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Abstract

Python is a popular and widespread programming language for scientiüc computing, in large part due to the
powerful array programming library NumPy, which makes it easy to write clean, vectorized and eþcient code
for handling large datasets. A challenge with using array programming for biological data is that the data is
often non-numeric and variable-length (such as DNA sequences), inhibiting out-of-the-box use of standard
array programming techniques. Thus, a tradition in bioinformatics has been to use low-level languages like
C and C++ to write eþcient code. This makes the tools less transparent to the average computational
biologist - making them harder to understand, modify and contribute to.

We here present a new Python package BioNumPy, which adds a layer on top of NumPy in order to enable
intuitive array programming on biological datasets. BioNumPy is able to eþciently load biological datasets
(e.g. FASTQ-üles, BED-üles and BAM-üles) into NumPy-like data structures, so that NumPy operations
like indexing, vectorized functions and reductions can be applied to the data. We show that BioNumPy is
considerably faster than vanilla Python and other Python packages for common bioinformatics tasks, and in
many cases as fast as tools written in C/C++. BioNumPy thus bridges a long-lasting gap in bioinformatics,
allowing the same programming language (Python) to be used across the full spectrum from quick and simple
scripts to computationally eþcient processing of large-scale data.

Introduction

Python is one of the most commonly used and fastest growing programming languages [1]. Being a high-level
language, Python is ýexible and suits a wide variety of analyses. It is both easy to learn for biologists new
to programming and a powerful language for experienced bioinformaticians. However, a common hurdle is
that vanilla Python is too slow to be a viable option for large-scale analyses. Thus, bioinformaticians often
end up using non-transparent and error-prone one-liners on the unix command line, or end up developing
and using tools written in low-level languages such as C and C++.

In other scientiüc üelds (e.g. physics, engineering and machine learning), Python is being extensively and
successfully used for high-performance computing and large-scale analysis [2, 3, 4, 5]. This is in large
part thanks to the very powerful array programming package NumPy [6], which enables memory-eþcient
representation and fast analysis of numeric data (similar to R and MATLAB). For problems that lend
themself to the array programming paradigm, solutions based on suited libraries in high-level languages are
usually easier to write, read, use and adapt than corresponding programs written in low-level languages
like C and C++. However, the discrete and variable-length nature of biological sequence data inhibits the
out-of-the-box use of standard array programming languages and libraries. Due to a lack of suited high-
performance libraries in Python, two distinct implementation strategies have come to dominate the processing
and analysis of biosequence data: a) the use of high-level languages like Python with libraries like BioPython
[7] and Biotite [8] for smaller-scale analytical exploration in individual life science investigations, and b) the
use of low-level languages like C to create command-line executables for common compute-intensive tasks.

We here present the BioNumPy package, which enables eþcient and intuitive array programming on
biological data in Python. BioNumPy supports a broad range of bioinformatics analyses, with the
main philosophy being that data structures should behave as closely as possible to standard numeric
NumPy arrays. This means that BioNumPy is easy to learn for users familiar with NumPy or with
array programming languages like R and Matlab. BioNumPy is open source and freely available at
https://github.com/bionumpy/bionumpy/, and can be installed through the Python package manager Pip.
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BioNumPy comes with extensive documentation and a user guide that makes it easy to use for a wide range
of bioinformatics problems.

Results

The BioNumPy Library

BioNumPy is a Python package for eþciently reading, representing and analysing biological datasets. All
time-critical operations are implemented in NumPy, meaning that BioNumPy performs comparably to cus-
tomised low-level language implementations. The key features of BioNumPy are:

1. Reading/writing biological datasets directly to/from NumPy-like data structures, providing easy access
to the data through an intuitive and easy-to-use API.

2. Processing and analysing such biological data eþciently using a NumPy-like interface.

As an example, reading in a set of sequences from a FASTQ-üle and computing their GC-content is as simple
as:

data = bionumpy.read("reads.fq.gz")

gc_content = numpy.mean((data.sequence == "G") | (data.sequence == "C"))

In the example above, the data.sequence object is a NumPy-like data structure containing all the sequences
in our datasets. Common NumPy operations, like indexing and vectorized operations, work with this data
structure. BioNumPy also supports broadcasting of functions along one and two-dimensional arrays (in the
same way as NumPy), allowing to e.g. easily compute GC content per sequence, or per position across all
sequences. This makes BioNumPy powerful and ýexible, allowing it to perform a wide range of operations
on biological datasets.

BioNumPy comes with extensive documentation, available at https://bionumpy.github.io/bionumpy, show-
ing how to do common tasks for a wide range of data formats and domains.

Benchmarks

We compare the speed of BioNumPy against other existing Python packages and commonly used non-Python
tools on a set of typical bioinformatics tasks. As seen in Figure 1, we ünd that BioNumPy is generally
considerably faster than vanilla Python solutions, including the commonly used Python packages BioPython
and Biotite, which mostly rely on Python for-loops to perform operations on datasets. On problems where
designated eþcient bioinformatics tools are commonly used (intersection of BED-üles, kmer counting and
VCF operations), we ünd that BioNumPy is close to, or as eþcient as, tools written in C/C++ (BEDTools [9],
Jellyüsh [10] and BCFTools [11]). While these benchmarks only cover a very small subset of operations, and
we only compare against a small subset of available tools, we believe the results still illustrate that BioNumPy
can achieve the same performance as dedicated tools written in low-level languages. A Snakemake pipeline for
reproducing the results can be found at https://github.com/bionumpy/bionumpy/tree/master/benchmarks,
along with an open invitation to expand the benchmark with additional tools and cases.
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Fig. 1: Benchmarking BioNumPy against other tools and methods on various typical bioinformatics tasks.
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Example usage

We here show two examples to illustrate how BioNumPy can be used.

Example 1: Using BioNumPy on sequence data

In the following example, we represent a few sequences with BioNumPy and show how basic NumPy func-
tionality works:

>>> import numpy as np

>>> import bionumpy as bnp

>>> # Normally, you will read sequences from file using bnp.open

>>> # but for testing, the bnp.as_encoded_array function is useful

>>> sequences = bnp.as_encoded_array(["ACTGA", "AACCA", "GA", "AATTTT"])

>>> # We remove the first base

>>> sequences = sequences[:, 1:]

>>> print(sequences)

CTGA

ACCA

A

ATTTT

>>> # Creating a mask is easy

>>> is_A = sequences == "A"

>>> print(is_A)

[False False False True]

[ True False False True]

[ True]

[ True False False False False]

>>> # Counting As per sequence using axis=1

>>> np.sum(is_A, axis=1)

array([1, 2, 1, 1])

>>> # Counting ratio of As per base position using np.mean with axis=0

>>> np.mean(is_A, axis=0)

array([0.75 , 0. , 0. , 0.66666667, 0. ])

Example 2: Analysing motif matches inside transcription factor peaks

In the following example, we show how BioNumPy can be used to easily combine diûerent types of datasets.
We read transcription factor peaks from a bed üle, fetch the peak sequences from an indexed reference
genome and analyse motif scores within the peaks using data from the Jaspar database [12]:

from bionumpy.sequence.position_weight_matrix import PWM, get_motif_scores

import bionumpy as bnp

import numpy as np

from pyjaspar import jaspardb

import plotly.express as plx

# Read peaks and reference genom

peaks = bnp.open("ctcf.bed.gz").read()

reference_genome = bnp.open_indexed("hg38.fa")

# Change start and end position of peaks (100 bp around centre)
(continues on next page)
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(continued from previous page)

midpoints = (peaks.start+peaks.stop)//2

peaks.start = midpoints - 50

peaks.stop = midpoints + 50

# Fetch sequences within each peak

peak_sequences = reference_genome.get_interval_sequences(peaks)

# Fetch a motif from Jaspar and read it into BioNumPy

jaspar_object = jaspardb(release="JASPAR2020")

ctcf_motif = jaspar_object.fetch_motifs_by_name('CTCF')[0]

ctcf_pwm = PWM.from_dict(ctcf_motif.pwm)

# Get motif scores and make a boolean mask of likely binding sites

motif_scores = get_motif_scores(peak_sequences, ctcf_pwm)

has_motif_match = motif_scores > np.log(4)

# Plot mean matches per base (axis=0)

fig = plx.line(y=np.mean(has_motif_match, axis=0), template='seaborn',

labels={"x": "Position in peak",

"y": "Ratio of peaks with motif match"},

)

fig.write_image("motif_matches.png")

Fig. 2: Plot generated in Example 2. Showing ratio of peaks with a motif match per base position, with an
enrichment at the centre of each peak as one would expect.
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Implementation details

Data representation

BioNumPy internally stores sequence data (e.g. nucleotides or amino acids) as numeric values, allowing
the use of standard NumPy arrays for data representation and processing. A key way in which BioNumpy
achieves high performance is by storing multiple data entries in shared NumPy arrays. To illustrate the
beneüt of this approach, consider the example where we want to count the number of Gs and Cs in a large
set of DNA sequences. With existing Python packages like BioPython and Biotite, this must be done by
iterating over the sequences using Python for-loops, which is slow when the number of sequences is large.
BioNumPy, however, stores all sequences in only one or a few shared NumPy arrays (Figure 3a), meaning
that vectorized NumPy operations can be used to do the counting in a fraction of the time.

Storing multiple elements in shared arrays is trivial if the elements all have the same size, since a matrix
representation can be used. However, for biological data, it is common that data elements vary in size. For
instance, sequences in FASTA üles are rarely all of the exact same size. BioNumPy uses the RaggedArray data
structure from the npstructures package (https://github.com/bionumpy/npstructures, developed in tandem
with BioNumPy) to tackle this problem (Figure 2). The RaggedArray can be seen as a matrix where rows
can have diûerent lengths. The npstructures RaggedArray implementation is compatible with most common
NumPy operations, like indexing (Figure 3b), vectorized operations (Figure 3c), and reductions (Figure
3d). As far as possible, objects in BioNumPy follow the array interoperability protocols deüned by NumPy
(https://numpy.org/doc/stable/user/basics.interoperability.html)

Development

BioNumPy has been developed following the principles of continuous integration and distribution [13]. The
codebase is thoroughly and automatically tested through an extensive collection of unit tests, application
tests, integrations tests and property-based tests [14]. New code changes are automatically benchmarked
and tested before being automatically published, ensuring that updates can be frequent, while high code
quality is maintained. This makes it safe and easy to allow contributions from new contributors, which is
important for longevity and community adoption of the package.

Discussion

We have presented a new Python package, BioNumPy, for eþcient representation and analysis of biological
datasets. We have shown that BioNumPy is usually considerably faster than both vanilla Python scripts and
commonly used Python packages for performing similar tasks. BioNumPy also has comparable eþciency to
commonly used eþcient tools written in C/C++.

While BioNumPy is fast on basic operations such as kmer counting and getting reverse complements of
reads, we want to emphasise that BioNumPy is not speciücally designed for standard tasks where tailored
and highly optimised tools already exists [11]. BioNumPy is instead meant to be used as a library inside
Python, and is useful when one e.g. wants to perform multiple operations on a dataset, explore or play
around with datasets, or perform analyses that integrate multiple datasets in novel ways. We also invite the
community to develop a broad variety of functionality for dedicated purposes with BioNumPy as an internal
workhorse.

As shown in Figure 1, BioNumPy is not always faster than vanilla Python code, e.g. for the case where
one is only reading a FASTA üle, subsampling the sequences and writing the results back to üle. The
reason is that although BioNumPy reads all data into NumPy-arrays that can be eþciently subsampled,
BioNumPy performs operations beyond the vanilla Python implementation, such as validating, encoding and
representing the data eþciently. These additional steps come handy when you want to do more operations
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Fig. 3: Overview of the RaggedArray and EncodedRaggedArray data structures. A RaggedArray is similar
to a NumPy array/matrix but can represent a matrix consisting of rows with varying lengths (a). This makes
it able to eþciently represent data with varying lengths in a shared data structure. A RaggedArray supports
many of the same operations as NumPy arrays, such as indexing (b), vectorization (c) and reduction (d).
An EncodedRaggedArray is a RaggedArray that supports storing and operating on non-numeric data (e.g.
DNA-sequences) by encoding the data and keeping track of the encoding (e). An EncodedRaggedArray
supports the same operations as RaggedArrays (f). This ügure is an adopted and modiüed version of
Figure 1 in [6] and is licensed under a Creative Commons Attribution 4.0 International License (http:
//creativecommons.org/licenses/by/4.0/).

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521373doi: bioRxiv preprint 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2022.12.21.521373
http://creativecommons.org/licenses/by/4.0/


on the data, such as combining it with other datasets or querying it in diûerent ways. An example of a
case where BioNumPy gives considerable speedup over native tools is the problem of computing the Jaccard
similarity index between all pairs of a set of bed-üles. Since BioNumPy can keep all üles in memory, it
is considerably faster than dedicated packages like BEDTools, which needs to read each bed-üle from disk
every time a pair of BED-üles are to be compared.

Many common bioinformatics tasks are today typically performed as a series of bash commands, using a
combination of sed, AWK, Grep, Perl and/or other native unix utility tools. As an example, consider the
following bash-code for converting from FASTQ to FASTA:

zcat file.fastq.gz | paste - - - - | perl -ane 'print ">$F[0]\n$F[2]\n";' | gzip -c >␣

↪→file.fasta.gz

While such commands often yield fast results, there are in our opinion several drawbacks to this approach,
which a package like BioNumPy addresses. First, bash commands are diþcult to read and understand,
which increases the chance for errors. Second, since such commands typically come in the form of ad-hoc
scripts, these are usually not version controlled, not tested and thus not reproducible (each person typically
has their own script). Third, it is inconvenient to write unit tests, defensive assertion code or do runtime
inspection/debugging on such bash scripts, meaning that logical errors can easily go unnoticed. A better
solution is thus to instead use specialised tools, such as e.g. seqtk or BioNumpy. The task of converting
from FASTQ to FASTA can be done like this in BioNumPy:

with bnp.open("output.fasta") as out_file:

outfile.write(bnp.open("input.fastq").read_chunks())

Since BioNumPy is ýexible in its input, it works well with existing packages and solutions for fetching
data from databases, e.g. in combination with the various BioPython modules for downloading data from
databases like Encode [15] and Jaspar [12]. This ease of interoperability is also the reason why we have
limited the scope of BioNumPy to not including modules for e.g. fetching data from online databases.

It can be speculated that the diþculty of writing eþcient code for large-scale analyses in Python is an
important reason why a lot of central bioinformatics tools are instead written in low-level and harder to
learn languages like C or C++ [9, 11]. The fact that tools are written in such languages means that the
large majority of bioinformaticians and computational biologists - who are typically only familiar with bash,
R, and/or Python - are not able to easily contribute to the development of tools or understand/learn the
internal workings of the methods they use. This limits transparency of bioinformatics research, and is also a
broader problem since the continually growing size of biological data necessitates fast and eþcient tools and
libraries. Our hope is that BioNumPy is able to bridge this gap by making it possible for anyone to more
easily work with large biological datasets in Python.
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