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ABSTRACT

Small molecules can selectively modulate biological processes and thus generate phenotypic
variation. Biological samples are complex matrices, and liquid chromatography tandem mass
spectrometry often detects hundreds of molecules, of which only a fraction may be associated
with this variation. The challenge therefore lies in the prioritization of the most relevant
molecules for further investigation. Tools are needed to effectively contextualize mass
spectrometric data with phenotypical and environmental (meta)data. To accelerate this task, we
developed FERMO, a dashboard application combining mass spectrometry data with qualitative
and quantitative biological observations. FERMO'’s centralized interface enables users to rapidly
inspect data, formulate hypotheses, and prioritize molecules of interest. We demonstrate the
applicability of FERMO in a case study on antibiotic activity of bacterial extracts, where we
successfully prioritized the bioactive molecule siomycin out of 143 molecular features. We
expect that besides natural product discovery, FERMO will find application in a wide range of
omics-driven fields.
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INTRODUCTION

Small molecules encompass many metabolites, drugs, agrochemicals, and pollutants, which
selectively interact with biological systems and influence their functioning. As part of the
environment, small molecules can cause phenotypic variations, and their investigation is highly
relevant in fields like metabolomics, exposomics, or microbiome research [1, 2]. Liquid
chromatography — mass spectrometry (LC-MS) is a commonly used analytical method for the
untargeted, qualitative and quantitative analysis of small molecules [3]. LC-MS analysis detects
molecules as so-called molecular features, which we here define as a detected ion signal for an
eluting molecule, with inherent attributes like a specific mass-to-charge ratio (m/z) or retention
time. Data-dependent acquisition (DDA) liquid chromatography tandem mass spectrometry
analysis (LC-MS/MS) can be used to gather information about the collisional fragmentation of
molecular features. Ultimately, the chemical structure of a molecule determines its MS/MS
fragmentation spectrum, and structurally similar molecules generally show similar MS/MS
fragmentation spectra [4]. The structural information therein encoded can be used for annotation
and identification of molecular features [5, 6], molecule fingerprinting [7], and de novo
predictions of molecular structures [8].

Biological and environmental samples are usually complex matrices, and LC-MS/MS
analysis can often detect thousands of molecular features for a single sample. The complex and
information-dense nature of LC-MS/MS data generally makes it infeasible to manually identify
metabolites that are likely responsible for a phenotype of interest, such as an antimicrobial
activity, a medical diagnosis or environmental metadata like altitude or water temperature. For
this reason, various computational analysis tools for data reduction [9,10,11,12], organization
[13,14,15,16,17], and annotation [18] have been developed. Even after these data pre-
processing and reduction steps, hundreds of molecular features can remain in the dataset, all
potentially responsible for the observed phenotypic variation. Therefore, the selection of the
most relevant molecular features for further investigation requires effective prioritization.

Generally, prioritization is attempted by separating ‘interesting’ or ‘relevant’ from ‘not
interesting’ or ‘irrelevant’ molecular features based on a series of attributes (e.g., bioactivity,
chemical novelty, diversity, molecular weight, source of sample) [19, 20, 21]. However, the
definition and weighting of attributes for selection strongly depend on the respective research
question. For example, the definition of chemical novelty may range from ‘a molecule with a
novel carbon backbone’ to ‘a novel functional group on a known molecule’. One study may
prioritize mainly the presence or absence of a molecular feature, while another may focus on
fold-changes between biological groups. This variability in selection principles hampers
automation, rendering prioritization still a mostly manual task. Currently available software
solutions are typically designed with specific tasks and/or research fields in mind i.e., data
quality control [22,23], statistical analysis [24,25], molecular feature annotation [26, 27], or
natural product drug discovery [28, 29, 30, 31]. Further, there is a lack of tools that combine and
visualize multiple (meta)data types and their relationships in one view.

To bridge this gap, we developed FERMO (Formulation of mEtrics from Reproducible
Molecular feature Objects), a dashboard application for the prioritization of molecular features
relevant for explaining biological observations. FERMO connects LC-MS/MS information with
qualitative and quantitative biological meta(data), like sampling location, measured biological
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activity, phylogenetic affiliation, or environmental measurements. It allows rapid and
reproducible selection of specific molecular features based on a discrete set of attributes.
Besides inherent attributes, FERMO calculates custom scores to summarize the relationship of
samples and molecular features towards internal and external data. Putative associations to
biological data are identified, and presented in the centralized dashboard view at one glance.
FERMO is capable of analyzing multiple groups of samples in parallel, and guarantees the
reproducibility of analyses by recording processing and filtering parameters. In a case study, we
demonstrate how FERMO can rapidly pinpoint molecular features putatively responsible for an
observed antibiotic activity. Developed with a focus on user-friendliness and supplied with
tutorials and a dedicated Wiki on GitHub, FERMO is aims to improve prioritization in fields like
natural product research, metabolomics, environmental, food, and agricultural sciences.
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Figure 1: Overview of FERMO processing workflow: LC-MS/MS data, qualitative and
gquantitative biological (meta)data are parsed and associated with one another. Molecular
features are annotated, organized, and presented for prioritization analysis to the user.
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RESULTS

FERMO facilitates prioritization via custom scores in the dashboard view

FERMO is centered around the dashboard view, an interactive graphical user interface that
presents key information about the dataset at a glance (Figure 2). Each sample is associated
with a number of descriptive attributes, such as the detected molecular features, calculated
scores, group metadata, or quantitative biological data (Figure 2A). Molecular features can be
visualized sample-wise in the Sample Chromatogram Overview (Figure 2B) and investigated in
detail in the Molecular Feature Information Table (Figure 2C). The Cytoscape Spectral Similarity
Networking view (Figure 2D) allows to investigate relationships between molecular features
based on MS/MS spectral similarity, and the presence of a molecular feature across samples
can be inspected in the Sample Chromatograms view (Figure 2E). Molecular features can be
quickly prioritized by combining up to 16 different filters, and the selection can be exported in
tabular format for consecutive investigation. A more detailed description of the dashboard
design can be found in the Methods section.
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Figure 2: Overview of the FERMO dashboard. A) Sample Information Tables; B) Sample
Chromatogram Overview; C) Molecular Feature Information Table; D) Cytoscape Spectral
Similarity Networking view; E) Sample Chromatograms.
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To facilitate prioritization, FERMO aggregates a number of attributes for each molecular feature
and sample. Besides inherent attributes such as precursor m/z, retention time, or signal
intensity, FERMO calculates several custom, indicative metrics (Table 1). For molecular
features, Novelty scores, QuantData scores, and peak collision measures are calculated, while
for samples, Diversity scores, Specificity scores, and Mean Novelty scores are provided. The
Novelty score estimates the assumed chemical novelty of a molecular feature by comparison to
external databases, while the QuantData score designates molecular features that are
putatively associated with user-provided quantitative biological data (e.g. biological activity in an
assay, days of growth, temperature). The peak collision measure denotes the overlap of co-
occurring molecular features and clarifies their ion identities. Diversity and Specificity scores
estimate the chemical richness of samples and their associated qualitative biological data
(group metadata), respectively, while the Mean Novelty score indicates the assumed overall
chemical novelty of a sample. For more details, see the Methods section. These scores allow
rapid surveying of LC-MS/MS data by applying filters, retaining only molecular features or
samples relevant to the research question. Users are free to restrict the selection as desired,
and the filtering parameters are stored to ensure the reproducibility of the analysis.

Table 1: Calculated descriptive attributes for samples and molecular features

Attribute Description

Diversity score Measure for chemical diversity of sample
Specificity score Measure for sample-specific chemistry
Mean Novelty score Summary of putative chemical novelty of

molecular features in sample

Peak collision measure Measure for co-elution of molecular features

Novelty score Measure for putative novelty of molecular
feature

QuantData score Measure for association of molecular feature

to provided quantitative biological data

FERMO associates antibiotic activity to a single family of molecules

To demonstrate the applicability of FERMO, we attempted to pinpoint molecular features
responsible for antibiotic activity in a subset of samples from a previously published study on the
actinomycete genus Planomonospora [32]. We selected a set of samples, based on availability
of in-house generated antibiotic activity data against the Gram-positive pathogen
Staphylococcus aureus. Our set consisted of ten samples: four samples belonged to the S
phylogroup, three samples to the C phylogroup, two samples to the A2 phylogroup, and one to
the V2 phylogroup. For differentiation between metabolites and growth medium components, we
added a sample of the extract of the pure growth medium (referred to as medium blank), leading
to a total of eleven samples for the test dataset. Details on the group and biological activity data
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can be found in the Supplementary Information. After MZmine3 pre-processing, the resulting
data was analyzed by FERMO.

Starting with a total of 143 molecular features extracted by MZmine3, we focused on
molecular features that had associated MS/MS information and were not associated with the
medium blank (Figure 3A). Association to the medium blank was either direct (molecular
features detected both in samples and the blank) or indirect (molecular features not detected in
the blank, but co-occurring in spectral similarity networks with directly-associated molecular
features). This left 67 molecular features organized in 39 similarity networks. Next, we applied
the QuantData score to filter out molecular features that were unlikely to be associated with
bioactivity, which left thirteen molecular features in seven spectral similarity networks. The
antibiotic activity was only associated with samples belonging to the S group. We assumed that
spectral similarity networks containing molecular features from groups other than the S group
would be unlikely to be associated with the antibiotic activity. Therefore, we focused on five
similarity networks associated only to the S phylogroup, containing ten molecular features. Only
three molecular features were detected in all four samples with antibiotic activity (Figure 3B).
Inspection of matchms spectral library [33] and MS2Query [34] annotations showed that all
three remaining molecular features were annotated as different ions of the antibiotic siomycin A.
Siomycin was previously reported to be produced by the actinomyces genus Planomonospora
and to show growth inhibition against Staphylococcus aureus [32,35,36]. Therefore, by data
integration and the application of appropriate filtering steps, FERMO was able to rapidly pinpoint
the molecular features most likely associated with the observed biological variable (antibiotic
activity) and dereplicate the compounds. Since the antibiotic was well-annotated in the study
that initially reported the dataset [32], no experimental verification was performed. In other
cases, consecutive isolation and structural elucidation of the prioritized compound class are
highly recommended.

Increased computational power accelerates data processing

To assess the performance of FERMO on datasets of different sizes and complexity, we
conducted exploratory benchmarking. We observed that the length of calculation predominantly
depended on the number of molecular features that were investigated, and most computation
time was consumed by (i) the annotation of spectra via MS2Query [34] and (ii) the calculation of
spectral similarity between molecular features via matchms. [33] By using a computer with
higher computational power, processing time can be decreased (Table 2). We note that for large
datasets with several thousand molecular features, calculation time may become unfeasibly
long. Work is underway to improve the calculation efficiency and speed by incorporating multi-
processing.
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Figure 3: Prioritization procedure in case study. A) application of increasingly restrictive filters
leads to the prioritization of three molecular features, likely to be responsible for antibiotic
activity. B) inspection of the selected molecular features suggests the antibiotic siomycin A to be
responsible for antimicrobial activity.

Table 2: Exploratory benchmarking results.

Total molecular W/o MS2Query With MS2Query Computer
features / annotated (seconds) (seconds) specifications
molecular features

248/154 9.7 670 A

248/154 6.1 308 B

1642/898 489 3792 A

1642/898 280 1859 B

1642/1642 496 6528 A

1642/1642 282 2990 B

A) Processor: Intel® Core™ i5-6200U CPU @ 2.30GHz x 4; Memory: 7.2 GiB; OS: Ubuntu 20.04.5 64bit;
B) Processor: AMD Ryzen™ 5 3600 @ 3.59GHz x 6; Memory 16.0 GiB; OS: Windows 10 Home 64bit;
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DISCUSSION

Hypothesis-driven molecular feature prioritization is an essential step in addressing biological
observations. FERMO offers a generalized approach for prioritization via a rational selection of
molecular features based on a number of inherent and calculated attributes. To make FERMO
an accessible tool that can be easily included in current workflows, we tried to integrate it with
existing software and data ecosystems. In particular, FERMO relies on the program MZmine 3
[9] for LC-MS/MS data pre-processing and peak picking. However, the reliance on a peak table
as input format restricts access to the underlying “raw” LC-MS/MS data, and the data quality
strongly depends on the parameter settings used in the pre-processing software. While FERMO
can not directly mitigate problems arising from suboptimal pre-processing, the FERMO GitHub
Wiki provides a detailed tutorial and explanations on pre-processing to inexperienced users.
Another, complementary, integrative metabolomics software is available with the recently
published tool INVENTA [29]. While FERMO focuses on molecular feature prioritization,
INVENTA is aimed at sample prioritization. Due to layout and software design, FERMO is
inherently restricted with regard to the amount of data it can efficiently process and visualize,
with a soft ceiling of several dozen samples. INVENTA, however, is designed to work with
hundreds or thousands of samples at once, and to prioritize mainly on sample-based
characteristics, such as estimated novelty based on bibliographic metadata regarding the
source material, and estimation of sample chemical diversity by statistical methods. A workflow
can be imagined where a large number of samples is first processed by INVENTA, which
prioritizes the most promising ones. Consecutively, FERMO can be used to investigate the
selected samples in greater detail, to reveal molecular features associated with the biological
variable under investigation.

In our case study, we demonstrated how FERMO allows for the rapid prioritization of
biologically relevant molecular features. To visualize molecular features in their original, sample-
wise organization, FERMO uses a pseudo-chromatogram view similar to a total extracted ion
chromatogram (EIC). While an EIC is drawn from a continuous retention time/intensity trace,
FERMO constructs pseudo-chromatograms from a discrete number of points (see Methods
section). This way of representation can be used to intuitively assess co-eluting molecules and
their relationships based on spectral similarity or ion identity. This was shown in the case study,
where the bioactivity-associated molecular features were quickly determined to be related,
based on their elution pattern, the ion identities, and spectral similarity associations. While
pseudo-chromatograms emulate their original counterparts well (S| Figure 2), peak anomalies
such as shoulder peaks, fronting, or tailing can lead to misrepresentations. Users are therefore
alerted to scrutinize suspicious-looking peaks by consulting the original data using instrument-
vendor software, pre-processing software [9, 10, 12], or most conveniently, the recently
introduced GNPS Dashboard [22].

To prioritize molecular features, FERMO relies on the calculation of a number of
attributes, including the spectral similarity between molecular features, likewise to a number of
other tools [37, 38, 39]. In addition, FERMO also allows modification of the underlying similarity
calculation, and currently supports Modified Cosine Similarity and MS2DeepScore [15]. FERMO
also uses spectral similarity networking to calculate summary scores for sample prioritization.
These scores estimate the chemical diversity of a sample, based on the assumption that
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spectral similarity networks cluster structurally similar molecular features and can be therefore
taken as proxies for chemical classes. While actual chemical class predictions would be
desirable, the computational costs associated with more sophisticated approaches such as
CANOPUS [40] make routine predictions from hundreds of spectra currently unfeasible. Another
prioritization score FERMO uses is the QuantData score, which indicates the putative
association of a molecular feature to quantitative biological data, like antibiotic activity in the
case study. Several other workflows have been reported to link quantitative biological data to
mass spectrometry data, often using statistical tests (e.g. Pearson correlation) [30, 31, 41, 42,
43, 44, 45]. Contrary to these approaches, FERMO does not directly predict the probability of
biological activity of a molecular feature. Instead, FERMO determines molecular features that
are unlikely to be associated with the quantitative biological measure, based on
presence/absence and fold-changes across samples. In the case study, the QuantData score
allowed to exclude 69% of candidate molecular features from consideration and to focus on the
remainder. The approach is robust towards multiple, unrelated molecular features jointly
responsible for an observed biological observation, and does not require sample
(pre)fractionation. However, since the QuantData score is based on the intersection of
molecular features between samples, only a small number of putative candidates can be
excluded if chemically very different samples are compared. For such samples, probability-
based approaches may be more suitable.

In conclusion, the FERMO dashboard provides a powerful framework for sample and
molecular feature prioritization, based on generalized principles. It pairs intuitive visualization
with a range of attribute filters for rapid and streamlined data processing, as demonstrated in the
case study. Work is underway to further integrate FERMO with existing tools and data
ecosystems, such as allowing input data from other LC-MS/MS data pre-processing tools like
OpenMS [12], or XCMS [10], or accepting data formats from advanced prediction tools like
CANOPUS [40] or SIRIUS [46]. Another promising avenue is the integration of FERMO and
INVENTA in a single workflow, to utilize synergies in the processing of large numbers of
samples. Also, the integration of LC-MS/MS data with biological metadata is only the first step in
integrative data analysis. The integration of LC-MS/MS metabolomics with other types of omics
data, such as metagenomics or transcriptomics, would further strengthen prioritization
workflows, as demonstrated with the recently published tools NPOmix [47] or NPLinker [48].
While challenging, such methods promise to further facilitate hypothesis formulation and
potentially automate molecular feature prioritization. We anticipate that FERMQ'’s centralized
view on LC-MS/MS data analysis will benefit many fields of research in the life sciences.
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METHODS
Software design overview

FERMO is a multi-page dashboard app for the prioritization of biologically relevant molecular
features from data-dependent acquisition, positive ion mode LC-MS/MS data. FERMO is written
in the platform independent Python programming language and may be used on Windows, Mac,
and Linux operating systems. The frontend is constructed using the Plotly Dash framework [49],
while the backend comprises custom functions for data processing, which utilize a number of
public Python packages. A full list of dependencies can be found in the Supplementary
Information.

Frontend organization

The FERMO graphical user interface is rendered in a browser application such as Firefox,
Google Chrome, Microsoft Edge, or Safari. It is deployed locally, and therefore, no user data is
shared via the internet. The app is separated into four connected pages: the landing page, the
processing mode page, the loading mode page, and the dashboard page. Upon startup, the
landing page is shown by default, from where the processing mode page and the loading mode
pages can be accessed. The former allows for data processing (see Backend organization
section), while the latter can be used to reload a previous FERMO session (Input data formats
section). Either page automatically redirects to the dashboard page, where data analysis and
molecular feature prioritization take place.

Backend organization

The FERMO backend is a data processing workflow, consisting of functions responsible for data
parsing, processing, the calculation of scores, and output data format preparation. FERMO
employs both modular design and object-oriented programming principles. Each molecular
feature is represented as an individual object with distinct attributes that are modified by the
modular processing functions. Therefore, additional functionality can be easily added by
defining the respective object attribute and integrating a new function in the workflow. Briefly,
the workflow consists of: (i) data parsing; (ii) the determination of association of molecular
features to provided metadata (sample grouping data, quantitative biological measurements);
(iii) calculation of spectral similarity between molecular features; (iv) annotation of molecular
features by matchms spectral library matching and by MS2Query; (v) calculation of peak
overlaps and determination of co-occurring adducts and isotopes (resulting from the same
analyte); (vi) the calculation of custom scores; (vii) preparation of the visualization. Individual
processing steps including the employed parameters are stored in a log file, allowing for
reproducible analysis.
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Help document and tutorials

On the FERMO GitHub repository, a GitHub Wiki is provided that contains tutorials on input data
preparation, data processing, data analysis, and prioritization. In the FERMO app, tool-tips are
placed next to parameter input fields, providing impromptu information and link to the respective
pages on the FERMO GitHub Wiki. Individual processing functions are documented following
the Numpy Documentation Style Guide (https://numpydoc.readthedocs.io/en/latest/format.html).

Deployment and installation

FERMO is open source and can be freely accessed and downloaded via its GitHub page
(https://github.com/mmzdouc/FERMQO/) as a .ZIP-compressed directory, or directly “cloned”
using git. FERMO requires Python 3.8 and a number of dependencies (see the Supplementary
Information for a detailed list). To install the dependencies, the use of a Python package
manager, in particular Conda (https://docs.conda.io/en/latest/), is highly recommended. FERMO
comes with a convenient startup script that automatically creates an environment, downloads
and installs the dependencies, and starts the program, provided that Conda (either as
Anaconda or Miniconda) was installed. If Conda is not available, users may still start the app via
command line by executing the app.py executable. A more thorough description can be found in
the README on the FERMO GitHub page.

Versioning

FERMO employs versioning based on Semantic Versioning (https://semver.org/). In particular,
this is important for the loading mode, where a previously created analysis (a FERMO session
file in the .json format) can be reloaded. In case of patch increment differences (e.g. 0.8.0 and
0.8.1), the session can be loaded nevertheless. In case of minor or major increment differences
(e.g. 0.7.0 and 0.8.0), the session file cannot be loaded. If the currently running version of
FERMO is incompatible to the one that was used to create the session file, an error message
will appear to alert the user.

FERMO data processing

Input data formats

Depending on the mode (processing mode or loading mode), FERMO accepts different input
files. In the processing mode, FERMO expects some mandatory, and some optional files. As
minimum input, it requires a peak table in the MZmine3 ‘_quant_full.csv’ format, as well as the
accompanying .mgf-file. Compatibility with MZmine3 was tested up to version 3.3.0 (Sl Table 4).
Currently, FERMO expects LC-MS/MS data to be data-dependent acquisition positive ion mode
data, which is important for ion identity determination and MS2Query annotation (see the
respective sections for further information). Additionally, FERMO accepts group metadata
(sample relationships), quantitative (or qualitative) biological data, and a spectral library in
the .mgf format. Details on the formatting can be found in the Supplementary Information, or in
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the FERMO GitHub Wiki. In the loading mode, FERMO accepts a FERMO session file in
the .json format, which allows reloading a previously prepared analysis.

Output data formats

The dashboard view allows for export of several different files: a FERMO session file in the .json
format, or peak tables in the .csv-format. The session file contains all information necessary to
reload an analysis session in the FERMO loading mode. Besides, this file can be shared with
collaborators, containing a precise log of all performed processing steps. Regarding the peak
table .csv-file export, the precise format can be adjusted: if desired, exported molecular features
can be restricted to the currently selected set and/or sample. Of note, the peak table export
automatically creates a second file in the .json format, containing a log of all performed
processing steps, for the convenience of the user.

Input testing, data parsing

Upon loading, input data files are parsed and tested for correct formatting. A status message
informs the user of the outcome of the test. Once (mandatory) files are loaded, processing can
be initiated. Molecular feature objects are initiated, and the association between LC-MS/MS
data and metadata is determined. If sample grouping metadata was provided, samples and
molecular features are organized after their group affiliation, which is of particular interest for
blank-associated molecular features. Samples without attributed grouping information are
automatically organized in the “GENERAL” wildcard group.

Calculating similarity networks

During data organization, FERMO calculates the spectral similarity between MS/MS
fragmentation spectra of molecular features. Since fragmentation spectra ultimately depend on
the chemical structure of the molecule and similar molecules usually yield similar fragmentation
spectra, spectral similarity can be taken as a proxy for chemical similarity. FERMO allows to
change the similarity calculation algorithm, and allows switching between Modified Cosine
similarity [33] and MS2DeepScore [15]. Further parameters, like the desired spectrum similarity
score cutoff, can be set on the processing mode page.

Annotating the identity of molecular features

The putative identity of molecular features can be annotated in two ways: first, by spectral
library matching against a user-provided library using the Modified Cosine similarity algorithm
from the matchms package [33], and second, by matching against an pre-calculated
embeddings library of over 300.000 mass spectra, using the MS2Query algorithm [34]. The
former is intended to be used with a targeted library of molecules that are suspected to be
present in the samples, while the latter employs a generalized library and also detects putative
analogs of known molecules. Since MS2Query is a computationally expensive algorithm, it can
be restricted to annotate only a subset of molecular features (based on relative intensity and/or
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exclude blank-associated ones) or switched off completely. Of note, the MS2Query annotation
workflow in FERMO currently only supports positive ion mode LC-MS/MS data.

Calculating peak overlaps and ion identities

In LC-MS, molecular features with distinct m/z ratios but overlapping retention time windows can
either correspond to different co-eluting molecules, or result from different ion species of the
same molecule (e.g., [M+H]*, [2M+H]*, [M+2H]?*, [M+Na]*, ...). FERMO attempts to identify and
annotate ion species resulting from the same molecule. Of note, only positive ion mode is
currently supported. First, peak overlaps are determined: for two peaks A and B, let Sa and S
be the retention time at the start of the peaks, and Ea and Es the retention time at the end of the
peaks (Sl Figure 1). Peaks do not overlap if either EA < SB or EB < Sa are true. For each
overlapping pair of molecular features, FERMO tests if the difference between their m/z ratios
correspond to one of 15 different ion and/or isotope adducts (see Sl Table 2), assuming that
one of the two is the [M+H]* ion. If a match was found, the molecular features are putatively
annotated as related ion species, and their overlap is not registered as co-elution, since they
originate from the same molecule. These adduct annotations can be queried via the
“Adduct/isotope search” filter in the dashboard view, for example to identify iron adducts
(suggesting siderophores). If overlapping molecular features cannot be recognized as related
ion species, they are assumed to stem from different molecules, and their peak overlap is
registered as co-elution. For each molecular feature, the fraction of the peak duration that is not
overlapping with other molecular features is calculated, and can be queried via the “Peak
overlap” filter on the dashboard (a value from 0-1). This allows users to quickly identify
molecular features with low or minimal overlap that could be promising candidates for
chromatographic isolation.

Calculating Novelty and Mean Novelty score

The Novelty score (a value from 0-1) indicates the putative chemical novelty of the molecular
feature, assessed by comparison against external data. It takes into account results from both
matching against a user-provided spectral library, and from MS2Query matching against pre-
calculated spectral embeddings. The Novelty score is flexible in the sense that it still leads to an
output even if one of the annotation methods was not performed (e.g., when no mass spectral
library was provided). High-certainty annotations lead to a low Novelty score, while low certainty
annotations lead to a higher score. The Novelty score N is calculated as follows: for a molecular
feature f, let SL (0-1) be the best library match score, Sm (0-1) the best MS2Query match score,
and SNnN (0-1) the reciprocal of the number of different NPClassifier/Classyfire superclass
annotations of nearest neighbors of f in its spectral similarity network (provided by MS2Query
annotation). If any of SL or Sm are higher than 0.95, fis assumed to be reliably annotated, and N
is returned as 1 - SL or 1 - Sm, depending on which of S., Swm is higher. Else, any of S., Sm, SnN
greater than 0 are summed, divided by the number of summed elements, and is returned as 1 -
sum. SNN is an estimate for the similarity of annotation by MS2Query. Since the next neighbors
in the spectral similarity network are hypothesized to be related, they should be also annotated
as the same chemical class. If so, it strengthens the annotation certainty and therefore leads to
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a lower Novelty score. Consequently, the Mean Novelty score is the mean of Novelty scores of
all molecular features per sample, excluding blank-associated molecular features.

Calculating the QuantData score

The QuantData score takes into account association of molecular features to user-provided
quantitative biological data. This is often biological activity data, but can be any quantitative
biological measurement. For each molecular feature f, its presence across all samples is
considered. If f is only detected in samples associated with the quantitative biological data, it is
considered to be putatively associated with this measurement. In cases where f is detected in
both types of samples, the fold-difference between the lowest intensity of f across associated
samples and the highest intensity of f across samples not associated to the measurement is
compared. If this fold-difference is higher than a user-provided QuantData factor (by default,
10), fis still putatively associated with the measurement. This is a pragmatic precaution against
excluding molecular features that might be present in concentrations too low for a sample to be
associated with the quantitative biological data (e.g. subinhibitory concentration), but high
enough to be detected by the mass spectrometer. Besides this sample-specificity, also the
correlation between molecular feature intensity and the quantitative biological variable (the
trend) is assessed. On the dashboard page, users can decide if they want to only consider
specificity or both specificity and trend.

Calculating Diversity and Specificity scores

The Diversity and the Specificity scores indicate the chemical diversity that is contained by a
sample, compared against all samples in the dataset (i.e., internally). They are intended to be
used as consideration in sample prioritization and are based on the assumption that molecular
features in a spectral similarity network belong to the same chemical class. Therefore, each
network represents a proportion of the chemical diversity of the dataset, and all networks
combined represent the total chemical diversity. The Diversity score is calculated by dividing the
number of spectral similarity networks associated to a single sample with the total number of
similarity networks. A sample with a high Diversity score should therefore contain more
chemical diversity than a sample with a low Diversity score. Similarly, the Specificity score
indicates the unique chemistry of the group the sample belongs to. Here, the number of
networks in the sample, subtracted by the networks also detected in other groups, is divided by
the number of networks detected in the sample. In other words, the Specificity score is a fraction
of the Diversity score, indicating the proportion of ‘unique’ networks per group. High Diversity
and Specificity scores are beneficial parameters in sample prioritization, since a sample with
more diversified chemistry might provide multiple interesting compound classes.
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Constructing pseudo-chromatograms of molecular features

FERMO represents molecular features as pseudo-chromatograms. Contrary to normal extracted
ion chromatograms (EICs) which consist of a continuous retention time/intensity trace for each
m/z ratio, pseudo-chromatograms are constructed from a discrete number of data points: for
each molecular feature, the trace is constructed from the retention times at the beginning and
the end of the peak, the molecular feature width at half maximum intensity, and the retention
time at the apex of the peak. This approach shows good correspondence to the original EICs
(Sl Figure 2).

FERMO visualization and analysis

The FERMO dashboard consists of six elements (Figure 2): i) the Sample Information Tables; ii)
the Sample Chromatogram Overview; iii) the Molecular Feature Information Table; iv) the
Sample Chromatograms; (v) the Cytoscape Spectral Similarity Networking view; (vi) the Filter
and Export Panel.

Sample Information Tables

The Sample Information Tables provide an overview of the samples included in the analysis.
They contain descriptive statistics, such as the number of selected molecular features and
networks, and summarize the calculated sample scores. The currently displayed sample in the
Sample Chromatogram Overview can be changed by clicking on one of the rows.

Sample Chromatogram Overview

The Sample Chromatogram Overview shows a pseudo-chromatogram of the selected sample.
The top panel shows an overview of the molecular features, color-coded after their attributes.
Green indicates that the molecular feature is currently under selection, cyan that it is not
selected. Blank-associated molecular features are indicated in yellow. A click on one of the
molecular features focuses it and activates the bottom panel of the sample chromatogram view,
which indicates related molecular features in the same sample. Furthermore, additional
information about the focused molecular feature is displayed in the Molecular Feature
Information Table, the Sample Chromatograms, and the Cytoscape Spectral Similarity
Networking view. Display of molecular features can be restricted only to the currently selected
ones by adjusting the “Visualization of features” toggle.

Molecular Feature Information Table

The Molecular Feature Information Table provides detailed information on the focused
molecular feature. This includes general attributes like m/z ratio or average retention time,
calculated scores like Novelty or QuantData scores, annotations from library matching and
MS2Query, and information about the associated spectral similarity network.
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Sample Chromatograms

The Sample Chromatograms visualize the presence of the focused molecular feature across
samples, and show the spatial context respective peak co-elution across samples. This view
allows to quickly identify the most promising sample (with the lowest number of co-eluting
molecules) for chromatographic isolation of the molecular feature of interest.

Cytoscape Spectral Similarity Networking view

The Cytoscape Spectral Similarity Networking view shows the spectral similarity network the
selected molecular feature is associated with, using a Cytoscape-based plugin [50,51]. In the
network, each node indicates a molecular feature, which is color-coded after its attributes.
Nodes and edges can be clicked to display more information in a separate table below the
Cytoscape view.

Filter and Export Panel

In the Filter and Export Panel, users can select a specific subset of molecular features, using up
to 16 different filters (SI Table 5). Molecular features can be filtered for their scores, their
association to spectral similarity networks or groups. Of note, the “Adduct/isotope search”, the
“Annotation search”, the “Group filter (features)” and the “Group filter (networks)” use POSIX
(Portable Operating System Interface for uniX) extended regular expressions. Furthermore,
peak tables and molecular feature objects can be exported. Also, a so-called FERMO session
file can be saved, which allows for later reloading of the session.

Data collection and preparation for the case study

Antimicrobial activity testing:

Testing of antimicrobial activity of strains was performed by agar diffusion assay in Naicons Srl.
laboratories (Milan, Italy). Briefly, Staphylococcus aureus L100 (Naicons Srl. Milan, ltaly) was
inoculated in 30 mL of liquefied hand warm Mdller-Hinton Agar, with a final concentration of
1x105 CFU x mL-. After solidification, 10 pL of each sample (dissolved in a 50 % methanol in
water solution (v/v) ) was applied as a distinct droplet and left to dry. As positive control, 5 pL of
a solution of Apramycin 5 mg x mL™ in sterile water was applied in a likewise fashion. As
negative control, 10 pL of a 50 % methanol in water solution (v/v) was applied. Plates were
incubated at 37 °C overnight and the diameter of the growth inhibition zones was measured in
millimeters. The positive controls showed an average growth inhibition zone of 22 mm, while no
growth inhibition was observed for the negative control. The results can be found in SI Table 3
in the Supporting Information of this publication.
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Analytical conditions, data retrieval and subsetting

In this study, no new LC-MS data was generated, and we only re-analyzed previously published
data [32]. Samples were selected based on availability of antimicrobial activity data. In total, 10
samples and one pure medium extract (referred to as medium blank) were used. Since samples
were already in the .mzXML format, no further processing was performed, and samples were
directly imported into MZmine 3.2.8.

MZmine3 pre-processing parameters

For processing, MZmine version 3.2.8 was used. After data import, the following workflow was
employed: (A) MassDetection = retention time, auto; MS 1 noise level, 1E3; MS 2 noise level,
2E1. (B) ADAP chromatogram builder [52] = retention time, auto; MS-level, 1; min group size in
no. of scans, 8; group intensity threshold, 5E2; min highest intensity, 1E3; m/z tolerance, 20
ppm. (C) Chromatogram deconvolution = local minimum (feature) resolver; Chromatographic
threshold, 85%; Minimum search range RT (absolute), 0.05; Minimum relative height, 0%,
Minimum absolute height, 5.0E3; Min ratio of peak top/edge, 1.7; Peak duration range (min)
0.15-1.00; Min # of data points, 5; m/z range MS 2 pairing, 0.02; RT range MS 2 pairing, 0.4
min. (D) 13C Isotope Filter = m/z tolerance, 20 ppm; RT tolerance, 0.2 min; monotonic shape,
no; maximum charge, 2; representative isotope, lowest m/z. (E) RANSAC peak alignment = m/z
tolerance, 20 ppm; RT tolerance, 0.7 min; RT tolerance after correction, 0.35 min; RANSAC
iterations, 100 000; minimum number of points, 50%; threshold value, 0.5; linear model, no;
require same charge state, no. (F) Duplicate peak filter = filter mode, new average; m/z
tolerance, 0.01 m/z or 20 ppm; RT tolerance, 0.1 min. Molecular features with a retention time
<1.5 min or >20 min were excluded to remove the initial solvent peak and the column wash
phase, respectively. The resulting molecular feature list contained 143 entries and was exported
via ‘Feature list methods’ — ‘Export feature list —» ‘GNPS feature based molecular networking’
with settings = merge MS/MS, no; Filter rows, ALL; Feature intensity, Peak height; CSV export,
ALL.

FERMO parameters and analysis settings

Processing was performed using FERMO version 0.8.1. Briefly, the peak table and .mgf file
created by MZmine 3.2.8 processing, as well as the group information metadata table, the
biological activity table, and an in-house spectral library were loaded on the Processing mode
page. The format of the quantitative biological data (=biological activity data) was specified as
percentage-like (i.e. highest value is highest activity), since growth inhibition was measured in
millimeters, and a wider growth inhibition radius signifies a more potent antimicrobial inhibition.
Parameters were set as follows: Mass deviation, 20 (ppm); Min fragments per MS? spectrum, 8;
QuantData factor, 10; Blank factor, 10; Blank factor, 10; Relative intensity filter, 0-1; MS2Query,
ON; MS2Query relative intensity filter, 0-1; MS2Query - annotate features from blanks, OFF;
Spectral similarity networking algorithm, ‘Modified cosine’; Fragment similarity tolerance, 0.1;
Spectrum similarity score cutoff, 0.8; Max spectral links, 10; Min matched peaks, 8. Prioritization
was performed with the following settings: QuantData-associated, ‘SPEC+TREND’; Group filter
(networks), *S$ (signifying ‘only group S’); Number samples filter, 4 (minimum).
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DATA AVAILABILITY

Mass spectrometry data for the case study was taken from MSV000085376
(https://doi.org/doi:10.25345/C5412V) [32]. FERMO input files used in the case study (S| Table
6) can be found in the ‘example_data’ folder in the FERMO GitHub repository
(https://github.com/mmzdouc/FERMO/).

CODE AVAILABILITY
FERMO is open source and is freely available on its GitHub page

(https://github.com/mmzdouc/FERMOY/), under the permissive MIT license. The FERMO Wiki is
available on GitHub (https://github.com/mmzdouc/FERMO/wiki/).
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