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Abstract 

During B cell maturation, transitional and mature B cells acquire cell-intrinsic features that determine their ability to 

exit quiescence and mount effective immune responses. We used label-free mass spectrometry to quantify the 

proteome of B cell subsets from the mouse spleen and map the differential expression of environmental sensing, 

transcription- and translation initiation-factors that define cellular identity and function. By comparing the full-length 

transcriptome and proteome within the same sample, we identified mRNAs linked to B cell activation and antibody 

secretion that are expressed without detectable protein. These "poised" mRNAs might enable rapid protein 

production through increased translation or protein stability. In addition, through interrogation of our proteomic 

dataset, we found that the translational repressor PDCD4 restrains the response of marginal zone B cells to a T-

independent antigen. Our molecular characterization of B cell maturation is a valuable resource to further explore 

the mechanisms underpinning the specialised functions of B cell subsets. 
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Introduction 

 

In adult mammals B cell development is a multi-step 

process that starts in the bone marrow (BM) and continues 

in the spleen, where immature B cells form a transitional B 

cell continuum1. Transitional (T) B cells represent an 

important checkpoint for peripheral tolerance. The strength 

of B cell receptor (BCR) ligation in combination with 

secondary signals2, determine whether T1 and T2 cells die 

or differentiate to mature marginal zone (MZ) or follicular 

(FoB) B cells3, 4. A T3 transitional stage consists of anergic 

B cells rather than representing a developmental 

intermediate5.  The process of peripheral maturation is thus 

key to ensure the generation of a highly diverse and 

protective B cell repertoire, while avoiding pathogenic 

reactivity. 

Peripheral B cell subsets are characterized by distinct 

localization, migratory capacity and function. After passing 

a chemokine- and integrin-mediated checkpoint on survival 

and migration6, T1 cells enter the splenic follicles and 

acquire expression of cell surface IgD, CD23 and CD21 to 

differentiate to T2 cells. T1 and T2 cells are defined by their 

short half-life and propensity to undergo apoptosis upon 

crosslinking of surface IgM7. However, the ability of T1 cells 

to recirculate, recognise both self and foreign antigens and 

constitutively express low amounts of activation-induced 

deaminase (AID)8 poises them for rapid responsiveness 

and class switch recombination. Thus, although they can 
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contribute to the development of autoimmune diseases due 

to their enrichment for self-reactive specificities9, 10, T1 cells 

can also provide protection against infections11.  

FoB cells represent the vast majority of mature B cells and 

characteristically recirculate between lymphoid tissues. In 

contrast, MZ B cells represent only ~5-10% of mature B 

cells and reside in close proximity of the marginal sinus of 

the spleen, where incoming is filtered. Both subsets are 

relatively long-lived compared to transitional B cells and 

their best-characterised function is to mediate antibody 

production. However, their localization and cell-intrinsic 

features strongly influence the timing and quality of their 

responses7, 12, 13. Due to their unique position, MZ B cells 

are continuously exposed to blood-borne antigens and are 

poised for rapid differentiation to plasmablasts, thereby 

providing a first protective wave of antibodies14. Although 

FoB cells can also be engaged in early antibody production 

through the extrafollicular response, their collaboration with 

CD4+ T-helper cells leads to the germinal centre reaction 

and gives rise to memory B cells and high-affinity long-lived 

plasma cells15. The molecular mechanisms that imprint the 

differential ability of transitional and mature B cells to exit 

quiescence and mount effective immune responses remain 

unresolved. 

Systematic analysis of B cell transcriptomes has provided 

important insights into B cell identity 16, 17, 18, 19. However, 

studies performed in CD4+ and CD8+ T cells and in cell lines 

have demonstrated that for a substantial fraction of genes, 

transcriptome analysis is insufficient to predict protein 

content and therefore has limited ability to predict cellular 

behavior20, 21, 22, 23, 24, 25. This discordance is due to 

processes beyond those determining transcript abundance 

- such as translation efficiency and protein stability - that 

control protein amounts26, 27, 28. The current lack of 

quantitative proteomic data of primary B cells thus 

represents a major impediment for comprehensive 

understanding of B cell identity and responsiveness.  

Here, we used label-free mass spectrometry to analyse 

how the proteome of murine B cells is remodelled during 

peripheral maturation. This open-access data resource can 

be readily interrogated online via ImmPRes29 

(http://immpres.co.uk) and shows how environmental 

sensing, transcription factors and regulation of translation 

initiation control the identity and function of transitional and 

mature B cells. By quantifying protein copy numbers and 

the stoichiometry of protein complexes, we identified the 

translational repressor PDCD4 as a novel immune regulator 

that restrains the response of MZ B cells. In addition, by 

comparing the proteome and transcriptome within the same 

sample, we reveal how transitional and mature B cells 

maintain their phenotypic features and quiescent state 

while being poised for effective immune responses. 

Specifically, we discovered a reservoir of protein coding 

mRNAs - which we called “poised” mRNAs - that are 

expressed by B cells without detectable protein, and might 

enable rapid protein production following activation. 

Altogether, our study highlights the predictive power of 

comparative proteomic and transcriptomic analysis and 

provides a valuable resource to enhance our molecular 

understanding of how immune regulators control B cell 

function.  

 

Results 

 

Proteomic analysis of peripheral B cell maturation 

To study how the B cell proteome is remodelled during 

peripheral maturation, we sorted splenic T1, T2, MZ and 

FoB cells from C57BL/6 mice and performed quantitative 

label-free high-resolution mass spectrometry (MS). B cell 

subsets were sorted based on the expression of CD19, 

CD93, IgM, CD21 (also known as CR2) and CD23 (also 

known as FcER2) as depicted in Fig 1a, and the expression 

profile of these markers was confirmed by MS 

(Supplementary Fig 1a-b). We identified 7,560 protein 

groups, within which multiple protein isoforms can be 

assigned (Table S1). About 90% protein groups were found 

in at least three of four biological replicates and more than 

70% were identified with high accuracy (i.e. by more than 8 

total unique peptides and a ratio of unique+razor peptides 

≥ 0.7530; Supplementary Fig 1c; Table S1), thus indicating 

the robustness of our dataset. To estimate protein mass 

and copy number per cell we applied the “proteomic ruler”, 

which uses the MS signal of histones as an internal 

standard31 (Table S1). Histones generally contribute some 

of the most intense peptides detected by MS and their sum 

intensity can be used to accurately estimate total protein 

abundance per cell without relying on error-prone steps of 

cell counting or calculation of absolute protein 

concentration31. Protein copy numbers from each B cell 
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subset showed a strong Pearson correlation coefficient 

(0.83-0.9) between the four biological replicates 

(Supplementary Fig 1d). The total protein content was 

slightly higher in MZ B cells compared to the other B cell 

subsets (Supplementary Fig 1e). This correlated with the 

larger size of MZ B cells, as indicated by their greater 

forward light scatter area (Supplementary Fig 1f). 

However, the physical difference in size did not merely 

scale up the abundance of all proteins. When we calculated 

the intergroup differences across the four B cell subsets of 

6,753 protein groups that were found in at least three of four 

biological replicates and identified by at least one unique 

peptide, we observed that 4,937 protein groups (73% of the 

proteome) did not change (Fig 1b). This is a core proteome 

common to all four B cell subsets. Conversely, the 

abundance of 1,816 protein groups (27% of the proteome) 

differed indicating proteome remodelling during peripheral 

B cell maturation (Fig 1b). 

The 1,816 differentially expressed (DE) protein groups 

formed six unsupervised clusters that are characteristic of 

a specific maturation stage of B lymphocytes (Fig 1c). 

Clusters 1 and 2 contain proteins enriched in immature 

transitional cells; cluster 3 identified proteins that increased 

upon transition from T1 to T2 and maintained in mature B 

cells; cluster 4 included proteins that were mainly shared by 

T1 and MZ B cells; cluster 5 is characteristic of MZ B cells; 

whereas cluster 6 identified mature MZ and FoB cell stages. 

The direct comparison of protein copy numbers between B 

cell subsets allowed us to determine proteins that were 

exclusive to a specific stage of B cell maturation and 

Figure 1: Differential expression of cellular protein signatures during peripheral B cell maturation. a, Representative flow 

cytometry plots identifying T1 (CD19+ CD93+ IgM+ CD23-), T2 (CD19+ CD93+ IgM+ CD23+), MZ (CD19+ CD93- CD21+ CD23-) and FoB 

(CD19+ CD93- CD21- CD23+) cells. Full gating strategy is reported in Supplementary Fig 9a. b, Proportion of proteins that were 

unchanged or differentially expressed within T1, T2, MZ and FoB cells based on ANOVA test followed by a Benjamini-Hochberg 

multiple testing correction with FDR < 0.05. Numbers indicate proteins that were identified in at least three out of four biological 

replicates and by more than one unique peptide. The full list of proteins is provided in Table S1. c, Heat map showing the log2-fold 

deviation from the mean of normalized copy numbers of 1,816 DE proteins as in b. d, Venn diagram indicates number of proteins that 

were found in one or more B cell subsets based on their copy numbers. Example of proteins that were exclusively found in T1 or MZ 

cells are reported on the left of the diagram. All proteins are listed in Table S2 and S3. In b-d, B cells were sorted from n= 4 biologically 

independent replicates from two independent experiments.  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.521580doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521580
http://creativecommons.org/licenses/by/4.0/


Salerno et al., 16 NOV 2022 – preprint copy - BioRxiv 

 

4 

 

proteins that were expressed in two or more B cell subsets. 

All four maturation stages shared the expression of 1,602 

protein groups, yet they were found in different amounts 

(Fig 1d and Table S2). T1 and MZ B cells represented the 

two extremes of this maturation process, as they were the 

only subsets that uniquely expressed 12 and 34 proteins, 

respectively (Fig 1d and Table S3). For example, the 

transcription factor ZEB2, a novel regulator of B cell 

development32, was exclusively found in T1 cells, whereas 

the key regulator of MZ B cell development NOTCH2 and 

its target DTX133 were uniquely found in MZ B cells. 

Conversely, T2 and FoB cells did not display a unique 

signature and largely shared their proteome between each 

other and with T1 and MZ B cells, thus supporting their 

intermediate stage during B cell differentiation.  

 

Transcription factors define B cell maturation stages. 

Amongst the 1,816 DE proteins we surveyed transcription 

factors and found that their pattern of expression was 

characteristic of a specific B cell maturation stage (Fig 2a), 

thus reflecting their role as regulators of B cell lineage 

commitment and identity. We estimated the amounts of key 

transcription factors per cell and observed a wide range in 

copy number. PAX5, that is indispensable in the 

establishment and maintenance of B cell identity34, was 

abundant in all B cell subsets, with an average of 90,000 

copies per cell (Fig 2b). By contrast, ZEB2, TCF3 (E2A), 

and ARID3A, that characterize immature stages of B cell 

development35, 36, 37, were mainly found in T1 cells and 

substantially less abundant than PAX5, with an average of 

670, 11,000 and 20,000 copies per cell, respectively (Fig 

2c). The amount and expression pattern of these 

transcription factors might explain their relevance in mature 

B cell formation and function. In fact, whereas conditional 

deletion of PAX5 has deleterious effects on mature B 

cells38, TCF3 and ARID3A control the formation of 

immature B cells but are dispensable for later stages of 

differentiation36, 37. Also the transcription factor KLF2 that 

enforces a FoB cell phenotype39, was found in low amounts 

in T1, T2 and FoB cells, and absent in MZ B cells (Fig 2d). 

Conversely, MZ B cells expressed three to four-fold more 

of NFATC-1, -2 and -3 than FoB cells (Supplementary Fig 

Figure 2: Expression profile of transcription factors defining B cell maturation stages. a, Heat map depicts the log2-fold deviation 

from the mean of normalized copy numbers of 57 transcription factors that were differentially expressed among T1, T2, MZ and FoB 

cells (FDR-adjusted p values < 0.05, calculated as in Fig 1b). b-f Graphs show copy numbers per cell of transcription factors that were 

selected based on their known relevance to immunity (n= 4 mice; mean ±SD).  
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2a) consistent with their tendency to become more rapidly 

activated40. 

Upon encountering antigen, MZ B cells are known to rapidly 

differentiate into antibody-secreting cells14. Our proteomic 

data revealed that this may in part be attributed to the very 

low amounts of BACH2, a transcription factor that 

suppresses plasma cell differentiation, and high amounts of 

IRF4 and ZBTB20, which promote plasma cell 

differentiation (Fig 2e). Transcription factors characteristic 

of germinal centre B cells41 were instead present in 

comparable amounts in all B cell subsets (Supplementary 

Fig 2b). MZ B cells also contained more STAT1 and STAT2 

than other B cell populations (Fig 2f). STAT1 promotes 

plasma cell differentiation in response to TLR- and type-I 

interferon-mediated stimulation42, but the role of STAT2 in 

MZ B cell responses remains uncharacterized. By contrast, 

STAT4 was six times more abundant in FoB cells (18,000 

copies/cell) compared to MZ B cells (3,000 copies/cell) (Fig 

2f), yet it is still unclear whether STAT4 has a specific 

function in FoB cells. STAT5 and STAT6 that are activated 

downstream of IL4 receptor were present in similar 

amounts in MZ and FoB cells (Supplementary Fig 2c). 

Taken together, these findings indicate that the distinct 

responsiveness of B cell subsets are, to some extent, pre-

programmed by differential transcription factor expression. 

In addition, our analysis identified transcription factors that 

have been so far neglected in B cell biology, such as ZEB2, 

STAT2 and STAT4, thus opening new lines of inquiry. 

 

Environmental-sensing pathways are enriched in MZ B 

cells 

The profile of sensory and chemotactic receptors that are 

DE amongst splenic B cell subsets also highlighted clusters 

that are characteristic to each B cell subset (Fig 3a). MZ B 

cells were notably enriched for the receptors sensing 

pathogen-associated molecular patterns. They 

preferentially express toll-like receptors TLR3 and TLR7, 

and the nucleotide-binding oligomerization domain (NOD)-

like receptors NLRC4 and NLRX1 (Fig 3a-b), which enable 

their immediate response to insults. Conversely, TLR9 that 

provides costimulation for the B cell response to antigen43 

and contributes to peripheral tolerance44, was equally 

expressed within all B cell maturation stages (Fig 3b). In 

association with TLR expression, MZ B cells displayed 

greater amounts of CD180 and TACI (also known as 

TNFRSF13B or CD267) (Fig 3c) that synergize with TLR 

signalling and enhance antibody responses45, 46. The 

abundance of CD180 and TACI was confirmed by surface 

antibody staining and flow cytometry (Fig 3c). Whereas 

sensors for pathogen recognition were preferentially 

expressed by MZ B cells, the costimulatory receptor CD40 

and the surface Ig-associated proteins CD79a/CD79b were 

similarly abundant on MZ and FoB cells (Fig 3d and 

Supplementary Fig 3a). Likewise, the copy numbers of the 

inhibitory molecules CD22, CD72 and SiglecG were not 

different between the two mature B cell subsets (Fig 3d and 

Supplementary Fig 3b). These data suggest that both MZ 

and FoB cells have the potential to respond to T cell-

dependent antigens. However, the differential expression of 

sensory receptors poise MZ B cells to respond to a more 

diverse set of antigenic stimuli compared to FoB cells.  

The sensing and response to the environment also relies 

on metabolite transporters and pathways that process them 

following their uptake. Whereas the glucose transporter 

SLC2A1/GLUT1 was found in equivalent amounts in all 

peripheral B cell subsets, SLC2A3/GLUT3, which is known 

to have higher glucose transport capacity than GLUT147, 

was more abundant in MZ B cells (Fig 3e). Together with 

an increase in glycolytic protein content (Supplementary 

Fig 3c), our data indicated that basic glycolytic flux is likely 

to be the greatest in MZ B cells. High metabolic activity has 

been associated with transitional B cells and the acquisition 

of metabolic quiescence found to be a requirement for 

maturation to FoB cells48. We therefore questioned whether 

different metabolic signatures distinguish MZ and FoB cells. 

We inferred the potential for peripheral B cell subsets to 

uptake lactate, amino acids and lipids by considering the 

expression of solute transporters. We found that the 

lactate/pyruvate transporter SLC16A1, and the amino acid 

transporters SLC1A5 and SLC7A5, were mainly expressed 

by T1 cells, and less by mature B cells (Fig 3e). Also, the 

expression of the fatty acid transporters SLC27A1 and 

FABP5 were greater in transitional B cells compared to 

mature B cells (Fig 3e). However, the expression of some 

fatty acid transporters was subset-specific, as CD36 was 

approximatively 6-fold higher and 18-fold higher on MZ B 

cells compared to T1/T2 and FoB, respectively (Fig 3e), 

while SLC27A4 was equally abundant on both mature B cell 

subsets. Of note, CD36 has a dual role and its function as 

scavenger receptor for pathogens could further explain its 
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preferential expression on MZ B cells49. Together, our data 

indicate that MZ B cells differ from metabolically quiescent 

FoB cells, as they maintain a proteome better able to 

engage anabolic metabolism and to rapidly respond to 

environmental changes. 

 

Gene-specific divergence of protein and mRNA 

abundance in B cell subsets 

Transcriptomic analysis has been instrumental to advance 

our understanding of B cell development and function. 

However, for some genes mRNA amounts are unable to 

predict protein amounts20, 21, 25, 28 and the correlation 

between transcript and protein abundance in B cells has yet 

to be examined.  

To assess the correlation between the proteome and 

transcriptome of peripheral B cell subsets, we directly 

compared protein copy numbers to transcripts per million 

(TPM) determined by Illumina sequencing within the same 

biological samples. We restricted our analysis to 7,303 

genes that were identified both by RNA-sequencing and 

proteomics in at least one population (Table S4), thus 

including 96.6% of detected proteins and 47.8% of 

identified transcripts. For this analysis we exclusively 

selected the first protein identifier for each protein group, 

which corresponds to the most represented protein isoform 

(i.e. identified by the highest number of peptides). The 

amounts of individual proteins displayed a wider dynamic 

range than that of mRNAs; whereas proteins spanned more 

Figure 3: Receptors involved in environmental-sensing and nutrient transport in B cells. a, Heat map shows the log2-fold 

deviation from the mean of normalized copy numbers of 38 receptors that were differentially expressed among T1, T2, MZ and FoB 

cells (FDR-adjusted p values < 0.05, calculated as in Fig 1b). The list of receptors was manually curated and includes CD molecules; 

toll-like receptors; NOD-like receptors; Fc receptors; complement receptors; TNF receptor superfamily; receptors for cytokines such 

as interleukins, interferons, TGF-; chemotactic receptors belonging to the CCR, CXCR or sphingosine-1-phosphate families; 

adhesion molecules; ADAM metalloproteinases and Notch receptors. b-d, Graphs display copy numbers per cell of receptors 

selected based on their biological function. In c, histograms represent CD180 and TACI expression as detected by flow cytometry. e, 

Copy numbers of the major glucose-, lactate- and amino acid-transporters and selected fatty acid transporters (n= 4 mice; mean 

±SD). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.521580doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521580
http://creativecommons.org/licenses/by/4.0/


Salerno et al., 22 DEC 2022 - preprint copy - BioRxiv 

 

7 

 

than seven-orders of magnitude, mRNAs spanned only 

five-orders of magnitude (Supplementary Fig 4a). The 

Pearson correlation (r) of log-transformed TPM and protein 

copy numbers ranged between 0.43 and 0.49 in T1, T2, MZ 

and FoB cells (Supplementary Fig 4b). Although it is 

difficult to estimate the contribution of measurement 

noise24, 50, this result suggests a moderate correlation within 

the variance in mRNA and protein amounts across the 

entire dataset. The mRNA/protein correlation only slightly 

increased when using the non-parametric Spearman 

ranking method (ρ= 0.45-0.49; Supplementary Fig 4b) and 

was similar to previously published estimates in bacteria 

and eukaryotes (summarized in ref.22, 23), indicating that the 

impact of translational and post-translational processes on 

protein abundance is a general feature that is independent 

of a specific cell type or differentiation stage.  

 

Figure 4: Integration of mRNA and protein abundance during B cell development. a-c, Scatter plots show the average mRNA 

abundance (in transcripts per million - TPM) and the average protein abundance (in copy numbers) of T1, T2, MZ and FoB cells. 

Expression and trend line of the whole dataset encompassing 7,303 genes is reported in each graph (grey dots and line). Black dots 

indicate expression of 113 TOP-mRNAs (a), 265 transcription factors (b), and 74 sensory and chemotactic receptors (c). Red points 

highlight specific genes of interest within those categories. A list of TOP-mRNAs was extracted from ref.51, 52; transcription factors 

were annotated from Gene Ontology term 0003700; a list of receptors was manually curated as in Fig 3. d, mRNA and protein 

abundance of Tnfrsf13b/TACI and NOTCH2 in B cell subsets (n= 4 mice; mean ±SD). 
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This result prompted us to query firstly whether the 

relationship between mRNA and protein abundance was 

equal for gene-clusters selected based on their biological 

function; and secondly how this related to within-gene 

analysis, i.e. how mRNA and protein abundance of a 

specific gene changes across the four B cell subsets. To 

answer to these questions, we studied genes that undergo 

rapid on/off switching upon activation and determined 

where their mRNA/protein expression was situated in 

relation to the overall across-gene trend. This is indicated 

by a line that was calculated based on density contours and 

by assuming a positive relationship between mRNA and 

protein expression (Supplementary Fig 4c). We 

considered first mRNAs containing a 5’-terminal 

oligopyrimidine (TOP) motif that encode mostly translation 

factors and ribosomal proteins51, 52, and were found to be 

translationally repressed in naive T cells28. We found that 

T1, T2, MZ and FoB cells expressed uniformly high 

amounts of 113 out of 123 TOP-containing genes both at 

the mRNA and protein level, with most genes lying close to 

the trend line. This result thus indicates a positive 

mRNA/protein relationship and suggests that translation of 

TOP-mRNAs is not repressed in transitional and mature B 

cells (Fig 4a).  

We then assessed the relationship between mRNA and 

protein for genes encoding 265 transcription factors. 

Although many of these genes were close to the trend line 

at all maturation stages (e.g. for PAX5, IRF4, BACH2), 

transcription factors displayed greater variability compared 

to TOP-mRNAs and some were exclusively detected as 

mRNA, but not protein (Fig 4b). For example, while the 

ZEB2, KLF2 and ZBTB20 proteins were strictly associated 

with a specific B cell maturation stage, all B cell subsets 

expressed comparable levels of their encoding mRNAs (Fig 

4b). In particular, ZEB2 protein was restricted to T1 cells, 

yet T2, MZ and FoB cells retained the expression of ~40 

TPM of Zeb2 mRNA. Similarly, MZ B cells contained ~300 

TPM of Klf2 mRNA, whereas KLF2 protein was 

undetectable (Fig 4b). In contrast to TOP-mRNAs and 

transcription factors, genes encoding sensory and 

chemotactic receptors (as identified in Fig 3) were overall 

lower compared to the trend line. Moreover, also in this 

gene-group we found genes that were detected as mRNA, 

but not protein (Fig 4c-d). For example, all B cell subsets 

expressed ~400 TPM of Tnfrsf13b mRNA whereas its 

protein (TACI) was detected exclusively in MZ and FoB 

cells. Additionally, MZ and FoB cells both express ~100 

TPM of Notch2 mRNA, yet NOTCH2 was found exclusively 

in MZ B cells (Fig 4d). Collectively, these data indicate that 

although the overall mRNA abundance correlates 

moderately with protein amounts in B cells, a positive 

mRNA/protein relationship becomes evident when 

interrogating specific gene-groups. In addition, within-gene 

analysis identified individual transcripts that show evidence 

of translational control dependent on a specific B cell  

differentiation stage. 

 

Transitional and mature B cells express a poised gene-

signature 

B cells undergo basal transcription, which has been 

proposed to poise the genome for increased transcription 

following stimulation19. In T cells and cells of the innate 

immune system, some mRNAs associated with early 

activation and effector function, termed “poised” mRNAs, 

accumulate but are not translated27, 28, 53, 54, 55. Here we 

tested the hypothesis that peripheral B cell subsets express 

poised mRNAs to enable rapid activation and differentiation 

into antibody-secreting plasmablasts (PB). We compared 

the transcriptome of T1, T2, MZ, and FoB cells to 1) a list of 

genes that were selected based on their increased 

expression upon 2h of B cell stimulation with anti-IgM or 

LPS56, which we refer to as “early activation genes” (Table 

S5); and 2) a list of genes that were differentially expressed 

in immature (B220+ Blimp1+)-PB and mature (B220- 

Blimp1+)-PB compared to FoB cells16, which we refer to as 

“PB-related genes” (Table S6; Supplementary Fig 5a). 

We found that 412 early activation genes and 1007 PB-

related genes were expressed at the mRNA level in T1, T2, 

MZ or FoB cells prior to activation, and were thus 

candidates to be poised mRNAs.  

To identify protein-coding genes that were expressed at the 

mRNA but not at the protein level, we sought to compare 

our transcriptomic and proteomic datasets. To do this, we 

had to consider the different sensitivity of RNA-seq and 

mass spectrometry, as the greater sensitivity of RNA-seq 

may lead to misidentification of poised transcripts due to 

stochastic detection of very low abundance transcripts. To 

overcome this issue, we first calculated the probability to 

detect proteins for defined amounts of protein-coding 

mRNAs. This related RNA and protein levels of all detected  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.521580doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521580
http://creativecommons.org/licenses/by/4.0/


Salerno et al., 22 DEC 2022 - preprint copy - BioRxiv 

 

9 

 

  

Figure 5: B cells express a poised gene-signature. a-f, Left top: mRNA abundance in TPM of selected early activation genes (a-c) 

and PB-related genes (d-f) as measured by Illumina sequencing. Left bottom: Black symbols show protein detection of indicated 

genes within our proteomic dataset. Grey boxes represent protein copy numbers for the 100 protein-coding genes with closest RNA 

expression (log2 TPM) to the indicated gene. Right: Genome browser view displays individual long-reads from ONT sequencing of 

Cd69 (chr6: 129,266,982-129,275,447) (a), Nr4a1 (chr15:101,254,093-101,275,115) (b), Myc (chr15: 61,983,341-61,992,361) (c), 

Xbp1 (chr11: 5,520,014-5,526,248) (d), Atf6 (chr1:170,703,549-170,870,441) (e), Aft4 (chr15: 80,255,164-80,257,565) (f), visualized 

with the Integrative Genomics Viewer. RefSeq GRCm38 annotation (blue), coverage of (dark grey) and aligned long-reads (light grey) 

were reported for each gene. Lines connecting light grey boxes indicate splicing junctions between aligned sequences. In squared 

brackets the maximum read coverage for each B cell population. 
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protein-coding mRNAs per population, and then calculated 

the probability to detect protein for each bin. A minimum of 

10 TPM gives a 50% chance of finding the corresponding 

protein. Conversely, mRNA with TPM < 10 is associated 

with less than 20-30% chance, indicating an unacceptably 

high probability of classifying these low abundant mRNAs 

as poised mRNAs, when in reality they are not 

(Supplementary Fig 5b). We therefore restricted our 

analysis to between 212-243 early activation genes and 

318-375 PB-related genes with TPM > 10 in each B cell 

subset. The abundance of these selected genes is between 

10 and ~3500 TPM (Supplementary Fig 5b). 

Next, to assess whether these transcripts were present as 

full-length protein-coding mRNAs, we performed Oxford 

Nanopore Technology (ONT) sequencing of the same 

samples. We found that about 80% of both early activation 

and PB-related genes were full-length mRNAs 

(Supplementary Fig 5c) and their detection by ONT was 

independent of their relative abundance (Table S7 reports 

a side-by-side comparison of TPMs of genes that were 

detected by both ONT and Illumina sequencing). We then 

calculated how many of these genes were detected at the 

protein level in our proteomic dataset. As a control for 

protein detection, we generated expression-matched gene 

sets for the 189-221 early activation and 295-345 PB-

related genes detected as full-length mRNAs, by randomly 

selecting 100 protein-coding genes with the closest 

expression for each mRNA. We calculated protein detection 

within each B cell subset and found that the number of 

proteins detected within the early activation gene list was 

about 30% lower than control genes (Supplementary Fig 

5d). This indicates that T1, T2, MZ and FoB cells are 

enriched for mRNAs with critical roles in early activation that 

are expressed without detectable protein. We classify these 

transcripts as a poised early activation signature (Table S8; 

Supplementary Fig 5e). For example, transitional and 

mature B cells expressed ~200 TPM and ~1000 TPM of 

mRNA encoding the early activation marker CD69 and the 

immediate early genes Fos, which were identified as full-

length transcripts by ONT sequencing (Fig 5a, 

Supplementary Fig 5f). Whereas we did not detect CD69 

or FOS in our proteomic data, 100 expression-matched 

mRNA controls had a median of at least 12,000 associated 

protein copies per cell (Fig 5a, Supplementary Fig 5f). 

Similarly, T2, MZ and FoB cells expressed ~85 TPM of 

poised Nr4a1 mRNA (encoding NUR77), however NUR77 

is detectable only 2h after antigenic stimulation57 (Fig 5b). 

mRNA encoding the transcription factor c-Myc, which is 

important for activation, proliferation and differentiation of B 

cells58, 59, was also poised in all B cell subsets, but 

particularly abundant in MZ B cells, in agreement with their 

predisposition to rapid responses (Fig 5c). 

MZ B cells also exhibit a small enrichment for poised 

mRNAs with roles in generating antibody-secreting PB 

Figure 6: Regulators of mRNA translation in B cells. a, Total content of ribosomal proteins was calculated as sum of CN x MW / 

NA, where CN is protein copy number, MW is protein molecular weight, and NA is Avogadro’s constant. Graph depicts ribosomal 

proteins as a proportion to total protein content in T1, T2, MZ and FoB cells. b, Graphs display copy numbers of key components of 

the eIF4F mRNA translation initiation complex (eIF4A1, eIF4B, eIF4E, eIF4G1). Overlay histogram represents flow cytometric 

detection of eIF4A1 in MZ and FoB cells. c, PDCD4 protein amounts detected by mass spectrometry (left) or flow cytometry (right). 

d, Ratio between EIF4A1 and PDCD4 copy numbers was calculated in each B cell subset. Graphs display mean ±SD. 
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(Supplementary Fig 6a-b, Table S9). This was also 

evident in T1, but not in T2 or FoB cells, for which the overall 

number of detected proteins was within the range of what 

is expected by chance (Supplementary Fig 6a). Because 

rapid differentiation of MZ B cells to PB is at least in part 

due to the persistent expression of unfolded protein 

response (UPR)-related mRNAs16, we examined the 

abundance of individual UPR-related transcripts within our 

identified poised signature and found that this feature was 

not restricted to MZ B cells, but shared with T1, T2, and FoB 

cells. All B cell subsets expressed high amounts of Xbp1 

mRNA without detectable protein (Fig 5d). Moreover, 

mRNAs encoding the UPR-sensors ATF6, the 

transcriptional activator ATF4, and the gene associated to 

ER expansion EDEM1 were also present as poised mRNAs 

(Fig 5e-f, Supplementary Fig 6c). Together, our data 

show that transitional and mature B cells express a poised 

gene-signature encoding early activation and PB-related 

genes (Table S8-S9). This is most evident in MZ B cells 

and may contribute to their rapid activation and antibody 

secretion. 

 

Regulators of mRNA translation in transitional and 

mature B cells 

We next sought to identify the factors that regulate mRNA 

translation during specific B cell maturation stages. We 

calculated the total ribosomal protein content based on 

copy numbers of ribosomal subunits, and found that it 

represents 4.6% of the MZ B cell proteome versus 3.5% of 

the T1, T2 or FoB cell proteome (Fig 6a). Similarly, the 

translation initiation complex, including the components of 

the eukaryotic initiation factor 4F complex (i.e., eIF4A1, 

eIF4B, eIF4E and eIF4G paralogs), the components of the 

eIF3 complex, and the components of the eIF2 complex, 

which delivers the methionine-tRNA to 40S ribosomal 

subunit, were also enriched in MZ B cells (Fig 6b and 

Supplementary Fig 7a-c).  

Next, we assessed the abundance of factors that inhibit 

translation initiation. A common mechanism of translation 

inhibition, especially during stress, is the phosphorylation of 

eIF2, which inhibits the GTPase activity of eIF2B, thereby 

limiting the regeneration of the ternary complex60. This 

phosphorylation is mediated by the HRI, PKR, PERK and 

GCN2 kinases (also known as eIF2AK1, eIF2AK2, 

eIF2AK3, and eIF2AK4, respectively)60, and the last three 

of these kinases were found in our proteomic datasets. 

Whereas PERK was detected in similar low amounts in all 

B cell populations, PKR and GCN2 were enriched in mature 

B cells (Supplementary Fig 7d). In particular, PKR was the 

most abundant of the three kinases and preferentially 

expressed in MZ B cells (~5,000 copies/cell). Considering 

that PKR can also control transcription by NFγB 

activation61, it would be interesting to further investigate its 

specific role in MZ B cells.  

A distinct mechanism to limit cap-dependent translation is 

mediated by the action of the eIF4E-binding proteins (4E-

BPs), which is relieved by activation of the mTOR 

pathway62. Of the three known eIF4E-BPs, only 4E-BP2 

was detected in our proteomic analysis, although with low 

abundance and not in all biological replicates 

(Supplementary Fig 7e). These data suggest that 4E-BPs 

might not be influential in quiescent B cell subsets. 

Translation initiation may also be inhibited by PDCD4, 

which binds and sequesters two molecules of the RNA 

helicase eIF4A163, 64, 65. PDCD4 was highly abundant in all 

peripheral B cell subsets and notably enriched in MZ B 

cells, which we confirmed by intracellular flow cytometry 

(Fig 6c). We found that T1, T2 and FoB cells expressed 

eIF4A1 in large excess compared to PDCD4 

(eIF4A1/PDCD4 ratio ~ 5), but in MZ B cells PDCD4 copies 

are sufficient to bind the majority of eIF4A1 (eIF4A1/PDCD4 

ratio = 2.6; Fig 6d). Although PDCD4 might act as a 

negative regulator of mRNA translation in all B cell subsets, 

the stoichiometry of its interaction with eIF4A1 indicates 

that it might have a specific role in MZ B cells.  

 

PDCD4 restrains MZ B cell responses 

To study the role of PDCD4 in MZ B cell functions in vivo, 

we established mixed chimeras by transferring 20% of 

either CD45.2+ wild-type (WT) or CD45.2+ PDCD4-deficient 

(PDCD4 KO) bone-marrow cells together with 80% of 

CD45.1+ µMT-deficient bone-marrow cells into lethally 

irradiated CD45.1+ B6.SJL recipient mice. The MT 

mutation prevents the formation of mature B cells, so that 

all B cells in these chimeras will derive from CD45.2+ WT or 

PDCD4 KO stem cells, whereas all other hematopoietic 

lineages are primarily PDCD4-sufficient66. PDCD4 KO cells 

efficiently reconstituted the mature B cell pool in the spleen, 

however the frequency and numbers of PDCD4 KO B cells 

were overall lower comparing to WT B cells (Fig 7a). In  
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Figure 7: PDCD4 restrains MZ B cell responses to NP-Ficoll immunization. a, b, Reconstitution of WT (filled circles) and PDCD4 

KO (open squares) µMT chimeras (a) or competitive chimeras (b) was analysed in blood samples 8-9 weeks after BM transfer. 

Contour plots represent detection of transferred CD45.2+ cells by flow cytometry. Graphs display numbers of CD45.2+ CD19+ B220+ B 

cells. c, Chimeric mice were immunized i.v. with NP-Ficoll and analysed after 7 days. Contour plots and graphs depict percentage of 

CD138+ TACI+ CD19int/low IgD- CD45.2+ PBs of µMT chimeras (top) or competitive chimeras (bottom). Full gating strategy is reported 

in Supplementary Fig 9b-c. (a-c) n= 14-15 mice for µMT chimeras; n= 8 mice for competitive chimeras. d, ELISpot-analysis of 

splenic NP20-IgM (left) and NP20-IgG3 (right) antibody-secreting cells (ASC) 7 days after NP-Ficoll immunization of µMT chimeric 

mice (n= 9-10 per group). Unimmunized WT µMT chimeric mice were used as a control (n= 3). ASC numbers were calculated as 

proportion of 106 MZ B cells. e, Endpoint titers of NP20-IgM (left) and NP20-IgG3 (right) were measured in serum of µMT chimeric 

mice before (d-1) and after (d4, d7) NP-Ficoll immunization (n= 9-10 per group). (a-e) Graphs display data pooled from at least two 

independently performed experiments (mean ±SD). Unpaired Student’s t-test analysis was performed between WT and PDCD4 KO 

samples. f, Puromycin incorporation 30min following administration to µMT chimeras (top) or competitive chimeras (bottom) 9 weeks 

after BM transfer. Overlay histograms indicate puromycin incorporation of WT (light grey) and PDCD4 KO (dark grey) MZ B cells.  g, 

Volcano plot of proteins quantified by mass spectrometry from FACS-sorted MZ B cells that were derived from WT or PDCD4 KO 

competitive chimeras. Vertical dashed lines indicate fold changes of 0.5. Horizontal dashed lines indicate p values of 0.05, which 

were calculated using a two-tailed t-test with unequal variance (n= 3 per group from two independently performed BM chimeras). 
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addition, PDCD4 KO µMT chimeras displayed reduced 

numbers of T1, T2 and FoB cells, but not of MZ B cells, 

which were comparable to WT µMT chimeras 

(Supplementary Fig 8a). Because of the difference in B 

cell numbers, we also generated competitive chimeras by 

transferring equal amounts of CD45.2+ WT and 

CD45.2+PDCD4 KO bone-marrow cells together with 

CD45.1+ B6.SJL bone-marrow cells into lethally irradiated 

B6.SJL recipient mice. Following reconstitution, WT and 

PDCD4 KO competitive chimeras displayed similar 

numbers and proportions of T1, T2, MZ and FoB cells (Fig 

7b and Supplementary Fig 8b). 

We next investigated the requirement for PDCD4 in 

controlling MZ B cell responses by immunizing both µMT 

chimeras and competitive chimeras with intravenous NP- 

Ficoll, a model antigen that preferentially activates MZ B 

cells67, 68, 69. At seven days following immunization, the 

frequency of PDCD4 KO CD138+ TACI+ CD19int/low IgD- 

plasmablasts (PBs) was greater than WT PBs in both µMT 

and competitive chimeras (Fig 7c). This indicates that 

PDCD4 limits the ability of MZ B cells to differentiate to PBs 

or of PBs to accumulate and/or survive. Although the 

proportion of intracellular-IgM+ and intracellular-IgG3+ PBs 

was similar between PDCD4 KO and WT chimeras 

(Supplementary Fig 8c), the mean fluorescence intensity 

of NIP+ ic-IgM+ and NIP+ ic-IgG3+ staining was higher for 

PDCD4 KO PBs compared to WT PBs (Supplementary 

Fig 8d). Also, the frequency of NP-specific IgM and IgG3 

antibody-secreting cells (ASC) measured by ELISpot was 

increased in the spleen of PDCD4 KO µMT chimeras 

compared to WT (Fig 7d), indicating an enhanced MZ 

response in the absence of PDCD4. We next measured the 

titer of NP-specific IgM and IgG3 antibodies before and 

after NP-Ficoll immunization of µMT chimeras. PDCD4 KO 

B cells already produced higher amounts of NP-specific IgM 

prior to immunization. Elevated IgM production was 

maintained at day 4 after immunization, however WT B cells 

could match the production levels of PDCD4 KO B cells by 

day 7 (Fig 7e). Conversely, WT and PDCD4 KO B cells 

exhibited similar kinetics of NP-specific IgG3 production, 

yet PDCD4 KO B cells released greater amounts of IgG3 

antibodies by day 7 post-immunization (Fig 7e).  

The enhanced response of PDCD4 KO B cells supports the 

hypothesis that PDCD4 is a newly identified regulator of MZ 

B cells. To determine whether PDCD4 restrains global RNA 

translation, we measured puromycin incorporation into MZ 

B cells in vivo. We found that in the resting state WT and 

PDCD4 KO MZ B cells incorporated similar amounts of 

puromycin (Fig 7f), suggesting that the effect of PDCD4 on 

translation was limited and did not affect translation 

globally. To quantify this effect, we examined how the loss 

of PDCD4 impacts the proteome of MZ B cells by 

performing label-free mass spectrometry of WT and 

PDCD4 KO MZ B cells derived from unimmunized chimeric 

mice. We found that PDCD4 controls the expression of only 

136 proteins, of which 24 proteins showed a log2 fold 

change greater than 5 in PDCD4 KO MZ B cells (Fig 7g). 

None of these proteins were included in the poised mRNA 

signature we identified, but comprised enhancers of BCR  

and TLR signalling, such as CXCR5 and WDFY170, 71; and 

nutrient transporters, such as Slc27a1 and Slc25a32; 

which may underpin rapid responses of MZ B cells to 

environmental changes. Interestingly, the weak effect of 

PDCD4 loss on global RNA translation could be explained 

by the decreased abundance of many factors involved in 

translation initiation. For example, the copy numbers of 

eIF4A1 were approximately 40% lower in PDCD4 KO MZ 

B cells compared to WT. Similarly, the copy numbers of all 

eIF3 complex subunits were on average reduced by 50% 

(Fig 7g). This indicates that MZ B cells downregulate the 

machinery for translation initiation to counterbalance the 

loss of PDCD4. Although the molecular mechanism 

remains unknown, our data demonstrate a B cell-intrinsic 

requirement for PDCD4 to restrain the response to a 

thymus independent antigen. 

 

Discussion 

 

We provide a resource that maps how the transcriptome 

and proteome change during maturation of mouse B cells 

after exit from the bone marrow. By resolving the copy 

number of 7,560 protein groups, we defined a shared 

proteome of non-activated peripheral B cell subtypes. In 

addition, the selective remodelling of 1,816 protein groups 

defines the identity and function of transitional and mature 

B cell subsets. These differences include genes encoding 

sensory receptors, such as TLRs and NLRs; components 

of metabolic pathways; and transcription factors controlling 

cell fate. Underscoring the utility of our resource, in many 
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cases, the roles of these genes in determining the 

functional properties of B cell subsets have yet to be 

investigated. Furthermore, by integrative analysis of 

transcriptome and proteome we discovered a subset of 

genes characterised by the expression of full-length 

mRNAs which accumulate without detectable protein. We 

have termed these poised mRNAs.  

Our transcriptome analysis combined the deep sequencing 

of cDNA fragments on the Illumina platform with the full-

length cDNA sequencing using nanopores. This approach 

validated the coding potential of poised mRNAs and 

distinguished them from incompletely processed transcripts 

or degradation intermediates. These datasets provide an 

opportunity to identify novel transcript isoforms expressed 

during B cell maturation and gain a better understanding of 

the differential regulation of transcripts produced from the 

same gene.  

Several mRNAs encoding transcription factors were readily 

detectable in all B cell subsets, yet ZEB2 protein expression 

is restricted to T1 cells and NOTCH2 is restricted to MZ B 

cells. ZEB2 promotes the terminal differentiation of effector 

and memory CD8 T cells72, therefore it is tempting to 

speculate that mature B cells maintain expression of poised 

Zeb2 mRNA to facilitate rapid differentiation into plasma 

cells. When T1 cells respond to an infection, the presence 

of ZEB2 may facilitate plasma cell differentiation while 

directing potentially autoreactive B cells away from the 

germinal centre reaction.  

Poised mRNAs are emerging as a common feature for 

functionally “pre-arming” immune cells. They empower the 

innate functions of natural killer (NK) cells, NKT cells, mast 

cells, basophils, and eosinophils54, 55, as well as the effector 

function of naive and memory T cells28, 73, 74. In these 

contexts, however, poised mRNAs have been mainly 

associated with the rapid secretion of cytokines or anabolic 

pathways. We show here that B cells express poised 

mRNAs encoding activation genes, transcription factors, 

and UPR mediators, thus linking poised transcripts to early 

activation and antibody secretion. For example, transitional 

and mature B cells express transcripts encoding CD69 and 

NUR77, which are known to be rapidly translated following 

activation. They express mRNA encoding XBP1, a key 

transcription factor for plasma cell differentiation that must 

spliced in the cytoplasm to enable the UPR75. They also 

express Atf4 mRNA, the translation of which is known to be 

repressed by the presence of open reading frames residing 

5’ of the ATF4 coding region76. ATF4 is selectively 

translated when EIF2 is limiting and may promote metabolic 

adaptation and stress resistance77, but its role in B cell 

activation and differentiation has not been established. 

EIF2-dependent translation inhibition can be regulated by 

four different kinases, HRI, PKR, PERK and GCN2 kinases. 

We found that PKR is 2.5-fold more abundant in MZ B cells 

compared to the other analysed subsets. Interestingly, PKR 

integrates sensing of double-stranded RNAs to NFB and 

MAP kinase activation61, 78, as well as controlling translation 

via phosphorylation of eIF2α. Considering that MZ B cells 

also uniquely express TLR3, further investigation of how 

PKR impacts the activation of MZ B cells is warranted.  

A further mechanism of regulation that we identified in MZ 

B cells is mediated by the translational repressor PDCD4. 

PDCD4-deficient mice develop B cell lymphoma79, but their 

antigen-specific B cell responses in vivo have not been 

studied. We found that PDCD4 retrains the response of MZ 

B cells to NP-Ficoll immunization in vivo. Whether PDCD4 

controls the ability of MZ B cells to proliferate and/or 

differentiate into antibody-producing plasmablasts, or the 

ability of plasmablasts to accumulate and/or survive 

remains to be investigated. Currently, the only known 

function of PDCD4 is to restrain translation by sequestering 

the RNA helicase eIF4A180. The crystal structure of the 

eIF4A:PDCD4 complex showed that one molecule of 

PDCD4 binds to two eIF4A molecules63, 64, 65, 81. MZ B cells 

are the only peripheral B cell subset that express PDCD4 in 

sufficient amounts to sequester the majority of eIF4A1. This 

limiting property of PDCD4 is consistent with its rapid 

disappearance following B cell activation82, which would 

then permit rapid increases in translation. PDCD4 

degradation follows rapidly after activation of mTORC182, 83, 

84, 85 which also promotes the expression of UPR-related 

genes, thereby enhancing antibody production following 

activation16. Thus, the PDCD4/mTORC1 regulatory circuit 

in MZ B cells may be an important regulatory hub that 

controls their ready-to-respond state. The identity and 

function of the direct targets of PDCD4 and their 

interconnection with the other mechanisms regulating 

poised transcripts in B cells should provide insight into the 

mechanisms of B cell activation. 

In conclusion, our study provides a valuable resource of 

differentially expressed genes characteristic of the stages 
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of peripheral B cell maturation. In addition, it offers a 

framework to further elucidate the role of regulation of B cell 

function by transcriptional and post-transcriptional 

mechanisms. 

 

Methods 

Mice and in vivo experiments 

C57BL/6, B6.SJL-PtprcaPepcb/BoyJ and B6.SJL-Ighmtm1Cgn mice 

were bred and housed at the Biological Support Unit (BSU) of the 

Babraham Institute (UK). Since the opening of the Babraham BSU 

in 2009, no primary pathogens or additional agents listed in the 

FELASA recommendations have been confirmed during health 

monitoring surveys of the stock holding rooms. Ambient 

temperature was ~19-21°C and relative humidity 52%. Lighting 

was provided on a 12-hour light: 12-hour dark cycle including 15 

min 'dawn' and 'dusk' periods of subdued lighting. After weaning, 

mice were transferred to individually ventilated cages with 1-5 mice 

per cage. Mice were fed CRM (P) VP diet (Special Diet Services) 

ad libitum and received seeds (e.g. sunflower, millet) at the time of 

cage-cleaning as part of their environmental enrichment. 

B6.129S6-Pdcd4tm1Yhcn/J mice86 were bred and housed under 

specific pathogen-free conditions in the Central Animal Facility of 

the Medical School of Otto-von-Guericke-University of Magdeburg 

(Germany) and genotyped routinely as described79. All mouse 

experiments were approved by the Babraham Institute Animal 

Welfare and Ethical Review Body, and complied with existing 

European Union and United Kingdom Home Office legislation and 

local standards. 

For paired proteomics and transcriptomics, 12-week-old male and 

female C57BL/6 mice were used. For generation of bone marrow 

(BM) chimeras, male B6.SJL-PtprcaPepcb/BoyJ (B6.SJL-CD45.1) 

mice were lethally irradiated (2x 5.0 Gy) and reconstituted with 

3x106 BM cells. µMT BM chimeras were generated by transferring 

a mixture of 80% B6.SJL-Ighmtm1Cgn (µMT-CD45.1) and 20% 

C57BL/6 (WT) or B6.129S6-Pdcd4tm1Yhcn/J (PDCD4 KO) CD45.2 

cells. Competitive BM chimeras were generated by transferring a 

mixture of 40% B6.SJL-CD45.1 and 60% C57BL/6 (WT) or 

B6.129S6-Pdcd4tm1Yhcn/J (PDCD4 KO) CD45.2 cells. Peripheral 

blood was sampled to assess reconstitution 8-9 weeks after cell 

transfer. 1-2 weeks later, chimeric mice were immunized 

intravenously with 10 µg/ml NP-Ficoll (Biosearch Technologies) in 

100 µl PBS. For in vivo puromycin incorporation assay, chimeric 

mice received 500µg puromycin (Sigma-Aldrich) in 200 µl PBS 

intraperitoneally, and were analysed 30min later.  

 

Cell sorting and flow cytometry 

For cell surface staining, single cell suspensions from tissues were 

prepared in PBS supplemented with 1% FCS and 2mM EDTA. All 

cells were blocked with FcγR(CD16/32)-blocking antibody (2.4G2, 

BioXcell) and incubated with fixable cell viability dye eF780 

(Thermofisher) to exclude dead cells from the analysis. B cell 

populations were sorted using anti-CD19 (6D5), anti-CD93 

(AA4.1), anti-CD23 (B3B4), anti-CD21 (7G6) and anti-IgM (II/41) 

antibodies. Paired proteomics and transcriptomics were carried out 

on the following splenic B cell subsets: T1 (CD19+ CD93+ IgM+ 

CD23-), T2 (CD19+ CD93+ IgM+ CD23+), MZ (CD19+ CD93- CD21+ 

CD23-) and FoB (CD19+ CD93- CD21- CD23+) cells. Full gating 

strategy is reported in Supplementary Fig 9a. 

For flow cytometry analysis cells were labelled for 30min at 4°C 

with the following monoclonal antibodies: anti-CD45.1 (A20), anti-

CD45.2 (104), anti-CD19 (1D3 or 6D5), anti-B220 (RA3-6B2), anti-

CD4 (RM4-5), anti-CD8 (53-6.7), anti-Ly6C/G (RB6-8C5), anti-

CD93 (AA4.1), anti-CD23 (B3B4), anti-CD21 (7G6), anti-CD1D 

(1B1), anti-IgD (11-26c.2a), anti-IgM (II/41 or RMM-1), anti-IgG3 

(R40-82), anti-CD138 (281-2), anti-CD267/TACI (8F10-3), anti-

CD180 (RP/14), anti-CD40 (1C10), anti-CD22 (OX-97). 

Intracellular staining was performed using the CytoFix/CytoPerm 

kit (BD Biosciences). Puromycin was detected with an AF647-

conjugated antibody (12D10, Sigma-Aldrich). eIF4A1 was detected 

using a rabbit polyclonal antibody (ab31217), PDCD4 using a rabbit 

monoclonal antibody (ab79405, both Abcam). In both cases 

secondary staining was performed with an AF647-conjugated 

donkey anti-rabbit IgG(H+L) antibody (Jackson). NP-specific cells 

were detected with 4-Hydroxy-3-iodo-5-nitrophenylacetic acid 

(NIP) conjugated to biotin through BSA followed by secondary 

staining with a streptavidin antibody. Full gating strategies 

intracellular NIP staining of PB derived from µMT and competitive 

chimeras are reported in Supplementary Fig 9b-c. 

Data were acquired using a LSR Fortessa Flow Cytometer 

equipped with 355nm, 405nm, 488nm, 561nm and 640nm lasers 

(BD Biosciences) and analysed with FlowJo software (TreeStar, 

version 10.6.1). 

 

ELISA and ELISpot assay 

For ELISA, serum was prepared from the blood of MT chimeric 

mice. ELISA plates (Nunc Maxisorp) were coated with NP20-BSA 

(Biosearch Technologies) and blocked with 1% BSA in PBS. Serial 

dilutions of serum samples (0.1% BSA/PBS) were added and 

incubated overnight. NP-specific IgM and IgG3 antibodies were 

detected using biotinylated anti-mouse IgM- or IgG3-specific 

immunoglobulins followed by streptavidin-HRP (Southern Biotech) 

and developed with SIGMAFAST OPD tablets (Sigma-Aldrich). 

Absorbance values at 490 nm were determined and used to 

calculate endpoint titers. 

For ELISpot, serial dilution of splenocyte suspensions of MT 

chimeric mice were added to NP20-BSA-coated MultiScreen HA 

mixed cellulose ester plates (Millipore, Watford, UK) previously 

washed and blocked with IMDM (Sigma-Aldrich) freshly 
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supplemented with 10% FCS, 2mM GlutaMAX and 50μM 2-

mercaptoethanol. Upon overnight incubation, cells secreting anti-

NP antibody (ASC) were visualized with HRP-conjugated anti-

mouse IgM or IgG3 antibodies (Southern Biotech) followed by AEC 

staining Kit (Sigma-Aldrich). The numbers of ASCs were quantified 

using Immunospot S6 Analyzer (Cellular Technology Limited).  

 

Sample preparation for mass spectrometry 

2.5 to 3x106 FACS-sorted WT B cell subsets, or 1 x106 FACS-

sorted WT and PDCD4 KO MZ B cells derived from competitive BM 

chimeras, were washed twice with ice-cold PBS and cell pellets 

were snap frozen in liquid nitrogen. Cells were lysed in 5% sodium 

dodecyl sulphate, 50mM TEAB pH 8.5, 10mM TCEP under 

agitation. Lysates were boiled for 5min at 95°C, sonicated with a 

BioRuptor (15 cycles of 30sec each) and treated with 1µl 

benzonase for 15 minutes at 37°C. Protein yield was determined 

using the EZQ protein quantitation it (ThermoFisher Scientific) 

according to manufacturer’s instructions. Lysates were then 

alkylated with 20mM iodoacetamide for 1h at RT in the dark and 

loaded onto S-Trap mini columns (ProtiFi). Proteins were 

subsequently digested with 15µg Trypsin Gold (Promega) in 50mM 

ammonium bicarbonate (Sigma-Aldrich) for 1.5h at 47°C before 

peptides were eluted from columns. Eluted peptides were dried by 

SpeedVac and resuspended in 5% formic acid for peptide 

fractionation by high pH reverse-phase chromatography. 

Peptides were fractionated by HPLC using a Dionex Ultimate3000 

system (ThermoFisher Scientific), which consists in a 25min-

multitep gradient of buffer A (10mM ammonium formate at pH 9 in 

2% acetonitrile) and buffer B (10mM ammonium formate at pH 9 in 

80% acetonitrile), at a flow rate of 0.3ml/min. Peptides were 

separated in 16 fractions, which were then consolidated in 8 

fractions. The fractions were subsequently dried by SpeedVac and 

dissolved in 5% formic acid. 1µg was analysed for each fraction 

using a nanoscale C18 reverse-phase chromatography system 

(UltiMate 3000 RSLC nano, Thermo Scientific) coupled to an 

Orbitrap Q Exactive Plus mass spectrometer (Thermo Scientific), 

as described previously87.  

 

Proteomics data analysis 

The raw mass spectrometry data were processed with the 

MaxQuant software package (1.6.10.43). Proteins and peptides 

were identified using a hybrid database generated from the UniProt 

mouse database (July 2019). This hybrid protein database 

consisted of manually annotated mouse SwissProt entries, along 

with mouse TrEMBL entries with a manually annotated homologue 

within the human SwissProt database. The following variable 

modifications were set within MaxQuant: methionine oxidation, 

acetylation (N-termini), glutamine to pyroglutamate and glutamine 

and asparagine deamidation. Carbamidomethylation of cysteine 

was set as a fixed modification. Maximum missed cleavages was 

set at 2, while protein and PSM false discovery rate was set at 1%. 

Match between runs was disabled. The dataset was then filtered to 

remove proteins categorized as “contaminant”, “reverse” and “only 

identified by site” using Perseus (1.6.10.45). Copy numbers were 

calculated using the proteomic ruler plugin within Perseus as 

previously described31. The accuracy of quantitation was 

categorized as: “high” if proteins were identified by more than eight 

total unique peptides and a ratio of unique + razor to total peptides 

≥ 0.75; “medium” if proteins had at least three total unique peptides 

and a ratio of unique + razor to total peptides ≥ 0.5; “low” if proteins 

were below these thresholds30 (Table S1). Data were filtered to 

include only proteins identified by at least one unique peptide and 

in at least three out of four biological replicates. Data analysis was 

continued in R (4.0). 

 

Sample preparation for RNA-sequencing 

0.3x106 FACS-sorted B cell subsets were washed twice with ice-

cold PBS and cell pellets were snap frozen in liquid nitrogen. RNA 

was extracted using the RNeasy Mini Kit (Qiagen) and its quality 

was assessed on a 2100 Bioanalyser (Agilent). RNA integrity 

numbers > 7.5 of total RNA were used to generate cDNA from 

polyadenylated transcripts.  

For Illumina sequencing, RNA was reverse transcribed using the 

SMART-Seq v4 ultra low input RNA kit (Takara Bio). cDNA quality 

was analysed on a 2100 Bioanalyser (Agilent). mRNAseq libraries 

were prepared using Nextera XT DNA library preparation kit 

(Illumina) and quantified using KAPA library quantification kit 

(Roche). Barcoded libraries were multiplexed and sequenced on 

an Illumina HiSeq 2500-RapidRun system on a 50bp single-end 

mode with a coverage of 20M reads per sample. 

For Oxford Nanopore Technologies (ONT) sequencing, libraries 

were prepared as described previously88, 89. Briefly, RNA was 

reverse transcribed using the Smart-seq2 protocol90, cDNA was 

amplified using the KAPA HiFi Uracil+ hot start polymerase mix 

(Roche) and PCR products were purified using 0.6X AMPure XP 

beads (Beckman). Equal amounts of cDNA libraries were pooled 

for a total of 200 fmol and sequenced with MinION R9.4.1 flow cell 

using the SQK-LSK109 kit on MinKNOW (21.02.1) according to the 

manufacturers’ instructions. 

 

Illumina sequencing data analysis 

The quality of Illumina sequencing data of B cell subsets and 

sequencing data retrieved from ref.16 (GSE141419) and ref.56 

(GSE61608) was assessed using FastQC (0.11.9; 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

Reads were trimmed using Trim Galore and mapped to mouse 

genome GRCm38 using HiSat291 (2.1.0). Raw counts were 

calculated over mRNA features using SeqMonk (1.47.2; 

https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/); 

this and subsequent analyses were performed using the 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.521580doi: bioRxiv preprint 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
https://doi.org/10.1101/2022.12.22.521580
http://creativecommons.org/licenses/by/4.0/


Salerno et al., 22 DEC 2022 - preprint copy - BioRxiv 

 

17 

 

GRCm38.90 annotation release. The normalised counts in 

transcripts per million (TPM), which corrects for transcript length 

and library size, were calculated using StrigTie92 (2.1.1). When 

indicated, ENSEMBL annotation was used to filter for protein-

coding transcripts and exclude mis-annotation of non-coding or 

predicted genes. Genes with TPM > 1 were considered as 

expressed, unless differently specified. DESeq293 (1.30.1) was 

used to calculate differential RNA abundance between two 

conditions and performed using default parameters, with “normal” 

log2 fold change shrinkage. Information on biological replicates 

were included in the design formula to have paired analysis. 

 

ONT sequencing data analysis 

Basecalling of reads was performed with guppy basecaller (4.0.11) 

in high accuracy mode. Reads with a mean sequence quality score 

higher than 7 were demultiplexed with the guppy_barcoder tool and 

processed with pychopper (2.5.0) in order to identify, orient and 

trim the full-length cDNA reads. Pychopped reads were then 

aligned to mouse genome reference GRCm38 using minimap2 

(2.17-r941)94 with splice aware setting and analysed with FLAIR 

pipeline95 for isoform identification. Aligned SAM files from 

minimap2 were converted to BAM format after sorting and indexing 

with samtools (1.9). BAM files for replicate datasets were merged 

using samtools (1.9) and visualised with the Integrative Genomics 

Viewer (IGV 2.7.2) in expanded display mode for aligned read 

tracks.  

 

Transcriptomics and proteomics data integration 

To combine transcriptomic and proteomic data, Ensembl ID of 

corresponding UniProt ID were retrieved using Perseus 

(1.6.10.45), Ensembl BioMart (2.46.3) and manually cured for 

obvious mis-annotations. Protein copy numbers of all four 

biological replicates were averaged and integrated with average 

mRNA abundance in TPM. Pearson correlation coefficient (r) and 

Spearman correlation coefficient (ρ) were calculated in R (4.0) 

using average RNA in log10 TPM and average protein in log10 

copy numbers per B cell subset. To generate a trend line describing 

the relationship between mRNA TPM and protein copy numbers 

per B cell subset, ggplot2::geom_density2d was used to plot 

density contours including only genes that were detected by both 

RNA-seq and proteomics, and ggplot_build to extract their 

coordinates. Assuming a positive relationship between mRNA and 

protein expression level, we identified the coordinates for each 

contour that gave the maximum or minimum sum of x (TPM) and y 

(protein copies) and used these in a linear regression model to plot 

a best fit line describing each B cell population. R2 values for these 

ranged between 0.95-0.968. 

To test whether detection of proteins differed from what would be 

expected by chance for the early activation and the plasma cell-

related gene sets, control gene sets were generated by matching 

expression levels (log2 TPM) of protein-coding mRNAs (i.e. with a 

consensus coding sequence) to each gene set of interest. In 

particular, for each gene within the early activation or the plasma 

cell-related gene sets, 100 genes with the closest expression in a 

given B cell population were identified. One of these was then 

randomly selected and used as a corresponding control. By 

repeating this process 100 times, we generated 100 control sets 

for each gene set and cell type. The median, 5th and 95th percentile 

of the number of genes that were detected at the protein level, 

across the 100 control sets, were then calculated and compared to 

the number of genes for which protein was detected in the early 

activation or the plasma cell-related gene sets.  

For visualization of the expected range of protein abundance for 

each individual poised gene, the 100 protein-coding genes closest 

in RNA expression were selected, regardless of whether they were 

also selected for another gene, and without random selection. 

 

Statistics and data visualization 

For in vivo mouse experiments, statistical analysis was performed 

with GraphPad Prism 8 using two-tailed unpaired Student t-test 

when comparing two groups. P values < 0.05 were considered 

statistically significant. 

For statistical analysis of proteomic data, protein copy numbers 

were normalized for the total sum of protein copy numbers per 

sample and log2 transformed. Intergroup differences were 

calculated in R using ANOVA test followed by a Benjamini-

Hochberg multiple testing correction. Statistics of RNA-sequencing 

data was conducted in DESeq2 (1.30.1), which uses the Wald test 

followed by a Benjamini-Hochberg multiple testing correction. For 

both proteomic and transcriptomic analysis, differences were 

considered significant if adjusted p-value (FDR) was < 0.05. Plots 

were generated with ggplot2 (3.3.3) and GraphPad Prism 8, venn 

diagrams with VennDiagram CRAN package (1.6.20), heat maps 

with pHeatmap (1.0.12).  

 

Data Availability 

Raw mass spectrometry data files and MaxQuant analysis files are 

available from the ProteomeXchage data repository. The 

proteomic data of T1, T2, MZ and FoB cells are accessible with the 

identifier PXD027054; whereas the proteomic data of WT and 

PDCD4 KO MZ B cells are accessible with the identifier 

PXD037563. Analysed proteomics data used to generate figures 

are available in Tables S1-S2-S3. Both Illumina and ONT 

sequencing data generated in this study are available from the 

NCBI Gene Expression Omnibus (GEO) repository under the 

accession code GSE178728. Calculated TPMs and protein copy 

numbers of genes identified by Illumina sequencing and 

proteomics are reported in Table S4. Lists of early activation genes 

and PB-related genes extracted upon DESeq2 analysis of RNA-

sequencing from refs.16, 56 are reported in Tables S5-S6. A side-by-
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side comparison of TPMs of genes that were detected by both ONT 

and Illumina sequencing is reported in Table S7. A list of poised 

mRNAs in B cells is provided in Table S8-S9. Flow cytometry data 

that support the finding of this study are available upon request.  
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