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Abstract

Recent advancement in Genome-wide Association Studies (GWAS) comes from
not only increasingly larger sample sizes but also the shifted focus towards
underrepresented populations. Multi-population GWAS may increase power to detect
novel risk variants and improve fine-mapping resolution by leveraging evidence from
diverse populations and accounting for the difference in linkage disequilibrium (LD)
across ethnic groups. Here, we expand upon our previous approach for single-
population fine-mapping through Joint Analysis of Marginal SNP Effects (JAM) to a

multi-population analysis (mJAM). Under the assumption that true causal variants are

1 Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine,
University of Southern California, Los Angeles, California, 90032, USA

2 Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles,
California, 90033, USA

3 MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 OSR, United Kingdom
4 Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, 90033, USA

*Correspondence: dconti@med.usc.edu


https://doi.org/10.1101/2022.12.22.521659
http://creativecommons.org/licenses/by-nc-nd/4.0/

15

16

17

18

19

20

21

22

23

24

25

26

27

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.22.521659; this version posted December 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

common across studies, we implement a novel version of JAM that conditions on
multiple SNPs while explicitly incorporating the different LD structures across
populations. The mJAM framework can be used to first select index variants using the
mJAM likelihood with any feature selection approach. In addition, we present a novel
approach leveraging the ideas of mediation to construct credible sets for these index
variants. Construction of such credible sets can be performed given any existing index
variants. We illustrate the implementation of the mJAM likelihood through two
implementations: mJAM-SuSiE (a Bayesian approach) and mJAM-Forward selection.
Through simulation studies based on realistic effect sizes and levels of LD, we
demonstrated that mJAM performs better than other existing multi-ethnic methods for
constructing concise credible sets that include the underlying causal variants. In real
data examples taken from the most recent multi-population prostate cancer GWAS, we

showed several practical advantages of mJAM over other existing methods.
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Introduction

The development of high-throughput genotyping and genotype imputation has
boosted the application of genome-wide association studies (GWAS) which is now a
standard approach to identify susceptibility loci or genomic regions for many complex
diseases and traits'2. However, the linkage disequilibrium (LD) of single-nucleotide
polymorphisms (SNPs) makes it challenging to determine the true causal variant(s)

within a region or to further prioritize genetic variants for functional studies??.

Fine-mapping is a post-GWAS approach which seeks to specify the underlying
causal variant and quantify the strength of effect given existing evidence that a certain
region is likely to contain at least one causal signal. Many methods for fine-mapping
often start with a lead SNP — the SNP with the smallest p-value within one region — and
then they examine additional highly correlated neighboring SNPs in the region using
different strategies such as setting a threshold on pairwise correlation (r2) with the lead
SNP2. These approaches are intuitive but do not jointly analyze all the SNPs within a
region. In addition, they often do not generalize easily to the investigation in multiple

populations.

More recent and advanced fine-mapping approaches attempt to jointly or
conditionally analyze all SNPs within a region, and include stepwise regression?,
penalized regression*”, and Bayesian methods®''. Conditional step-wise selection has
been used to discover multiple signals at a locus with individual level data'2'3. However,
stepwise selection can be very unstable with a large amount of highly correlated SNPs

and the P-values of the signals in the final selected model tend to be conservative?.
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Alternative selection approaches with individual level data are penalized regression
models, such as lasso* and elastic net®, and Bayesian methods, such as CAVIAR'® and
Sum of Single Effect models (SUSIiE)'". In contrast to step-wise selection, penalized
regression techniques are potentially more stable because the penalty term encourages
shrinkage of effect estimates towards zero resulting in sparsity and robust estimation.
However, penalized often do not perform well with highly correlated SNPs and they do
not represent the uncertainty in effect estimation and model selection?. In contrast, fully
Bayesian methods compute posterior probabilities for models within the model space to
infer the probability of causality for each SNP and often result in credible sets to
measure the fine-mapping resolution using these probabilities. Ideally, exact inference
is possible by enumerating all possible models or combinations of SNPs but the model
space increases so rapidly that exhaustive searches become impractical as the number
of SNPs increases. Stochastic search algorithms are often used to perform inference on
posterior distributions. For example, piMASS® and BVS'+'® both use Markov chain
Monte Carlo (MCMC) algorithm to search through the model space, while the later can
also incorporate external annotations as prior information in the Bayesian model

selection to further prioritize causal SNPs.

In addition to analyses performed on individual-level data, methods for fine-
mapping using only summary statistics from GWAS are becoming more widely applied
16-19 |In general, these methods use reference samples to estimate the correlations
between SNPs and then integrate the correlation structure with modified marginal SNP
summary statistics in a multivariable regression framework to approximate the

corresponding individual-level analysis. Differences between methods are due to
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variations in the assumptions for residual error and algorithms for model selection'6-19,
For example, FINEMAP'® places a Gaussian prior for causal effect estimates and
adopts a shotgun stochastic search algorithm to prioritize the search to a set of most
likely important causal configurations. The original implementation of the Joint Analysis
of Marginal SNP Effects (JAM)'® invokes a Cholesky transformation on the linear
regression likelihood, adopts a g-prior for effect estimates, and then implements a

computationally efficient reversible jump MCMC stochastic search algorithm.

Leveraging the information across multiple ethnic groups or ancestry populations
can enhance the power of fine-mapping?®-22. Different ancestry groups may have
distinct LD structures due to different evolutionary and migration histories?324. For
example, compared to non-African Americans, African Americans have smaller LD
blocks with weaker correlations as the number of recombination events for each region
is expected to be higher?®. If a true causal variant exists across populations, its
corresponding estimated association across populations should be more consistent
than the estimated association for proxy SNPs with different LD across populations?6-28,
Therefore, integrating the difference in the LD structures across populations can
potentially narrow the credible set that a causal variant resides in and improve the

resolution of the fine-mapping?%-°.

Here, we present an extension of the single-population fine-mapping through
JAM to a multi-population setting by fitting a multi-SNP joint model, “mJAM”. mJAM
assumes that the true causal variant(s) share the same effect across ancestry groups
and it explicitly accounts for different LD structures across ancestry groups in the joint

model. The mJAM likelihood allows for different feature selection procedures to be
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96 performed on summary statistics obtained from multiple populations. This includes

97 Bayesian variable selection approaches that also yield credible sets or more

98 conventional approaches for only selecting certain SNPs. When combined with

99 approaches that only select specific SNPs, mJAM conditional models can further be
100 used in a mediation type framework to construct credible sets for these index variants in
101  a multi-population analysis. We illustrate this flexibility with two computationally efficient
102  implementations of mJAM: “mJAM-SuSIE” for Bayesian variable selection with native
103  SuSiE credible sets, and “mJAM-Forward” for frequentist forward selection of index
104  SNPs and subsequent credible set construction. Through simulation studies with
105 realistic effect size and various patterns of LD, we compare mJAM-SuSiE and mJAM-
106  Forward with other multi-population approaches, including the most commonly used
107 fixed-effect meta-analysis, COJO'” with pooled LD structure and meta-analyzed
108  summary statistics, and MsCAVIAR?', a Bayesian fine-mapping approach that allows for
109  an arbitrary number of causal variants in a region. We then applied these methods to
110 three known regions for prostate cancer to demonstrate the practical advantages of

111 mJAM.

112 Material and methods

113 Multi-population JAM

114 To simplify notation and without loss of generality, we consider the scenario with
115  three populations. Within each population and for a given set of p SNPs within each

116  region, a linear phenotypic model is used.
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yD = 6DByopa + € fori=1,2,3 (1)
117 where y® is a N® x 1 vector of mean-centered phenotypic trait values for the i*"
118  population, with N®being the sample size of the i*" population; 6® is a N® x p matrix
119  of individual-level genotype data for the i*" group, where each SNP has been centered
120 toits mean; Bgopar € RP denotes the joint effect of the given set of p SNPs. e~N (0, 52)
121 where o2 is the residual variance. It is assumed that all three populations share the

122 same joint effect size, i.e., Byiopa:, @nd the same residual variance.

123 Akin to a meta-regression, a second-stage model describes the relationship
124  between the population joint effect estimates and the underlying true effect:
B ( I,

B(Z) = IP)ﬁglobal'l'(s

Ip (2)

B®
125 where §~N(0,72) and B® € R” is the vector of estimated joint SNP effects for the it"

126  population.

127 Equation (1) and ( 2) together form a two-stage model when individual-level
128 data are available. The first stage is three separate linear phenotypic models whereas
129  the second stage fits a fixed-effect meta-analysis model that combines all populations

130  together. By replacing the Bgiopa’s in (1) with (2), we have the following linear fixed-

131  effect model that incorporates the individual-level data of all populations:

y® GO o 0\ /p
y@ =< 0 G o ><1p>ﬁgzobaz + € (3)
y(3) 0 0 G®3 Ip
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132

133 With summary data in which only the marginal effect sizes and their standard errors are
134 available, it is also possible to estimate the joint effect size, B giopa1, With an additional
135  reference sample that estimates the LD between the SNPs?32. Thus, Equation (3) can
136  be used with only GWAS summary statistics with a modified mJAM likelihood after

137 linear transformation:

Gclcyc ~ MVN (((Gc Ic) ' Gc Ic) Bglobal; 02 ((Gc Ic) ' Gc IC)) (4 )
G o o\ YV Ip
138  where G, y,, I. denotes ( 0 G®» o ) y@® |and (Ip> in Equation ( 3)
0 0 G® y(3) Ip

139  respectively. By expanding each matrix, we have 6 .I,.y. = Y3 ,6® ' y® and
140 (G, 1)’ G I, = Y3607 6O where 6® 7 ¢ and 6© ’ y® are population-specific
141  statistics and can be estimated by population-specific GWAS summary statistics and a

142 reference genotype matrix or LD matrix. Detailed derivation can be found in

143 Supplemental Methods.

144  Index SNP Selection and Credible Set Construction for Fine Mapping

145 mJAM establishes a multi-SNP model within each population with corresponding
146  population-specific LD, while jointly estimating a fixed-effects summary estimate of

147  effect. The mJAM likelihood presented in Equation ( 4 ) can be used in a wide variety of
148  existing feature selection approaches which are applicable to the mJAM statistics

149  shown in Equation ( 4 ). Possible approaches for index SNP selection in mJAM includes

150  stepwise selection?, Ridge regression’, and Bayesian approaches such as SuSIiE'".
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151 We adopt a forward selection approach based on conditional P-value for index
152 SNP selection because of its computational efficiency and straightforward interpretation.
153  We define our implementation of “mJAM-Forward” as a two-step approach in which a
154  first step relies on a conventional stepwise forward selection to select an additional

155 index SNP based on its corresponding P-value from a mJAM model conditional on any
156  previous index SNP(s). We incorporate a g-prior to stabilize effect estimates®3. To avoid
157  fitting models with highly correlated SNPs we include a pruning process within Algorithm

158 1.

159 The second step for mJAM-Froward is to define a multi-population credible set
160 for each index SNP. Here, we fit two mJAM models for each candidate credible set

161  SNP, W, located within a region of an index SNP, X. These models demonstrate that
162  the candidate credible set SNP is: 1) associated with disease marginally, and 2) that the
163  index SNP mediates the effect of the candidate SNP on the disease. The first model

164 includes W by itself to yield a probability that W is associated with the trait. This model
165  also provides a posterior distribution for the marginal effect for the candidate credible

166 set SNP.

p(My,)BF [My,: My ]
2w D(My ) BF [My,: My ] (5)

167 where p(My,) is the prior density of one-SNP model that includes W and BF[My,: My,;]

Pr(My, | Data) =

168 is the Bayes factor of one-SNP model with W to the null model. See Supplemental
169  Methods for detailed expression of BF[My,: My,,;] with the incorporation of a g-prior of
170  the effect estimates. The second model conditions on the index SNP, X, to obtain a

171  posterior estimate for an adjusted effect estimate for the credible set SNP. Borrowing
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172 from a mediation framework®*, we then calculate the probability that the index SNP

173  mediates the candidate credible set SNP effect using the two models (Figure 1).

Pr(Mediation|Data) = Pr(|ty — | > 0|Data)
(6)

174  where 1y, is the total effect of the candidate credible set SNP on the outcome and Tm// is
175  the direct effect. A strong mediation effect indicates that the observed marginal effect of
176  the candidate credible set SNP on the outcome is mainly due to its indirect effect

177  through its strong correlation with the index SNP, and not due to a direct effect on the
178  outcome. These two model probabilities are then combined to calculate the probability

179  that a candidate SNP is a credible set SNP, Posterior Credible Set Probability (PCSP).

PCSPy: = Pr(My, | Data) - Pr(lty —tyy| > 0|Data)
(7)

180 PCSP are then scaled over all SNPs in the region and used to define a 95% credible set

181  of cross-population SNPs.

182  Algorithm 1 Pseudo algorithm for fitting mJAM-Forward and credible set

183  construction in a region

Input data: B@, se(B®), sample size of GWAS Ngy 45, Effect Allele Frequencies
EAF®, Gg) for each study indexed by i
Input arguments: LD threshold for index SNP selection, conditional P-value threshold

1. Compute mJAM statistics (G.I.)'G. 1., (G.I1.)'y.,and y_ "y,
2. Compute marginal mJAM P-values under g prior specification for all testing
SNPs in the region

3. While the smallest conditional P-value (or marginal P-value in the first round
only) is smaller than threshold:

4. Identify the testing SNP with the smallest conditional P-value as the next
index SNP
5. Construct credible set of the new index SNP

6. Prune out SNPs in LD with the new index SNP based on LD threshold
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7. Compute the conditional mJAM P-value for all remaining SNPs in the region
8. Stop until no SNP in the region has conditional p-value smaller than threshold

Return index SNP(s), corresponding conditional P-value(s) and credible set(s).

184 We also integrate the mJAM likelihood and summary statistics into a Bayesian
185  selection method that indicates index SNPs and simultaneously estimates credible set
186  SNPs, “mJAM-SuSIE” (See Supplemental Methods for the pseudo-algorithm of fitting

187 mJAM-SUSIE) %.
188  Incorporating missing variants in mJAM

189 In genetic association studies with more than one cohort or study, it is common
190 that a particular SNP might be available in some studies but missing in the others. A
191 notable practical feature of the mJAM framework is that it allows for these SNPs with
192  missing information to be analyzed without being filtered or removed. This is

193  accomplished with a simple modification by substituting a value of zero in the identity
194  matrix in Equation ( 3 ) and ( 4 ). Such modification then allows for observed statistics
195  from other populations to be used but removes the contribution from the population in
196  which it is missing but does not alter the algorithm nor the fitting process. This

197  modification is applicable either when the SNP is missing in the reference panel or
198  when the population-specific GWAS summary statistics are not available for the SNP

199  (See Supplemental Methods for more details).

200 Simulation Study on Structured LD

201 We conducted a simulation study to compare the performance of the two mJAM

202 implementations (mMJAM-SuSiE and mJAM-Forward) with three commonly used
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alternative approaches: fixed-effect meta-analysis, COJO stepwise selection and
MsCAVIAR. Fixed-effect meta-analysis takes an inverse-variance weighted average of
the marginal estimates from individual studies or populations. COJO approximates the
conditional and joint effect from summary statistics and single reference LD and then
implements a stepwise selection based on conditional P-values. Additionally, for use of
COJO on multiple populations, the summary-level statistics come from the fixed-effect
meta-analysis across all populations and the reference LD can be obtained from either
the pooled individual-level genotype data or a subset of meta-analysis sample. We used
the former as the reference LD for COJO in our simulations. MsCAVIAR is built upon a
Bayesian multivariate normal framework first described as CAVIAR'® to account for
between-study or between-population heterogeneity using a random-effects model. To
compare the performance of index SNP selection across these multi-population
approaches, we use three metrics: number of selected index SNPs, sensitivity/power,
and positive predictive value (PPV). In addition, since MsCAVIAR, mJAM-SuSiE, and
mJAM-Forward output credible set(s) within each region, we compare credible set
performance using the number of credible set(s), size of each credible set,
sensitivity/power, PPV and empirical coverage. For the two non-Bayesian methods, FE
and COJO, we consider the group of SNPs with meta-analyzed or conditional P-values
less than a Bonferroni-corrected significance level as a single credible set for the

purpose of performance comparison.

We performed two sets of scenarios: 1) simulated correlation structures with the
same block LD structures across populations; and 2) simulated correlation based on

real genetic correlation structures observed in the study cohort from Elucidating Loci
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226  Involved in Prostate Cancer Susceptibility (ELLIPSE) OncoArray Consortium?'. For the
227  first set of scenarios, we first simulated a baseline scenario where each population has
228 3 individual association studies with N = 5,000 each to closely represent the real-life
229  situation where there are multiple association studies performed for each ethnic group
230 (total sample size = 5,000 x 3 studies/population x 3 population = 45,000). A total of 50
231  SNPs are simulated in 5 blocks of 10 SNPs. Within each block of 10 SNPs, the pair-
232 wise correlations are uniformly set to a constant value r? across ancestries for simplicity.
233 r2varies from 0, 0.62 and 0.9 to represent independent, moderate LD and high LD

234  scenarios. Corresponding LD heatmaps are shown in Figure S1. We then selected a
235 single causal SNP with an effect size of 0.03 for a standard normal outcome. The

236  baseline scenario was extended by varying parameters, including the ratio of sample
237  sizes between each population, levels of LD, the total number of causal SNPs and

238  corresponding effect sizes.

239  Simulation Study with Real Data

240 To better capture realistic LD patterns, we performed simulations based on real
241  correlation within three ancestry groups (Europeans, African Americans, and East

242 Asians) from the ELLIPSE OncoArray Consortium?'. The available sample sizes for

243 these three populations are 93,749 Europeans, 9,531 African Americans, and 2,075
244  Asians. We simulated 120 SNPs within a 1334 kb region from chromosome 2 using a
245  multivariate normal model with an estimated correlation structure from individual-level
246  genotypes. The heatmap of this region for each ethnicity is shown in Figure S2. In each
247  simulation, we randomly chose one SNP out of a selected LD block to be the causal

248  SNP with effect size being 0.04, resulting in an empirical average -log10(P-value) of the
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249  most significance variant of 7.75 (P-value ~ 1.8 x 1078) averaged across 500

250 simulations.

251  Applied examples

252 To illustrate mJAM on real data, we applied the methods on three regions using
253  summary statistics from the latest cross-ancestry prostate cancer association study®’
254  across four ancestry groups, including 122,188 prostate cancer cases and 604,640

255  controls of European ancestry, 19,391 cases and 61,608 controls of African ancestry,
256 10,809 cases and 95,790 controls of East Asian ancestry, and 3,931 cases and 26,405
257  controls from Hispanic populations. Within each region, we applied mJAM-Forward to
258  select index SNP(s) using population-specific summary statistics and reference dosage
259  for each population. Then we constructed mJAM credible set(s) by including top SNPs
260 ranked by their mJAM posterior probabilities until those SNPs included in the credible
261  setreached a cumulative posterior probability of 95%. Reference dosage were obtained
262  from the Prostate Cancer Association Group to Investigate Cancer-Associated

263  Alterations in the Genome and Collaborative Oncological Gene-Environment Study

264  Consortium [PRACTICAL iCOGS], the Elucidating Loci Involved in Prostate Cancer
265  Susceptibility OncoArray Consortium [ELLIPSE OncoArray], the African Ancestry

266  Prostate Cancer Consortium [AAPC GWAS], GWAS of prostate cancer in Latinos

267 [LAPC GWAS] and Japanese [JAPC GWAST?'. Results from mJAM-Forward are

268  compared with those from mJAM-SuSiE, COJO and MsCAVIAR.
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260 Results

270  Simulation Study on Atrtificial LD

271 Under the baseline scenario (50 SNPs in total, 1 causal SNP with an effect size
272 of 0.03, 3 studies per population, and balanced sample size across populations), the
273 95% credible sets from mJAM-Forward, mJAM-SuSiE, and MsCAVIAR were well

274  calibrated to the specified coverage level (Figure S3). Both mJAM-Forward and mJAM-
275  SuSiE preserved relatively high sensitivity in terms of including the true causal SNP in
276  its credible set (sensitivity = 0.86 and 0.64 respectively, Figure 2A). Although

277  MsCAVIAR had the highest sensitivity (0.99) under the baseline scenario, its average
278  credible set size was much larger (9.47 for MsCAVIAR; 2.12 for mJAM-Forward and
279  0.78 for mJAM-SuSIE, Figure 2C), thus leading to a much lower PPV (0.39, Figure 2B).
280 mJAM-SUSIE had the highest PPV (0.89) among the methods we compared, meaning
281 that it had the highest proportion of true causal over the total number of credible set
282  SNPs on average, followed by mJAM-Forward (0.58) (Figure 2B). In terms of credible
283  set sensitivity, PPV and average CS size the methods had similar patterns of

284  performance for scenarios expanded beyond the baseline to various LD structures,

285 imbalanced sample size across populations, and 3 causal SNPs (Figure S4).

286 In terms of identifying the true causal variant as an index SNP (i.e. sensitivity),
287 mJAM-Forward and MsCAVIAR had the best performance under moderate LD

288  scenarios (Figure 3A) with a sensitivity was 0.73, and 0.72 respectively. However, for
289  these two methods, mJAM-Forward had a better PPV was 0.81, compared to

290 MsCAVIAR (0.72). In comparison, mJAM-SuSiE had poor sensitivity (0.62) but a higher
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PPV (0.88). COJO had a similar performance with mJAM-Forward under independent
LD scenarios but its sensitivity and PPV worsened compared to mJAM-Forward as the
level of LD increases. Though COJO performs a similar stepwise selection as mJAM-
Forward, unlike mJAM-Forward that specifically accounted for population-specific LD,
COJO uses meta-analyzed marginal summary statistics and pooled LD panel which
makes it difficult to identify the true common variants through disentangling the
population-specific LD structure. All methods selected on average 1 index SNP among
500 simulations, close to the true number of causals (Figure 3C). For MsCAVIAR pre-
specification is required so we set the value to 1 for all scenarios. Notably for practical
implementation, for a small number of scenarios (40%), mJAM-SuSIE did not select any
index SNP under independent or moderate LD scenarios, leading to relatively low

sensitivity compared other methods when averaged over replicates (Figure 3A).

When the pairwise correlation within each LD block increased, the average
credible set sizes for all methods increased correspondingly (Figure 2C). As a result,
under high LD scenarios, the PPV of identifying the true causal(s) in a credible set
decreased to a noticeable extent for MsCAVIAR, mJAM-Forward, and FE (Figure 2B).
Though mJAM-Forward’s PPV dropped due to the increase in credible set sizes on
average, mJAM-Forward was still able to retain a sensitivity of 0.88 under the high LD
scenario. mJAM-SuSIE achieved the highest PPV (0.81, Figure 2B) among all methods
under high LD scenarios while retaining relatively high sensitivity and small credible set
size. However, mJAM-SuSiE’s sensitivity was relatively low compared to mJAM-

Forward and MsCAVIAR under independent or moderate LD scenarios (Figure 2A).
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Despite of MJAM-SuSIE’s outstanding performance under high LD scenarios with
moderate causal effect size, we noticed that its results were very sensitive to the
marginal significance of the true causal SNPs. To represent a real-life situation where a
lead variant within a region has an extremely significant marginal P-value, we expanded
the baseline scenario with 1 true causal SNP to additional scenarios with increasing
significance of the true causal SNP, where the average -log10(P-value) of the true
causal ranges from 5 to 263 (mimicking significance often found in applied GWAS).
Under increasingly high-power scenarios, mJAM-Forward consistently selected 1
credible set regardless of the significance of the true causal whereas the average
number of credible sets by mJAM-SuSIE increased as the statistical significance (i.e.
effective power) increased (Figure 4B). As a result, m\JAM-SuSIE selected more false
positive SNPs within the credible sets when the true causal SNP has high observed
marginal significance. In addition, the empirical coverage of mJAM-SuSiE’s credible
sets dropped below the expected level quickly after the true causal SNP became more
significant (Figure 4A). In contrast, mJAM-Forward’s credible sets remained well-

calibrated.

To explore the impact of two types of missingness on the performance of mJAM-
Forward, we modified our simulation studies with artificial LD structure to include a
missing SNP in LD with the causal SNP, or with the missing SNP as the causal SNP
itself. The flexibility of mJAM likelihood (Equation 2) allows us to incorporate SNPs with
missing information in some studies or populations in the analysis. We found that when
the missing SNP is in LD with the causal SNP, mJAM-Forward has stable performance

in comparison to when there is no missingness (Figure S6). When the causal SNP is
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missing, mJAM-Forward still preserves the power both to select the causal SNP as the

index SNP and to include the causal SNP in its credible set.
Simulation Study on Real LD

When applied to the simulated data on the 120-SNP region on chromosome 2,
mJAM-Forward, mJAM-SuSiE and MsCAVIAR selected on average around 1 index
SNP whereas COJO selected 1.5 index SNPs, indicating a slight increase in false
positive signals. mJAM-Forward had highest sensitivity and PPV of identifying the true
causal from a complicated LD structure as an index SNP (Table 1). In terms of credible
set performance, MsCAVIAR demonstrated high empirical coverage of its credible set
as well as high sensitivity compared to the other two mJAM methods. However, such
high sensitivity and PPV was achieved at the cost of a much larger size for the credible
sets. The average size of the 95% CS of MsCAVIAR is 56.52, even larger than the
number of SNPs that reached marginal genome-wide significant (5 x 10~°) in a fixed-
effect meta-analysis (48.88). On the other hand, the average credible set size for
mJAM-Forward and mJAM-SuSIE was 19.70 and 18.37 respectively. Meanwhile, both

approaches preserved reasonably high sensitivity and empirical coverage.

Applied example 1: a single-hit region on chromosome 12

The first applied example is a 1013 kb region on chromosome 12 which consists
of 276 SNPs with a marginal meta-analyzed P-value < 103 and minor allele frequency
(MAF) > 2%. Figure S7 shows the LD structure for the four ancestry groups in this
analysis. None of the SNPs in this region reached genome-wide significance in any

population-specific analyses (Figure 5B) but after multi-population meta-analysis 48


https://doi.org/10.1101/2022.12.22.521659
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.22.521659; this version posted December 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

358  SNPs are genome-wide significant (Figure 5A). By setting a conditional P-value

359  threshold at 5 x 108, mJAM-Forward identified one index SNP at 12:109994870:A: T
360 (meta P-value = 3.5 x 1071%) with a corresponding 95% credible set of 41 SNPs. The
361 median r? between the credible set SNPs with the index SNP is 0.998 for European LD,
362 0.979 for African, 0.990 for Hispanic and 0.996 for East Asian. COJO identified the

363 same index SNP, 12:109994870:A:T. MsCAVIAR reported a slightly larger 95% credible
364  set than mJAM-Forward, consisting of 45 SNPs (Figure S8). The index SNP of

365 MsCAVIAR'’s credible set is 12:109998097:A:G (meta P-value = 3.7 x 1071%) whose r?
366  with 12:109994870:A:T is greater than 0.99 in all four ancestry groups. This index SNP,
367 12:109998097:A:G, is included in a mJAM-Forward credible set only when coverage is
368 increased to 99%; whereas the index SNP for mJAM-Forward, 12:109994870:A:T, is
369 included in the 95% MsCAVIAR credible set. mJAM-SuSiE estimates a single 95%

370  credible set with 28 total SNPs and a unique single index SNP, 12:109996343:A:C

371 (meta P-value = 2.2 x 107%) which is also included in both credible sets of mJAM-

372 Forward and MsCAVIAR. The median r? within a credible set is also greater than 0.99
373 for all ancestry groups (Table S1). The index SNP from mJAM-Forward was also

374 included in its credible set (Figure S8B).

375  Applied example 2: Asian-driven signals on chromosome 10

376 As a second example, we conducted an analysis on a chromosome 10 region
377  which consists of 412 SNPs after QC and spans around 1571 kb. Figure S9 shows the
378 LD structure in this region separately for European, African, East Asian, and Hispanic
379  populations. This region contains two clear signals with meta-analyzed P-value < 10715,

380  which are mainly driven by the results from East Asian and African populations (Figure
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6). In this example, mJAM-Forward identified two index SNPs, 10:80835998:C:T (meta
P-value = 9 x 1072 and 10:80238015:C:T (meta P-value = 1 x 1071%) (Figure 6A). The
95% mJAM-Forward credible set for the first index SNP, 10:80835998:C:T, contains 3
SNPs in total and there are 45 SNPs in the credible set for the second index SNP. The
minimum r? between the mJAM-Forward credible set SNPs with its own index SNP is no
less than 0.95 in European, East Asian and Hispanic populations, and no less than 0.81
in African ancestry populations (Table S2). COJO identified two index SNPs,
10:80835998:C:T and 10:80240493:A:G. 10:80835998:C:T is the same as one of the
index SNPs selected by mJAM-Forward and 10:80240493:A:G is included in the mJAM-
Forward 95% credible set of 10:80238015:C:T. Since MsCAVIAR does not support
reporting more than one distinctive credible set, we split this region into two adjacent
regions and applied MaCAVIAR on these two subregions separately. MsCAVIAR
selected the same 3-SNP 95% credible set (Figure S10) with index SNP being
10:80835998:C:T, and another 45-SNP credible set with index SNP being
10:80238015:C:T where 42 of them are replicated in the mJAM-Forward credible set.
mJAM-SuSIE also identified the same 3-SNP credible set (95%) with the same index
SNP 10:80835998:C:T but did not identify any credible set around 10:80238015:C:T.
Instead, it reported two additional credible sets at 10:80260938:V1 (meta P-value =

2 x 10719 and 10:80476778:V1 (meta P-value = 4 x 10™*) (Figure S10), and the

credible set size is 2 and 5 respectively.

Applied example 3: Secondary signal within 40kb region of a leading SNP

The third applied example illustrates a scenario where there is a secondary

signal within close proximity of the leading SNP in a chromosome 11 region. This region
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404  spans 335.5 kb and consists of 191 SNPs that passed QC. The population-specific LD
405  structure and Manhattan plot of multi-population meta-analysis results are shown in

406  Figure S11 and Figure 7. The lead variant, 11:102401661:C:T, has a multi-population
407 meta-analyzed P-value of 1.5 x 10738 and mJAM-Forward identified a secondary index
408  SNP, 11:102440927:A:G, only 39 kb away which has a meta P-value of 4.9 x 10711,
409  The r? between these two index SNPs is less than 0.01 in all four ancestry groups

410 (Figure S11), suggesting statistical independence between these two SNPs. COJO

411  selected the same primary index SNP, 11:102401661:C:T, and a different secondary
412 index, 11:102433309:A:G, which has a meta P-value of 1.3 x 10”7 and is highly

413 correlated with 11:102440927:A:G (r>=0.79 in EUR; 0.55 in AA; 0.87 in LA and 0.99 in
414  ASN). mJAM-SUSIE also selected two credible sets in this region: the first set has 2

415  SNPs which are both replicated in mJAM-Forward’s first credible set; the second set
416  has 26 SNPs where 24 of them are found in mJAM-Forward’s second set. However, the
417  index SNP of the second set in mJAM-SuSIE is one with lower marginal significance

418 (meta P-value = 6.3 x 10~%) compared to mJAM-Forward.

419 Both mJAM-SuSiE and mJAM-Forward are able to identify multiple sets within
420  one region without any pre-defined number of causal variants. On the other hand, the
421  implementation of MsCAVIAR requires users to specify the maximum number of causal
422  variants in a region to enumerate all possible causal configurations. Gauging the

423  possible number of causal variants can be difficult when secondary signals are located
424  close to the lead variant. In this example, the secondary signal is located only 39 kb
425  away from the leading variant, and visual inspection of the Manhattan plot (Figure 7)

426  suggests only one peak. Even if we specify the number of causal variants to be two
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427  when applying MsCAVIAR to this region, MsCAVIAR reports only one credible set such

428  that the posterior probability of this set containing 2 causal variants is at least 0.95.

429  Thus, it becomes difficult to separate the selected credible set SNPs into two distinctive

430  groups. When the number of causal variants is set to two, MsCAVIAR selected 24

431 SNPs among which the 2 SNPs with highest posterior probability are 11:102401661:C:T
432 and 11:102396607:C:T (Figure S12). However, these two SNPs are in high LD and thus
433  are likely linked to a single underlying causal signal and not indicative of multiple

434  independent signals.

435 Discussion

436 As integrating studies from ancestrally diverse populations may increase power
437  to detect novel variant and improve fine-mapping resolution®238-3% we extend our

438  previous single-population fine-mapping through JAM to a multi-population approach,
439  mJAM. mJAM requires only population-specific summary statistics and population-

440  specific reference LD panels, which are more accessible than individual-level data to
441  many researchers. mJAM explicitly incorporates the different LD structures across

442  populations to yield conditional estimates of SNP effects from a single joint model. The
443  mJAM framework can be used to first select index SNPs using existing feature selection
444  approaches, such as forward stepwise selection?, Bayesian model selection®®', or
445  regularized regression®’. To demonstrate this flexibility, we have implemented mJAM
446  through two implementations of feature selection: mJAM-SuSIE (a Bayesian approach)
447  and mJAM-forward selection. We also combine the forward selection implementation

448  with a second step to identify credible set SNPs. This step works given any set of index
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449  SNPs within a region by estimating a posterior credible set probability (PCSP) for a SNP
450 defined as a combination of two component probabilities: one models the marginal

451  association between the candidate SNP and the outcome; the other models the

452  mediation effect of the index SNP on the candidate SNP, borrowing from a mediation
453  framework. These PCSPs are then used to construct credible sets. The closed-formed
454 expression for PCSP allows computational efficient construction of credible sets,

455  compared to other Bayesian approaches that often use computationally intensive

456  algorithms to obtain posterior distributions. It also allows credible set construction from
457  any index SNP list allowing researchers to apply other feature selection methods or use

458  existing lists or knowledge to determine index SNP.

459 The two-stage model framework utilized in mJAM builds upon previous work

460  highlighting the use of hierarchical JAM (hJAM)#°, an approach for the joint analysis of
461  marginal summary statistics that incorporates a prior information matrix. This matrix

462  characterizes the SNPs and can include information such as SNP effects on gene

463  expression analogous to TWAS or on intermediates biomarkers analogous to Mendelian

464  randomization. mJAM is an extension to hJAM in that it replaces the prior information

Ip

465  matrix in hJAM with a stacked identity matrix, (Ip>, as described in Methods section.
Ip

466  The stacked identify matrix can be interpreted as our prior believe on the joint SNP

467  effect estimates that all populations share the same true effect sizes.

468 In a set of realistic simulation settings, both mJAM implementations
469  demonstrated the ability to infer the number of independent signals within a region, to

470  differentiate signals from noise, and to achieve a sufficient level of sensitivity while
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471 preserving high fine-mapping resolution through small-sized credible sets. We also

472  investigated the impact of imbalanced sample size across populations on model

473  performance and demonstrated that all methods showed a similar decrease in terms of
474  sensitivity and PPV when the sample size is imbalanced but the total sample size

475  remains constant (Figure S4). mJAM is described using three populations in simulation
476  studies and we apply mJAM to real data with four distinct populations. In practice,

477 mJAM can be used to analyze a large number of studies or population-specific

478  summary statistics facilitating flexibility in application. Thus, analyses do not need to be
479  limited to aggregating continental ancestry populations, but can include numerous, more
480  specific ancestry appropriate reference panels to aggregate data across many studies
481  (Figure S5). However, as with all summary statistic approaches that rely on reference
482  panels, the ability to disentangle highly correlated SNPs will be driven by the sample
483  sizes*! and LD within and between the reference panels used*. In addition, another
484  practical limitation to many summary statistics-based approaches is the requirement for
485 complete summary statistics and refence data for all SNPs across all studies and

486  populations analyzeds3t. Missingness can be due to the difference in genotyping arrays
487  used by different studies, or rare variants not being captured due to limited sample size
488 in certain studies. Filtering too many variants might be dangerous because as less

489 information is used to disentangle the LD structure within each region and potentially
490 missing the causal variant. An important feature of mJAM is that it will work even in the
491  presence of differential missingness across studies or populations utilizing all

492 information that is available.
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493 In the simulation study with artificial LD structures, mJAM-SuSiE resulted in

494  outstanding performance under high LD scenarios, achieving both high sensitivity and
495  high PPV. However, as the significance of the causal variant(s) within a region

496 increases, MJAM-SuSiE tends to break down selecting more false positive signals with
497  each in separate credible sets. This results in a substantial decrease in the empirical
498 coverage of mJAM-SuSIE credible sets. In practice, we recommend limiting the

499  application of mJAM-SUSIE to only regions with SNPs with modest marginal statistically
500 significance or to screen for any potential false positive credible sets before interpreting

501 mMJAM-SUSIE’s credible sets after estimation.

502 We also carried out a case study of prostate cancer where mJAM is applied to
503 several prostate cancer susceptible regions. Through three different regions with

504 different characteristics in number of estimated independent signals and underlying LD
505 within and between populations, we demonstrated the practical advantages of mJAM-
506 Forward, including allowing more than one causal variant within a region, outputting
507 individual credible sets corresponding to each index, and easily interpretable index

508 variants with conditional estimates. In addition to the three applied examples shown
509 here, mJAM has been applied to perform index variants selection across all regions in

510 the latest multi-population prostate cancer GWAS?” which is currently under review.

511 For all approaches that use marginal summary statistics and reference data,
512 careful consideration and construction of the correlation matrices is important. This
513 includes using a reference panel with ancestry and LD that matches the population in
514  which the original marginal summary statistics were estimated*'#3. The methods also

515  require that the correlation matrix used is full rank and positive-definite which is often
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516 driven by the sample size of the data and the frequency of the SNPs. For mJAM such
517  consideration must be considered across all populations used in the analysis. Firstly, for
518 rare variants, mJAM estimates of multi-population effect and standard errors that can be
519 different from the marginal meta-analyzed estimates which use inverse-variance

520 weighting. mJAM estimation from summary statistics assume Hardy-Weinberg

521  equilibrium which some variants, especially rare variants, might not satisfy. In addition,
522 many rare variants will also have large effect sizes and large standard errors from the
523  population-specific summary statistics thus resulting in more uncertainty in multi-

524  population analysis compared to variants that are common across all populations.

525  Secondly, in regions with extremely significant lead variants from a well-powered

526 GWAS, even small degrees of LD can pull the marginal and conditional effect estimates
527  of other variants away from the null. Thus, false positive signals might be selected if we
528 apply the same threshold for index SNP selection and LD pruning. For such regions,

529 researchers may consider setting a higher significance threshold for secondary signal

530 selection and a more stringent LD threshold for pruning out correlated signals.

531 In conclusion, mJAM offers a flexible and efficient modeling framework for multi-
532  population fine-mapping that first selects index variants and then constructs credible
533  sets. One key assumption in mJAM is that causal variants and their effect sizes are

534  similar across all populations and there exists evidence suggesting that common causal
535 variants tend to have consistent effect sizes across populations?6-28. In future research,
536 we plan to relax the current mJAM assumption to allow different true effect sizes across
537 populations. Other potential future directions include follow-up functional analyses

538 based on mJAM credible sets and polygenic risk score models based on mJAM fine-
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539 mapped results. mJAM is currently available as a R package for fine-mapping of
540 specific regions and can easily be adapted for genome-wide applications.

541
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542 Tables

543 Table 1 Comparison of model performance on data simulated from real LD

544 structure.

Method
mJAM- mJAM- FE COJO | MsCAVIAR
Forward SuSiE
Credible Set | Sensitivity? | 0.930 0.910 0972 |- 0.994
Performance
PPVP 0.064 0.069 0.024 | - 0.022
CS size® 19.70 18.37 48.88 | - 56.62
CS 0.934 0.940 - - 1.000
coverage®
Index SNP Sensitivity® | 0.218 0.174 - 0.186 |0.134
Performance
PPV 0.219 0.021 - 0.144 |0.134
Number of | 1.00 0.97 - 1.51 1.00
selected
index

545  Abbreviations: FE, fixed-effect meta-analysis; CS, credible set, PPV, positive predictive value.
546 2 proportion of true causal SNPs being selected in a credible set, averaged over 500 simulations

547 b proportion of true causal SNPs over the total number of selected credible set SNPs, averaged over
548 500 simulations.

549  ¢total number of SNPs included in a credible set, averaged over all 95% credible sets in 500
550  simulations.

551 9 proportion of 95% credible sets in 500 simulations that included at least one true causal SNP.
552 @ proportion of true causal SNPs being selected as an index SNP, averaged over 500 simulations.

553  fproportion of true causal SNPs over the total number of selected index SNPs, averaged over 500
554  simulations.

555
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Figure 1 The direct acyclic graphs (DAG) for the probability that the index SNP mediates

the candidate credible set SNP effect.

(A) Model with the candidate credible set SNP,W, by itself. T is the total effect of Won Y. (B)
Model with W and X, the index SNP. T’ is the direct effect of W on Y.
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Figure 2 Credible set performance in simulation studies with artificial LD structure.

(A) Sensitivity, i.e. the proportion of 500 simulations where the true causal SNP was selected in
a credible set. (B) Positive Predictive Value (PPV), i.e., the proportion of true causal SNP over

the credible set size, averaged over 500 iterations. (C) Average CS size.


https://doi.org/10.1101/2022.12.22.521659
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.22.521659; this version posted December 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Independent Moderate LD High LD Independent Moderate LD ] High LD Independent Moderate LD High LD

msCAVIAR 4 0.9 072 0.44 1 0.9 0.72 0.44 1

1
COJO 1 .51 .BB l’“‘ .-‘ -
m,JAM—SuSwE-.]SB -0 .|.05'8 .Iaq
mJAM-Forward 4 -JEI -

74 96

88

93 95

~
w
~
@

!

Sensitivity PPV Number of Index SNP(s)

Figure 3 Performance of index SNP(s) selection in simulation studies with artificial LD

structure.

(A) Sensitivity, i.e. the proportion of 500 simulations where the true causal SNP was selected in
an index SNP. (B) Positive Predictive Value (PPV), i.e., the proportion of causal SNP selected as
an index over all selected indices, averaged over 500 iterations. (C) Number of index SNP(s)

selected, averaged over 500 iterations.
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Figure 4 Credible set behaviour of mJAM-SuSiE and mJAM-Forward as causal SNP
significance increases.

Simulations were conducted under baseline scenario setting (1 causal SNP out of 50 SNPs in
total which are divided into 5 LD blocks) with varying effect sizes. The average empirical -
log10(P-value) of the causal SNP ranged from 5 to 263, covering most situations seen in
practice. Red dashed line indicates requested coverage which is set to be 0.95 for both methods.
(A) Empirical credible set coverage; (B) Average number of credible sets selected among 500

simulations.
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Figure S Manhattan plot for mJAM-Forward credible sets at chromosome 12 position

109194870 to 110794870.

(A) y-axis is meta-analyzed -log10(P-value) from multi-ethnic analysis; (B) y-axis is -log 10(P-

value) from ethnic-specific analysis.
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Figure 6 Manhattan plot for mJAM-Forward credible sets at chromosome 10 position

79436999 to 81635998.

(A) y-axis is meta-analyzed -log10(P-value) from multi-ethnic analysis; (B) y-axis is -log10(P-

value) from ethnic-specific analysis.
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Figure 7 Manhattan plot for mJAM-Forward credible sets SNPs at chromosome 11

position 101601661 to 103201661.

(A) y-axis is meta-analyzed -log10(P-value) from multi-ethnic analysis; (B) y-axis is -log10(P-

value) from ethnic-specific analysis.
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