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Abstract

Genetic regulation of gene expression is a complex process, with genetic effects known
to vary across cellular contexts such as cell types and environmental conditions. We
developed SURGE, a method for unsupervised discovery of context-specific expression
quantitative trait loci (eQTLs) from single-cell transcriptomic data. This allows discovery
of the contexts or cell types modulating genetic regulation without prior knowledge.
Applied to peripheral blood single-cell eQTL data, SURGE contexts capture continuous
representations of distinct cell types and groupings of biologically related cell types. We
demonstrate the disease-relevance of SURGE context-specific eQTLs using

colocalization analysis and stratified LD-score regression.
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Background

A complete, mechanistic understanding of the genetic basis of complex traits could
provide insights into the biological basis of human health and disease. A powerful
approach to filling in the missing links between genetics and complex traits is to use
molecular measurements, such as gene expression levels, as an intermediate
phenotype. Genetic variants significantly associated with gene expression are known as
expression quantitative trait loci (eQTLs) [1-5]. Although eQTL studies have now been
performed in large cohorts and numerous tissues [5,6], characterizing the impact of

regulatory genetic variants is far from complete. This complexity arises in part because
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the effects of genetic variation on gene expression vary considerably between different

cellular contexts, such as cell types, developmental stage, or condition (Fig. 1A) [7—14].

Indeed, eQTLs from adult bulk tissue samples fail to explain the majority of known
disease loci [11,15—-17]. It is therefore critical to identify eQTLs from diverse contexts in
order to more fully characterize the molecular mechanisms underlying disease
associated loci. Recent work has shown single-cell RNA-sequencing (ScCRNA-seq)
provides unique data to uncover cell-type- and context-specific eQTLs; such higher-
resolution data will naturally better reflect diverse cell types and cellular states, many of

which would not be detectable from bulk RNA-seq [9,10,12-14,18,19].

However, the relevant contexts, such as cell type or state, that actually modulate
genetic effects may not be known a priori. For example, genetic regulatory effects that
are only present in a rare cell type, during intermediate stages of cellular differentiation
[8,9] or in response to an environmental stimuli [7] that may not already be known to be
disease relevant. Furthermore, an individual cell may be defined by multiple,
overlapping contexts, such as both cell type and a perturbation response affecting
partially overlapping sets of cells [9,20,21]. Contexts, such as differentiation progress or
time, may manifest as continuous effects rather than discrete clusters. We developed
SURGE (Single-cell Unsupervised Regulation of Gene Expression), a novel probabilistic
model that uses matrix factorization to learn a continuous representation of the cellular
contexts that modulate genetic effects. This includes the extent of relevance of each

context to each cell or sample, and the corresponding eQTL effect sizes specific to each
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learned context, allowing for discovery of context-specific eQTLs without pre-specifying

subsets of cells or samples.

First, we evaluate the statistical power of SURGE to identify latent contexts that
modulate genetic effects on gene expression using simulated data. Next in a proof of
concept experiment we apply SURGE to bulk gene expression measurements from ten
GTEX version 8 tissues [5] to uncover the relevant contexts underlying eQTL regulatory
patterns in bulk RNA-seq data. We then use SURGE to identify context-specific eQTLs
in a single-cell data set consisting of 1.2 million peripheral blood mononuclear cells
(PBMC) spanning 224 genotyped individuals [18]. Finally, we demonstrate the disease-
relevance of SURGE context-specific eQTLs using colocalization analysis and stratified

LD-score regression (S-LDSC) [22,23].

Results

A standard approach to identify context-specific eQTLs is to quantify the effect of the
interaction between genotype and a pre-specified cellular context on gene expression
levels using a linear model (interaction-eQTLs) [8,13]. However, this approach requires
pre-specifying which contexts, such as known cell types, to test for interaction, therefore
inhibiting eQTL discovery in previously unstudied cellular contexts or uncharacterized

cell types.

To address this issue, we developed SURGE, which uses a matrix factorization

approach to uncover context-specific eQTLs without requiring pre-specification of the
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contexts of interest. SURGE achieves this goal by leveraging information across
genome-wide variant-gene pairs to jointly learn both a continuous representation of the
latent cellular contexts defining each measurement (henceforth referred to as SURGE
latent contexts) and the interaction eQTL effect sizes corresponding to each SURGE
latent context (Fig. 1B; see Methods). Importantly, SURGE allows for any individual
measurement (such as a single cell) to be defined by multiple, overlapping contexts.
From an alternative but equivalent lens, SURGE discovers the latent contexts whose
linear interaction with genotype explains the most variation in gene expression levels.
From this perspective, SURGE enables unsupervised discovery of the principal axes of
genetic regulation of gene expression defining an eQTL data set. To increase power in
detecting context-specific eQTLs, SURGE controls for the effects of known covariates
as well as sample repeat structure induced by assaying multiple measurements (such
as many cells) from the same individual on gene expression when identifying context-
specific eQTLs (see Methods). Finally, SURGE automatically selects the number of
relevant latent contexts by placing Automatic Relevance Determination priors
distributions [24] on the inferred latent contexts (see Methods). The user simply would
initialize the number of latent contexts to be large and greater than the likely number of
underlying latent contexts present in the eQTL data set, and SURGE will prune

unnecessary contexts during optimization (see Methods).

Recently, there have been two methods proposed to identify contexts related to genetic
regulation of gene expression from eQTL data sets [25-27]. SURGE is unique from

these methods in that it identifies contexts whose linear interaction with genotype
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explain the most variation in gene expression levels. Vochteloo et al. [25] identifies
contexts such that the joint effect of the context and the interaction between the context
and genotype maximize variation in residual gene expression. As such, this approach
could identify contexts that have a linear effect on gene expression that is less related to
genetic effects, which could happen in the common case where main effects of
environment or cell type are larger than genetic interaction effects. Furthermore, this
approach was not developed for application on single-cell eQTL data. Gewirtz et al.
[26,27] propose a method to identify shared latent topics present in both expression and
genotype data. Topics identified by this approach will not directly correspond to contexts
whose interaction with genotype maximally explains variation in gene expression.
Therefore, the goals of each method are distinct, and SURGE uniquely identifies
contexts where interaction between genotype and context drive variation in gene

expression.

We utilize a simulation framework to statistically quantify SURGE’s ability to accurately
infer the latent contexts that alter genetic regulation of gene expression (see Methods).
As expected, reconstruction of the simulated contexts depends on the sample size of
the eQTL data set as well as the true effect size and number of context-specific eQTLs
present in the simulated eQTL data set (Fig. 1C, Fig. S1). However, given a realistic
eQTL data set containing 100 modest effect context-specific eQTLs (simulated realistic
interaction variance 0.25 [8]; see methods) and sample size (n=250), SURGE
accurately infers the simulated latent contexts (Fig. 1C, Fig. S1) as well as the number

of simulated latent contexts (Fig. 1D, Fig. S2).
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Figure 1: SURGE model overview and simulation: (A) Schematic example of an interaction eQTL where the eQTL effect size
(right) changes as a function of cellular context (depicted in UMAP embedding, left). (B) SURGE is a novel probabilistic model
that uses matrix factorization to jointly learn a continuous representation of the cellular contexts defining each measurement
(U), and the corresponding eQTL effect sizes specific to each learned context (V) based on observed expression (Y) and genotype
(G) data. SURGE additional accounts for the effects of known covariates and sample repeat structure on gene expression (not
shown in figure; see Methods). Assume there are N samples, T genome-wide independent variant-gene pairs, and K latent
contexts. (C) Based on simulated data, we evaluated SURGE’s ability to reconstruct simulated latent contexts as measured by
the average variance explained of the simulated latent contexts by the learned latent contexts (y-axis). We simulate 5 latent
contexts and vary the sample size (x-axis) and the strength (variance; see Methods) of the interaction terms (colors). We fix the
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fraction of tests that are context-specific eQTLs for each context to .3 (see Methods). For each parameter setting, we run 10
independent simulations. Each dot is an independent simulation. (D). Based on simulated data, we evaluate SURGE’s ability to
identify the number of simulated latent contexts across 10 independent simulations. The sample size was fixed to 250, the
strength (variance) of the simulated interaction terms was fixed to .25, and the fraction of tests that are context-specific eQTLs
for a particular context (see Methods) was fixed to .3. For each parameter setting, we run 10 independent simulations. Each dot
is an independent simulation.

As a proof of concept in real sequencing data, we apply SURGE to model RNA-
sequencing samples from 10 GTEx version 8 tissues (4169 individual-tissue pairs;
Adrenal Gland, Colon-Sigmoid, Esophagus Mucosa, Muscle-Skeletal, Pituitary, Skin
[not sun exposed suprapubic], Skin [sun exposed lower leg], Small Intestine terminal
ileum, Stomach, and Thyroid), selected to be largely diverse with a small number of
related tissues. SURGE identifies 8 latent contexts, all of which result in hundreds of
genes with at least one SURGE interaction eQTL, or variant whose effect on expression
changed with the SURGE latent context (eFDR <=.05, see Methods) (Fig. S3, Fig. S4,
Table. S1). In this dataset, each RNA sample was extracted from a specific tissue, and
while tissue identity information is not provided to SURGE, 6 of the 8 SURGE latent
contexts capture differences in tissue type between the samples (Fig. 2A). SURGE
latent context 1 (latent contexts ordered by PVE, see Methods), for example, isolates
RNA samples from Muscle-Skeletal tissue; RNA samples derived from Muscle-Skeletal
tissue have an average latent context 1 value of -1.82 (sdev 0.342), while RNA samples
from other tissues have an average latent context 1 value of -0.011 (sdev 0.456).
Furthermore, we discover SURGE latent context 4 and 7 cluster samples according to
their known ancestry; samples from African Ancestry donors are strongly loaded on

both latent context 4 and 7 (Fig. 2B, Fig. S5).
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Next, we intersect the learned SURGE latent contexts with previously computed
computational estimates of each RNA sample’s cell type composition according to xCell
(xCell infers cell type enrichment scores that reflect cell type composition based on
external cell-type specific gene expression data) [28,29]. We find that the SURGE
latent contexts are not simply identifying differences in tissue identity between the
samples, but learning differences in cell type composition of samples both across
tissues and within a single tissue (Fig. 2C, Fig. 2D, Fig. S6-S8). SURGE latent context
2, for example, is highly correlated with epithelial cell enrichment score across samples
from all ten tissues (Fig. 2C). Moreover, many of the SURGE latent contexts capture
complex multi-cell type composition continuums, not simply the change in proportions of
a single cell type (Fig. 2D, Fig. S6). SURGE identifies latent contexts underlying cell
type composition continuums even when applied to RNA samples from only a single
tissue (see Methods, Fig. S9), demonstrating the importance of cell type composition
differences across samples extracted from the same tissue. Importantly, we observe
greater power to detect context-specific eQTLs with SURGE latent contexts than with
the previously studied approach [28] of testing genetic interactions with cell type
enrichment score estimates from xCell (see Methods, Fig. S10). In summary, SURGE
identifies tissue-type, cell-type, and ancestry as the primary axes of genetic regulation

of gene expression within GTEx eQTL data.
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Figure 2: SURGE applied to GTEx v8 bulk RNA-seq samples. (A,B) SURGE latent context loadings of GTEx v8 RNA-seq samples (y-
axis) stratified by (A) known tissue identity and (B) known ancestry for each of the 8 inferred SURGE latent contexts. (C) Scatter
plot of SURGE latent context 2 loadings (x-axis) and xCell Epithelial cell type enrichment score (y-axis) for GTEx v8 RNA-seq
samples colored by known tissue identity (same color palette as panel A). (D) GTEx v8 RNA-seq samples are separated into 10
quantile bins according to their value on SURGE latent context 6. The stacked bar plot depicts the average xCell cell-type
enrichment scores across all samples normalized to sum to 1 (y-axis) in each of the 10 bins (x-axis).

Next, we apply SURGE to a recently generated single cell eQTL data set consisting of
1.2 million PBMCs from 224 genotyped individuals [18]. 141 of these individuals have

systemic lulus erythematosus (SLE) while the remainder are healthy. To mitigate the
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sparsity characteristic of 10X sequencing data, we aggregate cell level expression data
across highly correlated cells to generate 22774 pseudocells (see Methods, Fig. S11)
[21,30], aggregating on average 22 cells per pseudocell. Here, SURGE identifies 5
latent contexts, all of which resulted in hundreds of genes with at least one SURGE

interaction eQTL (eFDR < .1, see Methods) (Fig. S12, Fig. S13, Table. S2).

The first 3 SURGE latent contexts capture continuous representations of distinct blood
cell types while integrating biologically related cell types along a gradient within a single
latent context (Fig. 3A, Fig. S14-S16). SURGE latent context 2, for example, is strongly
loaded on Natural Killer (NK) cells, while still identifying fine-resolution differences
distinguishing bright NK cells from dim NK cells (Fig. S14). Additionally, SURGE latent
context 1 identifies subtle differences isolating monocytes derived from healthy
individuals from monocytes derived from SLE individuals (Fig. S17; p < 2e-20, Wilcoxon
rank sum test). Interestingly, SURGE latent context 4 and 5 do not capture broad
expression trends related to cell types defining the top gene expression principal
components (Fig. S18), and instead show strong correlation with expression of genes
involved in specific biological processes (See Methods, Table S3, Table S4). For
example, SURGE latent context 4 is correlated with genes that are extremely enriched
in the Hallmark interferon-gamma response (odds ratio: 28.52, p < 4.2e-10) [31]. The
interferon gamma response is a well-studied immune-related pathway shown to be

involved in regulating SLE [18,32,33].
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Finally, we evaluate the relationship between SURGE interaction eQTLs and disease-
associated loci across diverse traits with genome-wide association studies (GWAS)
available. Using coloc [22], we identify hundreds of colocalizations between SURGE
interaction eQTLs and GWAS loci (Fig. 3B, Fig. 3C, Fig. S19). For example, a SURGE
context 3 interaction eQTL for BTN3A2 colocalized with a GWAS signal for SLE (Fig.
3B). Furthermore, we identify significantly more trait colocalizations with SURGE

interaction eQTLs relative to using standard eQTLs (Fig. 3C).

Next, we assess how eQTL enrichment in complex trait and disease heritability varied
along the SURGE latent contexts using S-LDSC [23,34]. Briefly, we used SURGE to
estimate eQTL effect sizes at multiple positions along each SURGE latent context, and
then use S-LDSC to quantify the heritability enrichment of eQTLs identified at each
position (see Methods). We note that this approach is not limited to SURGE interaction
eQTLs, and could be applied to any analysis that infers interaction eQTLs. We observed
that eQTL enrichment in complex trait and disease heritability significantly varies along
the SURGE latent contexts for many diseases and complex traits (Fig. 3D, Fig. 3E, Fig.
S20). For example, predicted eQTL effects in cells negatively loaded on SURGE latent
context 3 (corresponding to a B-cell continuum) are approximately four times more
enriched in Celiac disease heritability than static eQTLs (Fig. 3E). This result coincides
with the previously-reported role of B-cells in Celiac disease [35,36]. Ultimately, this
analysis highlights the importance of assessing eQTLs in disease-relevant contexts, as

well as SURGE’s capacity for identifying disease-relevant contexts.


https://doi.org/10.1101/2022.12.22.521678
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.22.521678; this version posted December 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

A '
251 Cell Type
RS E3 B B3 pDC
8 0- ' . cDC . Progen
k) K ' E3 cM E3 Prolif
S : ' B3 noM B3 T4
—25- oot B3 Nk B3 T8
' E3 rB
-501 i - i
1 2 3
SURGE latent context
B Systemic lupus erythematosus C
) .
‘_3 ?g w B standard eQTL [l SURGE interaction eQTL
&10 ’ et s .5
= . e - T __ 401
o b o o2 e e .‘.," :'." vee 3T vt 2 To)
£I> 0 ot T SRR - e D L 8 g 30+
26.2 26.3 26.4 26.5 S A 50
Position (MB) oF
) ) ©n 104
SURGE latent context 3 interactioneQTL o2 '
— o 0- will
255 . 5 EEEEEEEEEEE:
S z T §®»3332833=%2383
a N O O O 5 © O © o o©
210 R 8 = 0o © © 0o g5 & v T
2 S S 223532883
(@) 5 = ni.-‘.‘.:-‘."’!‘-‘.‘-" see 8 2 2 g 2 E - = a
© gl herrioneeey, Ll s 238g¢85% 3¢
T T T T = xr <
26.2 26.3 26.4 265 g 538 2

Position (MB)

151

m

Celiac
heritability enrichment

N OO

Monocyte countQO
heritability enrichment

~10 0 10
SURGE latent context 1 SURGE latent context 3
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values. Black dashed line represents 95% confidence on the standard eQTL S-LDSC enrichment. Light pink region depicts 95%
confidence on the SURGE predicted eQTL S-LDSC enrichment.

Discussion

Here, we presented SURGE, a novel probabilistic model that identifies context-specific
eQTLs from single-cell data without pre-specifying context, such as cell types or
subsets of samples. SURGE leverages information from variant-gene pairs across the
entire genome to learn a continuous representation of the cellular contexts defining
each measurement, and the corresponding eQTL effect sizes specific to each learned
context. Importantly, SURGE allows for unsupervised discovery of the principal axes of
genetic regulation of gene expression within an eQTL data set, identifying cell-type,
tissue-type, and ancestry when applied to GTEx tissue samples and highly resolved
blood cell-types and gene programs when applied to blood-derived single cells. We
demonstrated that eQTL enrichment in complex trait and disease heritability significantly
varied along the SURGE latent contexts and ultimately, SURGE identified many trait-
relevant loci that could not be detected through traditional eQTL approaches.
Furthermore, large single-cell eQTL data sets are being rapidly generated containing
cells spanning increasingly diverse cellular contexts. SURGE provides a statistically
principled approach to uncover the dominant axes of genetic regulation of gene

expression in such data.

Methods

SURGE model overview

The SURGE model is defined according to the following probability distributions:


https://doi.org/10.1101/2022.12.22.521678
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.22.521678; this version posted December 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Yne ~ N(u + zanWlt + Z I[n € ila; + Gp Fr + Gnt(z Unkat)'o-tz)
1 i k

Uni ~ N(0,7%)
Vie ~ N(0,1)
1/y2 ~ Gamma(ay, f,)
F, ~N(0,1)
aie ~ N(0,97)
1/Y? ~ Gamma(ag, By)
1/6? ~ Gamma(ay, f,)
Here, n indexes RNA samples, t indexes independent variant-gene pairs being tested
for eQTL analysis, and i indexes individuals. We use the notation n € i to represent the
instance where RNA sample n is drawn from the individual i. y,,; is the observed
standardized gene expression (mean 0 and variance 1 for each test t) level of the gene
corresponding to test t in sample n. We assume the gene expression data has been
properly normalized prior to standardization. G,,; is the observed, standardized
(described in more detail below) genotype of the variant corresponding to test t in
sample n. X,,; is the observed value of covariate [ for sample n . SURGE infers the
values of:
o F,:the eQTL effect size of test t that is shared across samples
o V.. the eQTL effect size of test t for latent context k
e U, the latent context value of sample n on factor k
e u;: the intercept of each test

e W, The effect size of covariate [ on the gene corresponding to test t
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e q;;: the random effect intercept for each individual for each test

: The variance of the values in latent context k

N

°* VY
o 2: The variance of intercept corresponding to each individual in test ¢
e ¢#: The residual variance in gene expression levels in test t

ay, and S, are model hyper-parameters set to provide non-informative priors while

stabilizing optimization. In practice we set a, to 1€ and g, to 1e=3.

To standardize the genotype of the variant corresponding to test t, we center the
genotype vector to have mean 0 across samples and then we scale the genotype vector
for test t (G,;) by the standard deviation of Y,,/G,;. This scaling encourages the low-
dimensional factorization (UV') to explain variance equally across tests instead of

preferentially explaining variance in tests with small variance in Y,;/G,;.

It is worth highlighting that a mean-zero gaussian prior is placed on U, in order to
produce interpretable assignments of samples to factors. The level of regularization of
that prior is learned separately for each latent context (yZ), allowing SURGE to zero-out
(y# approaches 0) irrelevant contexts and automatically learn the effective number of
latent contexts. This approach has been used by others for inference of the number of
effective components in more traditional matrix factorizations [37,38] and is similar to

Automatic Relevance Determination [24].

SURGE optimization
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We approximate the posterior distribution of all latent variables [Z =(F;, Vit, Unk, te» Wit
a;e, Vi, Y2, 02)] using mean-field variational inference [39]. The goal of variational
inference is to minimize the KL-divergence between q(Z) and p(Z|Y, G, X), which can be
written as KL(q(Z)||p(Z]Y, G, X). Here, q(Z) is a simple, tractable distribution that is
used to approximate p(Z|Y, G, X). We used the “mean-field approximation” for q(Z) such

that all latent variables are independent of one another. More specifically:

logq(2) =

Z Z logN (Viee |y, 05,,) +
t k

Z Z logN (a;; |ﬂait' O-O%it) +
t i

z z log N(Vvlt |.qut' Oﬁ/lt) +
]

t

Z[ logN(Ft|,uFt,a,§t) + logN(,ut|y“t,ait) + logG(l/tpﬂawt,ﬁwt) + logG(l/aﬂaJt,,Bat)] +

t

> 1ogG(1/vElay, By, +
k

Z z lOg N(Unk I.u-Unk' O-l%nk)
k

n

Where N(x|u, 0%) is a univariate normal distribution parameterized by mean p and

variance o2 and G(X|a, B) is a univariate gamma distribution parameterized by « and .
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It can be shown that minimizing the KL-divergence KL(q(Z)||p(Z|Y, G, X) is equivalent to
maximizing the evidence lower bound (ELBO):

Eq [logp(G' Y} Xr Z)] - Eq [lOQQ(Z)]

Therefore, we will frame SURGE optimization from the perspective of maximizing the
ELBO with respect to the parameters defining q(Z), or the variational parameters.
Noteworthy is p(G,Y, X, Z) is explicitly defined in the methods section “SURGE model
overview” and can be easily computed. The approach we take to maximize the ELBO is
through coordinate ascent [39], iteratively updating the variational distribution each
latent variable, while holding the variational distributions of all other latent variables
fixed. Accordingly, the ELBO is guaranteed to monotonically increase after each
variational update. In the case of the SURGE model, each update is available in closed

form (see Supplement).

Optimization of variational parameters is performed as follows: we randomly initialize all
variational parameters (see below section entitled “Random initialization for SURGE
optimization”) and then iteratively loop through all latent variables in Z and update the

variational parameters corresponding to that latent variable until we reach convergence.

To assess convergence, we assess the change in ELBO from one iteration to the next.

We consider the model converged when the change in ELBO is less than 1e-2.

Random initialization for SURGE optimization
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It is important to note that mean-field variational inference is not guaranteed to converge
to the global optima of the ELBO. To mitigate the effects of local optima, we recommend
optimizing multiple models with different random initializations and using the parameters

learned from the model that achieves the largest ELBO.

Percent variance explained of SURGE latent contexts

Following the approach taken by [40], we define the “Percentage Variance Explained”

(PVE) of the k" latent context as:

Sk

Cksi) + (N * X 07)

Sk = Z Z GntUnic Vit
n t

As stated in [40], this approach is a measure of the amount of signal in data set that is

pve, =

identified by the k' latent context. However, the name “percentage variance explained”

should be considered loosely as the factors are not orthogonal.

Removing irrelevant latent contexts

Upon model convergence, we remove latent contexts with PVE < 1e7>.

Simulation experiments

To assess SURGE'’s ability to accurately capture contexts underlying context-specific
eQTLs we performed the following simulation experiment:
We randomly generated genotype and expression matrices across 1000 variant-gene

pairs and N RNA samples. For each simulated variant-gene pair, we simulated the


https://doi.org/10.1101/2022.12.22.521678
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.22.521678; this version posted December 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

genotype vector (G) across the N samples according to the following probability
distributions:

G, ~ Binomial(2, allele_frequency)

allele_frequency~ Uniform(.05,.95)
Then, we simulated the expression vector (y) across the N samples using that variant-
gene pair’s simulated genotype vector according to the following probability

distributions:
Yo~ NQ+ BGn+ ) GuUniVeB 1)
k

u~N(0,1)
B~ N(0,1)
Unue ~N(0,1)
Vi ~N(0,y)
0, ~ Bernoulli(p)
Using this simulation, we can evaluate SURGE's ability to re-capture the simulated
latent contexts (U) (Fig. 1C, Fig. S1) as a function of the simulation hyper-parameters:
e The number of latent contexts (K)
e The sample size (N)
e The strength of the interaction terms (y)
e The fraction of tests that are context-specific eQTLs for a particular context (p)
We can also access SURGE'’s ability to accurately estimates the number of relevant

contexts (K) (Fig 1D, Fig. S2) by only retaining contexts with PVE > 1e~°.
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Selection of variant-gene pairs used for optimization

SURGE optimization (ie. learning the SURGE latent contexts) requires an input
expression matrix and genotype matrix. As specified above, both matrices should be of
dimension NXT, where N is the number of RNA samples and T is the number of
genome-wide independent variant gene pairs. We desire each variant-gene pair to be
independent of one another because we want the SURGE to infer eQTL patterns that

are persistent across the genome, not specific to a single gene or variant.

To encourage the expression and genotype data to consist of independent variant-gene
pairs we limit there to be a single variant-gene pair selected for each gene and limit

there to be a single variant-gene pair selected for each variant.

Furthermore, it has been shown that context-specific eQTLs are more likely to be
standard eQTLs than not. We therefor limit variant-gene pairs used for SURGE
optimization to those that are standard eQTLs within the data set (more details
presented below). For computational efficiency, we recommend using a maximum of

2000 genome-wide independent variant-gene pairs for SURGE optimization.

SURGE interaction-eQTLs

SURGE optimization on a subset of genome-wide independent variant-gene pairs will
result in approximations to the posterior distributions of the SURGE latent contexts (U)
as well as eQTL effect sizes for each of the SURGE latent contexts for only the

genome-wide independent variant gene pairs (V). It is of interest, however, to call


https://doi.org/10.1101/2022.12.22.521678
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.22.521678; this version posted December 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

interaction eQTLs with respect to each of the SURGE latent contexts for all variant
gene-pairs, not just the subset of variant-gene pairs that are genome-wide independent

and used for SURGE optimization.

Therefore, to identify SURGE interaction-eQTL for an arbitrary variant-gene pair we
treat the expected value of the inferred posterior distribution on the SURGE latent
contexts ( U: dim NXK) as observed and optimize the following linear mixed model for
each variant-gene pair. The linear mixed model is as follows:

Yo ~ N+ X a;l[n € i] + Xy WXy + ByGr + Xk B Unic + Lk Bk GrUni» %)

a; ~ N(O' lpZ)

Here:

e 1y, is the observed expression level of the gene corresponding to the variant-
gene pair in sample n

e g, is the observed genotype of the variant corresponding to the variant-gene
pair in sample n

e X, is the observed value of covariate [ in sample n

e uis the intercept

e q; is the random effect intercept for individual i. We use the notation n € i to
represent the case where sample n is drawn from individual i

o I, is the fixed effect for covariate [

e p, is the fixed effect for genotype

e B, is the fixed effect of the k" latent context
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e Byxk is the fixed effect of the interaction between the k" latent context and
genotype
We use the R package ‘Ime4’ to quantify the significance of all K interaction terms:
Bgxts - » Bgxks - Bgxk - INtuitively, if the k" interaction term (Bgxi) is significant, it implies
that the eQTL effect size of this variant-pairs significantly changes along latent context

k.

Calibration of SURGE interaction eQTLs using permutation analysis

P-values resulting from SURGE interaction-eQTL analysis are potentially inflated due to
SURGE interaction eQTLs being identified from the same data used to learn the
SURGE latent contexts. This statistical phenomenon is known as “double-dipping” and
there exist well-studied approaches to ensure statistical calibration in the presence of
“‘double-dipping” [41-44]. We use a conservative, permutation analysis to generate an
empirical null distribution of gene-level p-values that can be used to calibrate the
observed gene-level p-values. The permutation analysis consisted of (1) permuting
genotype of each individual, (2) re-optimizing SURGE latent contexts (U) using the
permuted genotype data, and (3) calling SURGE interaction-eQTLs with the permuted
genotype data and the SURGE latent contexts learned using the permuted genotype
data. More specifically, we generated a single permutation of genotype that was used
across all variants to ensure we did not break the correlation structure across variant-
gene pairs. In addition, we only permuted genotype across individuals, not RNA
samples, to ensure we preserved sample repeat structure expression effects. This

means that multiple RNA samples from the same individual will always have the same
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genotype values in the permutation run. Lastly, similar to previous permutation
experiments on linear-interaction effects [8,45], we only permuted the genotype variable
in the interaction term while leaving the fixed effect of genotype un-permuted (for both

SURGE optimization and SURGE interaction-eQTL calling).

Given both the observed and permuted SURGE interaction eQTL p-values, we
generated gene-level p-values using Bonferonni correction for both observed and
permuted interaction eQTLs. We then evaluated genome-wide significance of the
observed gene-level p-values using empirical FDR (eFDR) [46] calibrated with the
permuted gene-level p-values. This approach was performed independently for each

SURGE latent context.

In the real (un-permuted) data, we only called SURGE interaction-eQTLs for SURGE
latent contexts with PVE > 1e”°. Unsurprisingly, permuted SURGE latent contexts
consistently explained less PVE than un-permuted SURGE latent contexts (Fig. S3, Fig.
S12); there existed zero permuted SURGE latent contexts explaining PVE > 1e® across
all experiments. Therefore, if Z SURGE latent contexts have PVE > 1e™®, we selected
the top Z permuted SURGE latent contexts to be used in the permuted SURGE

interaction eQTL analysis.

Application of SURGE to GTEx samples from 10 tissues: expression quantification

To normalize expression from samples from 10 GTEXx tissues (Adrenal gland, Colon-

sigmoid, Esophagus-Mucosa, Muscle-Skeletal, Pituitary, Skin-not-sun-exposed, Skin-
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sun-exposed, small-intestine-terminal-ileum, Stomach, Thyroid), we concatenated log-
TPM expression measurements across all samples used in the GTEx v8 eQTL analysis
for one of those tissues [5]. We also limited to genes that were tested for eQTLs in the
GTEXx v8 analysis [5] in all 10 tissues. Next, we quantile normalized this matrix to ensure
each sample had an equivalent distribution across genes and then standardized each
gene (mean 0 and standard deviation 1). We excluded RNA samples that were outliers

(Z-score >= 4) according to Mahalanobis distance computed on 80 expression PCs.

Application of SURGE to GTEx samples from 10 tissues: standard eQTL calling

We first tested for standard eQTLs, or association between genotype and the
concatenated (across tissues) expression vector described above in “Application of
SURGE to GTEx samples from 10 tissues: expression quantification”. For this analysis,
we limited to genes that passed filters described in “Application of SURGE to GTEx
samples from 10 tissues: expression quantification”. We then limited to variants with
MAF >= .05 that were less than 50KB from the transcription start site of a gene. We
controlled for the effects of 80 expression PCs and 4 genotype PCs (as recommended
by [5] given the sample size). We assessed genome-wide significance according to a
gene-level Bonferonni correction, followed by a genome-wide Benjamini-Hochberg

correction.

Application of SURGE to GTEx samples from 10 tissues: SURGE optimization

To select a subset of variant-gene pairs to be used for SURGE model optimization, we

first limited to variant-gene pairs that were standard eQTLs (FDR <= .05; see
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“Application of SURGE to GTEx samples from 10 tissues: standard eQTL calling”). This
was done to ensure a higher fraction of the variant-gene pairs used for SURGE
optimization were context-specific eQTLs as it is known standard eQTLs are more likely
to be context-specific eQTLs than variant-gene pairs that are not standard eQTLs.
Furthermore, we limited to the most significant variant per gene amongst the 2000 most
significant genes and removed a variant-gene pair if the variant was already in the
training set for its association with a more significant gene. This yielded 1,996 genome-
wide independent variant-gene pairs used for SURGE optimization. We then ran
SURGE under default parameter settings over these genome-wide independent variant-
gene pairs. We included 80 expression PCs and 4 genotype PCs as covariates in
SURGE optimization. The converged SURGE model resulted in 8 latent contexts with
PVE > 1e~° and hundreds of genome-wide significant SURGE interaction eQTLs

(eFDR <= .05) (Fig. S4, Table S1).

Application of SURGE to GTEx samples from a single tissue

To run SURGE on GTEx samples from a single GTEXx tissue, we took a very similar
approach to that described in “Application of SURGE to GTEx samples from 10 tissues:
expression quantification”, “Application of SURGE to GTEx samples from 10 tissues:
standard eQTL calling”, and “Application of SURGE to GTEx samples from 10 tissues:
SURGE optimization”. The only difference is that we now limit to samples from the

tissue of interest. Furthermore, we now only control for 60 expression PCs and 2

genotype PCs during standard eQTL calling and SURGE optimization. The converged
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model resulted in 1 latent contexts with PVE > 1e~° and 1287 genome-wide significant

SURGE interaction eQTLs (eFDR <= .05).

Application of SURGE to PBMC single cell eQTL data: pseudocell expression

quantification

We imported raw, un-normalized UMI counts from [18]. We used SCRAN [47] to
generate log-normalized counts for each cell. We removed genes that were expressed
in fewer than .5% of cells. We then limited to the top 6000 highly variable genes via the
Scanpy function “highly_variable_genes” [48]. We then removed the effects of
sequencing batch using Combat [49] as implemented in Scanpy. We then scaled each
gene to have mean 0 and variance 1, with a maximum absolute value of 10 to mitigate

outlier effects as implemented by “scanpy.pp.scale”.

Next, we sought to generate pseudocells that represented groupings of highly
correlated cells within an individual. We first removed individuals from this analysis with
fewer than 2500 cells. Next we performed Leiden clustering as implemented by Scanpy
[50] independently in each individual using all default parameters, except we used a
fine-grained cluster resolution of 10. Here, each leiden cluster corresponds to a
pseudocell. We took the average expression across all cells assigned to the pseudocell
to estimate the expression profile of the pseudocell. Finally, we standardized each gene
(across pseudocells) to have mean 0 and standard deviation 1, again capping the

absolute value of standardized scores to be 10 to mitigate outlier effects. We excluded
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RNA pseudocells that were outliers (Z-score >= 4) according to Mahalanobis distance

computed on 30 expression PCs.

Application of SURGE to PBMC single cell eQTL data: standard eQTL calling

We first tested for standard eQTLs, or association between genotype and the
expression vector across pseudocells described above in “Application of SURGE to Ye-
lab generated single cell eQTL data: pseudocell expression quantification”. For this
analysis, we limited to genes that passed filters described in “Application of SURGE to
Ye-lab generated single cell eQTL data: pseudocell expression quantification”. We then
limited to variants with MAF >= .05 that were less than 200KB from the transcription
start site of a gene. We controlled for the effects of 30 expression PCs and 2 genotype
PCs. We controlled for sample-repeat structure stemming from multiple pseudocells
originating from the same individual using a random effects intercept for each individual.
We assessed genome-wide significance according to a gene-level Bonferonni

correction, followed by a genome-wide Benjamini-Hochberg correction.

Application of SURGE to PBMC single cell eQTL data: SURGE optimization

To select a subset of variant-gene pairs to be used for SURGE model optimization, we
first limited to variant-gene pairs that were standard eQTLs (FDR <= .05; see
“Application of SURGE to Ye-lab generated single cell eQTL data: standard eQTL
calling”). This was done to ensure a higher fraction of the variant-gene pairs used for
SURGE optimization were context-specific eQTLs as it is known standard eQTLs are

more likely to be context-specific eQTLs than variant-gene pairs that are not standard
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eQTLs. Furthermore, we limited to the most significant variant per gene amongst the
2000 most significant genes and removed a variant-gene pair if the variant was already
in the training set for its association with a more significant gene. We than ran SURGE
under default parameter settings over these genome-wide independent variant-gene
pairs. We included 30 expression PCs and 2 genotype PCs as covariates in SURGE as
well as a random effect intercept term for each individual. The converged SURGE
model resulted in 5 latent contexts with PVE > 1e~° and hundreds of genome-wide

significant SURGE interaction eQTLs (eFDR <= .1) (Fig. S13, Table S2).

Gene set enrichment analysis

We tested enrichment of genes whose expression levels was highly correlated with
SURGE latent contexts (identified when SURGE was applied to single-cell PBMC data)
within known gene sets. Specifically for each SURGE latent context, we identified the
50 genes whose expression levels across pseudocells were most strongly correlated
(absolute value of correlation coefficient) with the SURGE latent context. We then
tested gene set enrichment of these 50 genes relative to all genes that passed filters
described in Methods section “Application of SURGE to PBMC single cell eQTL data:
pseudocell expression quantification”. We tested enrichment of these strongly
correlated genes in both the Hallmark gene set and the MSigDB Biological Process

gene set [31] (Table S3, Table S4).

Application of Stratified LD Score Regression (S-LDSC)
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Recall, SURGE interaction eQTLs for a specific variant-gene pair can be identified by
evaluating the following likelihood (see Methods section “Surge interaction eQTLs” for
more details):

Yo~ N+ Xiad[n € i] + X WXy + ByGr + X BiUnic + Xk Byt GnUnie» 7°)

a; ~ N(O' lpZ)

Upon maximizing this likelihood (assume B; and Eq—,; are the estimated values of g,
and By, that maximize the likelihood), we can estimate the expected eQTL effect size
for the variant-gene pair for a particular value of a latent context of U using the following
function:

B =By + UiByxk
Here, B* is the expected eQTL effect size for the particular variant-gene pair when the
k" latent context value of U is equal to Uj. Ultimately, this enables us to compute the
expected eQTL effect size for all variant-gene pairs when the k" latent context value of

U is equal to Uy.

We use the above expectation to assess how eQTL enrichment in complex trait and
disease heritability varied along the SURGE latent contexts. Specifically, for each
SURGE latent context we generated 200 equally-spaced positions along the range of
SURGE latent context values. For each of those 200 positions, we computed the
expected eQTL effect sizes (using the above expectation of g*) for all variant-gene
pairs. We then used the squared expected eQTL effect size across variant-gene pairs

as annotation in S-LDSC [23,34] along with all BaselineLD v2.2 annotations excluding
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four QTL related annotations (“GTEx_eQTL_MaxCPP”,
“BLUEPRINT_H3K27acQTL_MaxCPP”, “BLUEPRINT_H3K4me1QTL_MaxCPP”,
‘BLUEPRINT_DNA_methylation_MaxCPP”). If a given variant mapped to multiple
genes, we used the sum of squared expected eQTL effect sizes across genes as the
annotation similar to [16]. This analysis was done for each of the 200 equally spaced
positions for each of the 5 SURGE latent contexts identified when SURGE was run on

the single cell PBMC eQTL data.
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