

Running Title: Vacuolar fructose transport and signaling

The vacuolar sugar transporter *EARLY RESPONSE TO DEHYDRATION 6-LIKE4* regulates fructose signaling and plant growth

Azkia Khan¹, Jintao Cheng², Anastasia Kitashova³, Lisa Fürtauer^{3§}, Thomas Nägele³, Cristiana Picco⁴, Joachim Scholz-Starke⁴, Isabel Keller¹, H. Ekkehard Neuhaus^{1*}, Benjamin Pommerenig^{1*}

¹ Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany

² College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China

³ Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians- Universität München, D-82152 Planegg-Martinsried, Germany

⁴ Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, I-16149 Genova, Italy

[§] present address: Institute for Biology III, Unit of Plant Molecular Systems Biology, RWTH Aachen University, Aachen, Germany

* Address correspondence to: Benjamin Pommerenig or Ekkehard Neuhaus, University of Kaiserslautern, Pflanzenphysiologie, Paul Ehrlich-Str. 22, D-67653 Kaiserslautern, Germany, Tel.: +49-631-2052372, Fax: +49-631-205-2600

E-mail: pommere@rhrk.uni.kl or neuhaus@rhrk.uni-kl.de

One sentence summary: The activity of the vacuolar sugar porter ERDL4 is important for balanced cytosolic monosaccharide homeostasis and influences plant growth and cold response in *Arabidopsis*

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors is:

Benjamin Pommerrenig (pommerre@bio.uni-kl.de).

1 **Abstract**

2 Regulation of intracellular sugar homeostasis is maintained by regulation of activities of sugar import
3 and export proteins residing at the tonoplast. We show here that the EARLY RESPONSE TO
4 DEHYDRATION6-LIKE4 protein, being the closest homolog to the proton/glucose symporter ERDL6,
5 resides in the vacuolar membrane. Gene expression and subcellular fractionation studies indicated that
6 ERDL4 was involved in fructose allocation across the tonoplast. Overexpression of *ERDL4* increased
7 total sugar levels in leaves, due to a concomitantly induced stimulation of *TST2* expression, coding for
8 the major vacuolar sugar loader. This conclusion is supported by the finding that *tst1-2* knockout lines
9 overexpressing *ERDL4* lack increased cellular sugar levels. ERDL4 activity contributing to the
10 coordination of cellular sugar homeostasis is also indicated by two further observations. Firstly, *ERDL4*
11 and *TST* genes exhibit an opposite regulation during a diurnal rhythm, and secondly, the *ERDL4* gene is
12 markedly expressed during cold acclimation representing a situation in which TST activity needs to be
13 upregulated. Moreover, *ERDL4*-overexpressing plants show larger size of rosettes and roots, a delayed
14 flowering time and increased total seed yield. Consistently, *erdl4* knock-out plants show impaired cold
15 acclimation and freezing tolerance along with reduced plant biomass. In summary, we show that
16 modification of cytosolic fructose levels influences plant organ development and stress tolerance.

17

18 **Introduction**

19 Sugars fulfill a wide number of functions in plants. They act as precursors for many anabolic
20 reactions, allow starch and cellulose biosynthesis, serve as glycosyl donors for lipid and protein
21 modification or provide the substrates for oxidative phosphorylation. In illuminated source leaves, sugar
22 generation takes place in the cytosol of mesophyll cells, a process fueled by triose-phosphates exported
23 from the chloroplast (Ruan, 2014). However, sucrose biosynthesis continues even in the dark phase,
24 since stromal degradation of transitory starch provides maltose to the cytosol and the subsequent
25 conversion of this disaccharide further drives sucrose biosynthesis (Smith and Zeeman, 2020).

26 Most vascular plants accumulate three major types of sugars in mature leaves, namely the
27 disaccharide sucrose and the two monosaccharides glucose and fructose. These sugars are found in
28 several cell compartments (Krueger *et al.*, 2011; Fürtauer *et al.*, 2019; Patzke *et al.*, 2019) but most
29 sugars are present in the vacuoles, representing the largest cell organelle (Martinoia *et al.*, 2012).
30 Interestingly, vacuolar sugar levels exhibit marked dynamic changes during the diurnal phase, but also
31 in response to developmental demands or onset of various environmental stimuli (Smith and Stitt, 2007;
32 Jänkäpää *et al.*, 2012; Nägele and Heyer, 2013; Fürtauer *et al.*, 2019). Accordingly, the vacuolar
33 membrane harbors a range of transporters involved in either import or export of all major types of sugars
34 (Hedrich *et al.*, 2015). Thus, the abundances and finally activities of importers and exporters must be
35 regulated. This regulation is realized by a complex network comprising various levels, like e.g.,
36 modified energization of the tonoplast, cell/organ specific expression patterns, altered gene expression
37 in response to sugar availability or post-translationally via reversible phosphorylation (Cho *et al.*, 2010;
38 Wingenter *et al.*, 2011; Schulze *et al.*, 2012; Jung *et al.*, 2015).

39 The individual sugar transporters so far demonstrated to locate to the vacuole belong either to
40 the Monosaccharide Transporter (MST) group, or to the SUGARS WILL EVENTUALLY BE
41 EXPORTED TRANSPORTER (SWEET) group (Eom *et al.*, 2015; Pommerrenig *et al.*, 2018). The
42 Tonoplast Sugar Transporter (TST) and the VACUOLAR GLUCOSE TRANSPORTER1 (VGT1) have
43 been the first tonoplast sugar transporters in *Arabidopsis* identified at the molecular level (Wormit *et*
44 *al.*, 2006; Aluri and Büttner, 2007). VGT1 seems to be specific for glucose transport, while TST was

45 shown to accept monosaccharides and sucrose, and both carriers catalyze an electrogenic transport as
46 they import their sugar substrates in counter-exchange to luminal protons (Aluri and Büttner, 2007;
47 Schulz *et al.*, 2011).

48 The export of luminal sugars from the vacuole is mediated by two types of carriers, namely
49 those transporting sugars along their concentration gradient via facilitated diffusion, or those driven by
50 the proton gradient in a sugar/proton symport mode. The EARLY-RESPONSIVE TO DEHYDRATION
51 SIX (ERD6), and ERD6-LIKE (ERDL) 3 carriers (Kiyosue *et al.*, 1998; Yamada *et al.*, 2010) and the
52 three SWEET proteins 2, 16, and 17 (Chardon *et al.*, 2013; Klemens *et al.*, 2013; Guo *et al.*, 2014; Chen
53 *et al.*, 2015) catalyze glucose and/or fructose export. In contrast, the SUCROSE TRANSPORTER 4
54 (SUT4) and the ERDL6 protein are both proton-driven and allow for rapid export of sucrose or glucose,
55 respectively (Poschet *et al.*, 2011; Schulz *et al.*, 2011).

56 From all known vacuolar sugar transporters, the TST type carriers represent the most in-depth
57 analyzed proteins. In Arabidopsis, three TST isoforms exist: the *TST1* and *TST2* genes exhibit a tissue-
58 specific expression pattern, while *TST3* is hardly expressed (Wormit *et al.*, 2006). In contrast to *TST3*,
59 *TST1* and *TST2* respond to stimuli like cold temperatures or sugar accumulation (Wormit *et al.*, 2006).
60 In storage taproots from sugar beet (*Beta vulgaris*), solely the isoform *BvTST2.1* is expressed and serves
61 as a highly specific sucrose transporter responsible for the efficient sugar accumulation in this crop plant
62 (Jung *et al.*, 2015; Rodrigues *et al.*, 2020). It is important to note that TST proteins do not only show a
63 tissue-specific abundance but also exhibit altered phosphorylation patterns upon onset of cold
64 temperatures (Schulze *et al.*, 2012). This type of post-translational modification is catalyzed by a
65 mitogen-activated protein 3-kinase family protein, named VIK1, and leads to increased transport activity
66 (Wingenter *et al.*, 2011). This process is fully in line with the observations that vacuolar sugar
67 accumulation during cold temperatures is a key metabolic process induced to resist freezing
68 (Pommerrenig *et al.*, 2018) and that *tst1/2* double knock out mutants show strongly impaired cold-
69 induced sugar accumulation when compared to wild types (Klemens *et al.*, 2014).

70 Experiments on Arabidopsis or on false flax (*Camelina sativa*) lines constitutively
71 overexpressing the *TST1* gene showed that corresponding mutants exhibit an increased source to sink

72 transfer of sucrose promoting average seed size, lipid- and protein levels and the overall seed yield
73 (Wingenter *et al.*, 2010; Okooboh *et al.*, 2022). The molecular basis for this effect is due to decreased
74 cytosolic glucose levels in *TST1*-overexpressing plants, leading to a stimulation of photosynthesis and
75 increased expression of the *SUC2* gene (Wingenter *et al.*, 2010), encoding the major phloem sucrose
76 loader (Truernit and Sauer, 1995; Lemoine *et al.*, 2013). This stimulatory effect of increased TST
77 activity on Arabidopsis seed size and total seed yield concurs with similar observations made on various
78 crop plants. E.g., it has been recently shown that stimulated activity of TST leads to increased fruit sugar
79 levels in strawberry- and melon fruits, as well as in apple and tomato fruits (Cheng *et al.*, 2017; Zhu *et*
80 *al.*, 2021).

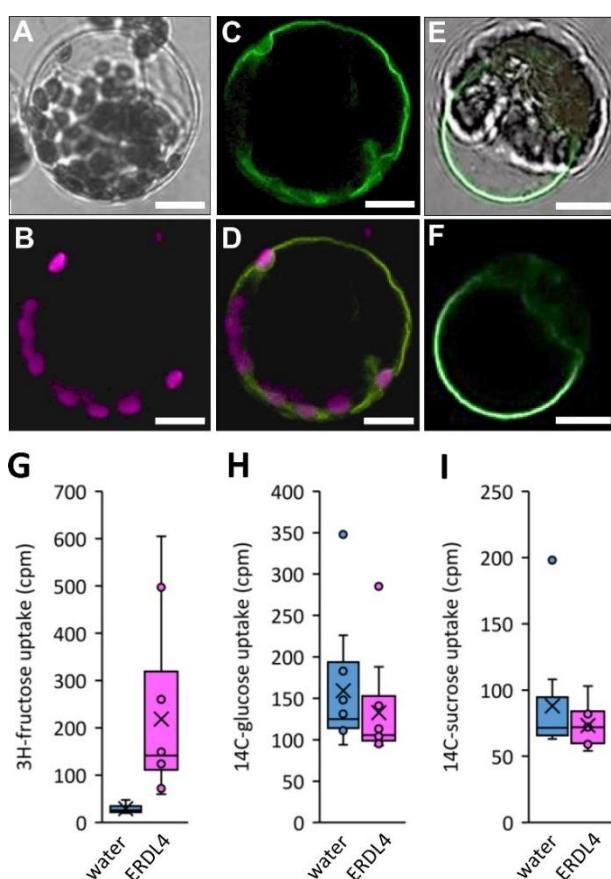
81 Interestingly, while stimulated fruit sugar levels in strawberry and melon fruits was achieved by
82 a direct overexpression of the melon (*Cucumis melo*) *TST2* gene (Cheng *et al.*, 2017), a stimulated TST
83 activity in apple and tomato fruits was a consequence of overexpression of the apple (*Malus domestica*)
84 gene *MdERDL6* (Zhu *et al.*, 2021). The stimulated vacuolar glucose export in *MdERDL6*-
85 overexpressing apple or tomato tissues lead to increased cytosolic glucose levels, which subsequently
86 stimulate *TST2* expression. As a result of this process, the corresponding vacuoles are further loaded
87 with sucrose finally leading to fruits with higher sugar concentrations when compared to wild types
88 (Zhu *et al.*, 2021). The observations made on leaves and fruits of apple and tomato mutants (Zhu *et al.*,
89 2021) contrasts, however, findings made on Arabidopsis lines overexpressing the two closest *MdERDL6*
90 homologs from either sugar beet (*BvIMP1*) or Arabidopsis (*AtERDL6*). This is because overexpression
91 of either *AtERDL6* or *BvIMP* leads to decreased, and not increased cellular sugar levels in leaves
92 (Poschet *et al.*, 2011; Klemens *et al.*, 2014).

93 Thus, these contradictory observations make it mandatory to further analyze the coordination
94 of sugar import and export across the tonoplast. To this end, we constitutively expressed the nearest
95 ERDL6 homolog from Arabidopsis, *ERDL4* (Pommerenig *et al.*, 2018) in Arabidopsis. Interestingly,
96 overexpression of *ERDL4* provokes increased source and sink tissue biomass, as revealed on rosettes,
97 roots, and seed yield. In contrast, *erdl4* loss-of-function lines showed opposite characteristics. Further
98 molecular and physiological data imply that fine control of a futile sugar transport cycle across the

99 vacuolar membrane occurs in wild types and contributes to regulation of sugar allocation between source
100 and sink tissues.

101

102 **Results**


103 ***Subcellular localization and functional characterization of the ERDL4 protein***

104 In *Arabidopsis* ERDL4 belongs to the 53-member containing MST family of major facilitator
105 superfamily proteins (Pommerrenig *et al.*, 2018; Slavinski *et al.*, 2021a). Within the MST family,
106 ERDLs form a 19-member comprising subfamily making it the largest MST subgroup. Among ERDLs,
107 ERDL4 has the highest homology to the vacuolar glucose/proton symporter ERDL6 sharing 92 %
108 sequence identity (Poschet *et al.*, 2010). Like all MSTs, ERDL4 possesses 12 putative transmembrane
109 domains (TMD) (**Supplemental Figure S1**). The presence of sequences -PESPRWL- (between TMD
110 six and seven), -DKAGRR- (between TMD eight and nine) and -PETKG- (after TMD twelve)
111 constituting the highly conserved sugar transport motif (Sugar_tr; PF00083) suggested sugar transport
112 properties (Henderson, 1991) (**Supplemental Figure S1 and Supplemental Information 1**).

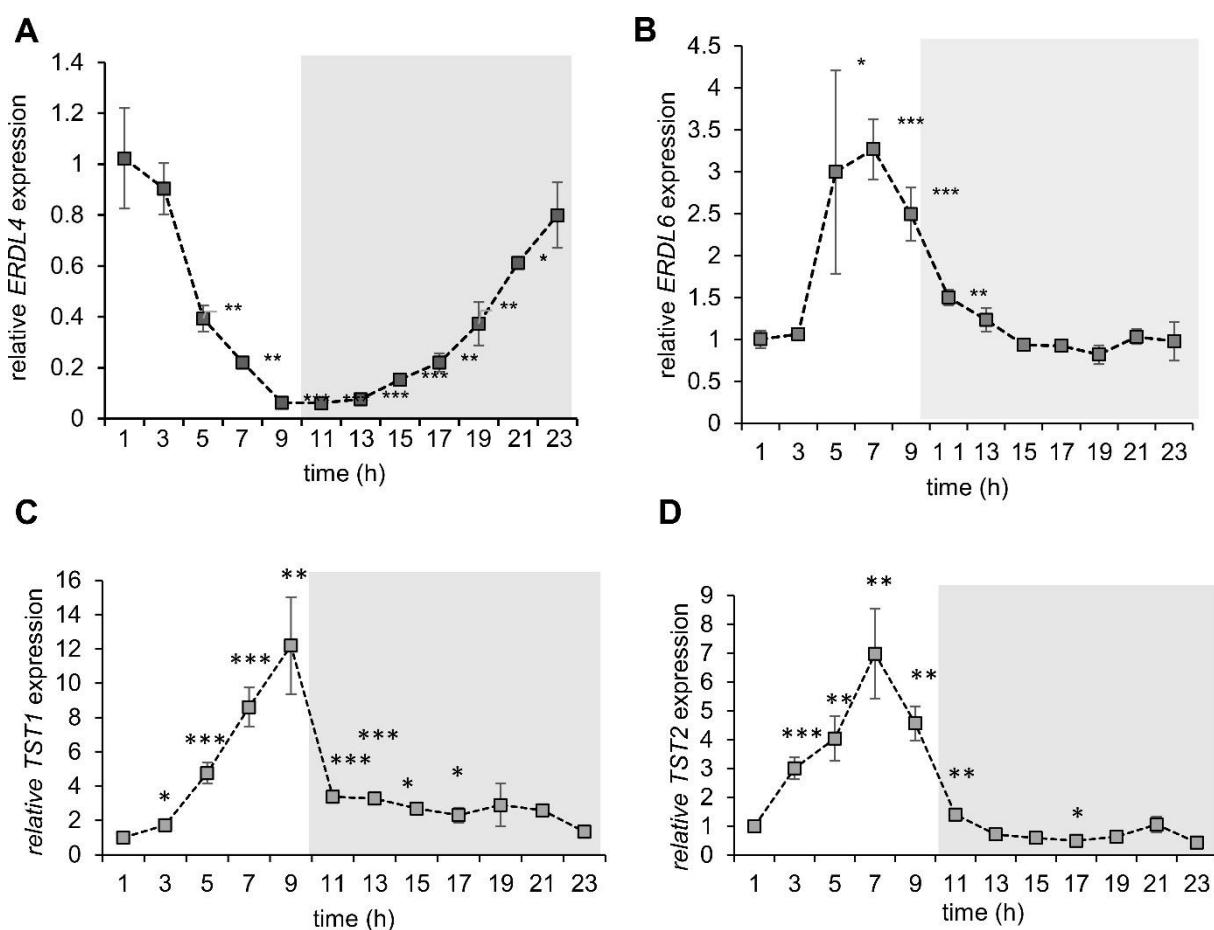
113 Twelve ERDL members contain putative di-leucine-based motifs in their cytosolic N-termini
114 (Yamada *et al.*, 2010 and **Supplemental Information 1**) which constitute vacuolar targeting signals
115 (Komarova *et al.*, 2012; Wolfenstetter *et al.*, 2012) and are required to target ERDL members ERD6
116 and ERDL3 to the tonoplast (Yamada *et al.*, 2010). By contrast, this feature is absent from the ERDL4
117 protein sequence (**Supplemental Information 1**). To study the subcellular localization of ERDL4
118 experimentally, we expressed a construct containing the coding sequence (cds) of *ERDL4* and the
119 *GREEN FLUORESCENT PROTEIN (GFP)* in frame under control of an *UBIQUITIN10*-promotor in
120 tobacco mesophyll protoplasts. Recording of the GFP-derived fluorescence of the translated ERDL4-
121 GFP with confocal microscopy revealed localization of the fusion protein at the tonoplast of intact
122 (**Figure 1A -1D**) or lysed protoplasts (**Figure 1E, F**). These data showed that ERDL4 was targeted to
123 the tonoplast independent of the presence of a dileucine motif.

124 It is noteworthy to mention that an ERDL4-GFP fusion transformed into the hexose transport-
125 deficient yeast strain EBYVW-4000 (Wieczorke *et al.*, 1999) did not target to yeast plasma membrane,
126 as reported for the homologous proteins *MdERDL6* (Zhu *et al.*, 2021) and *AtERDL10* (Klemens *et al.*,
127 2013), but to internal membrane structures (**Supplemental Figure S2**). To analyze substrate transport
128 properties of ERDL4, we applied radiolabeled sugars - glucose, fructose, or sucrose - to *ERDL4-*

129 expressing or water-injected (control) oocytes from *Xenopus laevis*. These analyses revealed that only
130 ^3H -fructose application increased the measured radioactive counts in the *ERDL4*-injected oocytes
131 significantly over the water-injected control oocytes (**Figure 1G-I**) and suggested that *ERDL4* mediated
132 the transport of fructose but not of glucose or sucrose.

133

134 **Figure 1.** Subcellular localization of *ERDL4*-GFP fusion proteins in tobacco mesophyll protoplasts. **A-F**
135 Confocal images from tobacco mesophyll protoplasts transformed with an *UBQ10pro::ERDL4-GFP* construct.
136 Scale bars are 10 μm **A-F**) Images of a tobacco protoplast expressing the *ERDL4*-GFP fusion. Different confocal
137 channels of the same protoplast are shown **A**) Bright-field image **B**) Chlorophyll-derived auto-fluorescence
138 indicating position of chloroplasts **C**) GFP-derived fluorescence indicating position of the *ERDL4*-GFP fusion
139 protein **D**) overlay of chlorophyll and GFP fluorescence. **E and F**) images of a lysed protoplast expressing *ERDL4*-
140 GFP **E**) GFP-derived fluorescence at the vacuolar membrane **F**) overlay picture of GFP fluorescence and bright
141 field image **G-I**) Boxplots showing accumulation of radiolabeled sugars by oocytes injected with water (control)
142 or *ERDL4*-cRNA. Center lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers
143 extend 1.5 times the interquartile range from the 25th and 75th percentiles, outliers are represented by dots; crosses
144 represent sample means; n = 10 sample points. **G**) Uptake of ^3H -fructose **H**) Uptake of ^{14}C -glucose **I**) Uptake of
145 ^{14}C -sucrose. The p-values between water-injected and *ERDL4*-injected oocytes were 0.0046 (frc), 0.4082 (glc),
146 and 0.3022 (suc) according to double-sided Students t-test.


147

148

149 **ERDL4 is expressed in a diurnal manner**

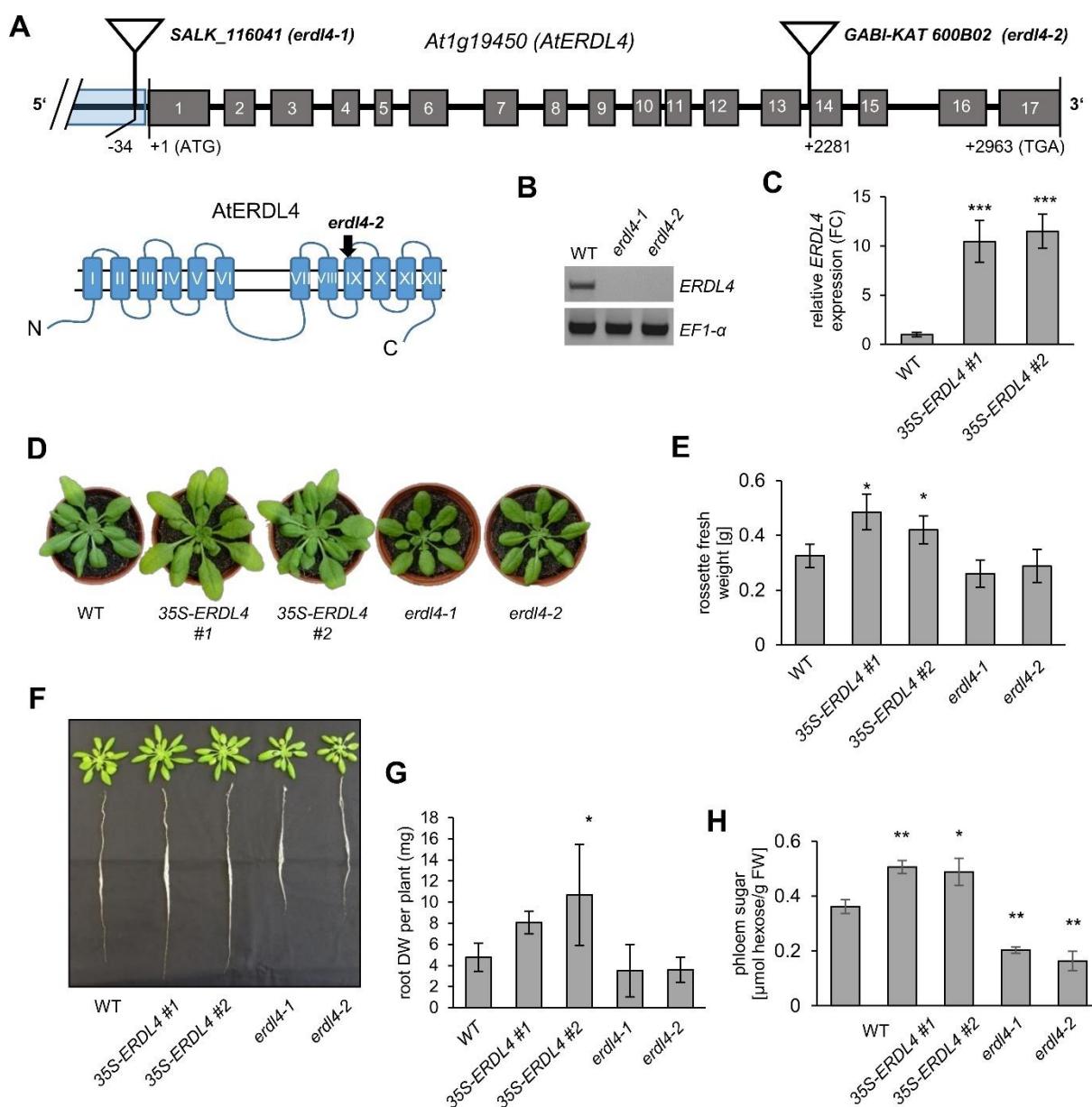
150 Dynamics of vacuolar sugar contents are linked to diurnal rhythm (Nägele *et al.*, 2010) and
151 vacuolar sugar transporters steer subcellular sugar compartmentation (Wormit *et al.*, 2006; Poschet *et*
152 *al.*, 2010; Vu *et al.*, 2020). We therefore checked whether *ERDL4* and other vacuolar sugar transporter
153 genes were regulated in a diurnal manner. To this aim we grew wild-type plants in a 10 h light, 14 h
154 dark regime (short days), harvested plant material in two-hour intervals, and analyzed expression of
155 *ERDL4* as well as of *TST1* and *TST2* (Wormit *et al.*, 2006; Schulz *et al.*, 2011), encoding the two major
156 transport proteins catalyzing sugar loading into the vacuolar lumen. In addition, we analyzed the
157 expression of *ERDL6*, the closest homolog to *ERDL4* catalyzing glucose/proton symport across the
158 tonoplast (Poschet *et al.*, 2010) (**Figure 2**).

159 With the beginning of the light phase *ERDL4* mRNA levels continuously decreased over the
160 day (**Figure 2A**) reaching a minimum after nine hours in the light (= end of day) with about 16-fold less
161 mRNA when compared to the first recorded value of the day. After the beginning of the dark phase
162 *ERDL4* mRNA levels steadily increased until they regained their maximum from the start of the day
163 after eleven hours in the dark (= end of night, EON). *ERDL6*, *TST1* and *TST2* genes on the contrary
164 exhibited closely overlapping expression patterns and their mRNA levels sharply increased through the
165 light phase peaking at seven to nine hours in the light phase. With the beginning of the dark period, the
166 mRNA levels of these three genes rapidly decreased reaching the low expression levels from the start
167 of the day again at the end of the night (**Figure 2B-D**). These results showed that expression patterns of
168 the analyzed vacuolar sugar transporter genes were diurnally regulated and suggested that *ERDL4* does
169 not functionally overlap with *TSTs* or its closest homolog *ERDL6*.

170

171 **Figure 2.** Diurnal expression of *ERDL4* (A), *ERDL6* (B), *TST1* (C), and *TST2* (D). Expression is shown as fold-
172 change relative to the 1h-light value. Grey-shaded areas indicate nighttime (without illumination). Bars are mean
173 \pm SE values of n=3 replicates. Asterisks indicate significant changes to the expression at 1h according to double-
174 sided Students *t*-test (* = p < 0.05; ** = p < 0.005; *** = p < 0.001).

175


176 *Isolation of erdl4 T-DNA insertion mutants and generation of ERDL4-overexpressing lines*

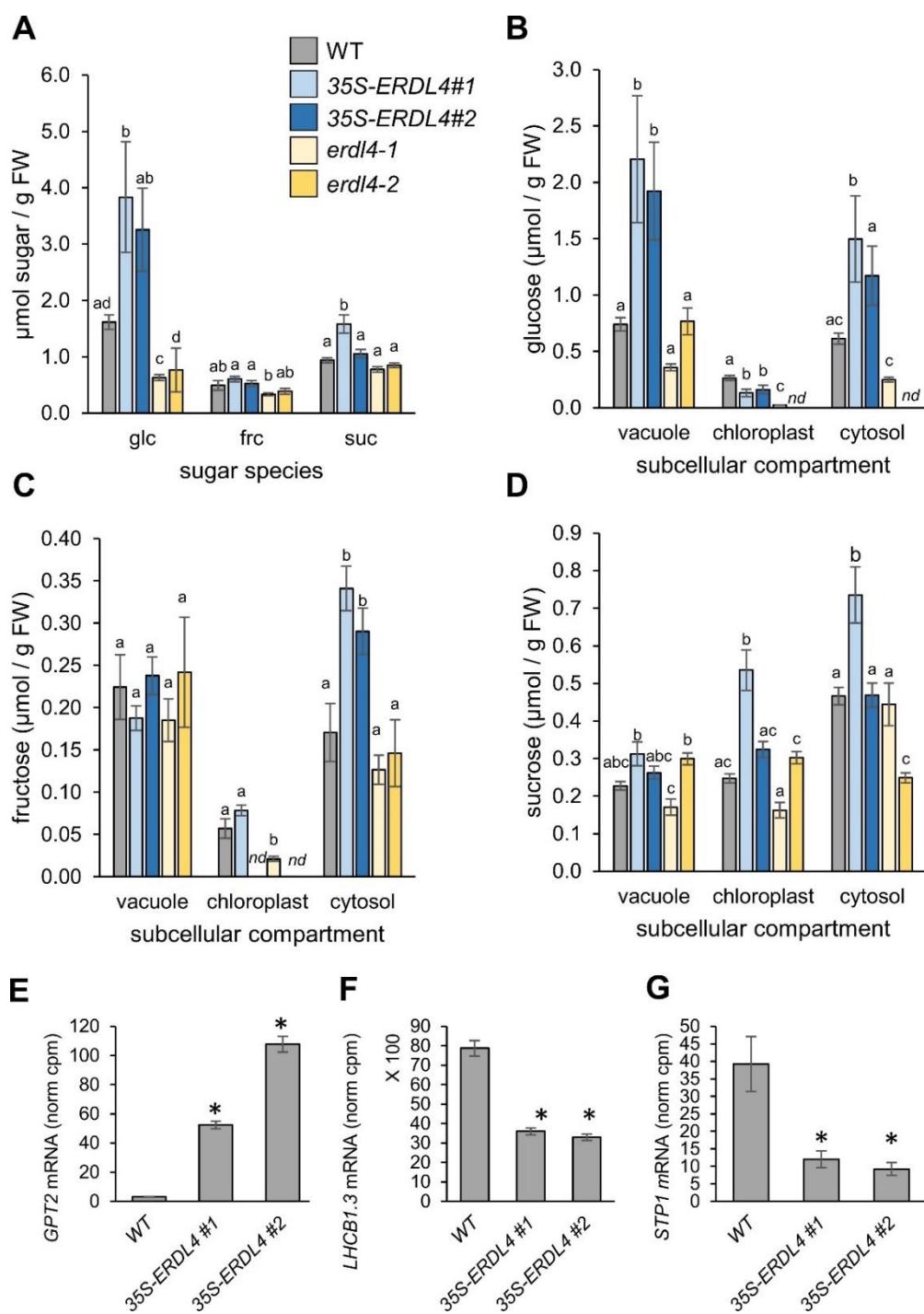
177 To study effects of altered ERDL4-dependent vacuolar transport processes, we isolated *erdl4*-
178 knockout mutants and generated *ERDL4*-overexpressing lines with decreased or increased ERDL4
179 activity, respectively. We isolated two independent *erdl4* mutant lines for our analyses, that carry T-
180 DNA insertions either in the promotor region at -34 bp before the start-ATG (*SALK_11641; erdl4-1*) or
181 at the beginning of the 14th exon at +2281 bp (*GABI-KAT 600B02; erdl4-2*) (Alonso *et al.*, 2003) (Figure
182 **3A**). RT-PCR based on leaf cDNA from the two mutants failed to amplify full-length *ERDL4*-cDNA
183 from both *erdl4-1* and *erdl4-2* plants (Figure **3B**). This characterized *erdl4-1* and *erdl4-2* as knockout
184 mutants of ERDL4 and suggested that the insertion in *erdl4-2* mutants truncates the ERDL4 protein after

185 the first three amino acids of the predicted ninth transmembrane domain (**Figure 3A, Supplemental**
186 **Figure 1B**). In addition, we generated *ERDL4*-overexpressing lines expressing the *ERDL4*-cds under
187 the transcriptional control of *the CaMV-35S*-promoter in Col-0 background (*35S-ERDL4 #1* and *35S-*
188 *ERDL4 #2*). RT-qPCR analyses demonstrated that the overexpression resulted in significantly higher
189 (about tenfold for *35S-ERDL4 #1* and *#2*) amounts of *ERDL4* mRNA in these lines when compared to
190 wild type (**Figure 3C**).

191 Interestingly, the altered *ERDL4* expression resulted in differential growth behavior of plants
192 from the corresponding lines. Rosettes of five-week-old *35S-ERDL4 #1 and #2* plants grown on soil
193 substrate were larger and had larger leaves in comparison to wild type plants of the same age (**Figure**
194 **3D**). These plants had about 50% (*35S-ERDL4 #1*) and 30% (*35S-ERDL4 #2*) more biomass on a fresh-
195 weight basis when compared to wild type plants (**Figure 3E**). Rosettes of *erdl4.1* and *erdl.2* mutants
196 from the same age showed decrease of their biomass to 80% (*erdl4-1*) or 90% (*erdl4-2*) of wild type
197 values (**Figure 3E**). When grown in hydroponic culture, root biomass was increased in *35S-ERDL4 #1*
198 and *#2* plants and decreased in *erdl4*-knockout mutants when compared to WT plants (**Figure 3F, G**).

199 The altered *ERDL4* expression in the overexpressing or knock-out plants resulted in differential
200 sugar contents of phloem sap collected from source leaves of plants from the different lines. While *35S-*
201 *ERDL4* plants had between 30% and 40% higher sugar content of the phloem sap when compared to
202 wild type, the levels were markedly reduced in *erdl4-1* and *erdl4-2* to about half of the wild-type content
203 (**Figure 3H**). Together, these results characterized *ERDL4* as an important factor for the growth of
204 shoots and roots and indicated that *ERDL4* activity influenced shoot to root transport of carbohydrates.

205


206 **Figure 3.** Characterization of *erd4* T-DNA insertion mutants and *ERDL4*-overexpressing plants. **A)** Exon-intron
207 structure of the *ERDL4* gene. Grey boxes with numbers indicate exons, black lines between boxes indicate intron
208 sequences. Triangles mark T-DNA insertions in *erd4-1* and *erd4-2* mutant lines. Numbers below exons and
209 introns indicate base pair positions of T-DNA insertions according to Alonso et al., 2003. The schematic below
210 the gene shows the predicted secondary structure of the ERDL4 protein according to TMH-Pred. The black
211 arrowhead marks the predicted truncation of the protein in *erd4-2* mutants. **B)** RT-PCR analysis of *ERDL4* and
212 *ELONGATION FACTOR1-α* (*EF1-α*) expression in WT, *erd4-1*, and *erd4-2* mutants. **C)** Relative expression of
213 *ERDL4* in WT and 35S-*ERDL4* plants determined by RT-qPCR. Bars show mean values of n=4 homozygous
214 plants ± SE. Asterisks indicate significant changes according to Students t-test in comparison to WT (** p <
215 0.001). **D)** Phenotypes of four-week-old WT, 35S-*ERDL4*, and *erd4* knock-out plants grown in soil substrate
216 under short day conditions. **E)** Quantification of shoot biomass on fresh weight basis of plants depicted in (D).
217 Bars show mean values of n=12 independent plants ± SE. Asterisks indicate significant differences to WT
218 according to Students t-test (* p < 0.05). **F)** Exemplary pictures of rosettes and roots from five-week-old WT, 35S-
219 *ERDL4*, and *erd4* knock-out plants grown in hydroponic culture. **G)** Dry biomass of roots from plants depicted in
220 (F). Bars show mean values of n=6 roots ± SE. **H)** sugar measured as hexose equivalents in phloem exudates
221 collected from detached leaves of five-week-old WT, 35S-*ERDL4*, and *erd4* knockout plants. Bars are mean
222 values of at least n=12 leaves ± SE. Asterisks indicate significant differences to WT according to Students t-test.

223 **Soluble sugar content of plants with altered *ERDL4* activity**

224 We analyzed whether altered activity of *ERDL4* would influence whole leaf sugar content as
225 well as intracellular compartmentation of sugars. Surprisingly, overexpression of *ERDL4* resulted in
226 markedly increased accumulation of glucose in leaves of *35S-ERDL4* plants (**Figure 5A**). Glucose levels
227 increased more than two-fold from 1.6 µmoles /g FW in WT to about 3.8 and 3.3 µmoles /g FW in *35S-*
228 *ERDL4* #1 and *35S-ERDL4* #2 leaves, respectively (**Figure 5A**). In contrast, glucose was reduced to
229 about 40% and 45% of wild type levels in leaves of *erdl4-1* and *erdl4-2* knock-out plants, respectively.
230 Fructose contents were slightly, but not significantly increased in *35S-ERDL4* plants in comparison to
231 the WT but reduced in *erdl4* knockouts (**Figure 5A**). Sucrose levels were not significantly altered
232 between WT and other lines except for *35S-ERDL4* #1 plants, which exhibited about 70% higher sucrose
233 levels when compared to WT (**Figure 5A**).

234 To analyze the intracellular compartmentation of sugars, we conducted non-aqueous
235 fractionation (NAF), allowing for quantification of sugars in the cellular compartments of vacuole,
236 chloroplasts, and cytosol (Fürtauer *et al.*, 2019; Patzke *et al.*, 2019; Vu *et al.*, 2020). We observed that
237 altered expression of *ERDL4* lead to perturbations in the sugar homeostasis between the analyzed
238 compartments (**Figure 5B to 5D**). Most prominent was the increase of glucose in the vacuolar and
239 cytosolic but not in the chloroplast fractions of *35S-ERDL4* lines. Glucose increased about three-fold in
240 vacuoles when compared to WT levels (**Figure 5B**). In the cytosol of *35S-ERDL4* lines this increase
241 was about two- to 2.5-fold. Interestingly, the slight increase of total fructose (**Figure 5A**) in *35S-ERLD4*
242 plants was not distributed proportionally over vacuole and cytosol (as observed for glucose) but was
243 rather confined to the cytosolic fraction (**Figure 5C**). The distribution of sugars between compartments
244 in *erdl4* knockouts did not significantly differ from those in WT except for *erdl4-1* plants which had
245 significantly lower fructose levels in chloroplasts in comparison to the WT (**Figure 5C**). The elevated
246 monosaccharide content in the cytosol of *35S-ERDL4* plants was further corroborated by altered
247 expression of sugar-responsive marker genes in these lines (**Figure 5E-G**). Expression of *GLC6-*
248 *PHOSPHATE/PHOSPHATE TRANSLOCATOR2 (GPT2)*, *CHLOROPHYLL A/B BINDING PROTEIN1*
249 (*LHCB1.3; CAB1*), and *SUGAR TRANSPORT PROTEIN1 (STP1)* has been shown to strongly mirror

250 cytosolic glucose levels (Chen et al., 2019). While *GPT2* is sugar-induced, *CAB1* and *STP1* are sugar-
251 repressed (Chen et al., 2019). The same pattern was observed for expression of these genes in the *35S*-
252 *ERDL4* plants when compared to wild-type expression (**Figure 5E-G**). These data indicated that
253 *ERDL4*-overexpressing plants had altered transport activities for both glucose and fructose at the
254 vacuolar membrane. The observation that fructose levels of *35S-ERDL4* plants increased solely in the
255 cytosol and not in the vacuole (as observed for glucose) suggested that *ERDL4* mediated release of
256 fructose from vacuoles to the cytosol.

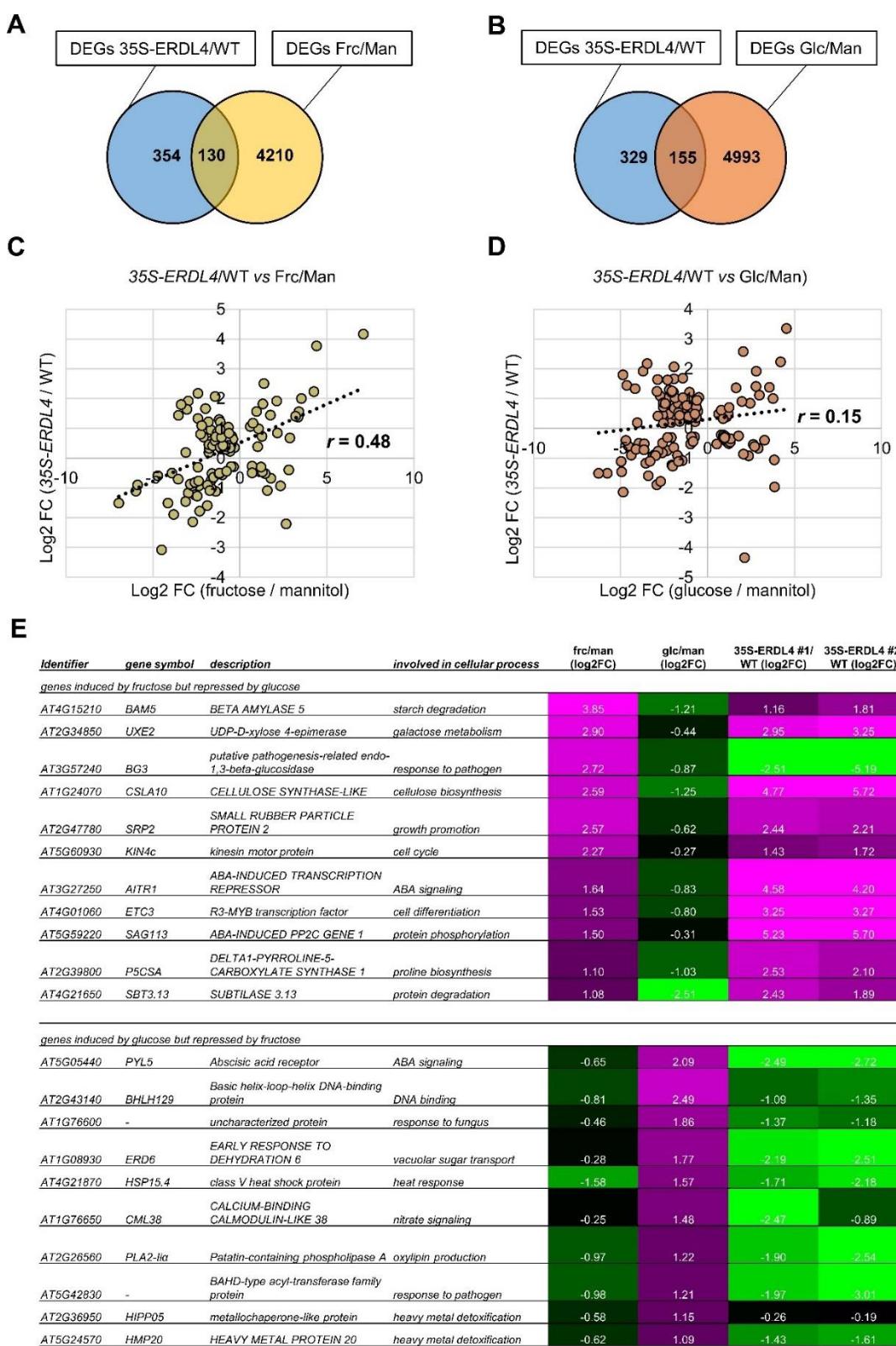
257

258 **Figure 5. Total and subcellular sugar accumulation in WT, *ERDL4*-overexpressing and *erdl4* mutant plants.**
259 (A) Contents of glucose (glc), fructose (frc), sucrose (suc) in shoots harvested at midday (four hours in the light
260 phase). (B-D) subcellular contents of glucose (B), fructose (C), sucrose (D) in vacuoles, chloroplast, and cytosolic
261 fractions of shoots from WT, *ERDL4*-overexpressing and mutant plants as obtained by non-aqueous fractionation.
262 Bars represent means from n=5 plants \pm SE. Different letters above bars denote significant differences according
263 to One-Way ANOVA with post-hoc Tukey test ($p < 0.05$). nd = no quantifiable amount detected. E-G) expression
264 of sugar-responsive genes extracted from RNASeq-data in WT and 35S-*ERDL4* plants. Data are means from n=3
265 biological replicates \pm SE. Asterisks denote significant differences according to double-sided Students t-test ($p <$
266 0.05) E) expression of *GLC6-PHOSPHATE/PHOSPHATE TRANSLOCATOR2* (*GPT2*) F) expression of
267 *CHLOROPHYLL A/B BINDING PROTEIN1* (*LHCBI.3*; *CAB1*) G) expression of *SUGAR TRANSPORT*
268 *PROTEIN1* (*STP1*).

269

270 **Differential gene expression in *ERDL4*-overexpressing plants overlaps with fructose rather than**
271 **glucose induction**

272 Overexpression of *ERDL4* resulted in elevated fructose and glucose levels in the cytosol and it
273 is reasonable to check for consequences on global gene expression caused by the altered intracellular
274 sugar distribution by means of RNASeq analysis. Having already seen that the elevated cytosolic sugar
275 levels were transduced to the level of gene expression (**Figure 5E-G**), we were interested to check
276 whether changes of the transcriptome of *ERDL4*-overexpressors were caused by increased cytosolic
277 accumulation of glucose, or fructose or of both.


278 To this aim, control experiments were performed using excised *Arabidopsis* leaf discs that were
279 incubated overnight in 0.5x MS buffer solution pH 5.7 supplemented with either 1% glucose, 1%
280 fructose or 1% mannitol (as osmotic control). Under these conditions, the supplemented sugars or
281 mannitol diffuse via the apoplasm to intact mesophyll cells where they are imported into the cytosol.
282 Such flooding with pure sugar species has been shown to evoke sugar species-specific responses on the
283 level of gene expression (Wormit *et al.*, 2006; Luo *et al.*, 2012). Genes which exhibit significant
284 differential expression between different plant lines or between different treatments are named
285 “differentially expressed genes” (DEGs). We identified DEGs between *ERDL4*-overexpressors and
286 wild-type (WT), between fructose and mannitol incubation or between glucose and mannitol incubation
287 by testing for significant differences of the expression of individual genes. Most genes regulated by one
288 of the sugars were regulated by the other in the same manner as revealed by high correlation ($R^2 = 0.74$)
289 of the individual amplitudes of gene expression changes (as calculated as log2FC) between glucose- and
290 fructose-regulated genes (**Supplemental Figure S3**). We checked if this was also the case in 35S-
291 *ERDL4* lines where both glucose and fructose levels were elevated in the cytosol at the same time.

292 We identified 130 DEGs ($p < 0.001$) that were common between 35S-*ERDL4*/WT and the
293 fructose/mannitol treatments and 155 DEGs between 35S-*ERDL4*/WT and the glucose/mannitol
294 treatments (**Figure 6A, B**). Correlation analysis of the 130 common DEGs from *ERDL4*-overexpressors
295 and fructose and of the 155 common DEGs from *ERDL4*-overexpressors and glucose treatments
296 revealed Pearson coefficients of $r = 0.48$ ($r^2 = 0.23$) and $r = 0.15$ ($r^2 = 0.0225$) for *ERDL4*-overexpressors

297 and fructose treatment and *ERDL4*-overexpressors and glucose treatment, respectively (**Figure 6C, D**).
298 This ten-times higher correlation between *ERDL4*-overexpressing- and fructose-dependent gene
299 expression changes in comparison to *ERDL4*-overexpressing- and glucose-dependent gene expression
300 changes indicated that fructose had a stronger effect on the transcriptional changes recorded in *ERDL4*-
301 overexpressors in comparison to glucose and suggested a specific role of fructose in cytosolic sugar
302 signaling.

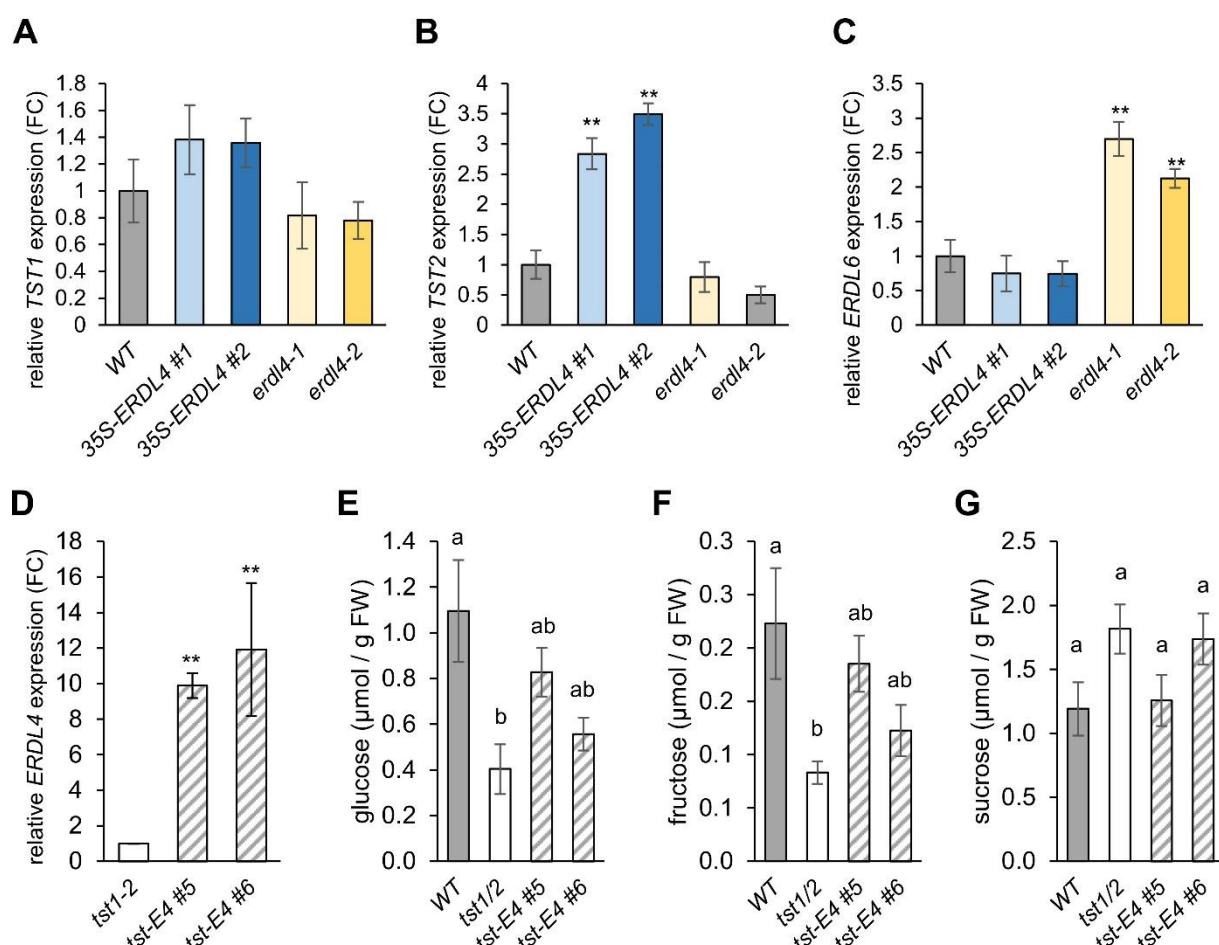
303 Next, we extracted two subsets of DEGs from the sugar feeding data set: (i) the ten strongest
304 fructose-upregulated DEGs that were at the same time repressed by glucose (cut off: $\log_{2}FC \leq -0.25$)
305 and (ii) the ten strongest glucose-upregulated DEGs that were at the same time repressed by fructose
306 (cut off: $\log_{2}FC \leq -0.25$). These genes served as indicators for cytosolic fructose or glucose
307 accumulation, respectively. Since the NAF data (**Figure 5**) indicated that both fructose and glucose
308 levels increased in the cytosol of 35S-*ERDL4* plants, the expression of these genes may provide
309 information about the effectiveness of both sugars evoking a directed response on gene expression when
310 present in elevated levels at the same time.

311 Nine of the ten genes which were fructose-induced but glucose-repressed were also clearly
312 induced in 35S-*ERDL4* lines (with $\log_{2}FCs > 1$) except for *AT3G57240*, a putative pathogenesis-related
313 endo-1,3-beta-glucosidase-encoding gene which was markedly downregulated in both *ERDL4*
314 overexpressing lines (**Figure 6E**). Conversely, all ten DEGs that were increased by glucose but
315 repressed by fructose showed also clear downregulation in the 35S-*ERDL4* lines (**Figure 6E**). These
316 results showed that the elevated cytosolic fructose levels in 35S-*ERDL4* plants – although present at a
317 lower overall concentration than that of glucose – had a stronger regulatory effect on the expression of
318 these markers than the simultaneously increased cytosolic glucose and suggested that fructose
319 constitutes a potent signal on gene expression which could in certain cases override an oppositely
320 directed glucose signal.

321

322 **Figure 6.** Venn-diagram and correlation analysis between differentially expressed genes (DEGs) from *ERDL4*-
323 overexpressing and WT plants and from fructose (Frc) or glucose (Glc) and mannitol (Man = control) incubated
324 leaf discs. **A)** and **B)** show Venn-diagrams of DEGs. Numbers within circles represent the number of DEGs
325 (significant at $p < 0.001$ according to the double-sided Students *t*-test of three replicates). There were 484 35S-
326 *ERDL4*-dependent DEGs, 4340 Frc-dependent DEGs, and 5148 Glc-dependent DEGs. **A)** Diagram showing
327 overlap of DEGs from 35S-*ERDL4* and Frc-treatment. There were 130 DEGs regulated by both *ERDL4*-

328 overexpression and Frc. **B)** Diagram showing overlap of DEGs from *35S-ERDL4* and Glc-treatment. There were
329 155 DEGs regulated by both *ERDL4*-overexpression and Glc. **C)** Correlation between relative expression (based
330 on log2-fold-change) of 130 DEGs between *35S-ERDL4* (against WT) and Frc (against Man). r = Pearson
331 coefficient calculated from *ERDL4*/WT and Frc/Man matrices **D)** Correlation between relative expression (based
332 on log2-fold-change) of 155 DEGs between *35S-ERDL4* (against WT) and Glc (against Man). r = Pearson
333 coefficient calculated from *ERDL4*/WT and Glc/Man matrices. **E)** List of DEGs oppositely regulated by frc or glc
334 ranked after their Log2FCs. The upper part of the table lists the 10 most strongly frc-induced genes that were at
335 the same time repressed by glc and the lower part the 10 most strongly glc-induced genes that were at the same
336 time repressed by frc (Log2FCs cutoff ≤ 0.25).


337

338 **High sugar content of *ERDL4*-overexpressors depends on *TST* proteins**

339 The previous results suggested that *ERDL4* acted as a vacuolar sugar transporter catalyzing
340 release of fructose from vacuoles into the cytosol and triggering fructose-specific gene expression
341 responses. If *ERDL4* would exhibit such function, how could *35S-ERDL4* plants then achieve the
342 observed strong accumulation of glucose in the vacuole? To address this question and because cytosolic
343 sugar levels are connected to the expression of sugar-related genes (Strand *et al.*, 1997; Smeekens, 1998;
344 Pommerrenig *et al.*, 2018; Chen *et al.*, 2019; Vu *et al.*, 2020), we checked the expression of the two
345 major vacuolar sugar importer genes, *TST1* and *TST2* and that of *ERDL6* encoding a glucose/proton
346 symporter of the tonoplast, in WT, *ERDL4*-overexpressing lines, and *erdl4*-knockout mutants (**Figure**
347 **7A-C**). Of the two *TST* genes *TST2* was significantly upregulated in *ERDL4*-overexpressing but not
348 *erdl4* knock out plants in comparison to the WT (**Figure 7A, B**). The expression of *ERDL6* on the other
349 hand was unchanged in the *35S-ERDL4* lines, but greatly increased in *erdl4-1* and *erdl4-2* knockouts
350 (**Figure 7C**). These results suggested that the observed increased glucose content of vacuoles from *35S-*
351 *ERDL4* plants was a result from *TST*-derived sugar/proton antiport into vacuoles which did not occur
352 in the same manner in *erdl4* knockouts where *TST* expression was unaltered or even reduced.

353 To confirm this hypothesis, we expressed the *35S-ERDL4* construct in *tst1/2* double knock-out
354 plants (*tst-ERDL4* #5 and *tst-ERDL4* #6). The *tst1/2* mutant lacks the two major proteins transporting
355 sugar from the cytosol into the vacuolar lumen, *TST1* and *TST2* (Wormit *et al.*, 2006; Schulz *et al.*,
356 2011; Vu *et al.*, 2020). The expression of *ERDL4* in *tst-ERDL4* #5 and #6 plants exceeded that of *tst1/2*
357 control plants ten- and twelvefold, respectively (**Figure 7D**). The *tst1/2* double knockout plants had
358 significantly lower glucose and fructose levels (and slightly increased levels of sucrose) in comparison
359 to WT plants (**Figure 7E-G**), confirming results from previous analyses (Klemens *et al.*, 2014; Vu et

360 al., 2020). When *ERDL4* was overexpressed in these double mutants (as in *tst-ERDL4* #5 and *tst-ERDL4* #6), glucose and fructose levels of such plants did not exceed those of wild type plants (**Figure 7E, F**).
 361 This result showed that *ERDL4* was not directly involved in the transport of sugars into the vacuole and
 362 strongly indicated that *TST1* and *TST2* were the major factors responsible for the massive
 363 monosaccharide accumulation in the 35S-*ERDL4* lines (**Figure 7A**). However, *tst-ERDL4* plants
 364 accumulated slightly higher glucose and fructose levels than *tst1/2* plants, suggesting that factors other
 365 than *TST1* and *TST2* contributed fractionally to vacuolar monosaccharide accumulation in *ERDL4*
 366 overexpressing plants.
 367

368
 369 **Figure 7.** Expression of vacuolar sugar transporters in plants with altered *ERDL4* expression and overexpression
 370 of *ERDL4* in *tst1/2* double knockouts. **A-C**) Expression of *TST1* (A), *TST2* (B), *ERDL6* (C) in *ERDL4*-
 371 overexpressing and *erdl4* mutant plants. **D**) Relative expression of *ERDL4* in *tst1/2* and *tst-ERDL4* plants
 372 determined by RT-qPCR. Bars show means from n=4 homozygous plants ± SE. Asterisks indicate significant
 373 changes according to Students t-test in comparison to the control (*tst1/2*) (** p < 0.01, *** p < 0.001). **E-F**)
 374 Contents of glucose (B), fructose (C), sucrose (D) in shoots of WT, *tst1/2* double knockout and two *tst-ERDL4*
 375 lines. Bars are means from n=5 plants ± SE. Different letters above bars indicate significant differences according
 376 to One-Way ANOVA with post-hoc Tukey HSD testing (p < 0.05).

378 **Fructose regulates key factors of vacuolar sugar homeostasis**

379 Activity of TSTs have been shown to be regulated by their phosphorylation patterns and activity
380 of specific kinases like VIK (for TST1; Wingenter *et al.*, 2011) or CBL-INTERACTING PROTEIN
381 KINASE 6 (CIPK6) (for TST2; Deng *et al.*, 2020). CALCINEURIN B-LIKE PROTEIN 2 (CBL2)-
382 dependent interaction of CIPK6 with TST2 has been shown to regulate sugar homeostasis in cotton
383 (*Gossypium hirsutum*) (Deng *et al.*, 2020). Expression of the TST1-kinase gene *VIK* was unaltered in
384 WT and *ERDL4*-overexpressing plants (**Figure 8A**).

385 Phylogenetic analysis using sequences from the 26 *At*CIPKs and *Gh*CIPK6 identified *At*CIPK6
386 as closest homolog to *Gh*CIPK6 (**Supplemental Figure S4A**). Fructose accumulation has been
387 associated with increased cytosolic Ca^{2+} levels through activation of voltage gated Ca^{2+} channels at the
388 plasma membrane (Furuichi *et al.*, 2001). The rise of Ca^{2+} levels might initiate downstream Ca^{2+}
389 signaling leading to expression of genes responsible for sugar homeostasis like the CBL-CIPK pathway.
390 Log2-fold changes from our RNA-Seq data indicated that six *CIPK* genes were highly regulated in
391 presence of glucose and fructose relative to the control (**Supplemental Figure S4B**). Two of them,
392 *CIPK9* and *CIPK20* were downregulated by both glucose and fructose and were similarly regulated in
393 35S-*ERDL4* lines (**Supplemental Figure S4B**). In contrast, *CIPK7* and *CIPK25* were upregulated by
394 the two sugars as well as in 35S-*ERDL4* #1 and 35S-*ERDL4* #2 (**Supplemental Figure S4B**). Only
395 *CIPK5* and *CIPK6* showed fructose-specific upregulation and were also induced in both *ERDL4*-
396 overexpression lines (**Figure 8B and Supplemental Figure S4B**). Although exhibiting strong relative
397 induction *CIPK5* was expressed to a markedly lower extent when compared to *CIPK6* which makes
398 *CIPK6* a more likely target, responsible for TST2 phosphorylation and activation (**Supplemental**
399 **Figure S4**). RT-qPCR confirmed the elevated *CIPK6* expression in 35S-*ERDL4* (**Figure 8B**) as well as
400 the induction of *CIPK6* and *TST2* by fructose (**Figure 8C, D**). When we checked the diurnal expression
401 of *CIPK6* we found that *CIPK6* expression patterns closely overlapped with that of *TST2* (**Figure 2 and**
402 **Figure 8E**) supporting a possible interaction of *CIPK6* and *TST* in *Arabidopsis* during the light phase.

403

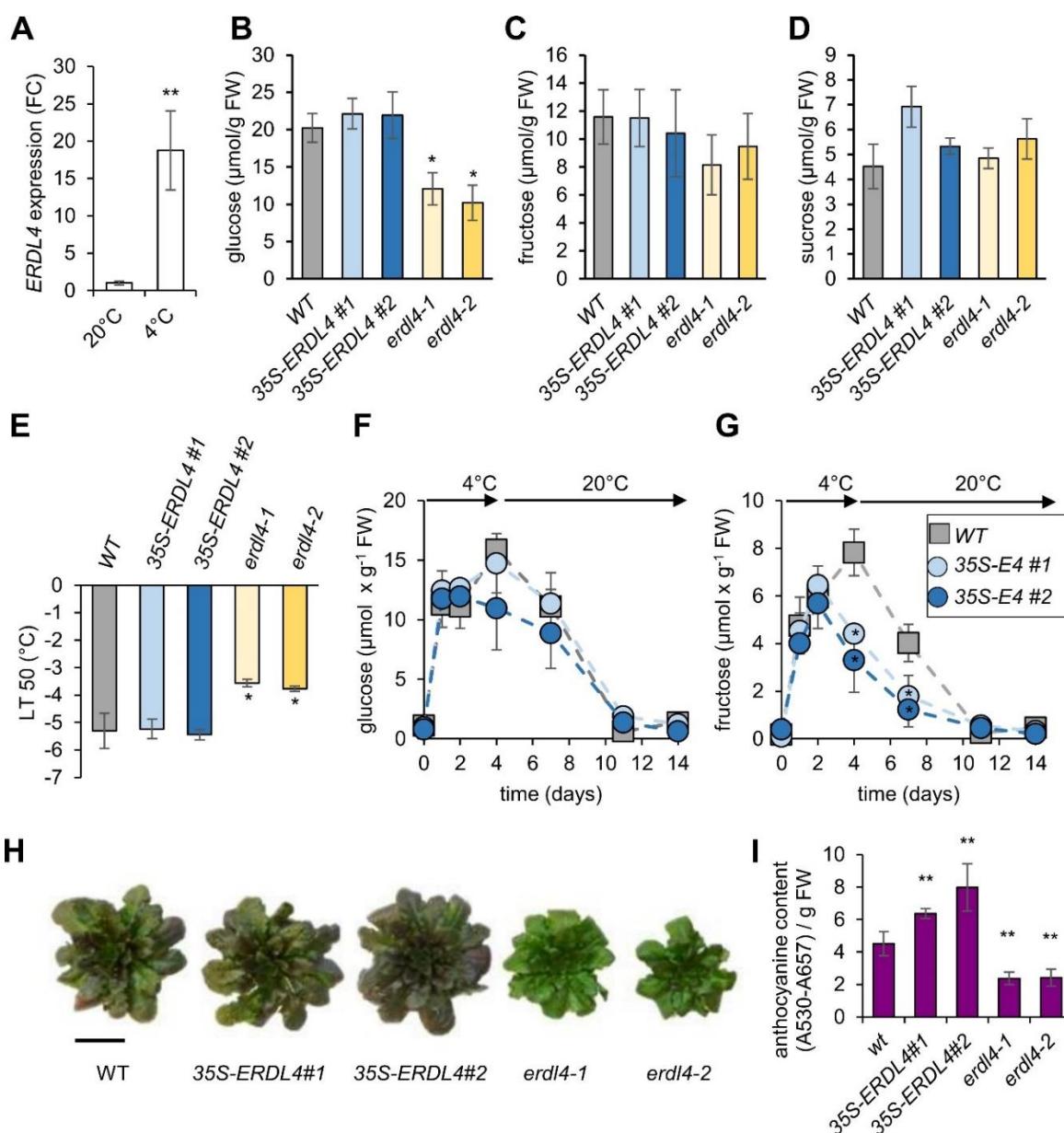
404

405 **Figure 8.** Sugar- and *ERDL4*-dependent expression of *VIK*, *CIPK6* and *TST2* based on RT-qPCR assays.
406 A) relative expression of *VIK* in WT and 35S-*ERDL4* plants. B) relative expression of *CIPK6* in WT
407 and 35S-*ERDL4* plants. C, D) relative expression of *CIPK6* (C) or *TST2* (D) in leaf discs incubated
408 overnight in liquid MS medium supplemented without (-) or with 1% of the indicated sugars or mannitol
409 (man). E) diurnal expression of *CIPK6*. Grey shading indicates dark phase (night time)

410

411 ***ERDL4* influences cold acclimation and freezing tolerance**

412 Upon exposure to low temperatures, plants increase their overall sugar content in leaves
413 drastically within a comparably short time, usually within one to three days, in a process known as cold
414 acclimation (Klemens *et al.*, 2013; Rodrigues *et al.*, 2020; Ho *et al.*, 2020). In *Arabidopsis*, cold
415 acclimation-dependent sugar accumulation occurs mainly in vacuoles and depends on TST proteins
416 (Klemens *et al.*, 2013, Vu *et al.*, 2020).

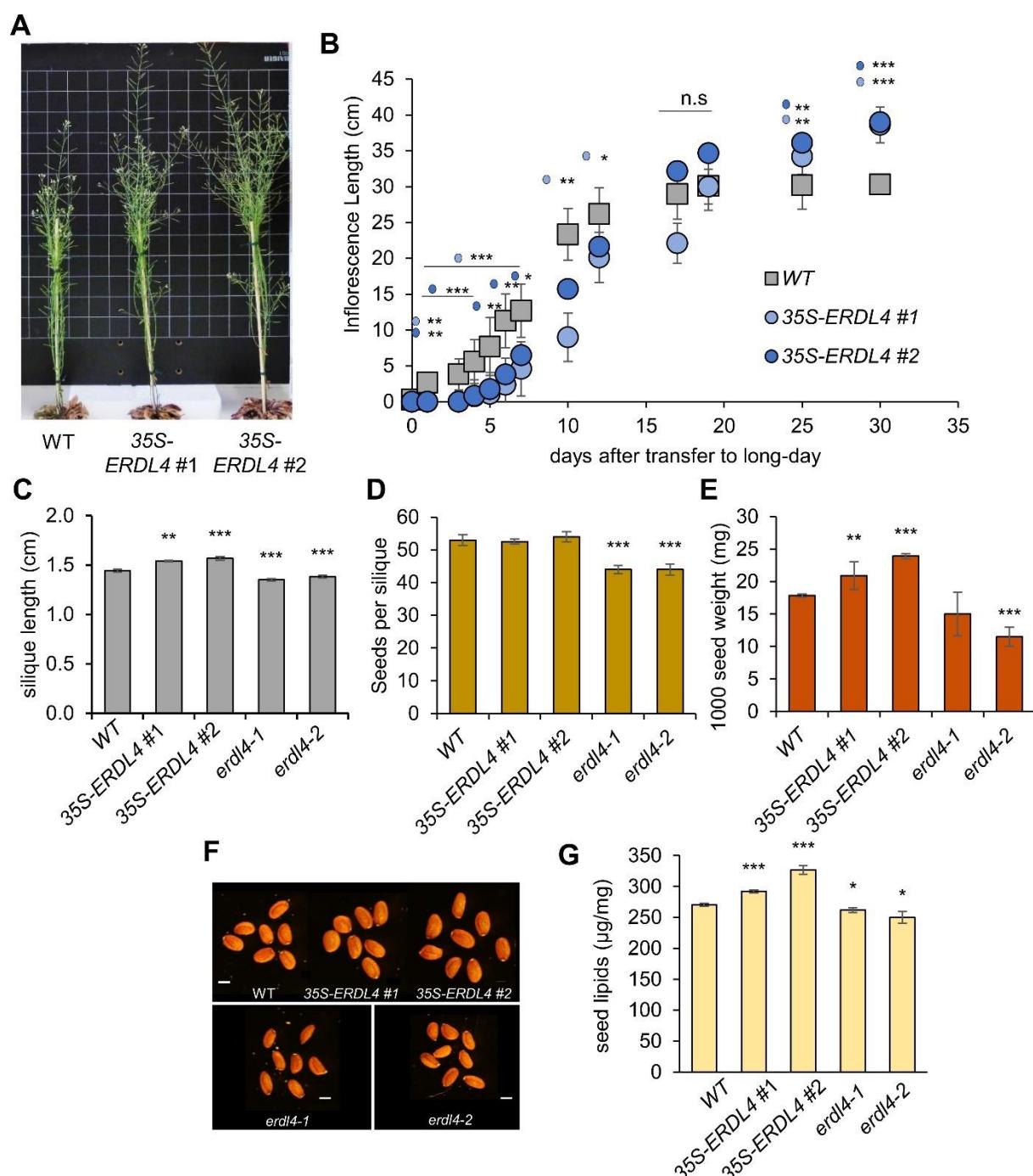

417 When we checked for expression of *ERDL4* in cold-acclimated WT plants (three days at 4°C)
418 we found that *ERDL4* mRNA increased almost 20-fold in comparison to plants grown in control (20°C)
419 conditions (**Figure 9A**). This suggested that vacuoles of cold-acclimated plants released fructose to a
420 greater extent than vacuoles of plants grown under control conditions (20°C) mimicking a situation
421 existing in 35S-*ERDL4* plants (**Figure 5**). Because *ERDL4*-overexpressing plants and *erdl4* knockout
422 mutants accumulated higher and lower levels of monosaccharides, respectively, in comparison to wild
423 types already at 20°C (**Figure 5A**), we were interested to check sugar accumulation in these lines at 4°C
424 (**Figure 9**). After 48h in the cold, all lines exhibited high glucose, fructose, and sucrose levels in leaves
425 (**Figure 9B-D**) exceeding those of 20°C-grown plants markedly (**Figure 5A**). Glucose accumulated to
426 similar amounts in WT, 35S-*ERDL4* #1 and #2 (between 20.3 and 21.9 μ mol/g FW) (**Figure 9B**). Plants
427 from *erdl4-1* and *erdl4-2* knockout lines accumulated only about 60% (12 μ mol/g FW) and 50% (10.1
428 μ mol/g FW) in comparison to wild-types, respectively (**Figure 9B**). Fructose and sucrose accumulation
429 was not altered significantly between the tested lines (**Figure 9C, D**).

430 The differential sugar accumulation of the analyzed lines in the cold had consequences for their
431 freezing tolerance as revealed by electrolyte leakage assay conducted with leaf samples of plants grown
432 for three weeks at 20°C and then 48h at 4°C. Leaves from such cold-acclimated plants were cooled to -
433 10°C in water. After thawing on ice overnight, electric conductivity serving as an indicator for the
434 number of ions released from ruptured cells was measured (Sukumaran and Weiser 1972). The
435 temperature at which 50% of the ions were released (LT50) of *erdl4-1* (-3.5°C) and *erdl4-2* (-3.7°C)
436 knockout plants was significantly higher than that of WT (-5.3°C) and 35S-*ERDL4* (-5.2 and -5.4°C)
437 plants (**Figure 9E**). The data indicated that *erdl4* mutants were less freezing-tolerant than WT and 35S-
438 *ERDL4* plants and suggested that the lower overall sugar accumulation in *erdl4* mutants may be
439 causative for the higher freezing sensitivity. Interestingly, 35S-*ERDL4* plants exhibited different
440 fructose accumulation kinetics during de-acclimation, that is when plants were transferred from 4°C
441 acclimation phase back to 20°C (**Figure 9F, G**). During such phase, plants remobilized and utilized
442 vacuolar-stored glucose and fructose to reach pre-acclimation levels within seven to ten days (**Figure**
443 **9F, G**). Decrease of fructose during de-acclimation occurred faster in 35S-*ERDL4* plants when
444 compared to WT resulting in altered fructose to glucose ratios: While WT_{fructose/glc} ratios at day four of

445 acclimation and day three of de-acclimation were about 0.52 and 0.36, respectively, $35S\text{-}ERDL4 \#1_{\text{frc/glc}}$
446 (0.29 and 0.15) and $35S\text{-}ERDL4 \#1_{\text{frc/glc}}$ (0.30 and 0.13) ratios at these time points were markedly lower.
447 The shifted ratios in *ERDL4*-overexpressing lines in favor of glucose supported a scenario where
448 fructose was increasingly released from vacuoles by increased *ERDL4* activity during the late
449 acclimation and de-acclimation phases.

450 In contrast to short-time acclimation responses, plants transit into the so-called adaptation phase
451 after prolonged exposure to environmental stress (Stitt and Hurry, 2002). Adaptation to cold is
452 associated with accumulation of anthocyanins acting as protectants of cellular compounds against
453 oxidative stress. After 14 days of cold treatment, wild-type and $35S\text{-}ERDL4$, but not *erdl4* knockout
454 plants exhibited purple coloration of their leaves indicating accumulation of anthocyanins. Moreover,
455 *erdl4* knockout plants exhibited markedly reduced rosette diameter in comparison to WT and $35S\text{-}$
456 *ERDL4* plants at this stage (**Figure 9H**). The anthocyanin content of $35S\text{-}ERDL4$ lines exceeded that of
457 wild-type plants by 40% ($35S\text{-}ERDL4 \#1$) and 75% ($35S\text{-}ERDL4 \#2$). The anthocyanin contents of *erdl4*
458 knockouts on the other hand reached only about half of the wild-type values (**Figure 9I**). The data
459 suggested reduced efflux of monosaccharides from vacuoles of *erdl4* plants and indicated that sugars
460 released from vacuoles during cold adaptation were used as building blocks for different anthocyanidins
461 serving as factors for maintaining growth during low temperatures.

462


463

464 **Figure 9.** Cold treatments of *ERDL4*-overexpressing and *erdl4* knock-out plants. **A)** Expression of *ERDL4* relative
465 to *ACT2* in WT plants grown under control (20°C) or for three days at 4°C. Bars are means from n=4 individual
466 plants ± SE. Asterisks indicate significant differences according to Students t-test (** = p < 0.005) **B-D)** contents
467 of glucose (**B**), fructose (**C**) and sucrose (**D**) in rosette leaves of wild-type (WT), *ERDL4*-overexpressing (35S-
468 *ERDL4* #1, #2) and knockout (*erdl4-1*, *erdl4-2*) plants grown for 48h at 4°C. Asterisks indicate significant
469 differences to WT according to Students t-test (p < 0.05) **E)** electrolyte leakage assay with leaf samples taken from
470 plants grown for three weeks at 20°C and then four days at 4°C. Asterisks indicate significant differences to WT
471 (p < 0.05). **F, G)** glucose (F) and fructose (G) accumulation of WT and 35S-*ERDL4* plants during cold acclimation
472 (until day 4) and de-acclimation (until day 14). **H, I)** long-term response to low temperatures. WT, 35S-*ERDL4*
473 and *erdl4* knockout plants were grown at 4°C for 14 days and harvested for determination of anthocyanin content
474 **H)** exemplary pictures of rosettes. Bar = 2 cm. **I)** anthocyanin content of leaves. Bars represent mean values from
475 n=4 plants ± SE. Asterisks indicate significant differences to WT according to double-sided Students t-test (** =
476 p < 0.005).

477

478 **ERDL4 influences flowering, siliques development, seed size, and seed lipid content**

479 One of the most interesting plant properties is the final yield of fruits and storage organs. Thus,
480 to get first insight into putative effects of ERDL4 activity on yield, we checked the effect of differential
481 *ERDL4* expression on *Arabidopsis* inflorescence and seed characteristics (**Figure 10**). It turned out that
482 *35S-ERDL4* plants flowered later than WT plants but grew longer inflorescences with more branches
483 (**Figure 10A, B**). Altered *ERDL4* expression also influenced siliques and seed properties. Siliques of
484 *35S-ERDL4* plants were slightly longer in comparison to those of wild type plants (**Figure 10C**). The
485 number of seeds of such longer siliques of *35S-ERDL4* plants was not different from that of WT siliques
486 (**Figure 10D**). However, seeds of *35S-ERDL4* plants were bigger than wild-type (**Figure 10F**) and had
487 a 20% (*35S-ERDL4* #1) to 30% (*35S-ERDL4* #2) higher 1000-seed weight when compared to wild-type
488 (**Figure 10E**). Siliques of both *erdl4* mutants on the other hand were shorter (**Figure 10C**) and contained
489 significantly fewer seeds than wild type (**Figure 10D**). Both *erdl4* mutants produced wrinkled seeds
490 (**Figure 10F**) with significantly diminished 1000-seed weights (**Figure 10E**). The altered seed weight
491 and shape was also reflected by different seed lipid contents in *35S-ERDL4* plants and *erdl4* mutants.
492 While seeds of *35S-ERDL4* lines had significantly higher lipid content, *erdl4* mutants showed reduced
493 contents when compared to WT seeds (**Figure 10G**). These results showed that ERDL4 was important
494 for proper seed production and suggested that intracellular sugar compartmentation influenced both
495 siliques growth and seed filling.

496

497 **Figure 10.** Phenotypes of *ERDL4* mutants during the generative phase. **A)** Exemplary phenotypes of *ERDL4*-
498 overexpressing plants during flowering. **B)** Recording of inflorescence length of WT and two *ERDL4*-
499 overexpressing lines after transfer from short-day to long-day conditions. Each data point represents the average
500 main inflorescence stem length of at least 20 plants \pm SE. **C)** Siliques length of WT and two *ERDL4*-overexpressing
501 lines. Bars represent means from 30 siliques from ≥ 15 plants \pm SE. **D)** Number of seeds per siliques of WT and two
502 *ERDL4*-overexpressing lines. Bars represent means from 20 siliques from 10 plants \pm SE. **E)** Thousand-Seed
503 weight of dry mature seeds from WT, *erdl4* knockout mutants and *ERDL4*-overexpressing plants. Bars represent
504 means from 1000-Seed weights of $n=6$ plants per line. Asterisks indicate significant differences according to
505 Students t-test ($^{**} = p < 0.01$; $^{***} = p < 0.001$). **F)** Mature seed phenotypes from WT, *ERDL4*-overexpressing,
506 and *erdl4* knock-out mutant plants. Representative pictures are shown. **G)** Seed lipid content of dry mature seeds from
507 *erdl4*-knock-out mutants and *ERDL4*-overexpressing plants. Bars represent means from $n=6$ plants per line.
508 Asterisks indicate significant differences according to Students t-test ($^{*} = p < 0.05$; $^{**} = p < 0.01$; $^{***} = p < 0.001$).

509

510 **Discussion**

511 Sugars provide cellular energy and carbon precursors for most anabolic reactions. In addition,
512 sugars affect early plant germination, development of the vasculature or govern onset of flowering. It is
513 well known that sugars are key components controlling yield of fruits and storage organs and influence
514 positively plant tolerance to abiotic stresses like drought or cold temperatures (Ruan, 2014; Le Hir *et*
515 *al.*, 2015; Julius *et al.*, 2017; Pommerrenig *et al.*, 2020; Keller *et al.*, 2021).

516 For most of these functions plant cells must monitor the levels of sugars. The molecular sensor
517 leading to glucose perception is well understood since this sugar is recognized via its interaction with
518 cytosolic HEXOKINASE1 (HXK1) (Jang *et al.*, 1997; Rolland *et al.*, 2006). The subsequent signal
519 transduction pathway comprises altered phosphorylation of selected transcription factors (Hu *et al.*,
520 2016) and nuclear interaction of HXK1 with partner proteins (Cho *et al.*, 2006). In case of fructose,
521 effects of this sugar on e.g., root morphology (Zhong *et al.*, 2020; Valifard *et al.*, 2021) or plant-pathogen
522 interaction (Lecompte *et al.*, 2017) as well as fructose transport activity of plasma membrane- (Nørholm
523 *et al.*, 2006; Rottmann *et al.*, 2018) or tonoplast-located proteins (Wormit *et al.*, 2006; Chardon *et al.*,
524 2013; Guo *et al.*, 2014) have been reported. However, because glucose, fructose, and sucrose
525 metabolism are in most cases linked via the action of sucrose biosynthesis and degrading enzymes
526 (Volkert *et al.*, 2014; Vu *et al.*, 2021), data on fructose-specific gene expression and specific fructose
527 sensing mechanisms are scarce. In fact, for fructose signaling a sensor protein is still lacking and only
528 two proteins are proposed to be intermediates of the fructose signaling pathway, namely the transcription
529 factor ANAC89 and a fructose1,6-bisphosphate phosphatase, as revealed on the mutant FRUCTOSE
530 INSENSITIVE1 (FINS1) (Cho and Yoo, 2011; Li *et al.*, 2011). Unfortunately, ANAC89 function seems
531 exclusively limited to the Cape Verde Islands (Cvi) *Arabidopsis* population (Li *et al.*, 2011) and for
532 neither ANAC89 nor FINS1 fructose binding has been shown so far.

533 Given the fact that total fructose levels of plant leaf tissue are generally five to ten-times lower
534 than that of glucose (Schofield *et al.*, 2009; Patzke *et al.*, 2019; Pommerrenig *et al.*, 2019; Vu *et al.*,
535 2020; and **Figure 5**), it is reasonable to assume a stringent regulation of free fructose pools in plant cells.
536 This assumption is supported by the negative effects of imbalanced subcellular fructose homeostasis, as
537 present in knock-out mutants of the vacuolar fructose transporter SWEET17, on stem morphology, root

538 architecture and abiotic stress tolerance (Aubry *et al.*, 2021; Valifard *et al.*, 2021). A specific fructose
539 function is also indicated by the observation that this sugar can induce expression of genes encoding
540 transcription factors involved in lateral root development inducing corresponding morphological
541 changes and increased drought tolerance (Valifard *et al.*, 2021).

542 Clearly, plants need therefore to be able to regulate cytosolic fructose levels to adjust gene
543 expression and corresponding plant responses. In addition to the cytosol, glucose and fructose can
544 accumulate in vacuoles as sucrose hydrolysis products (Vu *et al.*, 2020). Accordingly, by action of either
545 glucose- or fructose-specific vacuolar transporters, individual sugars can be sequestered into or released
546 from the vacuole in a differential and coordinated manner to evoke specific molecular and physiological
547 responses.

548 Our observations that the vacuolar transporter ERDL4 is involved in fructose transport and
549 fructose-related responses is fully in line with the hypothesis that plant cells adjust their sugar
550 homeostasis by regulating cytosolic fructose levels via vacuolar transporters. We provide evidence that
551 changes of cytosolic fructose levels as provoked by either overexpression or knockout of *ERDL4* steered
552 fructose-dependent changes of gene expression resulting in altered source and sink growth, accompanied
553 by changed sugar accumulation and transport in leaves.

554 ERDLs constitute the largest MST subfamily and until now only a few members have been
555 functionally characterized. *ERD6* from *Arabidopsis*, the first *ERDL* gene to be identified, has been
556 demonstrated to be induced by dehydration and cold stress (Kiyosue *et al.*, 1998). GFP-fusions of the
557 yet characterized ERDLs all localize to the tonoplast (Yamada *et al.*, 2010; Poschet *et al.*, 2011; Remy
558 *et al.*, 2014). The ERDL4 protein analyzed in this work has been detected together with its homologs
559 ERDL7 and ERDL8 in tonoplast membrane fractions by LC-MS/MS-based proteomics analysis (Pertl-
560 Obermeyer *et al.*, 2016). Analysis of the localization of an ERDL4-GFP fusion in mesophyll protoplasts
561 clearly indicated that ERDL4 localizes to the tonoplast corroborating these findings (**Figure 1**). Given
562 the overlapping subcellular localization of ERDLs and tissue- and stress-dependent expressing patterns
563 of the *ERDL* genes (Slawinski *et al.*, 2021b), it is tempting to speculate that individual ERDLs differ in
564 their substrate specificities and affinities. Indeed, ERD6 and its close homolog ERD6-like 3 (ERDL3)

565 have been attributed as low-affinity, broad-spectrum facilitators for glucose and other monosaccharides
566 like fructose, xylose, mannose, and galactose (Yamada *et al.*, 2010). ERDL7 mediated zinc efflux when
567 expressed in yeast cells (Remy *et al.*, 2014) and the closest homologs to ERDL4, ERDL6 from
568 Arabidopsis and *BvIMP* from sugar beet, have been characterized as proton-coupled glucose transporters
569 (Poschet *et al.*, 2011; Klemens *et al.*, 2014). Our conclusion that ERDL4 preferentially mediated import
570 of fructose from the vacuolar lumen into the cytosol resulted from different lines of evidence: Firstly,
571 uptake experiments on *ERDL4*-expressing *Xenopus laevis* oocytes suggested that ERDL4 transports
572 fructose but not glucose or sucrose (**Figure 1**). Secondly, subcellular distribution of glucose and fructose
573 in *35S-ERDL4* differed from that in WT plants exhibiting significantly elevated levels in the cytosol of
574 overexpressors in comparison to WT (**Figure 5**). Thirdly, the increased levels of glucose and fructose
575 in the cytosol of *35S-ERDL4* plants stimulated expression of specific glucose- and fructose-responsive
576 genes substantiating results of the NAF analysis (**Figure 5, 8**).

577 The recording of sugar-responsive gene expression patterns by RNASeq allowed for the
578 identification of genes which were oppositely regulated by glucose and fructose (**Figure 6**). Based on
579 the combined analysis of *ERDL4*-overexpressing mutants and the comparative analysis of gene
580 expression with feeding of various sugars (**Figure 6**), we raised substantial evidence that ERDL4
581 stimulated fructose-specific signaling processes which govern development and size of various
582 Arabidopsis organs including seeds and roots. The altered subcellular monosaccharide levels and
583 compartmentation of *ERDL4*-overexpressing lines lead to morphological, physiological, and molecular
584 alterations of these plants in comparison to wild-types (**Figure 3, 9, 10**). Surprisingly, we found that
585 plants of these lines were larger and accumulated sugar to higher amounts when compared to
586 corresponding WT plants. In this regard, they resembled *TST*-overexpressing (Wingenter *et al.*, 2011)
587 and *MdERDL6*-overexpressing (Zhu *et al.*, 2021), rather than *ERDL6*-overexpressing plants (Poschet *et*
588 *al.*, 2011). Latter plants which overexpressed the close glucose/proton symporting homolog to ERDL4
589 exhibited high cytosolic glucose levels, reduced shoot biomass, and impaired freezing tolerance
590 (Poschet *et al.*, 2011; Klemens *et al.*, 2014).

591 Modulation of sugar homeostasis by altering sugar transporter levels leads to differential
592 regulation of other sugar transporters probably for maintaining internal sugar balance (Sun *et al.*, 2019;
593 Zhu *et al.*, 2021). Interestingly, a similar regulation is also observed in *ERDL4*-overexpressing plants
594 where high cytosolic fructose and glucose levels result in differential regulation of the vacuolar
595 transporter gene *TST2* (**Figure 7**). However, the strong fructose induction of *TST2* expression (Wormit
596 *et al.*, 2006 and **Figure 8**) and the fact that *ERDL4*-overexpression in *tst1/2* knockout background did
597 not result in high leaf sugars (**Figure 7**) allows to conclude that the increased vacuolar glucose
598 accumulation in *ERDL4*-overexpressing lines (**Figure 5**) was mainly due to the increased *TST2* levels.

599 Recent analysis of *ERDL* genes revealed their early emergence and conservation within the plant
600 kingdom (Slawinski *et al.*, 2021a). The *ERDL4* and *ERDL6* genes are expressed in almost all organs
601 (Slawinski *et al.*, 2021b). However, as we show here, the two genes have non-overlapping/opposite
602 diurnal expression patterns (**Figure 2**). Expression of *ERDL4* increases at the onset of night and reaches
603 its maximum at dawn, whereas *ERDL6* levels are highest at midday and in the evening (**Figure 2**)
604 suggesting different functions of the two proteins. Diurnal expression of *ERDL4* concurs with a vacuolar
605 export function essential for mobilization of vacuole-stored sugars in the dark (Stitt *et al.*, 1985; Schulz
606 *et al.*, 2011; Vu *et al.*, 2020). The observation that expression of vacuolar sugar importers, *TST1* and
607 *TST2*, rise during the light phase and decline in the dark supports the notion that during the light phase,
608 sugars are accumulated in the vacuole for which induction of sugar importers is essential (**Figure 2**).

609 Vacuolar sugar transport can additionally be regulated by phosphorylation of TST proteins via
610 either the Arabidopsis protein kinase VIK (Wingenter *et al.*, 2011) or the cotton protein Calcineurin B-
611 like protein (CBL) interacting protein kinase 6 (CIPK6) (Deng *et al.*, 2020). In cotton *TST2*, Ser⁴⁴⁸ has
612 been found as a target amino acid being phosphorylated by *GhCIPK6* (Deng *et al.*, 2020). (Interestingly,)
613 this residue is conserved in barley, rice, and Arabidopsis *TST2* proteins (Hunter, 2020, Deng *et al.*,
614 2020, Dhungana and Braun, 2021) suggesting conservation of this Ca⁺ and phosphorylation signalling
615 resulting in sugar accumulation across these species. Interestingly, like *TST2*, *CIPK6* was strongly
616 induced by fructose and to a weaker extent by glucose or mannitol (**Figure 8**). Like TSTs, CIPKs are
617 centrally involved in the responses to several types of stress, including cold and drought (Pandey *et al.*,
618 2015; Chen *et al.*, 2021; Ma *et al.*, 2021). However, future analyses of *TST2* activity and sugar

619 accumulation patterns of *cipk6* mutants as well as interaction studies of CIPK6 and TST2 are necessary
620 to investigate a direct effect of CIPK6 on TST2 phosphorylation and activity.

621

622 *ERDL4* was also upregulated during cold stress (**Figure 9**). Arabidopsis plants are known to
623 accumulate sugars during acclimation process which increases their frost tolerance (Wormit *et al.*, 2006;
624 Klemens *et al.*, 2013). Monosaccharide accumulation in vacuoles in the cold occurs almost exclusively
625 via monosaccharide and sucrose import by TST proteins and successive hydrolysis of sucrose by
626 vacuolar invertases (Schulz *et al.*, 2011; Klemens *et al.*, 2013; Vu *et al.*, 2020) resulting in a proportional
627 increase of glucose and fructose moieties in the cold. Our observations support a scenario where
628 cytosolic fructose acts as stimulant for vacuolar sugar accumulation and induction of both the major
629 vacuolar sugar antiporter TST2 and its potential kinase CIPK6 (**Figure 8**). Consistent with a TST-
630 activating function of *ERDL4*-mediated fructose release from vacuoles in the cold, *erdl4* knockout lines
631 accumulated less monosaccharides in the cold, however their fructose to glucose ratio was roughly
632 unaltered in comparison to the WT (**Figure 5 and Figure 9**). In *ERDL4*-overexpressing plants the
633 fructose to glucose ratio was clearly lower, although these plants accumulated monosaccharides to
634 similar levels as WT plants. The non-proportional decrease of glucose and fructose in *35S-ERDL4* plants
635 in comparison to WT during de-acclimation suggested that fructose was released to a higher extent than
636 glucose from vacuoles of *35S-ERDL4* plants and substantiated the assumption that *ERDL4* acts as
637 fructose rather than glucose transporter. These interpretations are fully in line with the strong increase
638 of glucose but not of fructose in the vacuolar fraction of *ERDL4*-overexpressing plants in contrast to
639 WT vacuoles (**Figure 5**). Under stress conditions, by such sugar species-selective release mechanism,
640 fructose released from vacuoles to the cytosol may also provide carbon skeletons which can serve as a
641 fuel in glycolysis and at the same time ensure vacuolar glucose accumulation.

642 In contrast to short time acclimation responses, plants transit to an adaptation phase after
643 prolonged exposure to environmental stress. During long term cold adaptation, the metabolic processes
644 in plants are different to acclimation. Here, plants are confronted with developing oxidative stress by
645 reactive oxygen species build-up, possibly cell damaging processes, which are in part counter acted by
646 accumulation of anthocyanins acting as protectants of cellular compounds (McKown *et al.*, 1996).

647 Whereas *35S-ERDL4* overexpressing lines accumulated anthocyanins to higher levels when compared
648 to WT, *erdl4* knockout plants accumulated less anthocyanins. The observed effects in the cold suggest
649 a fructose-dependent regulation of cold-induced accumulation of these protective compounds during
650 short and long-term exposure to low temperatures and towards freezing.

651 In summary, our findings highlight the importance of cytosolic fructose levels to adjust plant growth
652 and their tolerance to abiotic stress and shed light on fructose signaling and homeostasis in *Arabidopsis*,
653 which surprisingly still represents a comparably “dark spot” in plant primary metabolism. Thus, it will
654 be challenging to identify the corresponding sensor and signal transduction pathways translating
655 dynamic changes of fructose levels into a coordinated cellular response.

656

657 **Materials and methods**

658 **Plant material and growth conditions**

659 Wild-type and mutant *Arabidopsis* (*Arabidopsis thaliana*) plants were grown in soil substrate
660 (ED-73; Patzer; www.einheitserde.de) in a growth chamber (Weiss-Gallenkamp, Heidelberg, Germany)
661 at constant temperature and light of 22°C and 120 μmol quanta $\text{m}^{-2} \text{ s}^{-1}$ (μE) respectively. Plants were
662 cultivated under short days (10 h light/14h dark regime. For cold treatment 6 weeks old plants grown
663 under standard conditions were transferred to growth chamber at 4°C for 3 days. For root length analysis
664 seeds were surface sterilized in 5% sodium hypochlorite and stratified for 24 h at 4°C before putting on
665 $\frac{1}{2}$ MS (pH 5.7) agar plates without sugars. Root to shoot ratios were determined from 6 weeks old plants
666 grown in an already established hydroponic system (Conn et al., 2013) under standard conditions. For
667 siliques and inflorescence analysis plants were grown in standard conditions for 4 weeks and
668 subsequently transferred to long day chamber (16 h light / 8 h dark).

669 **Cloning of *Arabidopsis* *ERDL4*-GFP construct**

670 To determine the subcellular localization of *ERDL4* in *Arabidopsis*, a 35S-*ERDL4*-GFP fusion
671 construct was generated using GatewayTM technology. The *ERDL4*-cds was amplified with Gateway-
672 specific primers harboring the *attB1* and *attB2* sites ERDL4_gw_F (5'- ggg gac aag ttt gta caa aaa agc
673 agg ctt aAT GAG TTT TAG GGA TGA TAA TAC G -3') and ERDL4 _ gw_R (5'- ggg gac cac ttt gta
674 caa gaa agc tgg gta TCT GAA CAA AGC TTG GAT C -3'). The resulting fragment was then introduced
675 into Gateway entry vector pDON/Zeo and subsequently into destination vector pK7FWG2.0 (Karimi et
676 al., 2002) via BP and LR reactions respectively. *Agrobacterium tumefaciens* strain GV3101 was used
677 for the transformation of *Arabidopsis* plants via the floral dip method (Clough and Bent, 1998).

678 **Oocyte uptake experiments**

679 For expression in oocytes, *ERDL4*-cds was cloned into the transcription vector pGEM-HE-Juel via
680 BamHI and XbaI restriction enzyme sites. For cRNA synthesis, the construct was linearized with NotI.
681 cRNA was synthesized using mMESSAGE mMACHINE T7 Ultra Kit (Carlsbad, CA 92008 USA).

682 The *Xenopus laevis* oocytes (defolliculated) were obtained from Ecocyte Bioscience
683 (<https://ecocyte-us.com/products/xenopus-oocyte-delivery-service/>). The oocytes were kept in Oocyte
684 Reagent2 (O-R2, 5 mM HEPES, 82.5 mM, NaCl, 2.5 mM KCl, 1 mM CaCl₂, 1 mM MgCl₂, 3.8 mM
685 NaOH, and 1 mM Na₂HPO₄, pH 7.8) supplemented with Streptomycin (25 mg/L) and Gentamycin (25
686 mg/L) at 16°C. Healthy looking oocytes were injected with 50 ng of cRNA (determined by absorbance
687 at 260 nm) in 50 nl water or with 50 nl water alone as a control using a glass capillary attached to a
688 semi-automated micro-injector (World Precision Instruments, Inc. Sarasota, FL, USA) according to
689 Aguero et al., 2018. The injected oocytes were incubated in O-R2 at 16°C for 3 days. Functional
690 expression of the *ERDL4* was assayed by the uptake of D-[³H(G)]-Fructose, D-[¹⁴C(U)]-Glucose and
691 [¹⁴C(U)]-Sucrose (Hartmann Analytic, Braunschweig, Germany) for 30 min at 22°C in O-R2 buffer (pH
692 5.0) without antibiotics supplemented with 2 mM cold and 2.5 µCi radio-labelled sugar. For each
693 condition, 10 oocytes were assayed. Oocytes were washed three times with 4 mL of ice-cold un-labelled
694 O-R2 buffer. Individual oocytes were then lysed by incubating in 0.5 ml 10% SDS (v/v) for 1 h at 22°C.
695 Radioactivity was determined via scintillation counting after addition of 4 mL of scintillation cocktail.

696

697 **Generation of *ERDL4* overexpressing plants**

698 The full-length coding region of *ERDL4* was amplified with primers *ERDL4_Fwd* (5'- ggg gac
699 aag ttt gta caa aaa agc agg ctt aAT GAG TTT TAG GGA TGA TAA TAC G -3') and *ERDL4_Rev* (5'-
700 ggg gac cac ttt gta caa gaa agc tgg gta TCA TCT GAA CAA AGC TTG GAT CTC -3'). The purified
701 PCR product was cloned via BP clonase (ThermoFisher, Carlsbad, CA, USA) into pDON/Zeo and
702 cloned via LR Clonase (ThermoFisher, Carlsbad, CA, USA) into the pK2GW7 Gateway vector (Karimi
703 et al., 2002) carrying a *Ca35S* promotor. For generation of *ERDL4*-overexpression lines in *tst1/2* double
704 knockout background, *ERDL4* coding sequence was amplified with primers harboring *Xho1* and *BamH1*
705 restriction enzyme sites. *ERDL4_Xho_s*: 5'- ctc gag aac aAT GAG TTT TAG GGA TGA TAA TAC G
706 and *ERDL4_Bam_as*: 5'- gga tcc TCA TCT GAA CAA AGC TTG GAT CTC. Amplified fragment was
707 inserted in pBSK vector (digested with *EcoRV*), cleaved again with *Xho1* and *BamH1* and inserted in
708 pHannibal vector (digested with corresponding enzymes). The construct was subsequently digested with

709 *Not1* and cloned into pART27 expression vector (digested with *Not1*). *Agrobacterium tumefaciens* strain
710 GV3101 was used for transformation. Arabidopsis plants were transformed via floral dip method
711 (Clough and Bent, 1998). Positive lines were screened by Kanamycin antibiotic resistance and RT-PCR
712 was used further for selection of strongest lines.

713 **Identification of T-DNA knockout lines**

714 T-DNA insertion lines SALK_116041 (insertion at -34 bp, 5` UTR) and GABI_600B02
715 (insertion at +2281 bp, exon 14) were provided by the Nottingham Arabidopsis Stock Centre
716 (<http://nasc.nott.ac.uk/>). T-DNA insertion was confirmed with T-DNA specific primers using genomic
717 DNA. ERDL4 transcript level was checked in both lines with cDNA via PCR and RT-PCR.

718

719 **RNA isolation, cDNA synthesis and quantitative Real- Time PCR**

720 RNA isolation was carried out using the NucleoSpin® RNA Plant Kit (Macherey-Nagel)
721 according to the manufacturer's instructions. 50 mg of fresh plant material was used for this purpose.
722 The RNA was eluted from the column with 40 µl of RNase-free ddH2O and the concentration was
723 determined with NanoPhotometer® N50 (Implen). Preparation of cDNA was accomplished by means
724 of qScriptTM cDNA Synthesis Kit (Quantabio) according to manufacturer's instructions. 1 µg RNA was
725 used for each sample. The resulting cDNA was then used, after dilution to a factor of (1:10), for
726 expression analysis via qRT-PCR. Primers used for the expression analysis are given in Supplemental
727 table S1. Transcripts were normalized using *AtAct2* (*At3G18780*) as reference gene.

728 **Generation of RNASeq data and analysis**

729 WT and overexpression mutants were grown on soil for 6 weeks. Samples for RNA sequencing
730 were harvested at midday and stored in liquid nitrogen prior to freezing at -80°C. For RNA sequencing
731 of the sugar induced samples, leaf discs from WT plants were incubated in 100mM sugars (Mannitol,
732 Glucose and Fructose) overnight. Leaf discs were harvested and stored at -80°C. Preparation of RNA
733 was done as described above. RNA sequencing was done with Novogene (UK). For correlation analysis
734 Microsoft Excel was used. Heat maps were generated using Orange data mining software
735 (<https://orangedatamining.com>) with its bioinformatics suite. Volcano plots were generated via online

736 app VolcaNoseR (Goedhart & Luijsterburg, 2020). Custom venn diagrams were prepared using an
737 online web tool ([https://bioinformatics.psb.ugent.be/web tools/Venn/](https://bioinformatics.psb.ugent.be/web/tools/Venn/)).

738 **Metabolite quantification and phloem exudate analysis**

739 Extraction of soluble sugars was done with 1ml of 80% Ethanol added to 100 mg of frozen
740 finely ground plant material at 80°C for 30 min. The extracts were collected and evaporated in a
741 vacufuge concentrator (Eppendorf, Hamburg, Germany). Resulting pellets were dissolved in ddH₂O and
742 quantified using NADP-coupled enzymatic test (Stitt et al., 1989) via 96-well plate reader (Tecan
743 Infinite 200; Tecan Group).

744 Phloem exudates were collected according to the protocol from (Xu et al., 2019) with few
745 modifications. Source leaves of the same developmental stage from 6 weeks old well-watered plants,
746 were cut with a sharp razor blade at the base of the petiole. Petioles were dipped in 20mM K₂-EDTA
747 solution. Leaves of the same line were stacked and the petioles were recut while dipped in the EDTA
748 solution. Leaves were then transferred to 1.5 ml Eppendorf tubes with 500 ul of EDTA solution.
749 Exudates were collected for 6 hours in a dark and humid chamber. Leaves were weighed and exudates
750 were dried in a vacuum concentrator. For sugar quantification pellets were solubilized in 100 ul of
751 ddH₂O.

752 **Seed and siliques analysis**

753 For seed analysis plants were grown in standard conditions. Completely mature and air-dried
754 seeds were harvested at the same time point for all the lines. For seed weight, 1000 seeds were counted
755 and weighed gravimetrically. Lipid quantification was done according to previously optimized protocols
756 (Reiser et al., 2004). 100 mg of seeds were homogenized in a mortar with liquid nitrogen. 1.5 ml of
757 isopropanol was added to the homogenate and seeds were further homogenized. It was then transferred
758 to 1.5 ml Eppendorf tubes and incubated at 4°C for 12 hours at 100 rpm. Samples were centrifuged at
759 13,000 g for 10 minutes. Subsequently, supernatant was transferred to weighed 1.5 ml Eppendorf tubes
760 and allowed to evaporate at 60°C for 8 hours. The remaining lipid pellet was quantified gravimetrically.
761 Inflorescence lengths were recorded from day 1 of bolting until they reached their maximum height.

762 **Electrical conductivity assays**

763 Electrolyte leakage analysis was conducted according to the protocol described by (Sukumaran
764 and Weiser, 1972; Ristic and Ashworth, 1993). A leaf of the same developmental stage, from 3 weeks
765 of cold acclimated plants was dipped in test tubes having 2 ml of deionized water and placed in a
766 cryostat. Ice crystallization was initiated at -2°C by touching the tubes with a wire frozen in liquid
767 nitrogen. Following equilibration for 1 hour, the temperature was reduced at a rate of 2°C/hour and
768 samples were collected at each decrement. Collected samples were thawed on ice overnight. 2 ml of
769 deionized water was added to the samples and ions were extracted by shaking the samples gently for 2
770 hours. The initial conductivity was measured using a conductivity meter (WTW LF521;
771 Wissenschaftlich-Technische Werkstätten). The samples were then boiled for 2 hours, and ions were re-
772 extracted by shaking for 2 hours. Final conductivity was then measured and LT50% was calculated
773 statistically.

774 **Non-aqueous fractionation**

775 Plant material for subcellular sugar analysis was grown under short day conditions (10 h light / 14 h
776 dark regime). Leaf material was harvested at middays, snap-frozen and ground to a fine powder under
777 constant supply of liquid nitrogen. The frozen and ground tissue powder was freeze-dried, and 15 to 20
778 mg were used for subsequent NAF analysis as described earlier (Fürtauer *et al.*, 2016). In brief, mixtures
779 of tetrachlorethylen and n-heptane were prepared with total densities ranging between 1.35 and 1.55 g
780 cm⁻³. Freeze dried leaf tissue powder was suspended in the solvent of lowest density, sonicated, filtered
781 and fractionated consecutively by centrifugation. Supernatants were transferred to new tubes and used
782 for marker enzyme activity measurements as well as for determination of sugar amounts. Finally, marker
783 enzyme activities of vacuole, cytosol and chloroplast were correlated to sugar abundance following the
784 protocol described before (Fürtauer *et al.*, 2016).

785

786 **Acknowledgements**

787 The authors would like to thank Ralf Pennther-Hager (University of Kaiserslautern) for plant
788 growth and Verena Müller and Ruth Wartenberg (University of Kaiserslautern) for excellent technical
789 assistance. We would like to thank Patrick A.W. Klemens for supporting of this project in its initial
790 phase and generation of ERDL4-GFP lines. This research was funded by a DAAD grant to AK
791 (Graduate School Scholarship Program 2015 (57145465). HEN and JSS received additional funding
792 from DFG program RTG2737 (“Stressistance”). HEN received additional funding from the priority
793 program “BioComp 3.0” of the Research initiative of the state Rhineland-Palatine. Research in the lab
794 of HEN and TN was funded by DFG, TR175, Projects B03 and D03, respectively.

795

796 **Author contributions**

797 AK generated or characterized plant lines and performed most of the experiments. JC, CP and
798 JS-S conducted oocyte uptake assays. IK conducted cold acclimation kinetics. TN, LF and AnK
799 conducted NAF analysis. BP conceived the study and analyzed RNASeq data. HEN and BP wrote the
800 paper.

801 **Conflict of interest**

802 The authors declare no conflict of interest

803

804

805 **References**

806 **Aguero T, Newman K, King ML** (2018) Microinjection of *Xenopus* Oocytes. *Cold Spring Harb*
807 *Protoc* 2018

808 **Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, et al.** (2003) Genome-wide insertional mutagenesis of *Arabidopsis thaliana*. *Science* **301**: 653-657

810 **Aluri, S., Büttner, M.** (2007). Identification and functional expression of the *Arabidopsis thaliana* vacuolar glucose transporter 1 and its role in seed germination and flowering. *Proc Natl Acad Sci USA* **104**: 2537-2542

812 **Aubry E, Hoffmann B, Vilaine F, Gilard F, Klemens PAW, Guérard F, Gakière B, Neuhaus HE, Bellini C, Dinant S, Le Hir R** (2022) A vacuolar hexose transport is required for xylem development in the inflorescence stem. *Plant Physiol.* **188**: 1229-1247

814 **Chardon F, Bedu M, Calenge F, Klemens PA, Spinner L, Clement G, Chierega G, Leran S, Ferrand M, Lacombe B, Loudet O, Dinant S, Bellini C, Neuhaus HE, Daniel-Vedele F, Krapp A** (2013) Leaf fructose content is controlled by the vacuolar transporter SWEET17 in *Arabidopsis*. *Curr Biol* **23**: 697-702

816 **Chen HY, Huh JH, Yu YC, Ho LH, Chen LQ, Tholl D, Frommer WB, Guo WJ** (2015) The *Arabidopsis* vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts *Pythium* infection. *Plant J* **83**: 1046-1058

818 **Chen Q, Xu X, Xu D, Zhang H, Zhang C, Li G** (2019) WRK18 and WRKY53 coordinate with HISTONE ACETYLTRANSFERASE1 to regulate rapid responses to sugar. *Plant Physiol.* **180**: 2212-2226.

820 **Cheng J, Wen S, Xiao S, Lu B, Ma M, Bie Z** (2017) Overexpression of the tonoplast sugar transporter *CmTST2* in melon fruit increases sugar accumulation. *J Exp Bot* **69**: 511-523

822 **Cho Y-H, Yoo S-D** (2011) Signaling role of fructose mediated by FINS1/FBP in *Arabidopsis thaliana*. *PLoS Genetics* **7**: e1001263-e1001263

824 **Cho JI, Burla B, Lee DW, Ryoo N, Hong SK, Kim HB, Eom JS, Choi SB, Cho MH, Bhoo SH, Hahn TR, Neuhaus HE, Martinoia E, Jeon JS** (2010) Expression analysis and functional characterization of the monosaccharide transporters, OsTMTs, involving vacuolar sugar transport in rice (*Oryza sativa*). *New Phytol.* **186**: 657-668

826 **Deng J, Yang X, Sun W, Miao Y, He L, Zhang X** (2020) The calcium sensor CBL2 and its interacting kinase CIPK6 are involved in plant sugar homeostasis via interacting with tonoplast sugar transporter TST2. *Plant Physiol.* **183**: 236-249.

828 **Dhungana SR, Braun DM** (2021) Sugar transporters in grasses: Function and modulation in source and storage tissues. *J. Plant Physiol.* **266**: 153541

830 **Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, Qu XQ, Braun MD, Frommer WB** (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. *Curr Op Plant Biol.* **25**: 53-62

832 **Furuichi T, Mori IC, Takahashi K, Muto S** (2001) Sugar-induced increase in cytosolic Ca²⁺ in *Arabidopsis thaliana* whole plants. *Plant Cell Physiol* **42**: 1149-1155

834 **Fürtauer L, Weckwerth W, Nägele T** (2016) A benchtop fractionation procedure for subcellular analysis of the plant metabolome. *Front Plant Sc* **7**: 1912

836 **Fürtauer L, Küstner L, Weckwerth W, Heyer AG, Nägele T** (2019) Resolving subcellular plant metabolism. *The Plant Journal* **100**: 438-455

838 **Guo WJ, Nagy R, Chen HY, Pfrunder S, Yu YC, Santelia D, Frommer WB, Martinoia E** (2014) SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of *Arabidopsis* roots and leaves. *Plant Physiol* **164**: 777-789

840 **Hedrich R, Sauer N, Neuhaus HE** (2015) Sugar transport across the plant vacuolar membrane: nature and regulation of carrier proteins. *Curr. Opin. Plant Biol.* **25**: 63-70

842 **Henderson PJF** (1991) Sugar transport proteins. *Curr. Opin. Struc. Biol.* **1**: 590-601

844 **Ho LH, Rode R, Siegel M, Reinhardt F, Neuhaus HE, Yvin JC, Pluchon S, Hosseini SA, Pommerenig B** (2020) Potassium application boosts photosynthesis and sorbitol biosynthesis and accelerates cold acclimation of common plantain (*Plantago major* L.). *Plants* **9**: 1259

859 **Hu D-G, Sun C-H, Zhang Q-Y, An J-P, You C-X, Hao Y-J** (2016) Glucose sensor MdHXK1
860 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple. *PLoS*
861 *Gen.* **12**: e1006273

862 **Hunter K** (2020) CBL2-CIPK6-TST2-mediated regulation of sugar homeostasis. *Plant Physiol.* **183**:
863 21-22

864 **Jang JC, Sheen J** (1994) Sugar sensing in higher plants. *Plant Cell* **6**: 1665-1679

865 **Jänkänpää HJ, Mishra Y, Schröder WP, Jansson S** (2012) Metabolic profiling reveals metabolic
866 shifts in *Arabidopsis* plants grown under different light conditions. *Plant, Cell & Environ.* **35**:
867 1824-1836

868 **Julius BT, Leach KA, Tran TM, Mertz RA, Braun DM** (2017) Sugar transporters in plants: new
869 insights and discoveries. *Plant Cell Physiol.* **58**: 1442-1460

870 **Jung B, Ludewig F, Schulz A, Meißner G, Wöste N, Flügge UI, Pomerrenig B, Wirsching
871 P, Sauer N, Koch W, Sommer F, Mühlhaus T, Schröder M, Cuin TA, Graus D, Marten I,
872 Hedrich R, Neuhaus HE** (2015) Identification of the transporter responsible for sucrose
873 accumulation in sugar beet taproots. *Nature Plants* **1**: Article number: 14001

874 **Keller I, Rodrigues CM, Neuhaus HE, Pomerrenig B** (2021) Improved resource allocation and
875 stabilization of yield under abiotic stress. *J. Plant Physiol.* **257**: 153336

876 **Kiyosue T, Abe H, Yamaguchi-Shinozaki K, Shinozaki K** (1998) ERD6, a cDNA clone for an early
877 dehydration-induced gene of *Arabidopsis*, encodes a putative sugar transporter. *Biochim
878 Biophys Acta* **1370**: 187-191

879 **Klemens PA, Patzke K, Deitmer J, Spinner L, Le HR, Bellini C, Bedu M, Chardon F, Krapp A,
880 Neuhaus HE** (2013) Overexpression of the vacuolar sugar carrier AtSWEET16 modifies
881 germination, growth, and stress tolerance in *Arabidopsis*. *Plant Physiol.* **163**: 1338-1352

882 **Klemens PA, Patzke K, Trentmann O, Poschet G, Büttner M, Schulz A, Marten I, Hedrich R,
883 Neuhaus HE** (2014) Overexpression of a proton-coupled vacuolar glucose exporter impairs
884 freezing tolerance and seed germination. *New Phytol.* **202**: 188-197

885 **Komarova NY, Meier S, Meier A, Suter-Grottemeyer M, Rentsch D** (2012) Determinants for
886 *Arabidopsis* peptide transporter targeting to the tonoplast or plasma membrane. *Traffic* **13**:
887 1090-1105

888 **Krueger S, Giavalisco P, Krall L, Steinhäuser MC, Bussis D, Usadel B, Flugge UI, Fernie AR,
889 Willmitzer L, Steinhäuser D** (2011) A topological map of the compartmentalized
890 *Arabidopsis thaliana* leaf metabolome. *PLoS One.* **6**: e17806

891 **Lecompte F, Nicot PC, Ripoll J, Abro MA, Rimbault AK, Lopez-Lauri F, Bertin N** (2017)
892 Reduced susceptibility of tomato stem to the necrotrophic fungus *Botrytis cinerea* is
893 associated with a specific adjustment of fructose content in the host sugar pool. *Ann. Bot* **119**:
894 931-943

895 **Le Hir R, Klemens PA, Chakraborti D, de Marco F, Vilaine F, Wolff N, Lemoine
896 R, Porcheron B, Géry C, Téoulé E, Chabout S, Mouille G, Neuhaus HE, Dinant S, Bellini
897 C** (2015) Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular
898 development and freezing tolerance in *Arabidopsis*. *Mol. Plant* **8**: 1687-1690

899 **Lemoine R, La CS, Atanassova R, Dedaldechamp F, Allario T, Pourtau N, Bonnemain JL, Laloi
900 M, Coutos-Thevenot P, Mauroisset L, Faucher M, Girousse C, Lemonnier P, Parrilla J,
901 Durand M** (2013) Source-to-sink transport of sugar and regulation by environmental factors.
902 *Front Plant Sci* **4**: 272

903 **Li P, Wind JJ, Shi X, Zhang H, Hanson J, Smeekens SC, Teng S** (2011) Fructose sensitivity is
904 suppressed in *Arabidopsis* by the transcription factor ANAC089 lacking the membrane-bound
905 domain. *Proc. Natl. Acad. Sci.* **108**: 3436-3441

906 **Luo QJ, Mittal A, Jia F, Rock CD** (2012) An autoregulatory feedback loop involving PAP1 and
907 TAS4 in response to sugars in *Arabidopsis*. *Plant Mol Biol.* **80**: 117-129

908 **Martinoia E, Meyer S, De Angeli A, Nagy R** (2012) Vacuolar transporters in their physiological
909 context. *Ann. Rev. Plant Biol.* **63**: 163-213

910 **McKown R, Kuroki G, Warren G** (1996) Cold responses of *Arabidopsis* mutants impaired in
911 freezing tolerance. *J. Exp. Bot.* **47**: 1919-1925

912 **Nägele T, Heyer AG** (2013) Approximating subcellular organisation of carbohydrate metabolism
913 during cold acclimation in different natural accessions of *Arabidopsis thaliana*. *New Phytol.*
914 **198**: 777-787

915 **Nägele T, Henkel S, Hörmiller I, Sauter T, Sawodny O, Ederer M, Heyer AG** (2010)
916 Mathematical Modeling of the Central Carbohydrate Metabolism in *Arabidopsis* Reveals a
917 Substantial Regulatory Influence of Vacuolar Invertase on Whole Plant Carbon Metabolism,
918 *Plant Physiol.* **153**: 260–272

919 **Nørholm MHH, Nour-Eldin HH, Brodersen P, Mundy J, Halkier BA** (2006) Expression of the
920 *Arabidopsis* high-affinity hexose transporter STP13 correlates with programmed cell death.
921 *FEBS L.* **580**: 2381-2387

922 **Okooboh GO, Haferkamp I, Valifard M, Pommerrenig B, Kelly A, Feussner I, Neuhaus HE**
923 (2022) Overexpression of the vacuolar sugar importer BvTST1 from sugar beet in *Camelina*
924 improves seed properties and leads to altered root characteristics. *Physiol. Plant.* **174**: e13653.

925 **Patzke K, Prananingrum P, Klemens PAW, Trentmann O, Martins Rodrigues C, Keller I,**
926 **Fernie AR, Geigenberger P, Böltner B, Lehmann M, Schmitz-Esser S, Pommerrenig B,**
927 **Haferkamp I, Neuhaus HE** (2019) The plastidic sugar transporter pSuT influences flowering
928 and affects cold responses. *Plant Physiol.* **179**: 569-587

929 **Pertl-Obermeyer H, Trentmann O, Duscha K, Neuhaus HE, Schulze WX** (2016) Quantitation of
930 vacuolar sugar transporter abundance changes using QconCAT synthetic peptides. *Front.*
931 *Plant Sci.* **7**: 411.

932 **Pommerrenig B, Ludewig F, Cvetkovic J, Trentmann O, Klemens PAW, Neuhaus HE** (2018) In
933 concert: orchestrated changes in carbohydrate homeostasis are critical for plant abiotic stress
934 tolerance. *Plant Cell Physiol.* **59**: 1290-1299

935 **Pommerrenig B, Eggert K, Bienert GP** (2019) Boron deficiency effects on sugar, ionome, and
936 phytohormone profiles of vascular and non-vascular leaf tissues of common plantain
937 (*Plantago major* L.). *Int. J. Mol. Sci.* **20**: 3882

938 **Pommerrenig B, Müdsam C, Kischka D, Neuhaus HE** (2020) Treat and trick: common regulation
939 and manipulation of sugar transporters during sink establishment by the plant and the
940 pathogen. *J. Exp. Bot.* **71**: 3930-3940

941 **Poschet G, Hannich B, Raab S, Jungkunz I, Klemens PA, Krüger S, Wic S, Neuhaus HE,**
942 **Büttner M** (2011) A novel *Arabidopsis* vacuolar glucose exporter is involved in cellular sugar
943 homeostasis and affects the composition of seed storage compounds. *Plant Physiol.* **157**: 1664-
944 1676

945 **Remy E, Cabrito TR, Batista RA, Hussein MA, Teixeira MC, Athanasiadis A, Sá-Correia I,**
946 **Duque P** (2014) Intron retention in the 5' UTR of the novel ZIF2 transporter enhances
947 translation to promote zinc tolerance in *Arabidopsis*. *PLoS genetics* **10**: e1004375.

948 **Rodrigues CM, Müdsam C, Keller I, Zierer W, Czarnecki O, Corral JM, Reinhardt F, Nieberl**
949 **P, Fiedler-Wiechers K, Sommer F, Schroda M, Mühlhaus T, Harms K, Flügge UI,**
950 **Sonnewald U, Koch W, Ludewig F, Neuhaus HE, Pommerrenig B** (2020). Vernalization
951 alters sink and source identities and reverses phloem translocation from taproots to shoots in
952 sugar beet. *Plant Cell* **32**: 3206-3223

953 **Rolland F, Baena-Gonzalez E, Sheen J** (2006) Sugar sensing and signaling in plants: conserved and
954 novel mechanisms. *Annu. Rev. Plant Biol.* **57**: 675-709

955 **Rottmann T, Klebl F, Schneider S, Kischka D, Rüscher D, Sauer N, Stadler R** (2018) Sugar
956 transporter STP7 specificity for l-arabinose and d-xylose contrasts with the typical hexose
957 transporters STP8 and STP12. *Plant Physiol.* **176**: 2330-2350

958 **Ruan YL** (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. *Ann. Rev.*
959 *Plant Biol.* **65**: 33-67

960 **Slawinski L, Israel A, Paillet C, Thibault F, Cordaux R, Atanassova R, Dédaldéchamp F, Laloi**
961 **M** (2021a) Early response to dehydration six-like transporter family: early origin in
962 streptophytes and evolution in land plants. *Front Plant Sci.* **12**: 681929

963 **Slawinski L, Israel A, Artault C, Thibault F, Atanassova R, Laloi M, Dédaldéchamp F** (2021b)
964 Responsiveness of early response to dehydration six-like transporter genes to water deficit in
965 *Arabidopsis thaliana* leaves. *Front. Plant Sci.* **12**: 708876

966 **Schofield RA, Bi YM, Kant S, Rothstein SJ** (2009) Over-expression of STP13, a hexose transporter,
967 improves plant growth and nitrogen use in *Arabidopsis thaliana* seedlings. *Plant Cell Environ.*
968 **32**: 271-285

969 Schneider S, Hulpke S, Schulz A, Yaron I, Holl J, Imlau A, Schmitt B, Batz S, Wolf S, Hedrich
970 R, Sauer N (2012) Vacuoles release sucrose via tonoplast-localised SUC4-type transporters.
971 *Plant Biol.* **14**: 325-336

972 Schulz A, Beyhl D, Marten I, Wormit A, Neuhaus E, Poschet G, Büttner M, Schneider S, Sauer
973 N, Hedrich R (2011) Proton-driven sucrose symport and antiport are provided by the vacuolar
974 transporters SUC4 and TMT1/2. *Plant J.* **68**: 129-136

975 Schulze WX, Schneider T, Starck S, Martinoia E, Trentmann O (2012) Cold acclimation induces
976 changes in *Arabidopsis* tonoplast protein abundance and activity and alters phosphorylation of
977 tonoplast monosaccharide transporters. *Plant J.* **69**: 529-541

978 Smeekens S (1998) Sugar regulation of gene expression in plants. *Curr Op plant biol* 1: 230-234.

979 Smith AM, Stitt M (2007) Coordination of carbon supply and plant growth. *Plant, Cell Environ.* **30**:
980 1126-1149

981 Smith AM, Zeeman SC (2020) Starch: a flexible, adaptable carbon store coupled to plant growth.
982 *Ann. Rev. Plant Biol.* **71**: 217-245

983 Stitt M, Hurry V (2002) A plant for all seasons: alterations in photosynthetic carbon metabolism
984 during cold acclimation in *Arabidopsis*. *Curr. Opin. Plant Biol.* **5**: 199-206

985 Stitt M, Wirtz W, Gerhardt R, Heldt HW, Spencer CA, Walker D, Foyer CH (1985) A
986 comparative study of metabolite levels in plant leaf material in the dark. *Planta* **166**: 354-364

987 Strand Å, Hurry V, Gustafsson P, Gardeström P (1997) Development of *Arabidopsis thaliana*
988 leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene
989 expression despite the accumulation of soluble carbohydrates. *Plant J.* **12**: 605-614

990 Sukumaran, N. P., & Weiser, C. J. (1972) An Excised Leaflet Test for Evaluating Potato Frost
991 Tolerance. *HortScience* **7**: 467-468

992 Sun L, Sui X, Lucas WJ, Li Y, Feng S, Ma S, Fan J, Gao L, Zhang, Z (2019) Down-regulation of
993 the sucrose transporter *CsSUT1* causes male sterility by altering carbohydrate supply. *Plant*
994 *Physiol.* **180**: 986-997

995 Truernit E, Sauer N (1995) The promoter of the *Arabidopsis thaliana* SUC2 sucrose-H⁺ symporter
996 gene directs expression of beta-glucuronidase to the phloem: evidence for phloem loading and
997 unloading by SUC2. *Planta* **196**: 564-570

998 Valifard M, Le-Hir R, Müller J, Scheuring D, Neuhaus HE, Pommerrenig B (2021) The Vacuolar
999 fructose transporter SWEET17 is critical for root development and drought tolerance. *Plant*
1000 *Physiology* **187**: 2716-2730

1001 Volkert K, Debast S, Voll LM, Voll H, Schießl I, Hofmann J, Schneider S, Börnke F (2014) Loss
1002 of the two major leaf isoforms of sucrose-phosphate synthase in *Arabidopsis thaliana* limits
1003 sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning
1004 during photosynthesis. *J. Exp. Bot.* **65**: 5217-5229

1005 Vu DP, Martins Rodrigues C, Jung B, Meissner G, Klemens PAW, Holtgräwe D, Fürtauer L,
1006 Nägele T, Nieberl P, Pommerrenig B, Neuhaus HE (2020). Vacuolar sucrose homeostasis is
1007 critical for plant development, seed properties, and night-time survival in *Arabidopsis*. *J Ex*
1008 *Bot* **71**: 4930-4943

1009 Wieczorka R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999). Concurrent
1010 knock-out of at least 20 transporter genes is required to block uptake of hexoses in
1011 *Saccharomyces cerevisiae*. *FEBS letters*, **464**: 123-128

1012 Wingenter K, Schulz A, Wormit A, Wic S, Trentmann O, Hörmiller II, Heyer AG, Marten I,
1013 Hedrich R, Neuhaus HE (2010) Increased activity of the vacuolar monosaccharide
1014 transporter TMT1 alters cellular sugar partitioning, sugar signalling and seed yield in
1015 *Arabidopsis*. *Plant Physiol.* **154**: 665-677

1016 Wingenter K, Trentmann O, Winschuh I, Hörmiller II, Heyer AG, Reinders J, Schulz A, Geiger
1017 D, Hedrich R, Neuhaus HE (2011) A member of the mitogen-activated protein 3-kinase
1018 family is involved in the regulation of plant vacuolar glucose uptake. *Plant J* **68**: 890-900

1019 Wolfenstetter S, Wirsching P, Dotzauer D, Schneider S, Sauer N (2012) Routes to the tonoplast:
1020 The sorting of tonoplast transporters in *Arabidopsis* mesophyll protoplasts. *Plant Cell* **24**:
1021 215-232.

1022 Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, Schmidt U, Martinoia E,
1023 Neuhaus HE (2006) Molecular identification and physiological characterization of a novel

1024 monosaccharide transporter from *Arabidopsis* involved in vacuolar sugar transport. *Plant Cell*
1025 **18:** 3476-3490

1026 **Yamada K, Osakabe Y, Mizoi J, Nakashima K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K**
1027 (2010) Functional analysis of an *Arabidopsis thaliana* abiotic stress-inducible facilitated
1028 diffusion transporter for monosaccharides. *J Biol Chem* **285:** 1138-1146

1029 **Zhong Y, Xie J, Wen S, Wu W, Tan L, Lei M, Shi H, Zhu JK** (2020) TPST is involved in fructose
1030 regulation of primary root growth in *Arabidopsis thaliana*. *Plant Mol. Biol.* **103:** 511-525

1031 **Zhu L, Li B, Wu L, Li H, Wang Z, Wei X, Ma B, Zhang Y, Ma F, Ruan Y-L, Li M** (2021)
1032 MdERDL6-mediated glucose efflux to the cytosol promotes sugar accumulation in the vacuole
1033 through up-regulating TSTs in apple and tomato. *Proc. Natl. Acad. Sci.* **118:** e2022788118

1034