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Abstract 6 

Recent advancement in Genome-wide Association Studies (GWAS) comes from 7 

not only increasingly larger sample sizes but also the shifted focus towards 8 

underrepresented populations. Multi-population GWAS may increase power to detect 9 

novel risk variants and improve fine-mapping resolution by leveraging evidence from 10 

diverse populations and accounting for the difference in linkage disequilibrium (LD) 11 

across ethnic groups. Here, we expand upon our previous approach for single-12 

population fine-mapping through Joint Analysis of Marginal SNP Effects (JAM) to a 13 

multi-population analysis (mJAM). Under the assumption that true causal variants are 14 
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common across studies, we implement a novel version of JAM that conditions on 15 

multiple SNPs while explicitly incorporating the different LD structures across 16 

populations. The mJAM framework can be used to first select index variants using the 17 

mJAM likelihood with any feature selection approach. In addition, we present a novel 18 

approach leveraging the ideas of mediation to construct credible sets for these index 19 

variants. Construction of such credible sets can be performed given any existing index 20 

variants. We illustrate the implementation of the mJAM likelihood through two 21 

implementations: mJAM-SuSiE (a Bayesian approach) and mJAM-Forward selection. 22 

Through simulation studies based on realistic effect sizes and levels of LD, we 23 

demonstrated that mJAM performs better than other existing multi-ethnic methods for 24 

constructing concise credible sets that include the underlying causal variants. In real 25 

data examples taken from the most recent multi-population prostate cancer GWAS, we 26 

showed several practical advantages of mJAM over other existing methods. 27 
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Introduction 28 

The development of high-throughput genotyping and genotype imputation has 29 

boosted the application of genome-wide association studies (GWAS) which is now a 30 

standard approach to identify susceptibility loci or genomic regions for many complex 31 

diseases and traits1,2. However, the linkage disequilibrium (LD) of single-nucleotide 32 

polymorphisms (SNPs) makes it challenging to determine the true causal variant(s) 33 

within a region or to further prioritize genetic variants for functional studies2,3.  34 

Fine-mapping is a post-GWAS approach which seeks to specify the underlying 35 

causal variant and quantify the strength of effect given existing evidence that a certain 36 

region is likely to contain at least one causal signal. Many methods for fine-mapping 37 

often start with a lead SNP – the SNP with the smallest p-value within one region – and 38 

then they examine additional highly correlated neighboring SNPs in the region using 39 

different strategies such as setting a threshold on pairwise correlation (ÿ2) with the lead 40 

SNP2. These approaches are intuitive but do not jointly analyze all the SNPs within a 41 

region. In addition, they often do not generalize easily to the investigation in multiple 42 

populations. 43 

More recent and advanced fine-mapping approaches attempt to jointly or 44 

conditionally analyze all SNPs within a region, and include stepwise regression2, 45 

penalized regression4-7, and Bayesian methods8-11. Conditional step-wise selection has 46 

been used to discover multiple signals at a locus with individual level data12,13. However, 47 

stepwise selection can be very unstable with a large amount of highly correlated SNPs 48 

and the P-values of the signals in the final selected model tend to be conservative2. 49 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.521659doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521659
http://creativecommons.org/licenses/by-nc-nd/4.0/


Alternative selection approaches with individual level data are penalized regression 50 

models, such as lasso4 and elastic net5, and Bayesian methods, such as CAVIAR10 and 51 

Sum of Single Effect models (SuSiE)11. In contrast to step-wise selection, penalized 52 

regression techniques are potentially more stable because the penalty term encourages 53 

shrinkage of effect estimates towards zero resulting in sparsity and robust estimation. 54 

However, penalized often do not perform well with highly correlated SNPs and they do 55 

not represent the uncertainty in effect estimation and model selection2. In contrast, fully 56 

Bayesian methods compute posterior probabilities for models within the model space to 57 

infer the probability of causality for each SNP and often result in credible sets to 58 

measure the fine-mapping resolution using these probabilities. Ideally, exact inference 59 

is possible by enumerating all possible models or combinations of SNPs but the model 60 

space increases so rapidly that exhaustive searches become impractical as the number 61 

of SNPs increases. Stochastic search algorithms are often used to perform inference on 62 

posterior distributions. For example, piMASS8 and BVS14,15 both use Markov chain 63 

Monte Carlo (MCMC) algorithm to search through the model space, while the later can 64 

also incorporate external annotations as prior information in the Bayesian model 65 

selection to further prioritize causal SNPs.  66 

In addition to analyses performed on individual-level data, methods for fine-67 

mapping using only summary statistics from GWAS are becoming more widely applied 68 

16-19. In general, these methods use reference samples to estimate the correlations 69 

between SNPs and then integrate the correlation structure with modified marginal SNP 70 

summary statistics in a multivariable regression framework to approximate the 71 

corresponding individual-level analysis. Differences between methods are due to 72 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.521659doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521659
http://creativecommons.org/licenses/by-nc-nd/4.0/


variations in the assumptions for residual error and algorithms for model selection16-19. 73 

For example, FINEMAP16 places a Gaussian prior for causal effect estimates and 74 

adopts a shotgun stochastic search algorithm to prioritize the search to a set of most 75 

likely important causal configurations. The original implementation of the Joint Analysis 76 

of Marginal SNP Effects (JAM)19 invokes a Cholesky transformation on the linear 77 

regression likelihood, adopts a �-prior for effect estimates, and then implements a 78 

computationally efficient reversible jump MCMC stochastic search algorithm.  79 

Leveraging the information across multiple ethnic groups or ancestry populations 80 

can enhance the power of fine-mapping20-22. Different ancestry groups may have 81 

distinct LD structures due to different evolutionary and migration histories23,24. For 82 

example, compared to non-African Americans, African Americans have smaller LD 83 

blocks with weaker correlations as the number of recombination events for each region 84 

is expected to be higher25. If a true causal variant exists across populations, its 85 

corresponding estimated association across populations should be more consistent 86 

than the estimated association for proxy SNPs with different LD across populations26-28. 87 

Therefore, integrating the difference in the LD structures across populations can 88 

potentially narrow the credible set that a causal variant resides in and improve the 89 

resolution of the fine-mapping29,30.  90 

Here, we present an extension of the single-population fine-mapping through 91 

JAM to a multi-population setting by fitting a multi-SNP joint model, <mJAM=. mJAM 92 

assumes that the true causal variant(s) share the same effect across ancestry groups 93 

and it explicitly accounts for different LD structures across ancestry groups in the joint 94 

model. The mJAM likelihood allows for different feature selection procedures to be 95 
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performed on summary statistics obtained from multiple populations. This includes 96 

Bayesian variable selection approaches that also yield credible sets or more 97 

conventional approaches for only selecting certain SNPs. When combined with 98 

approaches that only select specific SNPs, mJAM conditional models can further be 99 

used in a mediation type framework to construct credible sets for these index variants in 100 

a multi-population analysis. We illustrate this flexibility with two computationally efficient 101 

implementations of mJAM: <mJAM-SuSiE= for Bayesian variable selection with native 102 

SuSiE credible sets, and <mJAM-Forward= for frequentist forward selection of index 103 

SNPs and subsequent credible set construction. Through simulation studies with 104 

realistic effect size and various patterns of LD, we compare mJAM-SuSiE and mJAM-105 

Forward with other multi-population approaches, including the most commonly used 106 

fixed-effect meta-analysis, COJO17 with pooled LD structure and meta-analyzed 107 

summary statistics, and MsCAVIAR31, a Bayesian fine-mapping approach that allows for 108 

an arbitrary number of causal variants in a region. We then applied these methods to 109 

three known regions for prostate cancer to demonstrate the practical advantages of 110 

mJAM. 111 

Material and methods 112 

Multi-population JAM 113 

To simplify notation and without loss of generality, we consider the scenario with 114 

three populations. Within each population and for a given set of ā SNPs within each 115 

region, a linear phenotypic model is used.  116 
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 �(ÿ) = �(ÿ)�ý��Āÿ� + ϵ, for � = 1, 2, 3 ( 1 )  

where �(ÿ) is a þ(ÿ) × 1 vector of mean-centered phenotypic trait values for the �ý/ 117 

population, with þ(ÿ)being the sample size of the �ý/ population; �(�) is a þ(ÿ) × ā matrix 118 

of individual-level genotype data for the �ý/ group, where each SNP has been centered 119 

to its mean; �ý��Āÿ�  ∈ ℝ� denotes the joint effect of the given set of ā SNPs. ϵ~þ(0, �2) 120 

where �2 is the residual variance. It is assumed that all three populations share the 121 

same joint effect size, i.e., �ý��Āÿ� , and the same residual variance. 122 

Akin to a meta-regression, a second-stage model describes the relationship 123 

between the population joint effect estimates and the underlying true effect: 124 

 (�̂(1)�̂(2)�̂(3)) = (������) �global + � 

 

( 2 )  

where �~þ(0, �2) and �̂(ÿ) ∈ ℝ� is the vector of estimated joint SNP effects for the �ý/ 125 

population.  126 

Equation ( 1 ) and ( 2 ) together form a two-stage model when individual-level 127 

data are available. The first stage is three separate linear phenotypic models whereas 128 

the second stage fits a fixed-effect meta-analysis model that combines all populations 129 

together. By replacing the �global′Ā in ( 1 ) with ( 2 ), we have the following linear fixed-130 

effect model that incorporates the individual-level data of all populations: 131 

 (�(1)�(2)�(3)) = (�(1) 0 00 �(2) 00 0 �(3)) (������) �ý��Āÿ�  +  �′ ( 3 )  
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 132 

With summary data in which only the marginal effect sizes and their standard errors are 133 

available, it is also possible to estimate the joint effect size, ����Āÿ�, with an additional 134 

reference sample that estimates the LD between the SNPs2,32. Thus, Equation (3) can 135 

be used with only GWAS summary statistics with a modified mJAM likelihood after 136 

linear transformation: 137 

 �ā�ā�ā ~ ý�þ (((�ā �ā)′�ā �ā) �ý��Āÿ� ,  �2 ((�ā �ā)′�ā �ā)) ( 4 ) 

where �ā, �ā, �ā denotes  (�(Ā) ÿ ÿÿ �(ā) ÿÿ ÿ �(Ă)) , (�(Ā)�(ā)�(Ă)) and (������) in Equation ( 3 )  138 

respectively. By expanding each matrix, we have �ā�ā�ā = ∑ �(�)′�(�)Ă�=Ā   and  139 (�ā �ā)′�ā �ā =  ∑ �(�)′�(�)Ă�=Ā  where �(�)′�(�) and �(�)′�(�) are population-specific 140 

statistics and can be estimated by population-specific GWAS summary statistics and a 141 

reference genotype matrix or LD matrix. Detailed derivation can be found in 142 

Supplemental Methods. 143 

Index SNP Selection and Credible Set Construction for Fine Mapping  144 

mJAM establishes a multi-SNP model within each population with corresponding 145 

population-specific LD, while jointly estimating a fixed-effects summary estimate of 146 

effect. The mJAM likelihood presented in Equation ( 4 ) can be used in a wide variety of 147 

existing feature selection approaches which are applicable to the mJAM statistics 148 

shown in Equation ( 4 ). Possible approaches for index SNP selection in mJAM includes 149 

stepwise selection2, Ridge regression7, and Bayesian approaches such as SuSiE11.  150 
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We adopt a forward selection approach based on conditional P-value for index 151 

SNP selection because of its computational efficiency and straightforward interpretation. 152 

We define our implementation of <mJAM-Forward= as a two-step approach in which a 153 

first step relies on a conventional stepwise forward selection to select an additional 154 

index SNP based on its corresponding P-value from a mJAM model conditional on any 155 

previous index SNP(s). We incorporate a �-prior to stabilize effect estimates33. To avoid 156 

fitting models with highly correlated SNPs we include a pruning process within Algorithm 157 

1. 158 

The second step for mJAM-Froward is to define a multi-population credible set 159 

for each index SNP. Here, we fit two mJAM models for each candidate credible set 160 

SNP, W, located within a region of an index SNP, X. These models demonstrate that 161 

the candidate credible set SNP is: 1) associated with disease marginally, and 2) that the 162 

index SNP mediates the effect of the candidate SNP on the disease. The first model 163 

includes W by itself to yield a probability that W is associated with the trait. This model 164 

also provides a posterior distribution for the marginal effect for the candidate credible 165 

set SNP.  166 

 �ÿ(ý�  |  ÿ�ā�) = ā(ý�)ý�[ý� : ý�þ��]∑ ā(ý�)ý�[ý�: ý�þ�� ]�  ( 5 )  

where  ā(ý�) is the prior density of one-SNP model that includes W and ý�[ý�: ý�þ��] 167 

is the Bayes factor of one-SNP model with W to the null model. See Supplemental 168 

Methods for detailed expression of ý�[ý�: ý�þ��] with the incorporation of a �-prior of 169 

the effect estimates. The second model conditions on the index SNP, X, to obtain a 170 

posterior estimate for an adjusted effect estimate for the credible set SNP. Borrowing 171 
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from a mediation framework34, we then calculate the probability that the index SNP 172 

mediates the candidate credible set SNP effect using the two models (Figure 1).  173 

 
�ÿ(ýþý��ā�Āÿ|ÿ�ā�) = �ÿ(|�� 2 ��′ | > 0|ÿ�ā�) 

( 6 )  

where �� is the total effect of the candidate credible set SNP on the outcome and ��′ is 174 

the direct effect. A strong mediation effect indicates that the observed marginal effect of 175 

the candidate credible set SNP on the outcome is mainly due to its indirect effect 176 

through its strong correlation with the index SNP, and not due to a direct effect on the 177 

outcome. These two model probabilities are then combined to calculate the probability 178 

that a candidate SNP is a credible set SNP, Posterior Credible Set Probability (PCSP).   179 

 
�þ��� : = �ÿ(ý�  |  ÿ�ā�) ∙  �ÿ(|�� 2 ��′ | > 0|ÿ�ā�) 

( 7 )  

PCSP are then scaled over all SNPs in the region and used to define a 95% credible set 180 

of cross-population SNPs.  181 

Algorithm 1 Pseudo algorithm for fitting mJAM-Forward and credible set 182 

construction in a region 183 

Input data:  �̂(ÿ), Āþ(�̂(ÿ)), sample size of GWAS þ���� , Effect Allele Frequencies ý�þ(�), ��(�)
 for each study indexed by �  

Input arguments: LD threshold for index SNP selection, conditional P-value threshold 

 

1. Compute mJAM statistics (�ā �ā)′�ā  �ā, (�ā �ā)′�ā, and �ā′�ā 

2. Compute marginal mJAM P-values under � prior specification for all testing 

SNPs in the region  

3. While the smallest conditional P-value (or marginal P-value in the first round 
only) is smaller than threshold:  

4. Identify the testing SNP with the smallest conditional P-value as the next 

index SNP 

5. Construct credible set of the new index SNP 

6. Prune out SNPs in LD with the new index SNP based on LD threshold 
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7. Compute the conditional mJAM P-value for all remaining SNPs in the region  

8. Stop until no SNP in the region has conditional p-value smaller than threshold  

 

Return index SNP(s), corresponding conditional P-value(s) and credible set(s).  

 

We also integrate the mJAM likelihood and summary statistics into a Bayesian 184 

selection method that indicates index SNPs and simultaneously estimates credible set 185 

SNPs, <mJAM-SuSiE= (See Supplemental Methods for the pseudo-algorithm of fitting 186 

mJAM-SuSiE) 35. 187 

Incorporating missing variants in mJAM 188 

In genetic association studies with more than one cohort or study, it is common 189 

that a particular SNP might be available in some studies but missing in the others36. A 190 

notable practical feature of the mJAM framework is that it allows for these SNPs with 191 

missing information to be analyzed without being filtered or removed. This is 192 

accomplished with a simple modification by substituting a value of zero in the identity 193 

matrix in Equation ( 3 ) and ( 4 ). Such modification then allows for observed statistics 194 

from other populations to be used but removes the contribution from the population in 195 

which it is missing but does not alter the algorithm nor the fitting process. This 196 

modification is applicable either when the SNP is missing in the reference panel or 197 

when the population-specific GWAS summary statistics are not available for the SNP 198 

(See Supplemental Methods for more details).  199 

Simulation Study on Structured LD 200 

We conducted a simulation study to compare the performance of the two mJAM 201 

implementations (mJAM-SuSiE and mJAM-Forward) with three commonly used 202 
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alternative approaches: fixed-effect meta-analysis, COJO stepwise selection and 203 

MsCAVIAR. Fixed-effect meta-analysis takes an inverse-variance weighted average of 204 

the marginal estimates from individual studies or populations. COJO approximates the 205 

conditional and joint effect from summary statistics and single reference LD and then 206 

implements a stepwise selection based on conditional P-values. Additionally, for use of 207 

COJO on multiple populations, the summary-level statistics come from the fixed-effect 208 

meta-analysis across all populations and the reference LD can be obtained from either 209 

the pooled individual-level genotype data or a subset of meta-analysis sample. We used 210 

the former as the reference LD for COJO in our simulations. MsCAVIAR is built upon a 211 

Bayesian multivariate normal framework first described as CAVIAR10 to account for 212 

between-study or between-population heterogeneity using a random-effects model. To 213 

compare the performance of index SNP selection across these multi-population 214 

approaches, we use three metrics: number of selected index SNPs, sensitivity/power, 215 

and positive predictive value (PPV). In addition, since MsCAVIAR, mJAM-SuSiE, and 216 

mJAM-Forward output credible set(s) within each region, we compare credible set 217 

performance using the number of credible set(s), size of each credible set, 218 

sensitivity/power, PPV and empirical coverage. For the two non-Bayesian methods, FE 219 

and COJO, we consider the group of SNPs with meta-analyzed or conditional P-values 220 

less than a Bonferroni-corrected significance level as a single credible set for the 221 

purpose of performance comparison.    222 

We performed two sets of scenarios: 1) simulated correlation structures with the 223 

same block LD structures across populations; and 2) simulated correlation based on 224 

real genetic correlation structures observed in the study cohort from Elucidating Loci 225 
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Involved in Prostate Cancer Susceptibility (ELLIPSE) OncoArray Consortium21. For the 226 

first set of scenarios, we first simulated a baseline scenario where each population has 227 

3 individual association studies with N = 5,000 each to closely represent the real-life 228 

situation where there are multiple association studies performed for each ethnic group 229 

(total sample size = 5,000 × 3 studies/population × 3 population = 45,000). A total of 50 230 

SNPs are simulated in 5 blocks of 10 SNPs. Within each block of 10 SNPs, the pair-231 

wise correlations are uniformly set to a constant value r2 across ancestries for simplicity. 232 

r2 varies from 0, 0.62 and 0.92 to represent independent, moderate LD and high LD 233 

scenarios. Corresponding LD heatmaps are shown in Figure S1. We then selected a 234 

single causal SNP with an effect size of 0.03 for a standard normal outcome. The 235 

baseline scenario was extended by varying parameters, including the ratio of sample 236 

sizes between each population, levels of LD, the total number of causal SNPs and 237 

corresponding effect sizes.  238 

Simulation Study with Real Data 239 

To better capture realistic LD patterns, we performed simulations based on real 240 

correlation within three ancestry groups (Europeans, African Americans, and East 241 

Asians) from the ELLIPSE OncoArray Consortium21. The available sample sizes for 242 

these three populations are 93,749 Europeans, 9,531 African Americans, and 2,075 243 

Asians. We simulated 120 SNPs within a 1334 kb region from chromosome 2 using a 244 

multivariate normal model with an estimated correlation structure from individual-level 245 

genotypes. The heatmap of this region for each ethnicity is shown in Figure S2. In each 246 

simulation, we randomly chose one SNP out of a selected LD block to be the causal 247 

SNP with effect size being 0.04, resulting in an empirical average -log10(P-value) of the 248 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.521659doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521659
http://creativecommons.org/licenses/by-nc-nd/4.0/


most significance variant of 7.75 (P-value j 1.8 × 1028) averaged across 500 249 

simulations.  250 

Applied examples 251 

To illustrate mJAM on real data, we applied the methods on three regions using 252 

summary statistics from the latest cross-ancestry prostate cancer association study37 253 

across four ancestry groups, including 122,188 prostate cancer cases and 604,640 254 

controls of European ancestry, 19,391 cases and 61,608 controls of African ancestry, 255 

10,809 cases and 95,790 controls of East Asian ancestry, and 3,931 cases and 26,405 256 

controls from Hispanic populations. Within each region, we applied mJAM-Forward to 257 

select index SNP(s) using population-specific summary statistics and reference dosage 258 

for each population. Then we constructed mJAM credible set(s) by including top SNPs 259 

ranked by their mJAM posterior probabilities until those SNPs included in the credible 260 

set reached a cumulative posterior probability of 95%. Reference dosage were obtained 261 

from the Prostate Cancer Association Group to Investigate Cancer-Associated 262 

Alterations in the Genome and Collaborative Oncological Gene-Environment Study 263 

Consortium [PRACTICAL iCOGS], the Elucidating Loci Involved in Prostate Cancer 264 

Susceptibility OncoArray Consortium [ELLIPSE OncoArray], the African Ancestry 265 

Prostate Cancer Consortium [AAPC GWAS], GWAS of prostate cancer in Latinos 266 

[LAPC GWAS] and Japanese [JAPC GWAS]21. Results from mJAM-Forward are 267 

compared with those from mJAM-SuSiE, COJO and MsCAVIAR.   268 
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Results 269 

Simulation Study on Artificial LD 270 

Under the baseline scenario (50 SNPs in total, 1 causal SNP with an effect size 271 

of 0.03, 3 studies per population, and balanced sample size across populations), the 272 

95% credible sets from mJAM-Forward, mJAM-SuSiE, and MsCAVIAR were well 273 

calibrated to the specified coverage level (Figure S3). Both mJAM-Forward and mJAM-274 

SuSiE preserved relatively high sensitivity in terms of including the true causal SNP in 275 

its credible set (sensitivity = 0.86 and 0.64 respectively, Figure 2A). Although 276 

MsCAVIAR had the highest sensitivity (0.99) under the baseline scenario, its average 277 

credible set size was much larger (9.47 for MsCAVIAR; 2.12 for mJAM-Forward and 278 

0.78 for mJAM-SuSiE, Figure 2C), thus leading to a much lower PPV (0.39, Figure 2B). 279 

mJAM-SuSiE had the highest PPV (0.89) among the methods we compared, meaning 280 

that it had the highest proportion of true causal over the total number of credible set 281 

SNPs on average, followed by mJAM-Forward (0.58) (Figure 2B). In terms of credible 282 

set sensitivity, PPV and average CS size the methods had similar patterns of 283 

performance for scenarios expanded beyond the baseline to various LD structures, 284 

imbalanced sample size across populations, and 3 causal SNPs (Figure S4).  285 

In terms of identifying the true causal variant as an index SNP (i.e. sensitivity),  286 

mJAM-Forward and MsCAVIAR had the best performance under moderate LD 287 

scenarios (Figure 3A) with a sensitivity was 0.73, and 0.72 respectively. However, for 288 

these two methods, mJAM-Forward had a better PPV was 0.81, compared to 289 

MsCAVIAR (0.72). In comparison, mJAM-SuSiE had poor sensitivity (0.62) but a higher 290 
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PPV (0.88). COJO had a similar performance with mJAM-Forward under independent 291 

LD scenarios but its sensitivity and PPV worsened compared to mJAM-Forward as the 292 

level of LD increases. Though COJO performs a similar stepwise selection as mJAM-293 

Forward, unlike mJAM-Forward that specifically accounted for population-specific LD, 294 

COJO uses meta-analyzed marginal summary statistics and pooled LD panel which 295 

makes it difficult to identify the true common variants through disentangling the 296 

population-specific LD structure. All methods selected on average 1 index SNP among 297 

500 simulations, close to the true number of causals (Figure 3C).  For MsCAVIAR pre-298 

specification is required so we set the value to 1 for all scenarios. Notably for practical 299 

implementation, for a small number of scenarios (40%), mJAM-SuSiE did not select any 300 

index SNP under independent or moderate LD scenarios, leading to relatively low 301 

sensitivity compared other methods when averaged over replicates (Figure 3A).   302 

When the pairwise correlation within each LD block increased, the average 303 

credible set sizes for all methods increased correspondingly (Figure 2C). As a result, 304 

under high LD scenarios, the PPV of identifying the true causal(s) in a credible set 305 

decreased to a noticeable extent for MsCAVIAR, mJAM-Forward, and FE (Figure 2B). 306 

Though mJAM-Forward’s PPV dropped due to the increase in credible set sizes on 307 

average, mJAM-Forward was still able to retain a sensitivity of 0.88 under the high LD 308 

scenario. mJAM-SuSiE achieved the highest PPV (0.81, Figure 2B) among all methods 309 

under high LD scenarios while retaining relatively high sensitivity and small credible set 310 

size. However, mJAM-SuSiE’s sensitivity was relatively low compared to mJAM-311 

Forward and MsCAVIAR under independent or moderate LD scenarios (Figure 2A).  312 
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Despite of mJAM-SuSiE’s outstanding performance under high LD scenarios with 313 

moderate causal effect size, we noticed that its results were very sensitive to the 314 

marginal significance of the true causal SNPs. To represent a real-life situation where a 315 

lead variant within a region has an extremely significant marginal P-value, we expanded 316 

the baseline scenario with 1 true causal SNP to additional scenarios with increasing 317 

significance of the true causal SNP, where the average -log10(P-value) of the true 318 

causal ranges from 5 to 263 (mimicking significance often found in applied GWAS). 319 

Under increasingly high-power scenarios, mJAM-Forward consistently selected 1 320 

credible set regardless of the significance of the true causal whereas the average 321 

number of credible sets by mJAM-SuSiE increased as the statistical significance (i.e. 322 

effective power) increased (Figure 4B). As a result, mJAM-SuSiE selected more false 323 

positive SNPs within the credible sets when the true causal SNP has high observed 324 

marginal significance. In addition, the empirical coverage of mJAM-SuSiE’s credible 325 

sets dropped below the expected level quickly after the true causal SNP became more 326 

significant (Figure 4A). In contrast, mJAM-Forward’s credible sets remained well-327 

calibrated.  328 

To explore the impact of two types of missingness on the performance of mJAM-329 

Forward, we modified our simulation studies with artificial LD structure to include a 330 

missing SNP in LD with the causal SNP, or with the missing SNP as the causal SNP 331 

itself. The flexibility of mJAM likelihood (Equation 2) allows us to incorporate SNPs with 332 

missing information in some studies or populations in the analysis. We found that when 333 

the missing SNP is in LD with the causal SNP, mJAM-Forward has stable performance 334 

in comparison to when there is no missingness (Figure S6).  When the causal SNP is 335 
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missing, mJAM-Forward still preserves the power both to select the causal SNP as the 336 

index SNP and to include the causal SNP in its credible set.  337 

Simulation Study on Real LD 338 

When applied to the simulated data on the 120-SNP region on chromosome 2, 339 

mJAM-Forward, mJAM-SuSiE and MsCAVIAR selected on average around 1 index 340 

SNP whereas COJO selected 1.5 index SNPs, indicating a slight increase in false 341 

positive signals. mJAM-Forward had highest sensitivity and PPV of identifying the true 342 

causal from a complicated LD structure as an index SNP (Table 1). In terms of credible 343 

set performance, MsCAVIAR demonstrated high empirical coverage of its credible set 344 

as well as high sensitivity compared to the other two mJAM methods. However, such 345 

high sensitivity and PPV was achieved at the cost of a much larger size for the credible 346 

sets. The average size of the 95% CS of MsCAVIAR is 56.52, even larger than the 347 

number of SNPs that reached marginal genome-wide significant (5 × 1028
) in a fixed-348 

effect meta-analysis (48.88). On the other hand, the average credible set size for 349 

mJAM-Forward and mJAM-SuSiE was 19.70 and 18.37 respectively. Meanwhile, both 350 

approaches preserved reasonably high sensitivity and empirical coverage.  351 

Applied example 1: a single-hit region on chromosome 12  352 

The first applied example is a 1013 kb region on chromosome 12 which consists 353 

of 276 SNPs with a marginal meta-analyzed P-value < 1023 and minor allele frequency 354 

(MAF) > 2%. Figure S7 shows the LD structure for the four ancestry groups in this 355 

analysis. None of the SNPs in this region reached genome-wide significance in any 356 

population-specific analyses (Figure 5B) but after multi-population meta-analysis 48 357 
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SNPs are genome-wide significant (Figure 5A).  By setting a conditional P-value 358 

threshold at 5 × 1028, mJAM-Forward identified one index SNP at 12:109994870:A:T 359 

(meta P-value = 3.5 × 10210) with a corresponding 95% credible set of 41 SNPs. The 360 

median r2 between the credible set SNPs with the index SNP is 0.998 for European LD, 361 

0.979 for African, 0.990 for Hispanic and 0.996 for East Asian. COJO identified the 362 

same index SNP, 12:109994870:A:T. MsCAVIAR reported a slightly larger 95% credible 363 

set than mJAM-Forward, consisting of 45 SNPs (Figure S8). The index SNP of 364 

MsCAVIAR’s credible set is 12:109998097:A:G (meta P-value = 3.7 × 10210) whose r2 365 

with 12:109994870:A:T is greater than 0.99 in all four ancestry groups. This index SNP, 366 

12:109998097:A:G, is included in a mJAM-Forward credible set only when coverage is 367 

increased to 99%; whereas the index SNP for mJAM-Forward, 12:109994870:A:T, is 368 

included in the 95% MsCAVIAR credible set. mJAM-SuSiE estimates a single 95% 369 

credible set with 28 total SNPs and a unique single index SNP, 12:109996343:A:C 370 

(meta P-value = 2.2 × 1029) which is also included in both credible sets of mJAM-371 

Forward and MsCAVIAR. The median r2 within a credible set is also greater than 0.99 372 

for all ancestry groups (Table S1). The index SNP from mJAM-Forward was also 373 

included in its credible set (Figure S8B).  374 

Applied example 2: Asian-driven signals on chromosome 10  375 

As a second example, we conducted an analysis on a chromosome 10 region 376 

which consists of 412 SNPs after QC and spans around 1571 kb. Figure S9 shows the 377 

LD structure in this region separately for European, African, East Asian, and Hispanic 378 

populations. This region contains two clear signals with meta-analyzed P-value < 10215, 379 

which are mainly driven by the results from East Asian and African populations (Figure 380 
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6). In this example, mJAM-Forward identified two index SNPs, 10:80835998:C:T (meta 381 

P-value =  9 × 10221 and 10:80238015:C:T (meta P-value =  1 × 10219) (Figure 6A). The 382 

95% mJAM-Forward credible set for the first index SNP, 10:80835998:C:T, contains 3 383 

SNPs in total and there are 45 SNPs in the credible set for the second index SNP. The 384 

minimum r2 between the mJAM-Forward credible set SNPs with its own index SNP is no 385 

less than 0.95 in European, East Asian and Hispanic populations, and no less than 0.81 386 

in African ancestry populations (Table S2). COJO identified two index SNPs, 387 

10:80835998:C:T and 10:80240493:A:G. 10:80835998:C:T is the same as one of the 388 

index SNPs selected by mJAM-Forward and 10:80240493:A:G is included in the mJAM-389 

Forward 95% credible set of 10:80238015:C:T. Since MsCAVIAR does not support 390 

reporting more than one distinctive credible set, we split this region into two adjacent 391 

regions and applied MaCAVIAR on these two subregions separately. MsCAVIAR 392 

selected the same 3-SNP 95% credible set (Figure S10) with index SNP being 393 

10:80835998:C:T, and another 45-SNP credible set with index SNP being 394 

10:80238015:C:T where 42 of them are replicated in the mJAM-Forward credible set. 395 

mJAM-SuSiE also identified the same 3-SNP credible set (95%) with the same index 396 

SNP 10:80835998:C:T but did not identify any credible set around 10:80238015:C:T. 397 

Instead, it reported two additional credible sets at 10:80260938:V1 (meta P-value = 398 2 × 10210) and 10:80476778:V1 (meta P-value = 4 × 1024) (Figure S10), and the 399 

credible set size is 2 and 5 respectively.  400 

Applied example 3: Secondary signal within 40kb region of a leading SNP  401 

 The third applied example illustrates a scenario where there is a secondary 402 

signal within close proximity of the leading SNP in a chromosome 11 region. This region 403 
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spans 335.5 kb and consists of 191 SNPs that passed QC. The population-specific LD 404 

structure and Manhattan plot of multi-population meta-analysis results are shown in 405 

Figure S11 and Figure 7. The lead variant, 11:102401661:C:T, has a multi-population 406 

meta-analyzed P-value of Ā. Ą × Āÿ2Ăÿ and mJAM-Forward identified a secondary index 407 

SNP, 11:102440927:A:G, only 39 kb away which has a meta P-value of ă. Ā × Āÿ2ĀĀ. 408 

The r2 between these two index SNPs is less than 0.01 in all four ancestry groups 409 

(Figure S11), suggesting statistical independence between these two SNPs. COJO 410 

selected the same primary index SNP, 11:102401661:C:T, and a different secondary 411 

index, 11:102433309:A:G, which has a meta P-value of 1.3 × 1027 and is highly 412 

correlated with 11:102440927:A:G (r2 = 0.79 in EUR; 0.55 in AA; 0.87 in LA and 0.99 in 413 

ASN). mJAM-SuSiE also selected two credible sets in this region: the first set has 2 414 

SNPs which are both replicated in mJAM-Forward’s first credible set; the second set 415 

has 26 SNPs where 24 of them are found in mJAM-Forward’s second set. However, the 416 

index SNP of the second set in mJAM-SuSiE is one with lower marginal significance 417 

(meta P-value = ą. Ă × Āÿ2Ą) compared to mJAM-Forward.  418 

Both mJAM-SuSiE and mJAM-Forward are able to identify multiple sets within 419 

one region without any pre-defined number of causal variants. On the other hand, the 420 

implementation of MsCAVIAR requires users to specify the maximum number of causal 421 

variants in a region to enumerate all possible causal configurations. Gauging the 422 

possible number of causal variants can be difficult when secondary signals are located 423 

close to the lead variant. In this example, the secondary signal is located only 39 kb 424 

away from the leading variant, and visual inspection of the Manhattan plot (Figure 7) 425 

suggests only one peak. Even if we specify the number of causal variants to be two 426 
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when applying MsCAVIAR to this region, MsCAVIAR reports only one credible set such 427 

that the posterior probability of this set containing 2 causal variants is at least 0.95. 428 

Thus, it becomes difficult to separate the selected credible set SNPs into two distinctive 429 

groups. When the number of causal variants is set to two, MsCAVIAR selected 24 430 

SNPs among which the 2 SNPs with highest posterior probability are 11:102401661:C:T 431 

and 11:102396607:C:T (Figure S12). However, these two SNPs are in high LD and thus 432 

are likely linked to a single underlying causal signal and not indicative of multiple 433 

independent signals.  434 

Discussion 435 

As integrating studies from ancestrally diverse populations may increase power 436 

to detect novel variant and improve fine-mapping resolution22,38,39, we extend our 437 

previous single-population fine-mapping through JAM to a multi-population approach, 438 

mJAM. mJAM requires only population-specific summary statistics and population-439 

specific reference LD panels, which are more accessible than individual-level data to 440 

many researchers. mJAM explicitly incorporates the different LD structures across 441 

populations to yield conditional estimates of SNP effects from a single joint model. The 442 

mJAM framework can be used to first select index SNPs using existing feature selection 443 

approaches, such as forward stepwise selection2, Bayesian model selection8,9,11, or 444 

regularized regression6,7. To demonstrate this flexibility, we have implemented mJAM 445 

through two implementations of feature selection: mJAM-SuSiE (a Bayesian approach) 446 

and mJAM-forward selection. We also combine the forward selection implementation 447 

with a second step to identify credible set SNPs. This step works given any set of index 448 
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SNPs within a region by estimating a posterior credible set probability (PCSP) for a SNP 449 

defined as a combination of two component probabilities: one models the marginal 450 

association between the candidate SNP and the outcome; the other models the 451 

mediation effect of the index SNP on the candidate SNP, borrowing from a mediation 452 

framework. These PCSPs are then used to construct credible sets. The closed-formed 453 

expression for PCSP allows computational efficient construction of credible sets, 454 

compared to other Bayesian approaches that often use computationally intensive 455 

algorithms to obtain posterior distributions. It also allows credible set construction from 456 

any index SNP list allowing researchers to apply other feature selection methods or use 457 

existing lists or knowledge to determine index SNP.  458 

 The two-stage model framework utilized in mJAM builds upon previous work 459 

highlighting the use of hierarchical JAM (hJAM)40, an approach for the joint analysis of 460 

marginal summary statistics that incorporates a prior information matrix. This matrix 461 

characterizes the SNPs and can include information such as SNP effects on gene 462 

expression analogous to TWAS or on intermediates biomarkers analogous to Mendelian 463 

randomization. mJAM is an extension to hJAM in that it replaces the prior information 464 

matrix in hJAM with a stacked identity matrix, (������), as described in Methods section. 465 

The stacked identify matrix can be interpreted as our prior believe on the joint SNP 466 

effect estimates that all populations share the same true effect sizes.  467 

In a set of realistic simulation settings, both mJAM implementations 468 

demonstrated the ability to infer the number of independent signals within a region, to 469 

differentiate signals from noise, and to achieve a sufficient level of sensitivity while 470 
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preserving high fine-mapping resolution through small-sized credible sets. We also 471 

investigated the impact of imbalanced sample size across populations on model 472 

performance and demonstrated that all methods showed a similar decrease in terms of 473 

sensitivity and PPV when the sample size is imbalanced but the total sample size 474 

remains constant (Figure S4).  mJAM is described using three populations in simulation 475 

studies and we apply mJAM to real data with four distinct populations. In practice, 476 

mJAM can be used to analyze a large number of studies or population-specific 477 

summary statistics facilitating flexibility in application. Thus, analyses do not need to be 478 

limited to aggregating continental ancestry populations, but can include numerous, more 479 

specific ancestry appropriate reference panels to aggregate data across many studies 480 

(Figure S5). However, as with all summary statistic approaches that rely on reference 481 

panels, the ability to disentangle highly correlated SNPs will be driven by the sample 482 

sizes41 and LD within and between the reference panels used42. In addition, another 483 

practical limitation to many summary statistics-based approaches is the requirement for 484 

complete summary statistics and refence data for all SNPs across all studies and 485 

populations analyzed36. Missingness can be due to the difference in genotyping arrays 486 

used by different studies, or rare variants not being captured due to limited sample size 487 

in certain studies. Filtering too many variants might be dangerous because as less 488 

information is used to disentangle the LD structure within each region and potentially 489 

missing the causal variant. An important feature of mJAM is that it will work even in the 490 

presence of differential missingness across studies or populations utilizing all 491 

information that is available.    492 
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In the simulation study with artificial LD structures, mJAM-SuSiE resulted in 493 

outstanding performance under high LD scenarios, achieving both high sensitivity and 494 

high PPV. However, as the significance of the causal variant(s) within a region 495 

increases, mJAM-SuSiE tends to break down selecting more false positive signals with 496 

each in separate credible sets. This results in a substantial decrease in the empirical 497 

coverage of mJAM-SuSiE credible sets. In practice, we recommend limiting the 498 

application of mJAM-SuSiE to only regions with SNPs with modest marginal statistically 499 

significance or to screen for any potential false positive credible sets before interpreting 500 

mJAM-SuSiE’s credible sets after estimation.  501 

We also carried out a case study of prostate cancer where mJAM is applied to 502 

several prostate cancer susceptible regions. Through three different regions with 503 

different characteristics in number of estimated independent signals and underlying LD 504 

within and between populations, we demonstrated the practical advantages of mJAM-505 

Forward, including allowing more than one causal variant within a region, outputting 506 

individual credible sets corresponding to each index, and easily interpretable index 507 

variants with conditional estimates. In addition to the three applied examples shown 508 

here, mJAM has been applied to perform index variants selection across all regions in 509 

the latest multi-population prostate cancer GWAS37 which is currently under review.  510 

For all approaches that use marginal summary statistics and reference data, 511 

careful consideration and construction of the correlation matrices is important. This 512 

includes using a reference panel with ancestry and LD that matches the population in 513 

which the original marginal summary statistics were estimated41,43. The methods also 514 

require that the correlation matrix used is full rank and positive-definite which is often 515 
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driven by the sample size of the data and the frequency of the SNPs. For mJAM such 516 

consideration must be considered across all populations used in the analysis. Firstly, for 517 

rare variants, mJAM estimates of multi-population effect and standard errors that can be 518 

different from the marginal meta-analyzed estimates which use inverse-variance 519 

weighting. mJAM estimation from summary statistics assume Hardy-Weinberg 520 

equilibrium which some variants, especially rare variants, might not satisfy. In addition, 521 

many rare variants will also have large effect sizes and large standard errors from the 522 

population-specific summary statistics thus resulting in more uncertainty in multi-523 

population analysis compared to variants that are common across all populations. 524 

Secondly, in regions with extremely significant lead variants from a well-powered 525 

GWAS, even small degrees of LD can pull the marginal and conditional effect estimates 526 

of other variants away from the null. Thus, false positive signals might be selected if we 527 

apply the same threshold for index SNP selection and LD pruning. For such regions, 528 

researchers may consider setting a higher significance threshold for secondary signal 529 

selection and a more stringent LD threshold for pruning out correlated signals.  530 

In conclusion, mJAM offers a flexible and efficient modeling framework for multi-531 

population fine-mapping that first selects index variants and then constructs credible 532 

sets. One key assumption in mJAM is that causal variants and their effect sizes are 533 

similar across all populations and there exists evidence suggesting that common causal 534 

variants tend to have consistent effect sizes across populations26-28. In future research, 535 

we plan to relax the current mJAM assumption to allow different true effect sizes across 536 

populations. Other potential future directions include follow-up functional analyses 537 

based on mJAM credible sets and polygenic risk score models based on mJAM fine-538 
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mapped results. mJAM is currently available as a R package for fine-mapping of 539 

specific regions and can easily be adapted for genome-wide applications.   540 

  541 
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Tables 542 

Table 1 Comparison of model performance on data simulated from real LD 543 

structure.   544 

 Method 

mJAM-
Forward 

mJAM-
SuSiE 

FE COJO MsCAVIAR 

Credible Set 
Performance 

Sensitivitya 0.930 0.910 0.972 - 0.994 

PPVb 0.064 0.069 0.024 - 0.022 

CS sizec 19.70 18.37 48.88 - 56.62 

CS 
coveraged 

0.934 0.940 - - 1.000 

Index SNP 
Performance 

Sensitivitye 0.218 0.174 - 0.186 0.134 

PPVf 0.219 0.021 - 0.144 0.134 

Number of 
selected 
index 

1.00 0.97 - 1.51 1.00 

Abbreviations: FE, fixed-effect meta-analysis; CS, credible set, PPV, positive predictive value.  545 

a proportion of true causal SNPs being selected in a credible set, averaged over 500 simulations 546 

b proportion of true causal SNPs over the total number of selected credible set SNPs, averaged over 547 
500 simulations. 548 

c total number of SNPs included in a credible set, averaged over all 95% credible sets in 500 549 
simulations. 550 

d proportion of 95% credible sets in 500 simulations that included at least one true causal SNP. 551 

e proportion of true causal SNPs being selected as an index SNP, averaged over 500 simulations. 552 

f proportion of true causal SNPs over the total number of selected index SNPs, averaged over 500 553 
simulations. 554 

 555 
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Figure 1 The direct acyclic graphs (DAG) for the probability that the index SNP mediates 

the candidate credible set SNP effect. 

(A) Model with the candidate credible set SNP,W, by itself. � is the total effect of W on Y. (B) 

Model with W and X, the index SNP. �′ is the direct effect of W on Y. 
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Figure 2 Credible set performance in simulation studies with artificial LD structure. 

(A) Sensitivity, i.e. the proportion of 500 simulations where the true causal SNP was selected in 

a credible set. (B) Positive Predictive Value (PPV), i.e., the proportion of true causal SNP over 

the credible set size, averaged over 500 iterations. (C) Average CS size.  
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Figure 3 Performance of index SNP(s) selection in simulation studies with artificial LD 

structure. 

(A) Sensitivity, i.e. the proportion of 500 simulations where the true causal SNP was selected in 

an index SNP. (B) Positive Predictive Value (PPV), i.e., the proportion of causal SNP selected as 

an index over all selected indices, averaged over 500 iterations. (C) Number of index SNP(s) 

selected, averaged over 500 iterations.  
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Figure 4 Credible set behaviour of mJAM-SuSiE and mJAM-Forward as causal SNP 

significance increases. 

Simulations were conducted under baseline scenario setting (1 causal SNP out of 50 SNPs in 

total which are divided into 5 LD blocks) with varying effect sizes. The average empirical -

log10(P-value) of the causal SNP ranged from 5 to 263, covering most situations seen in 

practice. Red dashed line indicates requested coverage which is set to be 0.95 for both methods. 

(A) Empirical credible set coverage; (B) Average number of credible sets selected among 500 

simulations.  
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Figure 5 Manhattan plot for mJAM-Forward credible sets at chromosome 12 position 

109194870 to 110794870. 

(A) y-axis is meta-analyzed -log10(P-value) from multi-ethnic analysis; (B) y-axis is -log10(P-

value) from ethnic-specific analysis.  
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Figure 6 Manhattan plot for mJAM-Forward credible sets at chromosome 10 position 

79436999 to 81635998. 

(A) y-axis is meta-analyzed -log10(P-value) from multi-ethnic analysis;  (B) y-axis is -log10(P-

value) from ethnic-specific analysis.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.521659doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521659
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 7 Manhattan plot for mJAM-Forward credible sets SNPs at chromosome 11 

position 101601661 to 103201661. 

(A) y-axis is meta-analyzed -log10(P-value) from multi-ethnic analysis;  (B) y-axis is -log10(P-

value) from ethnic-specific analysis.  
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