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ABSTRACT

Small molecules can selectively modulate biological processes and thus generate phenotypic

variation. Biological samples are complex matrices, and liquid chromatography tandem mass

spectrometry often detects hundreds of molecules, of which only a fraction may be associated

with  this  variation.  The  challenge  therefore  lies  in  the  prioritization  of  the  most  relevant

molecules  for  further  investigation.  Tools  are  needed  to  effectively  contextualize  mass

spectrometric data with phenotypical and environmental (meta)data. To accelerate this task, we

developed FERMO, a dashboard application combining mass spectrometry data with qualitative

and quantitative biological observations. FERMO’s centralized interface enables users to rapidly

inspect data, formulate hypotheses, and prioritize molecules of  interest. We demonstrate the

applicability  of FERMO in a case study on antibiotic  activity of  bacterial  extracts,  where we

successfully  prioritized  the  bioactive  molecule  siomycin  out  of  143  molecular  features.  We

expect that besides natural product discovery, FERMO will find application in a wide range of

omics-driven fields.
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INTRODUCTION

Small  molecules  encompass many metabolites,  drugs,  agrochemicals,  and pollutants,  which

selectively  interact  with  biological  systems  and  influence  their  functioning.  As  part  of  the

environment, small molecules can cause phenotypic variations, and their investigation is highly

relevant  in  fields  like  metabolomics,  exposomics,  or  microbiome  research  [1,  2].  Liquid

chromatography – mass spectrometry (LC-MS) is a commonly used analytical method for the

untargeted, qualitative and quantitative analysis of small molecules [3]. LC-MS analysis detects

molecules as so-called molecular features, which we here define as a detected ion signal for an

eluting molecule, with inherent attributes like a specific mass-to-charge ratio (m/z) or retention

time.  Data-dependent  acquisition  (DDA)  liquid  chromatography  tandem  mass  spectrometry

analysis (LC-MS/MS) can be used to gather information about the collisional fragmentation of

molecular  features.  Ultimately,  the  chemical  structure  of  a  molecule  determines  its  MS/MS

fragmentation  spectrum,  and  structurally  similar  molecules  generally  show  similar  MS/MS

fragmentation spectra [4]. The structural information therein encoded can be used for annotation

and  identification  of  molecular  features   [5,  6],  molecule  fingerprinting  [7],  and  de  novo

predictions of molecular structures [8]. 

Biological  and environmental  samples are usually  complex matrices,  and LC-MS/MS

analysis can often detect thousands of molecular features for a single sample. The complex and

information-dense nature of LC-MS/MS data generally makes it infeasible to manually identify

metabolites that  are likely  responsible for  a phenotype of  interest,  such as an antimicrobial

activity, a medical diagnosis or environmental metadata like altitude or water temperature.  For

this reason, various computational analysis tools for data reduction [9,10,11,12], organization

[13,14,15,16,17],  and  annotation  [18]  have  been  developed.  Even  after  these  data  pre-

processing and reduction steps, hundreds of molecular features can remain in the dataset, all

potentially  responsible for  the observed phenotypic  variation.  Therefore,  the selection of the

most  relevant  molecular  features  for  further  investigation  requires  effective  prioritization.  

Generally,  prioritization is  attempted by separating ‘interesting’  or  ‘relevant’  from ‘not

interesting’ or ‘irrelevant’ molecular features based on a series of attributes (e.g., bioactivity,

chemical  novelty,  diversity,  molecular  weight,  source of  sample)  [19,  20,  21].  However,  the

definition and weighting of attributes for selection strongly depend on the respective research

question. For example, the definition of chemical novelty may range from ‘a molecule with a

novel carbon backbone’  to ‘a novel functional group on a known molecule’.  One study may

prioritize mainly the presence or absence of a molecular feature, while another may focus on

fold-changes  between  biological  groups.  This  variability  in  selection  principles  hampers

automation,  rendering  prioritization  still  a  mostly  manual  task.  Currently  available  software

solutions  are typically  designed  with specific  tasks and/or  research fields  in  mind i.e.,  data

quality  control  [22,23],  statistical  analysis  [24,25],  molecular  feature  annotation  [26,  27],  or

natural product drug discovery [28, 29, 30, 31]. Further, there is a lack of tools that combine and

visualize multiple (meta)data types and their relationships in one view.

To bridge this gap, we developed FERMO (Formulation of mEtrics from  Reproducible

Molecular feature  Objects), a dashboard application for the prioritization of molecular features

relevant for explaining biological observations. FERMO connects LC-MS/MS information with

qualitative and quantitative biological meta(data),  like sampling location,  measured biological
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activity,  phylogenetic  affiliation,  or  environmental  measurements.  It  allows  rapid  and

reproducible  selection  of  specific  molecular  features  based  on  a  discrete  set  of  attributes.

Besides inherent attributes, FERMO calculates custom scores to summarize the relationship of

samples and molecular features towards internal and external data. Putative associations to

biological data are identified, and presented in the centralized dashboard view at one glance.

FERMO is capable of  analyzing multiple groups of  samples in  parallel,  and guarantees the

reproducibility of analyses by recording processing and filtering parameters. In a case study, we

demonstrate how FERMO can rapidly pinpoint molecular features putatively responsible for an

observed  antibiotic  activity.  Developed  with  a  focus  on  user-friendliness  and  supplied  with

tutorials and a dedicated Wiki on GitHub, FERMO is aims to improve prioritization in fields like

natural product research, metabolomics, environmental, food, and agricultural sciences. 

Figure  1: Overview  of  FERMO  processing  workflow:  LC-MS/MS  data,  qualitative  and

quantitative  biological  (meta)data  are  parsed  and  associated  with  one  another.  Molecular

features are annotated, organized, and presented for prioritization analysis to the user. 
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RESULTS

FERMO facilitates prioritization   via   custom scores in the dashboard view  

FERMO is centered around the dashboard view, an interactive graphical  user interface that

presents key information about the dataset at a glance (Figure 2). Each sample is associated

with a number of descriptive attributes,  such as the detected molecular  features,  calculated

scores, group metadata, or quantitative biological data (Figure 2A). Molecular features can be

visualized sample-wise in the Sample Chromatogram Overview (Figure 2B) and investigated in

detail in the Molecular Feature Information Table (Figure 2C). The Cytoscape Spectral Similarity

Networking view (Figure  2D) allows  to investigate  relationships  between molecular  features

based on MS/MS spectral similarity, and the presence of a molecular feature across samples

can be inspected in the Sample Chromatograms view (Figure 2E). Molecular features can be

quickly prioritized by combining up to 16 different filters, and the selection can be exported in

tabular  format  for  consecutive  investigation.  A  more  detailed  description  of  the  dashboard

design can be found in the Methods section.

Figure  2:  Overview  of  the  FERMO  dashboard.  A)  Sample  Information  Tables;  B)  Sample

Chromatogram  Overview;  C)  Molecular  Feature  Information  Table;  D)  Cytoscape  Spectral

Similarity Networking view; E) Sample Chromatograms.
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To facilitate prioritization, FERMO aggregates a number of attributes for each molecular feature

and  sample.  Besides  inherent  attributes  such  as  precursor  m/z,  retention  time,  or  signal

intensity,  FERMO  calculates  several  custom,  indicative  metrics  (Table  1).  For  molecular

features, Novelty scores, QuantData scores, and peak collision measures are calculated, while

for samples, Diversity scores, Specificity scores, and Mean Novelty scores are provided. The

Novelty score estimates the assumed chemical novelty of a molecular feature by comparison to

external  databases,  while  the  QuantData  score  designates  molecular  features  that  are

putatively associated with user-provided quantitative biological data (e.g. biological activity in an

assay, days of growth, temperature). The peak collision measure denotes the overlap of co-

occurring molecular features and clarifies their ion identities. Diversity and Specificity scores

estimate  the  chemical  richness  of  samples  and  their  associated  qualitative  biological  data

(group metadata), respectively, while the Mean Novelty score indicates the assumed overall

chemical novelty of a sample. For more details, see the Methods section. These scores allow

rapid  surveying  of  LC-MS/MS data  by  applying  filters,  retaining  only  molecular  features  or

samples relevant to the research question. Users are free to restrict the selection as desired,

and the filtering parameters are stored to ensure the reproducibility of the analysis. 

Table 1: Calculated descriptive attributes for samples and molecular features

Attribute Description

Diversity score Measure for chemical diversity of sample

Specificity score Measure for sample-specific chemistry 

Mean Novelty score Summary of putative chemical novelty of 
molecular features in sample

Peak collision measure Measure for co-elution of molecular features

Novelty score Measure for putative novelty of molecular 
feature

QuantData score Measure for association of molecular feature 
to provided quantitative biological data

FERMO associates antibiotic activity to a single family of molecules

To  demonstrate  the  applicability  of  FERMO,  we  attempted  to  pinpoint  molecular  features

responsible for antibiotic activity in a subset of samples from a previously published study on the

actinomycete genus Planomonospora [32]. We selected a set of samples, based on availability

of  in-house  generated  antibiotic  activity  data  against  the  Gram-positive  pathogen

Staphylococcus aureus.  Our set  consisted of  ten samples:  four samples belonged to the S

phylogroup, three samples to the C phylogroup, two samples to the A2 phylogroup, and one to

the V2 phylogroup. For differentiation between metabolites and growth medium components, we

added a sample of the extract of the pure growth medium (referred to as medium blank), leading

to a total of eleven samples for the test dataset. Details on the group and biological activity data
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can be found in the Supplementary Information. After MZmine3 pre-processing, the resulting

data was analyzed by FERMO.

Starting with a total of 143 molecular features extracted by MZmine3, we focused on

molecular features that had associated MS/MS information and were not associated with the

medium  blank  (Figure  3A).  Association  to  the  medium  blank  was  either  direct  (molecular

features detected both in samples and the blank) or indirect (molecular features not detected in

the blank,  but  co-occurring  in  spectral  similarity  networks  with directly-associated molecular

features). This left 67 molecular features organized in 39 similarity networks. Next, we applied

the QuantData score to filter out molecular features that were unlikely to be associated with

bioactivity,  which  left  thirteen  molecular  features  in  seven  spectral  similarity  networks.  The

antibiotic activity was only associated with samples belonging to the S group. We assumed that

spectral similarity networks containing molecular features from groups other than the S group

would be unlikely to be associated with the antibiotic activity. Therefore, we focused on five

similarity networks associated only to the S phylogroup, containing ten molecular features. Only

three molecular features were detected in all four samples with antibiotic activity (Figure 3B).

Inspection of  matchms spectral  library [33] and MS2Query [34] annotations showed that  all

three remaining molecular features were annotated as different ions of the antibiotic siomycin A.

Siomycin was previously reported to be produced by the actinomyces genus Planomonospora

and to show growth inhibition against  Staphylococcus aureus [32,35,36].  Therefore, by data

integration and the application of appropriate filtering steps, FERMO was able to rapidly pinpoint

the molecular features most likely associated with the observed biological variable (antibiotic

activity) and dereplicate the compounds. Since the antibiotic was well-annotated in the study

that  initially  reported the dataset  [32],  no  experimental  verification  was  performed.  In  other

cases, consecutive isolation and structural  elucidation of  the prioritized compound class are

highly recommended. 

Increased computational power accelerates data processing

To  assess  the  performance  of  FERMO  on  datasets  of  different  sizes  and  complexity,  we

conducted exploratory benchmarking. We observed that the length of calculation predominantly

depended on the number of molecular features that were investigated, and most computation

time was consumed by (i) the annotation of spectra via MS2Query [34] and (ii) the calculation of

spectral  similarity  between molecular  features  via matchms.  [33]  By  using a  computer  with

higher computational power, processing time can be decreased (Table 2). We note that for large

datasets with several  thousand molecular  features,  calculation time may become unfeasibly

long. Work is underway to improve the calculation efficiency and speed by incorporating multi-

processing.
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Figure 3: Prioritization procedure in case study. A) application of increasingly restrictive filters

leads  to  the  prioritization  of  three  molecular  features,  likely  to  be  responsible  for  antibiotic

activity. B) inspection of the selected molecular features suggests the antibiotic siomycin A to be

responsible for antimicrobial activity.

Table 2: Exploratory benchmarking results.

Total molecular 
features / annotated 
molecular features

W/o MS2Query
(seconds)

With MS2Query 
(seconds) 

Computer 
specifications

248/154 9.7 670 A

248/154 6.1 308 B

1642/898 489 3792 A

1642/898 280 1859 B

1642/1642 496 6528 A

1642/1642 282 2990 B

A) Processor: Intel® Core™ i5-6200U CPU @ 2.30GHz × 4; Memory: 7.2 GiB; OS: Ubuntu 20.04.5 64bit;

B) Processor: AMD Ryzen™ 5 3600 @ 3.59GHz × 6; Memory 16.0 GiB; OS: Windows 10 Home 64bit;
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DISCUSSION

Hypothesis-driven molecular feature prioritization is an essential step in addressing biological

observations. FERMO offers a generalized approach for prioritization via a rational selection of

molecular features based on a number of inherent and calculated attributes. To make FERMO

an accessible tool that can be easily included in current workflows, we tried to integrate it with

existing software and data ecosystems. In particular, FERMO relies on the program MZmine 3

[9] for LC-MS/MS data pre-processing and peak picking. However, the reliance on a peak table

as input format restricts access to the underlying “raw” LC-MS/MS data, and the data quality

strongly depends on the parameter settings used in the pre-processing software. While FERMO

can not directly mitigate problems arising from suboptimal pre-processing, the FERMO GitHub

Wiki provides a detailed tutorial  and explanations on pre-processing to inexperienced users.

Another,  complementary,  integrative  metabolomics  software  is  available  with  the  recently

published  tool  INVENTA  [29].  While  FERMO  focuses  on  molecular  feature  prioritization,

INVENTA is  aimed at  sample  prioritization.  Due  to  layout  and software design,  FERMO is

inherently restricted with regard to the amount of data it can efficiently process and visualize,

with a soft  ceiling  of  several dozen samples.  INVENTA,  however,  is  designed to work with

hundreds  or  thousands  of  samples  at  once,  and  to  prioritize  mainly  on  sample-based

characteristics,  such  as  estimated  novelty  based  on  bibliographic  metadata  regarding  the

source material, and estimation of sample chemical diversity by statistical methods. A workflow

can be imagined where a large number  of  samples  is  first  processed by INVENTA,  which

prioritizes the most promising ones.  Consecutively,  FERMO can be used to investigate the

selected samples in greater detail, to reveal molecular features associated with the biological

variable under investigation.

In our case study, we demonstrated how FERMO allows for the rapid prioritization of

biologically relevant molecular features. To visualize molecular features in their original, sample-

wise organization, FERMO uses a pseudo-chromatogram view similar to a total extracted ion

chromatogram (EIC). While an EIC is drawn from a continuous retention time/intensity trace,

FERMO constructs  pseudo-chromatograms from a discrete  number  of  points  (see Methods

section). This way of representation can be used to intuitively assess co-eluting molecules and

their relationships based on spectral similarity or ion identity. This was shown in the case study,

where  the  bioactivity-associated  molecular  features  were  quickly  determined  to  be  related,

based on their  elution  pattern,  the  ion  identities,  and spectral  similarity  associations.  While

pseudo-chromatograms emulate their original counterparts well (SI Figure 2), peak anomalies

such as shoulder peaks, fronting, or tailing can lead to misrepresentations. Users are therefore

alerted to scrutinize suspicious-looking peaks by consulting the original data using instrument-

vendor  software,  pre-processing  software  [9,  10,  12],  or  most  conveniently,  the  recently

introduced GNPS Dashboard [22].

To  prioritize  molecular  features,  FERMO  relies  on  the  calculation  of  a  number  of

attributes, including the spectral similarity between molecular features, likewise to a number of

other tools [37, 38, 39]. In addition, FERMO also allows modification of the underlying similarity

calculation, and currently supports Modified Cosine Similarity and MS2DeepScore [15]. FERMO

also uses spectral similarity networking to calculate summary scores for sample prioritization.

These  scores  estimate  the  chemical  diversity  of  a  sample,  based  on  the  assumption  that
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spectral similarity networks cluster structurally similar molecular features and can be therefore

taken  as  proxies  for  chemical  classes.  While  actual  chemical  class  predictions  would  be

desirable,  the  computational  costs  associated with  more sophisticated  approaches  such as

CANOPUS [40] make routine predictions from hundreds of spectra currently unfeasible. Another

prioritization  score  FERMO  uses  is  the  QuantData  score,  which  indicates  the  putative

association of a molecular feature to quantitative biological data, like antibiotic activity in the

case study. Several other workflows have been reported to link quantitative biological data to

mass spectrometry data, often using statistical tests (e.g. Pearson correlation) [30, 31, 41, 42,

43,  44,  45]. Contrary to these approaches, FERMO does not directly predict the probability of

biological activity of a molecular feature.  Instead, FERMO determines molecular features that

are  unlikely  to  be  associated  with  the  quantitative  biological  measure,  based  on

presence/absence and fold-changes across samples. In the case study, the QuantData score

allowed to exclude 69% of candidate molecular features from consideration and to focus on the

remainder.  The  approach  is  robust  towards  multiple,  unrelated  molecular  features  jointly

responsible  for  an  observed  biological  observation,  and  does  not  require  sample

(pre)fractionation.  However,  since  the  QuantData  score  is  based  on  the  intersection  of

molecular  features  between  samples,  only  a  small  number  of  putative  candidates  can  be

excluded if  chemically  very different  samples are compared.  For  such samples,  probability-

based approaches may be more suitable. 

In conclusion, the FERMO dashboard provides a powerful framework for sample and

molecular feature prioritization, based on generalized principles. It pairs intuitive visualization

with a range of attribute filters for rapid and streamlined data processing, as demonstrated in the

case  study.  Work  is  underway  to  further  integrate  FERMO  with  existing  tools  and  data

ecosystems, such as allowing input data from other LC-MS/MS data pre-processing tools like

OpenMS [12],  or XCMS [10],  or accepting data formats from advanced prediction tools like

CANOPUS [40] or SIRIUS [46]. Another promising avenue is the integration of FERMO and

INVENTA  in  a  single  workflow,  to  utilize  synergies  in  the  processing  of  large  numbers  of

samples. Also, the integration of LC-MS/MS data with biological metadata is only the first step in

integrative data analysis. The integration of LC-MS/MS metabolomics with other types of omics

data,  such  as  metagenomics  or  transcriptomics,  would  further  strengthen  prioritization

workflows, as demonstrated with the recently published tools NPOmix [47]  or  NPLinker [48].

While  challenging,  such  methods  promise  to  further  facilitate  hypothesis  formulation  and

potentially automate molecular  feature prioritization.  We anticipate that FERMO’s centralized

view on LC-MS/MS data analysis will benefit many fields of research in the life sciences.
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METHODS

Software design overview

FERMO is a multi-page dashboard app for the prioritization of biologically relevant molecular

features from data-dependent acquisition, positive ion mode LC-MS/MS data. FERMO is written

in the platform independent Python programming language and may be used on Windows, Mac,

and Linux operating systems. The frontend is constructed using the Plotly Dash framework [49],

while the backend comprises custom functions for data processing, which utilize a number of

public  Python  packages.  A  full  list  of  dependencies  can  be  found  in  the  Supplementary

Information.

Frontend organization

The FERMO graphical  user  interface is  rendered in  a browser  application  such as Firefox,

Google Chrome, Microsoft Edge, or Safari. It is deployed locally, and therefore, no user data is

shared via the internet. The app is separated into four connected pages: the landing page, the

processing mode page, the loading mode page, and the dashboard page. Upon startup, the

landing page is shown by default, from where the processing mode page and the loading mode

pages can be accessed.  The former  allows  for  data  processing (see Backend organization

section), while the latter can be used to reload a previous FERMO session (Input data formats

section). Either page automatically redirects to the dashboard page, where data analysis and

molecular feature prioritization take place. 

Backend organization

The FERMO backend is a data processing workflow, consisting of functions responsible for data

parsing,  processing,  the calculation  of  scores,  and output  data  format  preparation.  FERMO

employs  both  modular  design  and  object-oriented  programming  principles.  Each  molecular

feature is represented as an individual object with distinct attributes that are modified by the

modular  processing  functions.  Therefore,  additional  functionality  can  be  easily  added  by

defining the respective object attribute and integrating a new function in the workflow. Briefly,

the workflow consists  of:  (i)  data parsing;  (ii)  the  determination  of  association  of  molecular

features to provided metadata (sample grouping data, quantitative biological measurements);

(iii)  calculation of spectral similarity between molecular features; (iv) annotation of molecular

features  by  matchms spectral  library  matching  and  by  MS2Query;  (v)   calculation  of  peak

overlaps  and  determination  of  co-occurring  adducts  and  isotopes  (resulting  from the  same

analyte); (vi) the calculation of custom scores; (vii) preparation of the visualization. Individual

processing  steps  including  the  employed  parameters  are  stored  in  a  log  file,  allowing  for

reproducible analysis. 
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Help document and tutorials

On the FERMO GitHub repository, a GitHub Wiki is provided that contains tutorials on input data

preparation, data processing, data analysis, and prioritization. In the FERMO app, tool-tips are

placed next to parameter input fields, providing impromptu information and link to the respective

pages on the FERMO GitHub Wiki. Individual processing functions are documented following

the Numpy Documentation Style Guide (https://numpydoc.readthedocs.io/en/latest/format.html).

Deployment and installation

FERMO is  open source and can be freely  accessed  and  downloaded  via its  GitHub page

(https://github.com/mmzdouc/FERMO/)  as  a  .ZIP-compressed  directory,  or  directly  “cloned”

using git. FERMO requires Python 3.8 and a number of dependencies (see the Supplementary

Information  for  a  detailed  list).  To  install  the  dependencies,  the  use  of  a  Python  package

manager, in particular Conda (https://docs.conda.io/en/latest/), is highly recommended. FERMO

comes with a convenient startup script that automatically creates an environment, downloads

and  installs  the  dependencies,  and  starts  the  program,  provided  that  Conda  (either  as

Anaconda or Miniconda) was installed. If Conda is not available, users may still start the app via

command line by executing the app.py executable. A more thorough description can be found in

the README on the FERMO GitHub page. 

Versioning

FERMO employs versioning based on Semantic Versioning (https://semver.org/). In particular,

this is important for the loading mode, where a previously created analysis (a FERMO session

file in the .json format) can be reloaded. In case of patch increment differences (e.g. 0.8.0 and

0.8.1), the session can be loaded nevertheless. In case of minor or major increment differences

(e.g.  0.7.0 and 0.8.0),  the session file  cannot be loaded.  If  the currently  running version of

FERMO is incompatible to the one that was used to create the session file, an error message

will appear to alert the user. 

FERMO data processing 

Input data formats 

Depending on the mode (processing mode or loading mode), FERMO accepts different input

files. In the processing mode, FERMO expects some mandatory, and some optional files. As

minimum input, it requires a peak table in the MZmine3 ‘_quant_full.csv’ format, as well as the

accompanying .mgf-file. Compatibility with MZmine3 was tested up to version 3.3.0 (SI Table 4).

Currently, FERMO expects LC-MS/MS data to be data-dependent acquisition positive ion mode

data,  which  is  important  for  ion  identity  determination  and  MS2Query  annotation  (see  the

respective  sections  for  further  information).  Additionally,  FERMO  accepts  group  metadata

(sample  relationships),  quantitative  (or  qualitative)  biological  data,  and  a  spectral  library  in

the .mgf format. Details on the formatting can be found in the Supplementary Information, or in
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the  FERMO GitHub  Wiki.  In  the  loading  mode,  FERMO accepts  a  FERMO session  file  in

the .json format, which allows reloading a previously prepared analysis.

Output data formats

The dashboard view allows for export of several different files: a FERMO session file in the .json

format, or peak tables in the .csv-format. The session file contains all information necessary to

reload an analysis session in the FERMO loading mode. Besides, this file can be shared with

collaborators, containing a precise log of all performed processing steps. Regarding the peak

table .csv-file export, the precise format can be adjusted: if desired, exported molecular features

can be restricted to the currently selected set and/or sample. Of note, the peak table export

automatically  creates a  second  file  in  the  .json  format,  containing  a  log  of  all  performed

processing steps, for the convenience of the user.

Input testing, data parsing

Upon loading, input data files are parsed and tested for correct formatting. A status message

informs the user of the outcome of the test. Once (mandatory) files are loaded, processing can

be initiated.  Molecular  feature objects are initiated,  and the association between LC-MS/MS

data and metadata is determined.  If  sample grouping metadata was provided,  samples and

molecular features are organized after their group affiliation, which is of particular interest for

blank-associated  molecular  features.  Samples  without  attributed  grouping  information  are

automatically organized in the “GENERAL” wildcard group.

Calculating similarity networks

During  data  organization,  FERMO  calculates  the  spectral  similarity  between  MS/MS

fragmentation spectra of molecular features. Since fragmentation spectra ultimately depend on

the chemical structure of the molecule and similar molecules usually yield similar fragmentation

spectra, spectral similarity can be taken as a proxy for chemical similarity. FERMO allows to

change  the  similarity  calculation  algorithm,  and  allows  switching  between  Modified  Cosine

similarity [33] and MS2DeepScore [15]. Further parameters, like the desired spectrum similarity

score cutoff, can be set on the processing mode page.

Annotating the identity of molecular features

The putative identity  of  molecular  features can be annotated in  two ways:  first,  by spectral

library matching against a user-provided library using the Modified Cosine similarity algorithm

from  the  matchms  package  [33],  and  second,  by  matching  against  an  pre-calculated

embeddings library of  over 300.000 mass spectra, using the MS2Query algorithm [34].  The

former is intended to be used with a targeted library of molecules that are suspected to be

present in the samples, while the latter employs a generalized library and also detects putative

analogs of known molecules. Since MS2Query is a computationally expensive algorithm, it can

be restricted to annotate only a subset of molecular features (based on relative intensity and/or
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exclude blank-associated ones) or switched off completely. Of note, the MS2Query annotation

workflow in FERMO currently only supports positive ion mode LC-MS/MS data.

Calculating peak overlaps and ion identities

In LC-MS, molecular features with distinct m/z ratios but overlapping retention time windows can

either correspond to different co-eluting molecules, or result from different ion species of the

same molecule (e.g., [M+H] , [2M+H] , [M+2H]² , [M+Na] , …). FERMO attempts to identify and⁺ ⁺ ⁺ ⁺

annotate ion species  resulting  from the same molecule.  Of  note,  only  positive  ion mode is

currently supported. First, peak overlaps are determined: for two peaks A and B, let SA and SB

be the retention time at the start of the peaks, and EA and EB the retention time at the end of the

peaks (SI Figure 1).  Peaks do not overlap if  either EA < SB or EB < SA are true. For each

overlapping pair of molecular features, FERMO tests if the difference between their m/z ratios

correspond to one of 15 different ion and/or isotope adducts (see SI Table 2), assuming that

one of the two is the [M+H]  ion. If a match was found, the molecular features are putatively⁺

annotated as related ion species, and their overlap is not registered as co-elution, since they

originate  from  the  same  molecule.  These  adduct  annotations  can  be  queried  via the

“Adduct/isotope  search”  filter  in  the  dashboard  view,  for  example  to  identify  iron  adducts

(suggesting siderophores). If overlapping molecular features cannot be recognized as related

ion species,  they are assumed to stem from different  molecules,  and their  peak overlap is

registered as co-elution. For each molecular feature, the fraction of the peak duration that is not

overlapping  with  other  molecular  features  is  calculated,  and  can be  queried  via the  “Peak

overlap”  filter  on  the  dashboard  (a  value  from  0-1).  This  allows  users  to  quickly  identify

molecular  features  with  low  or  minimal  overlap  that  could  be  promising  candidates  for

chromatographic isolation.

Calculating Novelty and Mean Novelty score

The Novelty score (a value from 0-1) indicates the putative chemical novelty of the molecular

feature, assessed by comparison against external data. It takes into account results from both

matching against a user-provided spectral library, and from MS2Query matching against pre-

calculated spectral embeddings. The Novelty score is flexible in the sense that it still leads to an

output even if one of the annotation methods was not performed (e.g., when no mass spectral

library was provided). High-certainty annotations lead to a low Novelty score, while low certainty

annotations lead to a higher score. The Novelty score N is calculated as follows: for a molecular

feature f, let SL (0-1) be the best library match score, SM (0-1) the best MS2Query match score,

and  SNN  (0-1)  the  reciprocal  of  the  number  of  different  NPClassifier/Classyfire  superclass

annotations of nearest neighbors of  f in its spectral similarity network (provided by MS2Query

annotation). If any of SL or SM are higher than 0.95, f is assumed to be reliably annotated, and N

is returned as 1 - SL or 1 - SM, depending on which of SL, SM is higher. Else, any of SL, SM, SNN

greater than 0 are summed, divided by the number of summed elements, and is returned as 1 -

sum. SNN is an estimate for the similarity of annotation by MS2Query. Since the next neighbors

in the spectral similarity network are hypothesized to be related, they should be also annotated

as the same chemical class. If so, it strengthens the annotation certainty and therefore leads to
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a lower Novelty score. Consequently, the Mean Novelty score is the mean of Novelty scores of

all molecular features per sample, excluding blank-associated molecular features.

Calculating the QuantData score

The QuantData score takes into account association  of  molecular  features to user-provided

quantitative biological data. This is often biological activity data, but can be any quantitative

biological  measurement.  For  each  molecular  feature  f,  its  presence  across  all  samples  is

considered. If f is only detected in samples associated with the quantitative biological data, it is

considered to be putatively associated with this measurement. In cases where f  is detected in

both types of samples, the fold-difference between the lowest intensity of f across associated

samples and the highest intensity of  f  across samples not associated to the measurement is

compared. If this fold-difference is higher than a user-provided QuantData factor (by default,

10), f is still putatively associated with the measurement. This is a pragmatic precaution against

excluding molecular features that might be present in concentrations too low for a sample to be

associated  with  the  quantitative  biological  data  (e.g.  subinhibitory  concentration),  but  high

enough to be detected by the mass spectrometer.  Besides this  sample-specificity,  also  the

correlation  between  molecular  feature  intensity  and  the  quantitative  biological  variable  (the

trend) is assessed. On the dashboard page, users can decide if they want to only consider

specificity or both specificity and trend. 

Calculating Diversity and Specificity scores

The Diversity and the Specificity scores indicate the chemical diversity that is contained by a

sample, compared against all samples in the dataset (i.e., internally). They are intended to be

used as consideration in sample prioritization and are based on the assumption that molecular

features in a spectral similarity network belong to the same chemical class. Therefore, each

network  represents  a  proportion  of  the  chemical  diversity  of  the  dataset,  and  all  networks

combined represent the total chemical diversity. The Diversity score is calculated by dividing the

number of spectral similarity networks associated to a single sample with the total number of

similarity  networks.  A  sample  with  a  high  Diversity  score  should  therefore  contain  more

chemical  diversity  than a sample with  a low Diversity  score.  Similarly,  the Specificity  score

indicates  the  unique  chemistry  of  the  group  the  sample  belongs  to.  Here,  the  number  of

networks in the sample, subtracted by the networks also detected in other groups, is divided by

the number of networks detected in the sample. In other words, the Specificity score is a fraction

of the Diversity score, indicating the proportion of ‘unique’ networks per group. High Diversity

and Specificity scores are beneficial parameters in sample prioritization, since a sample with

more diversified chemistry might provide multiple interesting compound classes.
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Constructing pseudo-chromatograms of molecular features

FERMO represents molecular features as pseudo-chromatograms. Contrary to normal extracted

ion chromatograms (EICs) which consist of a continuous retention time/intensity trace for each

m/z  ratio, pseudo-chromatograms are constructed from a discrete number of data points: for

each molecular feature, the trace is constructed from the retention times at the beginning and

the end of the peak, the molecular feature width at half maximum intensity, and the retention

time at the apex of the peak. This approach shows good correspondence to the original EICs

(SI Figure 2).

FERMO visualization and analysis

The FERMO dashboard consists of six elements (Figure 2): i) the Sample Information Tables; ii)

the  Sample  Chromatogram  Overview;  iii)  the  Molecular  Feature  Information  Table;  iv)  the

Sample Chromatograms; (v) the Cytoscape Spectral Similarity Networking view; (vi) the Filter

and Export Panel. 

Sample Information Tables

The Sample Information Tables provide an overview of the samples included in the analysis.

They contain  descriptive  statistics,  such as  the number  of  selected  molecular  features  and

networks, and summarize the calculated sample scores. The currently displayed sample in the

Sample Chromatogram Overview can be changed by clicking on one of the rows.

Sample Chromatogram Overview

The Sample Chromatogram Overview shows a pseudo-chromatogram of the selected sample.

The top panel shows an overview of the molecular features, color-coded after their attributes.

Green  indicates  that  the  molecular  feature  is  currently  under  selection,  cyan  that  it  is  not

selected. Blank-associated molecular  features are indicated in yellow.  A click on one of the

molecular features focuses it and activates the bottom panel of the sample chromatogram view,

which  indicates  related  molecular  features  in  the  same  sample.  Furthermore,  additional

information  about  the  focused  molecular  feature  is  displayed  in  the  Molecular  Feature

Information  Table,  the  Sample  Chromatograms,  and  the  Cytoscape  Spectral  Similarity

Networking view. Display of molecular features can be restricted only to the currently selected

ones by adjusting the “Visualization of features” toggle.

Molecular Feature Information Table

The  Molecular  Feature  Information  Table  provides  detailed  information  on  the  focused

molecular  feature.  This  includes  general  attributes  like  m/z ratio  or  average  retention  time,

calculated  scores  like  Novelty  or  QuantData  scores,  annotations  from library  matching  and

MS2Query, and information about the associated spectral similarity network. 
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Sample Chromatograms

The Sample Chromatograms visualize the presence of the focused molecular feature across

samples, and show the spatial context respective peak co-elution across samples. This view

allows  to  quickly  identify  the  most  promising  sample  (with  the lowest  number  of  co-eluting

molecules) for chromatographic isolation of the molecular feature of interest.

Cytoscape Spectral Similarity Networking view

The Cytoscape Spectral Similarity Networking view shows the spectral similarity network the

selected molecular feature is associated with, using a Cytoscape-based plugin [50,51]. In the

network,  each node  indicates  a  molecular  feature,  which  is  color-coded  after  its  attributes.

Nodes and edges can be clicked to display more information in a separate table below the

Cytoscape view.

Filter and Export Panel

In the Filter and Export Panel, users can select a specific subset of molecular features, using up

to 16 different  filters  (SI  Table  5).  Molecular  features  can be filtered for  their  scores,  their

association to spectral similarity networks or groups. Of note, the “Adduct/isotope search”, the

“Annotation search”, the “Group filter (features)” and the “Group filter (networks)” use POSIX

(Portable  Operating  System Interface  for  uniX)  extended  regular  expressions.  Furthermore,

peak tables and molecular feature objects can be exported. Also, a so-called FERMO session

file can be saved, which allows for later reloading of the session.

Data collection and preparation for the case study

Antimicrobial activity testing:

Testing of antimicrobial activity of strains was performed by agar diffusion assay in Naicons Srl.

laboratories (Milan, Italy). Briefly,  Staphylococcus aureus L100 (Naicons Srl. Milan, Italy) was

inoculated in 30 mL of liquefied hand warm Müller-Hinton Agar, with a final concentration of

1x10⁵ CFU x mL ¹. After solidification, 10 µL of each sample (dissolved in a 50 % methanol in⁻

water solution (v/v) ) was applied as a distinct droplet and left to dry. As positive control, 5 µL of

a solution of Apramycin 5 mg x mL ¹ in sterile  water was applied in a likewise fashion.  As⁻

negative control, 10 µL of a 50 % methanol in water solution (v/v) was applied. Plates were

incubated at 37 °C overnight and the diameter of the growth inhibition zones was measured in

millimeters. The positive controls showed an average growth inhibition zone of 22 mm, while no

growth inhibition was observed for the negative control. The results can be found in SI Table 3

in the Supporting Information of this publication.
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Analytical conditions, data retrieval and subsetting

In this study, no new LC-MS data was generated, and we only re-analyzed previously published

data [32]. Samples were selected based on availability of antimicrobial activity data. In total, 10

samples and one pure medium extract (referred to as medium blank) were used. Since samples

were already in the .mzXML format, no further processing was performed, and samples were

directly imported into MZmine 3.2.8.

MZmine3 pre-processing parameters

For processing, MZmine version 3.2.8 was used. After data import, the following  workflow was

employed: (A) MassDetection = retention time, auto; MS 1 noise level, 1E3; MS 2 noise level,

2E1. (B) ADAP chromatogram builder [52] = retention time, auto; MS-level, 1; min group size in

no. of scans, 8; group intensity threshold, 5E2; min highest intensity, 1E3;  m/z tolerance, 20

ppm. (C) Chromatogram deconvolution = local minimum (feature) resolver;  Chromatographic

threshold,  85%;  Minimum search  range  RT  (absolute),  0.05;  Minimum  relative  height,  0%,

Minimum absolute height, 5.0E3; Min ratio of peak top/edge, 1.7; Peak duration range (min)

0.15-1.00; Min # of data points, 5;  m/z range MS 2 pairing, 0.02; RT range MS 2 pairing, 0.4

min. (D) 13C Isotope Filter = m/z tolerance, 20 ppm; RT tolerance, 0.2 min; monotonic shape,

no; maximum charge, 2; representative isotope, lowest m/z. (E) RANSAC peak alignment = m/z

tolerance, 20 ppm; RT tolerance, 0.7 min; RT tolerance after correction, 0.35 min; RANSAC

iterations, 100 000; minimum number of points, 50%; threshold value, 0.5; linear model,  no;

require  same  charge  state,  no.  (F)  Duplicate  peak  filter  =  filter  mode,  new  average;  m/z

tolerance, 0.01 m/z or 20 ppm; RT tolerance, 0.1 min. Molecular features with a retention time

<1.5 min or >20 min were excluded to remove the initial solvent peak and the column wash

phase, respectively. The resulting molecular feature list contained 143 entries and was exported

via ‘Feature list methods’ → ‘Export feature list’ → ‘GNPS feature based molecular networking’

with settings = merge MS/MS, no; Filter rows, ALL; Feature intensity, Peak height; CSV export,

ALL.

FERMO parameters and analysis settings

Processing was performed using FERMO version 0.8.1. Briefly,  the peak table and .mgf file

created by MZmine 3.2.8  processing,  as well  as the group information metadata  table,  the

biological activity table, and an in-house spectral library were loaded on the Processing mode

page. The format of the quantitative biological data (=biological activity data) was specified as

percentage-like (i.e. highest value is highest activity), since growth inhibition was measured in

millimeters, and a wider growth inhibition radius signifies a more potent antimicrobial inhibition.

Parameters were set as follows: Mass deviation, 20 (ppm); Min fragments per MS² spectrum, 8;

QuantData factor, 10; Blank factor, 10; Blank factor, 10; Relative intensity filter, 0-1; MS2Query,

ON; MS2Query relative intensity filter, 0-1; MS2Query - annotate features from blanks, OFF;

Spectral similarity networking algorithm, ‘Modified cosine’;  Fragment similarity tolerance, 0.1;

Spectrum similarity score cutoff, 0.8; Max spectral links, 10; Min matched peaks, 8. Prioritization

was performed with the following settings: QuantData-associated, ‘SPEC+TREND’; Group filter

(networks), ^S$ (signifying ‘only group S’); Number samples filter, 4 (minimum).
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DATA AVAILABILITY

Mass  spectrometry  data  for  the  case  study  was  taken  from  MSV000085376

(https://doi.org/doi:10.25345/C5412V) [32]. FERMO input files used in the case study (SI Table

6)  can  be  found  in  the  ‘example_data’  folder  in  the  FERMO  GitHub  repository

(https://github.com/mmzdouc/FERMO/).

CODE AVAILABILITY

FERMO  is  open  source  and  is   freely  available  on  its  GitHub  page

(https://github.com/mmzdouc/FERMO/), under the permissive MIT license. The FERMO Wiki is

available on GitHub (https://github.com/mmzdouc/FERMO/wiki/). 

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521422doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.21.521422
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES

[1] Niessen, W. MA. Interpretation of MS-MS mass spectra of drugs and pesticides. John Wiley 
& Sons (2017).

[2] Deblonde, T. et al. Emerging pollutants in wastewater: a review of the literature. J. Hyg. 
Environ. Health. 214, 442-448 (2011).  

[3] Wolfender, JL. et al. Accelerating metabolite identification in natural product research: toward
an ideal combination of liquid chromatography-high-resolution tandem mass spectrometry and 
NMR  profiling, in silico databases, and chemometrics. Anal. Chem. 91, 704-742 (2018).

[4] Quinn, R.A. et al. Molecular networking as a drug discovery, drug metabolism, and precision 
medicine strategy. Trends Pharmacol. Sci. 38, 143-154 (2017).

[5] Kind, T. et al. Identification of small molecules using accurate mass MS/MS search. Mass 
Spectrom. Rev. 37, 513-532 (2018).

[6] Beniddir, M.A. et al. Advances in decomposing complex metabolite mixtures using 
substructure and network-based computational metabolomics approaches. Nat. Prod. Rep. 38, 
1967-1993 (2021).

[7] Ludwig, M. et al. Bayesian networks for mass spectrometric  metabolite identification via 
molecular fingerprints. Bioinformatics, 34, i333–i340 (2018).

[8] Stravs, M.A. et al. MSNovelist: De novo structure  generation from mass spectra. Nat. 
Methods 19, 865-870 (2022).

[9] Pluskal, T. et al. MZmine 2: modular framework for  processing, visualizing, and analyzing 
mass spectrometry-based molecular profile data. BMC Bioinformatics, 11,  395 (2010).

[10] Smith, C.A. et al. XCMS:  Processing Mass Spectrometry Data for Metabolite Profiling 
Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 78, 779-787 (2006).

[11] Tautenhahn, R. et al. XCMS Online: A Web-Based Platform to Process Untargeted 
Metabolomic Data. Anal. Chem. 84, 5035–5039 (2012).

[12] Sturm, M. et al. OpenMS – An open-source software framework for mass spectrometry. 
BMC Bioinformatics, 9,  163 (2008).

[13] Yang, J.Y. et al. Molecular Networking as a Dereplication Strategy. J. Nat. Prod. 76, 1686–
1699 (2013).

[14] Nguyen, D.D. et al. MS/MS networking guided analysis of molecule and gene cluster 
families. Proc. Natl. Acad. Sci. U.S.A. 110, E2611-E2620 (2013).

[15] Huber F. et al. MS2DeepScore: a novel deep learning similarity measure to compare 
tandem mass spectra. J. Cheminformatics. 13, 84 (2021).

[16] Huber, F. et al. Spec2Vec: Improved mass spectral similarity scoring through learning of 
structural relationships. PLoS Comput. Biol. 17, e1008724 (2020).

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521422doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.21.521422
http://creativecommons.org/licenses/by-nc-nd/4.0/


[17] Watrous, J. et al. Mass spectral molecular networking of living microbial colonies. Proc. 
Natl. Acad. Sci. U.S.A. 109, E1743-E1752 (2012).

[18] Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite 
structure information. Nat. Methods 16, 299-302 (2019).

[19] Donadio, S. et al. Approaches to discovering novel antibacterial and antifungal agents. 
Methods Enzymol. 458, 3-28 (2009).

[20] Tabudravu, J.N. et al. LC-HRMS-Database Screening Metrics for Rapid Prioritization of 
Samples to Accelerate the Discovery of Structurally New Natural Products. J. Nat. Prod. 82, 
211–220 (2019).

[21] Zdouc, M.M. et al. A biaryl-linked tripeptide from Planomonospora reveals a widespread 
class of minimal RiPP gene clusters. Cell Chem. Biol. 28, 733-739 (2021).

[22] Petras, D. et al. GNPS Dashboard: collaborative exploration of mass spectrometry data in 
the web browser. Nat. Methods 19, 134–136 (2022).

[23] Letourneau, D.R. et al. Constellation: An Open-Source Web Application for Unsupervised 
Systematic Trend Detection in High-Resolution Mass Spectrometry Data. J. Am. Soc. Mass 
Spectrom. 33, 382–389 (2022).

[24] Xia, J. et al. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. 
Nucleic Acids Res. 37, W652–W660 (2009).

[25] Sample, R. et al. MPACT: An Advanced Informatics Tool for Metabolomics and Data 
Visualization of Specialized Metabolites from Complex Microbial Samples. ChemRXiv 
https://doi.org/10.26434/chemrxiv-2022-r0xbx (2022).

[26] Koelmel, J. et al. Interactive Software for Visualization of Non-Targeted Mass Spectrometry 
Data – FluoroMatch Visualizer. ChemRXiv https://doi.org/10.26434/chemrxiv-2022-p5l50 
(2022).

[27] McEachran, D.A. et al. Identifying known unknowns using the US EPA’s CompTox 
Chemistry Dashboard. Anal. Bioanal. Chem. 409, 1729–1735 (2017).

[28] Pharm T.H. et al. Species Prioritization Based on Spectral Dissimilarity: A Case Study of 
Polyporoid Fungal Species. J. Nat. Prod. 84, 298-309 (2021).

[29] Quiros-Guerrero, LM. et al. Inventa: A computational tool to discover structural novelty in 
natural extracts libraries. Front. Mol. Biosci. 9:1028334 (2022).

[30] Olivon, F. et al. Bioactive Natural Products Prioritization Using Massive Multi-informational 
Molecular Networks. ACS Chem. Biol. 12, 2644–2651 (2017).

[31] Sanghoon, L. et al. NP Analyst: An Open Online Platform for Compound Activity Mapping. 
ACS Cent. Sci. 8, 223–234 (2022).

[32] Zdouc M.M. et al. Planomonospora: A metabolomics perspective on  an underexplored 
Actinobacteria genus. J. Nat. Prod. 84, 204-219 (2021).

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521422doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.21.521422
http://creativecommons.org/licenses/by-nc-nd/4.0/


[33] Huber, F. et al. matchms - processing and similarity evaluation of mass spectrometry data. 
J. Open Source Softw. 5, 2411 (2020).

[34]  De Jonge, N. et al. MS2Query: Reliable and Scalable MS2 Mass Spectral-based Analogue
Search. bioRxiv https://doi.org/10.1101/2022.07.22.501125 (2022).

[35] Ebata, M. Studies on siomycin. I Physicochemical properties of siomycins A, B and C. J. 
Antibiot. 22, 364-368 (1969).

[36] Thiemann, J.E. et al. Antibiotic Production by New Form-Genera of the Actinomycetales. I 
Sporangiomycin, an Antibacterial Agent Isolated from Planomonospora Parontospora var. 
Antibiotica var Nov. J. Antibiot. 21, 525-531 (1968).

[37] Wang, M. et al. Sharing and community curation of mass spectrometry data with Global 
Natural Products Social Molecular Networking. Nature Biotech. 34, 828–837 (2016).

[38] Olivon, F. et al. MetGem Software for the Generation of Molecular Networks Based on the 
t-SNE Algorithm. Anal. Chem. 90, 13900–13908 (2018).

[39] Nothias, LF. et al. Feature-based molecular networking in the GNPS analysis environment. 
Nat. Methods 17, 905–908 (2020).

[40] Dührkop, K. et al. Systematic classification of unknown metabolites using high-resolution 
fragmentation mass spectra. Nat. Biotechnol. 39, 462-471 (2021).

[41] Nothias, LF. et al. Bioactivity-Based Molecular Networking for the Discovery of Drug Leads 
in Natural Product Bioassay-Guided Fractionation. J. Nat. Prod. 81, 758–767 (2018).

[42] Aligiannis, N. et al. Heterocovariance Based Metabolomics as a Powerful Tool Accelerating 
Bioactive Natural Product Identification. ChemistrySelect, 1, 2531-2535 (2016).

[43] Bertrand, S. et al. Statistical Correlations between HPLC Activity-Based Profiling Results 
and NMR/MS Microfraction Data to Deconvolute Bioactive Compounds in Mixtures. Molecules. 
21, 259 (2016).

[44] Kurita, K.L. et al. Integration of high-content screening and untargeted metabolomics for 
comprehensive functional annotation of natural product libraries.  Proc. Natl. Acad. Sci. U.S.A. 
112, 11999-12004 (2015).

[45] Mladic, M. et al. At-line nanofractionation with parallel mass spectrometry and bioactivity 
assessment for the rapid screening of thrombin and factor Xa inhibitors in snake venoms. 
Toxicon 110, 79-89 (2016).

[46] Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite 
structure information. Nat. Methods 16, 299-302 (2019).

[47] Leão, T. F. et al. NPOmix: a machine learning classifier to connect mass spectrometry 
fragmentation data to biosynthetic gene clusters. Proc. Natl. Acad. Sci. U.S.A. Nexus (2022).

[48] Hjörleifsson, E. G. et al. Ranking microbial metabolomic and genomic links in the NPLinker 
framework using complementary scoring functions. PLoS Comput. Biol. 17, e1008920 (2021).

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521422doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.21.521422
http://creativecommons.org/licenses/by-nc-nd/4.0/


[49] Shammamah, H. Visualization of Bioinformatics Data with Dash Bio. 
https://doi.org/10.25080/Majora-7ddc1dd1-012 (2019).

[50] Shannon, P. et al. Cytoscape: A Software Environment for Integrated Models of 
Biomolecular Interaction Networks. Genome Res. 13, 2498-2504 (2003).

[51] Franz, M. et al. Cytoscape.js: a graph theory library for visualisation and analysis. 
Bioinformatics 32, 309–311 (2015).

[52] Myers, O.D. et al. One Step Forward for Reducing False Positive and False Negative 
Compound Identifications from Mass Spectrometry Metabolomics Data: New Algorithms for 
Constructing Extracted Ion Chromatograms and Detecting Chromatographic Peaks. Anal. 
Chem. 89, 8696-8703 (2017).

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521422doi: bioRxiv preprint 

https://doi.org/10.25080/Majora-7ddc1dd1-012
https://doi.org/10.1101/2022.12.21.521422
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements

The authors thank Margherita Sosio and Stefano Donadio (both Naicons Srl., Milano, Italy) for

the use of antibiotic activity data gathered at Naicons Srl. laboratories in the present case study.

The authors also thank Luis Manuel Quirós-Guerrero, Louis-Félix Nothias, Adriano Rutz, and

Jean-Luc Wolfender for valuable discussion. Further, the authors thank the participants of the

2022  Dagstuhl  Conference  with  the  title:  “Computational  Metabolomics:  From  Spectra  to

Knowledge”  for valuable inspiration. Furthermore, the authors are thankful to the beta version

testers  for their effort  and feedback (in alphabetical  order):  Marianna Iorio, Matteo Simone,

Soliman Khatib, and Sonia Maffioli.

Author Information

Corresponding Authors

Mitja  M.  Zdouc -  Bioinformatics  Group,  Wageningen  University  &  Research,

Droevendaalsesteeg  1,  6708  PB  Wageningen,  The  Netherlands;  

ORCID:  https://orcid.org/0000-0001-6534-6609;  Email:  mitja.zdouc@wur.nl

Marnix  H.  Medema  -  Bioinformatics  Group,  Wageningen  University  &  Research,

Droevendaalsesteeg  1,  6708  PB  Wageningen,  The  Netherlands;  

ORCID: https://orcid.org/0000-0002-2191-2821; Email: marnix.medema@wur.nl

Justin  J.  J.  van  der  Hooft -  Bioinformatics  Group,  Wageningen  University  &  Research,

Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Department of Biochemistry,

University  of  Johannesburg,  Auckland  Park,  Johannesburg  2006,  South  Africa;  

ORCID: https://orcid.org/0000-0002-9340-5511; Email: justin.vanderhooft@wur.nl

Authors

Lina M. Bayona Maldonado - Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE

Leiden, The Netherlands; ORCID: https://orcid.org/0000-0002-5026-3621

Hannah  E.  Augustijn -  Bioinformatics  Group,  Wageningen  University  &  Research,

Droevendaalsesteeg  1,  6708 PB Wageningen,  the  Netherlands;  Institute  of  Biology,  Leiden

University,  Sylviusweg  72,  2333  BE  Leiden,  The  Netherlands;  

ORCID: https://orcid.org/0000-0002-1862-6699

Sylvia  Soldatou -  Marine  Biodiscovery  Centre,  Department  of  Chemistry,  University  of

Aberdeen,  Old  Aberdeen,  AB24  3DT,  Scotland,  United  Kingdom;  

ORCID: https://orcid.org/0000-0002-3868-102X

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521422doi: bioRxiv preprint 

https://orcid.org/0000-0001-6534-6609
https://doi.org/10.1101/2022.12.21.521422
http://creativecommons.org/licenses/by-nc-nd/4.0/


Niek  F.  de  Jonge -  Bioinformatics  Group,  Wageningen  University  &  Research,

Droevendaalsesteeg  1,  6708  PB  Wageningen,  the  Netherlands;  

ORCID: https://orcid.org/0000-0002-3054-6210

Marcel  Jaspars -  Marine  Biodiscovery  Centre,  Department  of  Chemistry,  University  of

Aberdeen,  Old  Aberdeen,  AB24  3DT,  Scotland,  United  Kingdom;  

ORCID: https://orcid.org/0000-0002-2426-6028

Gilles P. van Wezel - Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden,

The Netherlands; ORCID: https://orcid.org/0000-0003-0341-1561

Contributions

M.M.Z. developed the methods, packages, and wrote the help documents, wiki, and tutorials.

M.M.Z.  and  L.M.B.M.  prepared  and  analyzed  case  study  data.  M.H.M.  and  J.J.J.vdH.

supervised development and implementation of the software. M.M.Z. and H.E.A. designed the

frontend of the software. M.M.Z. and H.E.A. prepared the figures. L.M.B.M., H.E.A., S.S., and

N.dJ. tested the software. H.E.A. and N.dJ. conducted code review. L.M.B.M., H.E.A.,  S.S.,

N.dJ.,  S.S.,  M.J.,  G.P.vW.,  M.H.M,  and  J.J.J.vdH.  provided  valuable  input  on  software

functionality  and  improvement.  M.M.Z.  wrote  the  manuscript  and  M.H.M.,  and  J.J.J.vdH.

improved the manuscript. All authors contributed to and approved of the final manuscript.

Corresponding authors

Correspondence to Mitja M. Zdouc and Marnix H. Medema and Justin J.J. van der Hooft.

Ethics declarations

Competing interests

J.J.J.vdH. is a member of the Scientific Advisory Board of Naicons Srl., Milano, Italy. M.H.M. is

a  member  of  the  scientific  advisory  board  of  Hexagon  Bio  and  co-founder  of  Design

Pharmaceuticals. The other authors declare no competing interests.

Funding

This work was funded by the European Union Horizon 2020 project MARBLES [101000392].

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521422doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.21.521422
http://creativecommons.org/licenses/by-nc-nd/4.0/

