+T 

and PRS-CS for empirical analyses.  
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Figure 2. Improvement of PRS accuracy through meta-analyzed multi-

ancestry GWAS compared to large-scale European GWAS across 6 

simulated genetic architectures.  

The multi-ancestry GWAS included populations of European (EUR) and East-Asian (EAS) 

ancestry, with the EAS sample size varying as indicated on the x-axis. For illustrative purposes, 

we present the results using 32 EUR bins, each consisting of 10,000 individuals, which were 

included in both EUR GWAS and multi-ancestry GWAS. PRS was separately evaluated in African 

(AFR), EAS and EUR populations. Full results are shown in Table S1. ýý  indicates the number 

of causal variants and ℎ2 refers to SNP-based heritability. In each panel, the red vertical dashed 

line indicates the point where an equal number of bins from EUR and EAS populations were 

included in the multi-ancestry GWAS. The error bars represent the standard errors of predictive 

accuracy differences between PRS derived from multi-ancestry GWAS (PRSmulti) and PRS 

derived from EUR GWAS (PRSEUR_GWAS).  
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Figure 3: Genetic architecture of 17 studied traits between Biobank Japan 

(BBJ) and UK Biobank (UKBB). 

The error bar is the standard deviation of the corresponding estimate. The vertical dashed line 

was the median estimate. Full results are shown in Table S4. The phenotypes were ranked 

according to their polygenicity estimates using GWAS from UKBB, including: BMI (body mass 

index), Height, DBP (diastolic blood pressure), SBP (systolic blood pressure), WBC (white blood 

cell count), Lymphocyte ( lymphocyte count), RBC (red blood cell count), Neutrophil (neutrophil 

count), HB (hemoglobin concentration), HT (hematocrit percentage), Eosinophil (eosinophil 

count), PLT (platelet count), Monocyte (monocyte count), MCV (mean corpuscular volume), MCH 

(mean corpuscular hemoglobin), Basophil (basophil count), MCHC (mean corpuscular 

hemoglobin concentration).  
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Figure 4. Accuracy improvement of PRS in the UK Biobank East-Asian 

population (UKBB-EAS) using multi-ancestry GWAS comprare to using 

European (EUR) GWAS for P+T and PRS-CS.  

The multi-ancestry GWAS were obtained by meta-analyzing EUR GWAS and EAS GWAS, with 

the EAS sample size from the Biobank Japan (BBJ) varying as indicated on the x-axis. For 

illustrative purposes, we present the results using 64 EUR bins, each containing 5,000 individuals, 

which were included in both EUR GWAS and multi-ancestry GWAS. PRS were constructed using 

P+T and PRS-CS and evaluated in the UKBB-EAS. The y-axis is the accuracy difference of PRS 

when using multi-ancestry GWAS (PRSmulti) compared to using EUR GWAS (PRSEUR_GWAS). The 

error bars indicate the standard error of accuracy improvement. The red dashed line is y=0. We 

showed the results for 7 traits with SNP-based heritability > 0.1 in both BBJ and UKBB, and they 

were ranked by polygenicity estimates using UKBB (Figure 3). Full results are shown in Table 

S7.  
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Figure 5. Predictive accuracy using different PRS methods in the UK 

Biobank East-Asian population (UKBB-EAS). 

PRSmutli represents PRS derived from multi-ancestry GWAS, while PRSweighted denotes PRS 

constructed from a weighted linear combination (see STAR Methods for details). PRS were 

constructed with three methods, including P+T, PRS-CS and PRS-CSx. We showed the results 

for 7 traits with SNP-based heritability > 0.1 in both Biobank Japan (BBJ) and UKBB. Traits were 

ranked by polygenicity estimates using UKBB (Figure 3). Boxes represent the first and third 

quartiles, with the whiskers extending to 1.5-fold the interquartile range. Full results are shown in 

Table S8 and Table S9.  
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Figure 6. Accuracy of PRS derived from local-ancestry informed GWAS 

versus other discovery GWAS in the UK Biobank African population 

(UKBB-AFR)  

We evaluated PRS performance in the UKBB-AFR by utilizing various methods on different 

discovery GWAS. Specifically, AFRTractor denotes the AFR-specific GWAS performed using 

Tractor on the UKBB admixed African-European individuals. EURStandard refers to standard GWAS 

performed on the European (EUR) population in the UKBB. MetaStandard is the meta-analysis 

performed on AFRTractor and EURStandard. Furthermore, we constructed a weighted PRS by 

combining PRS generated from AFRTractor and EURStandard through a linear weighted approach. 

The figure shows the results for traits with SNP-based heritability > 0.1 in the UKBB-AFR. Full 

results are shown in Table S10.  
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Figure 7. General practices for developing PRS using different discovery 

GWAS.  

We summarized the general practice for developing PRS A) using single-ancestry GWAS 

(PRSsingle); and B) using GWAS from multiple ancestries (PRSmulti or PRSweighted). Abbreviations: 

Cross-ancestry genetic correlation (��), SNP-based heritability in discovery (ℎþ2 ) and target 

populations (ℎ�2), discovery GWAS sample size (þþ) and the number of genome-wide independent 

segments in the discovery population (ýþ).  
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