

1 *Short article*

2 **High-resolution glucose fate-mapping reveals *LDHB*-dependent lactate
3 production by human pancreatic β cells**

4 Federica Cuozzo¹, Daniela Nasteska¹, Zicong Jiao¹, Hannah R. Smith¹, Caroline Bonner²,
5 Julie Kerr-Conte², Francois Pattou², Rita Nano^{3,4}, Lorenzo Piemonti^{3,4}, Jennie Roberts¹,
6 Gareth G. Lavery^{1,5}, Ildem Akerman¹, Daniel A. Tennant^{1*}, Christian Ludwig^{1*} and David J.
7 Hodson^{1,6*}

8
9 ¹Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins
10 and Receptors (COMPARE), University of Birmingham, Birmingham, UK.

11 ²University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM),
12 Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European
13 Genomic Institute for Diabetes (EGID), F59000, Lille, France.

14 ³San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.

15 ⁴Vita-Salute San Raffaele University, Milan, Italy.

16 ⁵Centre for Health, Ageing and Understanding Disease, Department of Biosciences, School
17 of Science and Technology, Nottingham Trent University, Nottingham, UK.

18 ⁶Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford
19 Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University
20 of Oxford, Oxford, UK.

21

22

23 *Correspondence should be addressed to:

24 d.hodson@ocdem.ox.ac.uk, c.ludwig@bham.ac.uk, d.tennant@bham.ac.uk

25

26

27 **Key words:** Glucose tracing, islet, metabolism, pyruvate, lactate, LDH, pyruvate
28 dehydrogenase, GC-MS, NMR

29

30

31 **ABSTRACT**

32 Using $^{13}\text{C}_6$ glucose labeling coupled to GC-MS and 2D ^1H - ^{13}C HSQC NMR spectroscopy, we
33 have obtained a comparative high-resolution map of glucose fate underpinning steady state
34 insulin release and β cell function. In both mouse and human islets, the contribution of glucose
35 to the TCA cycle is similar. Pyruvate-fueling of the TCA cycle is found to be mediated primarily
36 by the activity of pyruvate dehydrogenase (PDH), with only a limited contribution from pyruvate
37 carboxylase (PC). While conversion of pyruvate to lactate by lactate dehydrogenase (LDH)
38 can be detected in both species, lactate accumulation via this route is six-fold higher in human
39 islets. Transcriptomic analysis reveals that human β cells specifically express lactate
40 dehydrogenase B (LDHB) at high levels, in keeping with the phenotype of patients harboring
41 gain-of-function mutations in MCT1/ SLC16A1 (HHF7). Thus, glycolytically-derived acetyl CoA
42 preferentially feeds the TCA cycle in both mouse and human β cells. However, human β cells
43 possess the machinery needed to generate extra-mitochondrial lactate, which might reflect a
44 key mechanism to balance the reducing activity of NADH-producing pathways.

45

46 INTRODUCTION

47 β cells are highly-adapted as glucose sensors and need to balance glucose-dependent insulin
48 release with housekeeping metabolic functions. The traditional view of β cell metabolism
49 focuses on a tight relationship between blood glucose concentration, oxidative
50 phosphorylation and stimulus-secretion coupling. Following a rise in glycemia, glucose enters
51 the β cell through facilitated transport via low affinity glucose transporters (GLUT1 and GLUT2
52 in humans and rodents, respectively) (De Vos et al., 1995; Thorens et al., 1988). Glucose is
53 then phosphorylated by a low affinity hexokinase, glucokinase (GK), leading to closure of the
54 ATP-sensitive potassium (K_{ATP}) channels (reviewed in (Rorsman and Ashcroft, 2018; Rutter
55 et al., 2015)). The increase in membrane voltage then drives Ca^{2+} flux through voltage-
56 dependent Ca^{2+} channels (Rorsman and Ashcroft, 2018), which together with amplifying
57 signals (amino acids, isocitrate, cAMP etc) (Ferdaoussi et al., 2015; Henquin, 2000; Rutter et
58 al., 2015), drives first and second phase insulin granule exocytosis. Direct conversion of
59 pyruvate to lactate is thought to be suppressed in the β cell due to low levels of lactate
60 dehydrogenase A (LDHA) (Ainscow et al., 2000; Pullen et al., 2010; Schuit et al., 2012; Sekine
61 et al., 1994), ensuring that the majority of pyruvate enters the TCA cycle.

62 Recent studies have challenged the canonical view of β cell metabolism by showing that
63 ATP/ADP generation is highly compartmentalized, with the extra-mitochondrial
64 phosphoenolpyruvate (PEP) cycle being a major trigger of K_{ATP} channel closure and insulin
65 secretion (Foster et al., 2022; Lewandowski et al., 2020). Following membrane depolarization
66 and Ca^{2+} influx, the rise in ADP activates oxidative phosphorylation (OxPhos) to sustain insulin
67 secretion. These two complementary states are believed to dictate the mitochondrial fate of
68 pyruvate. The electrically silent phase, which is characterized by a high ATP/ADP ratio, raises
69 mitochondrial voltage to stall the TCA cycle, and activate anaplerotic flux through pyruvate
70 carboxylase (PC) and the PEP cycle to support pyruvate kinase (PK) and initiate insulin
71 secretion. Following membrane depolarization, the rise in ADP supports a highly oxidative
72 state that depends on high TCA cycle flux and pyruvate consumption by pyruvate
73 dehydrogenase (PDH), which supports OxPhos and sustained secretion (Foster et al., 2022;
74 Lewandowski et al., 2020; Merrins et al., 2022).

75 Despite the clear importance of metabolism for β cell insulin release and phenotype, we are
76 still lacking a high-resolution, integrated view of β cell glucose fate. In particular, most data
77 using glucose tracing and GC-MS/NMR spectroscopy has been derived from insulinoma cell
78 lines, which provide the requisite cell mass for metabolite detection/annotation. However,
79 insulinoma cell lines have to balance the need for insulin secretion with proliferation, an
80 energy-consuming process (Alves et al., 2015; Cline et al., 2004; Cline et al., 2011; Lu et al.,
81 2002b; Malinowski et al., 2020; Simpson et al., 2006), and fail to display normal cell
82 heterogeneity known to influence metabolism (Benninger and Hodson, 2018; Benninger and
83 Kravets, 2021; Nasteska et al., 2021). In addition, species-differences in islet cell composition
84 and β cell function have been described (Cabrera et al., 2006; Hodson et al., 2013; Rodriguez-
85 Diaz et al., 2011), yet their influence on energetics is still unclear. Lastly, bulk metabolomics
86 has been informative for understanding β cell metabolism (Spegel et al., 2013; Wallace et al.,
87 2013) and, while sensitive, lacks the resolution required to pinpoint glucose fate during
88 glycolysis and the TCA cycle. Thus, our understanding of β cell glucose metabolism remains
89 incomplete.

90 In the present study, we combine GC-MS-based $^{13}\text{C}_6$ glucose tracing with the resolution of 2D
91 ^1H - ^{13}C HSQC NMR multiplet analysis to map glucose fate in islets with high sensitivity. By
92 applying this dual approach to human and mouse samples, we are able to provide a detailed
93 cross-species depiction of glucose metabolism. By examining ^{13}C labelling patterns, we
94 confirm that PDH is the major contributor to the TCA cycle. We further show that pyruvate is
95 directly converted to lactate in both human and mouse islets. However, lactate accumulation
96 is much higher in human islets, which specifically express *LDHB* in the β cell compartment.
97 We thus provide a detailed view of mouse and human islet metabolism, show that human β
98 cells generate significant lactate levels, and suggest that the role of lactate in β cell metabolism
99 should be revisited.

100

101

102 **RESULTS**

103 **Glucose contribution to TCA cycle in human and mouse islets**

104 To investigate glucose handling, mouse and human islets were incubated overnight with $^{13}\text{C}_6$
105 glucose prior to metabolite extraction and GC-MS and 2D $^1\text{H}, ^{13}\text{C}$ HSQC-NMR spectroscopy
106 (**Figure 1A**). To allow sufficient glucose flux for detection of ^{13}C incorporation into TCA
107 metabolites, without inducing glucotoxicity, 10 mM $^{13}\text{C}_6$ glucose was used. The incorporation
108 of ^{13}C from $^{13}\text{C}_6$ glucose into the TCA cycle metabolites was then established via mass
109 isotopologues distribution (MID) analysis (**Figure 1B**).

110 Suggesting a similar progression of glycolysis and the TCA cycle, glucose incorporation into
111 the major metabolites malate, alanine and glutamate was not different between mouse and
112 human islets (**Figure 1C-E**). However, a slight but significant increase in m+2/m+3 aspartate
113 and fumarate was detected in mouse versus human islets (**Figure 1F and G**), reflecting an
114 increased contribution of glucose-derived pyruvate into the TCA cycle via acetyl CoA. Total
115 aspartate and alanine levels did not differ between the species (**Figure 1H and I**), whereas
116 malate and fumarate levels (**Figure 1J and K**) were decreased in mouse. Glutamate levels
117 were ~3-fold higher in mouse versus human islets, despite similar MIDs, implying that there is
118 a larger contribution of non-labelled glutamate to the total glutamate pool in this species e.g.
119 through glutamine transport (**Figure 1L**).

120 **Pyruvate management in human and mouse islets**

121 To obtain a higher definition view of pyruvate management, its contribution to the production
122 of alanine and lactate was assessed. In both species, glucose incorporation could be detected
123 in m+2 and m+3 lactate, likely derived from the TCA cycle and direct pyruvate conversion,
124 respectively (**Figure 2A-C**). While the MID for alanine was similar in islets from both species
125 (**Figure 1E**), the accumulation of m+ 2 and m+3 lactate was significantly (~ 6-fold) higher in
126 humans (**Figure 2A**). In line with the larger size of human islets, or the increased proportion
127 of α cells, the total amount of lactate was higher in human than in mouse islets (**Figure 2B-**
128 **D**).

129 While accumulation of m+2 lactate was expected, we were surprised to detect significant m+3
130 lactate accumulation in human islets, since *Ldha* has been shown to be "disallowed" in mouse
131 β cells, hence preventing alternative fates for pyruvate (Ainscow et al., 2000; Pullen et al.,
132 2010; Schuit et al., 2012; Sekine et al., 1994). However, recent studies in cancer cells have
133 shown that pyruvate to lactate conversion is unaffected in single knockouts of LDHA and
134 LDHB, and only in a double LDHA/B knockout is pyruvate no longer converted to lactate (Deng
135 et al., 2022; Ždralević et al., 2018). Thus, LHDB can compensate for LDHA activity. Moreover,
136 glucose-stimulated lactate production and oscillations were detected in intact mouse islets
137 using a biosensor approach (Sdao et al., 2021). In accordance, we find that β cells
138 predominantly and specifically express *LDHB* (**Figure 2E**). Moreover, we could not exclude
139 the possibility that LDHA may also catalyze pyruvate to lactate conversion in β cells as they
140 contain LDHA mRNA, albeit at low quantities, based on both single cell RNA-sequencing and
141 bulk RNA-sequencing of FACS sorted α cells and β cells (**Figure 2E and F**). This is consistent
142 with the open chromatin conformation and transcription factor binding to this promoter in the
143 human islet (**Figure 2G**).

144 **High resolution annotation of $^{13}\text{C}_6$ glucose tracing data**

145 To identify isotopomer patterns with high-resolution, the MID analysis of $^{13}\text{C}_6$ glucose-traced
146 human and mouse islets was annotated with 2D ^1H - ^{13}C HSQC NMR multiplet analysis. From
147 uniformly labeled glucose, ^{13}C atoms are incorporated into the metabolites of the TCA cycle
148 through the activity of PDH and PC (**Figure 3A, B**). This leads to the formation of labeling
149 patterns within the chemical structure of each metabolite that are specific to the pathway from
150 which they are produced (**Figure 3A, B**). Therefore, the positions of ^{13}C atoms within each
151 metabolite can be utilized to elucidate the relative activities of PDH and PC. To define the
152 different isotopomer patterns a numerical notation was used, where the numbers 0 and 1
153 indicate ^{12}C and ^{13}C atoms, respectively. Confirming the accuracy of the approach, the
154 accumulation of lactate₁₁₁ (i.e. fully-labeled lactate) was significantly higher in human
155 compared to mouse islets, in line with the MID glucose-tracing data (**Figure 2A-C**) (**Figure**
156 **3C-E**).

157 **TCA cycle depends more on PDH than PC flux in human and mouse islets**

158 In both human and mouse islets, lactate₁₁₀ made a greater contribution to the m+2
159 isotopologue pool than the other possible isotopomers (**Figure 3C-E**). This finding suggests
160 that lactate is produced from the oxidative TCA cycle rather than the reductive metabolism of
161 PC-derived glutamate, from which pyruvate₀₁₁ and then lactate₀₁₁ would arise (**Figure 3C-E**).
162 We also noticed that the majority of alanine was either 000 or 111, with only a very minor
163 contribution to the other isotopomers (**Figure 3F-H**). As such, the labeled portion of alanine is
164 produced from pyruvate upstream of the TCA cycle, meaning that the accumulation of
165 pyruvate₁₁₀ from malate₁₁₀₀ is mostly employed to regenerate lactate₁₁₀ (**Figure 3F-H**).
166 Alanine₁₁₁ accumulation was slightly (~20%) higher in human than mouse islets, reflecting a
167 greater contribution of transamination toward amino acid production (**Figure 3F-H**).
168 Supporting the lactate isotopomer data, the contribution of $^{13}\text{C}_6$ glucose to the labeling patterns
169 of glutamate was found to be similar in humans and mice (**Figure 3I, J**). In both species, the
170 most abundant labeled isotopomer was glutamate₀₀₀₁₁ (**Figure 3I, J**), which is derived from
171 TCA cycle flux through the activity of PDH (**Figure 3A, J**).

172 Together, these findings provide further evidence that pyruvate management in the pancreatic
173 β cell occurs primarily through PDH at the stimulatory glucose concentration used here (Alves
174 et al., 2015; Lu et al., 2002a).

175

176 **DISCUSSION**

177 Using $^{13}\text{C}_6$ glucose labeling coupled to GC-MS and 2D ^1H - ^{13}C HSQC NMR spectroscopy, we
178 have been able to obtain a high-resolution map of glucose fate within human and mouse islets.
179 Unexpectedly, both human and mouse islets accumulate m+2 and m+3 lactate, meaning that
180 lactate produced downstream of the TCA cycle (m+2) as well as via pyruvate \rightarrow lactate
181 conversion (m+3) contribute equally to overall lactate production. However, pyruvate \rightarrow lactate
182 conversion was much higher (~ 6-fold) in human compared to mouse islets, most likely due to
183 the actions of LDHB. Finally, we show that labeled lactate and glutamate accumulate as
184 lactate₁₁₀ and glutamate₀₀₀₁₁, confirming greater flux through PDH versus PC in both species.
185 The major findings are schematically represented in **Figure 4**.

186 The observation that the islet lactate pool is derived from both TCA cycle- and pyruvate-
187 derived sources suggests that mechanisms must be in place for direct pyruvate conversion,
188 particularly in the human islet. In many tissues, pyruvate would be converted to lactate by
189 LDH, however, the major *Ldha* subunit of the enzyme has been shown to be expressed at
190 very low levels, disallowed or absent in the murine pancreatic β cell (Lemaire et al., 2016;
191 Pullen et al., 2010; Sekine et al., 1994). Analysis of multiple published scRNA-seq datasets
192 showed that *LDHA* is expressed in the human pancreatic β cell, albeit at much lower levels
193 than in neighboring α cells. It should be noted that the levels detected could represent
194 contamination artefacts. In the presence of other LDH isoforms (*vide infra*), these relatively
195 low levels of LDHA are likely sufficient to catalyze lactate production given the abundance of
196 its substrate pyruvate in the β cell. Human β cells were also found to specifically and strongly
197 express *LDHB*, which encodes the beta subunit of LDH. While an increased ratio of
198 *LDHB*:*LDHA* is thought to catalyze production of pyruvate from lactate (Nam et al., 2016),
199 recent studies have shown that *LDHB*-alone can replace the activity of LDHA to produce
200 lactate. Indeed, deletion of both *LDHA* and *LDHB* is required to reduce lactate secretion in
201 cells, whereas deletion of either *LDHA* or *LDHB* is without effect (Deng et al., 2022; Ždraljević
202 et al., 2018).

203 Providing strong human genetic evidence for our findings here, studies have shown that
204 Hyperinsulinemic hypoglycemic familial 7 (HHF7) patients develop exercise-induced
205 hyperinsulinemia due to gain-of-function mutations in the cell surface lactate transporter
206 MCT1/SLC16A1 (Otonkoski et al., 2007; Pullen et al., 2012). During exercise, when
207 extracellular lactate levels are increased, cytoplasmic pyruvate accumulation is able to fuel
208 the TCA cycle, leading to non glucose-dependent insulin release (Otonkoski et al., 2007;
209 Pullen et al., 2012). To allow such lactate \rightarrow pyruvate conversion, human β cells must express
210 sufficient LDH, and in particular *LDHB*, as shown here

211 It is also possible that other cell types within the islets, such as α -cells, contribute to the
212 accumulation of lactate. In particular, human α cells account for ~35% of the entire islet and
213 express *LDHA* at levels six times higher than β cells (Moin et al., 2020; Sanchez et al., 2021).
214 However, a major source of α cell lactate is via monocarboxylate transporters (Pullen and
215 Rutter, 2013; Schuit et al., 2012; Zaborska et al., 2020), which are unlikely to play a role here
216 as lactate was absent from the tracing medium. In addition, while the total amount of lactate
217 was only doubled in humans compared to mice, the m+3 lactate accumulation was ~six-fold
218 higher in human *versus* mouse islets. Taken together these data suggest that, although there
219 might be a contribution of lactate from α cells, this is unlikely to account for the whole m+3
220 lactate increase detected here.

221 Human and mouse islets display a greater accumulation of lactate₁₁₀, rather than lactate₀₁₁.
222 While the accumulation of lactate₁₁₀ is indistinguishable in the PDH- and PC-mediated TCA
223 cycle, the 011 isotopomer would only derive from the reductive metabolism of PC-derived
224 glutamate. Corroborating this, in islets from both species, the major glutamate isotopomer
225 derived from exogenous ¹³C₆ glucose was glutamate₀₀₀₁₁. Although glutamate is not a TCA
226 cycle metabolite, it is in rapid exchange with α-KG and can be used as a read-out of TCA cycle
227 flux through PDH or PC. Consequently, the accumulation of glutamate₀₀₀₁₁ provides further
228 evidence for a higher reliance of the TCA cycle on the activity of PDH, rather than PC.
229 Although PC and PDH were thought to contribute equally to the TCA cycle in β-cells (Cline et
230 al., 2004; Cline et al., 2011; Simpson et al., 2006), previous studies have shown that high
231 glucose concentrations in vitro, more reflective of those seen post-prandially in vivo, are
232 associated with an increase toward PDH activity (Alves et al., 2015; Lewandowski et al., 2020;
233 Lu et al., 2002a). Our studies thus show that the relative contribution of PC to the TCA cycle
234 is much lower than PDH (~20%), confirming findings from Alves et al in glucose-traced INS-1
235 cells (Alves et al., 2015) and Lewandowski et al in human islets (Lewandowski et al., 2020).
236 While anaplerosis through PC is relatively limited in the rβ cell, we note that glucose carbons
237 can repeatedly transit the PEP cycle to generate ATP/ADP independently of oxidative
238 phosphorylation (Lewandowski et al., 2020). As such, PC is able to make disproportionate
239 contributions to K_{ATP} channel closure, and hence the triggering phase of insulin secretion, by
240 generating localized increases in ATP/ADP (Merrins et al., 2022). However, insulin secretion
241 is not the only energy sink on the β cell, and glucose flux through PDH is likely to provide a
242 source of glucose oxidation to support other demands such as continued insulin release and
243 protein synthesis.

244 What might be the role of direct pyruvate to lactate conversion in pancreatic β cells? Since the
245 action of LDH leads to oxidation of NADH to NAD⁺, lactate accumulation could provide a
246 source of reducing equivalents to support other NADH-producing metabolic pathways.
247 Providing evidence for a contribution of pyruvate to lactate conversion in NADH/NAD⁺
248 balance, the alanine isotopomer distribution showed almost exclusively the accumulation of
249 alanine₀₀₀ and alanine₁₁₁. This finding suggests that the pyruvate accumulated downstream of
250 the TCA cycle is mostly employed in the production of lactate₁₁₀. Since the conversion of
251 pyruvate to lactate is associated with the generation of cytosolic NAD⁺, higher levels of
252 lactate₁₁₁ in humans might reflect an increase in the activity of NADH-producing pathways
253 relative to rodents. However, β cells are thought to already have a large capacity to produce
254 reducing equivalents, for example via the glycerol phosphate and malate-aspartate shuttles
255 (Campbell and Newgard, 2021). Moreover, while LDH was found to form nanodomains with
256 K_{ATP} channels, supporting production of high local levels of NAD⁺, levels of lactate were
257 insufficient to influence K_{ATP} channel conductance (Ho et al., 2022). Lactate might be relatively
258 more important when REDOX capacity is stretched, for example during ageing and ER stress,
259 when NADH/NAD⁺ pathways become more pronounced (Covarrubias et al., 2020). As such,
260 future studies are warranted to investigate the functional impact of pyruvate to lactate
261 conversion on β cell metabolism and function.

262 There are a number of limitations in the present studies. Firstly, ¹³C₆ glucose labeling was
263 conducted in whole islets rather than purified cell populations, excluding definitive annotation
264 of β cell metabolism. However, since ¹³C becomes diluted following achievement of steady-
265 state, a large number (hundreds) of islets are required for accurate signal detection,
266 particularly so for NMR. Secondly, the results are derived from male and female non-diabetic

267 donors, as well as male mouse islets. Going forwards, results should be stratified according
268 to age, sex, BMI and T2D status, although we note that 800 MHz NMR capacity, probe time
269 and helium availability largely preclude such experiments for the moment. Thirdly, whereas
270 isotopologue and isotopomer data accurately delineate glucose fluxes and pyruvate
271 management in islets, they are unable to measure the relative contribution of the identified
272 pathways to insulin secretion. Nonetheless, our data provide a detailed and interrogable map
273 of glucose metabolism pertaining to steady state insulin release in human and mouse islets,
274 as well as other critical β cell housekeeping functions. Lastly, glucotoxicity might induce the
275 upregulation of disallowed genes in β -cells (Bensellam et al., 2018). However, it is unlikely
276 that the timings (12 hrs) and glucose concentration (10 mM) used here would overtly influence
277 human β -cell lactate production, since *LDHA* or *LDHB* were not found to be differentially
278 expressed in human islets exposed to 22.2 mM glucose for 4 days (Marselli et al., 2020).

279 In summary, by combining MID and multiplet analyses, we show that glucose makes a similar
280 contribution to glycolysis and the TCA cycle in human and mouse islets. Furthermore, the
281 isotopomer distribution confirms that, in both species, the relative activity of PDH is much
282 higher than that of PC at elevated glucose concentration. However, the production of fully-
283 labeled lactate was found to be significantly higher in human versus mouse islets, which is
284 likely due to high expression levels of *LDHB*. Together, these results demonstrate that lactate
285 production needs to be reconsidered in light of human beta cell metabolism and REDOX
286 balance.

287 **METHODS**

288 **Ethics**

289 Animal studies were regulated by the Animals (Scientific Procedures) Act 1986 of the U.K.
290 (Personal Project Licences P2ABC3A83 and PP1778740). Approval was granted by the
291 University of Birmingham's Animal Welfare and Ethical Review Body (AWERB).

292 Human islets (Lille): human pancreatic tissues were harvested from brain-dead adult donors
293 in accordance with the Lille clinical islet transplantation program's traceability requirements
294 (clinicaltrials.gov, NCT01123187, NCT00446264, NCT01148680), and were approved in
295 agreement with French regulations and the Ethical Committees of the University of Lille and
296 the Centre Hospitalier Régional Universitaire de Lille.

297 Human islets (Milan): the use of human islets for research was approved by the Ethics
298 Committee of San Raffaele Hospital in Milan (IPF002-2014).

299 Studies with human tissue were approved by the University of Birmingham Ethics Committee,
300 the University of Oxford Ethics Committee, as well as the National Research Ethics Committee
301 (REC reference 16/NE/0107, Newcastle and North Tyneside, UK).

302 **Mouse islets**

303 Male 8 to 12 week-old CD1 mice (Charles River stock no. 022) were used as tissue donors.
304 Briefly, animals were culled using a schedule-1 method followed by injection of the common
305 bile duct with 1 mg/mL collagenase NB 8 (Serva) in RPMI 1640 (Gibco) and pancreas
306 dissection. After dissection, the pancreas was incubated in a water bath at 37°C for 12 min.
307 Subsequently, the tissues were shaken in 15 mL of RPMI 1640 and centrifuged for 1 min at
308 1500 rpm three times to induce mechanical digestion. Islets were separated using Histopaque-
309 1119 and 1083 (Sigma-Aldrich) gradients, before hand-picking and culture. Unless otherwise
310 stated, the islets obtained were kept in culture in RPMI 1640 supplemented with 10% fetal
311 bovine serum (FBS, Gibco), 100 units/mL penicillin, and 100 µg/mL streptomycin (Sigma-
312 Aldrich), at 37°C and 5% CO₂.

313 **Human islets**

314 Islets were provided by the San Raffaele Diabetes Research Institute (DRI), Milan, Italy (ECIT
315 Islet for Basic Research program), as well as the Translational Research for Diabetes at the
316 University of Lille, Lille, France.

317 Upon receipt, the islets were cleared of possible debris via filtration with a 40 µm cut-off filter,
318 hand-picked and cultured in CMRL medium (Corning) supplemented with 5.5 mM glucose
319 (Sigma-Aldrich), 10% FBS, 100 units/mL penicillin, 100 µg/mL streptomycin and 0.1%
320 amphotericin B (Sigma-Aldrich) at 37°C and 5% CO₂. Donor characteristics are reported in
321 Table 1.

322 **¹³C₆ glucose tracing**

323 For ¹³C₆ glucose tracing, 60 (for GC-MS) or 150-230 (for NMR) islets were used. Isolated islets
324 were cultured in RPMI 1640, no glucose medium (Gibco), supplemented with 10% BSA, 10%
325 FBS, 100 units/mL penicillin, and 100 µg/mL streptomycin plus 10 mM ¹³C₆ glucose (Sigma-

326 Aldrich). After 24 h, the metabolites were extracted adding HPLC-grade methanol, HPLC-
327 grade distilled H₂O containing 1 µg/mL D6-glutaric acid and HPLC-grade chloroform (all from
328 Sigma-Aldrich) in a 1:1:1 ratio, to the islets. Following centrifugation, the polar fractions were
329 collected and vacuum dried before either GC-MS or NMR analyses.

330 **GC-MS**

331 The dried polar extracts were prepared for GC-MS analysis through solubilization in 40 µL of
332 2% methoxyamine hydrochloric acid in pyridine (Fisher Scientific) at 60°C for 60 min and
333 derivatization with 60 µL of N-tertbutyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA)
334 with 1% tertbutyldimethyl-chlorosilane (TBDMCS) (both from Sigma-Aldrich). The suspension
335 was further incubated at 60°C for 60 min, before being centrifuged at 13300 rpm for 10 min at
336 4°C and transferred to chromatography vials with a glass insert (Restek) for GC-MS analysis.
337 The samples were analyzed on an Agilent 8890 GC and 5977B MSD system. To do this, 1 µL
338 of sample was injected in splitless mode with helium carrier gas at a rate of 1.0 mL/min. The
339 compound detection was carried out in scan mode and total ion counts of each metabolite
340 were normalized to the internal standard D6-glutaric acid using an in-house MATLAB script.

341 **NMR spectroscopy**

342 Following the ¹³C₆ glucose tracing, the dried polar metabolites were resuspended in 60 µL of
343 phosphate buffer: 57.8 mM disodium phosphate (Na₂HPO₄, Sigma-Aldrich), 42.2 mM
344 monosodium phosphate (NaH₂PO₄, Sigma-Aldrich), 0.5 mM 3-(trimethylsilyl)
345 2,2,3,3-d4 acid sodium salt (D4-TMSP, Sigma-Aldrich) in deuterium oxide (D₂O, Sigma-
346 Aldrich). Subsequently, the samples were centrifuged for 10 min at 14800 rpm and sonicated
347 in an ultrasonic bath for 5 min, before being loaded into NMR tubes (outer diameter: 1.7 mm,
348 Bruker) for acquisition. A Bruker Neo 800 MHz NMR spectrometer equipped with a 1.7 mm z-
349 PFG TCI Cryoprobe was used to acquire 2D ¹H, ¹³C-HSQC NMR spectra. The HSQC spectra
350 were acquired with echo/anti-echo gradient coherence selection with an additional pre-
351 saturation for suppressing the residual water resonance. The spectral widths were 15.6298
352 ppm and 189.7832 ppm in the ¹H and ¹³C dimension, 512 complex data points were acquired
353 for the ¹H dimension and 25% (512) out of 2048 complex data points were acquired for the
354 ¹³C indirect dimension using a non-uniform sampling scheme. Apparent ¹³C, ¹³C J-coupling
355 was enhanced four-fold. The interscan relaxation delay was set to 1.5 s. 2D ¹H, ¹³C-HSQC
356 spectra were reconstructed via the compressed sensing IRLS algorithm using the MDDNMR
357 (version 2.5) (Kazimierczuk and Orekhov, 2011) and NMRPipe (version 9.2) (Delaglio et al.,
358 1995) software. All NMR spectra were analysed in the MATLAB based MetaboLab software
359 package (Ludwig and Günther, 2011).

360 **Transcriptomics analysis**

361 Quantification data for all published scRNA-seq datasets were kindly provided by Leon Van
362 Gorp (van Gorp et al., 2022). In brief, pseudo-counts were normalized for each data set using
363 Seurat (Satija et al., 2015), and the cell identity was assigned based on the requirement for
364 hormone gene expression to be in the top 1% expressed genes in each cell using Aucell (Aibar
365 et al., 2017). Quantification for published FACS sorted alpha and β cells were obtained from
366 GEO database repository under Arda et al (Arda et al., 2016). The raw read files for each cell
367 type were merged, trimmed and the transcripts were quantified using Kallisto (Bray et al.,

368 2016) or aligned and quantified as previously described (Akerman et al., 2020), with similar
369 results.

370 **Statistics and reproducibility**

371 Statistical significance was assessed with GraphPad Prism 9 (version 9.2.0). Pairwise
372 comparisons were made using Welch's test (assuming non-equal standard deviation between
373 groups). Multiple interactions were determined using one-way ANOVA or two-way ANOVA,
374 with Sidak's post-hoc test.

375 All error bars represent mean \pm S.E.M. and a p-value less than 0.05 was considered
376 significant: *p< 0.05; **p< 0.01; ***p< 0.001, ****p<0.0001.

377

378 **AUTHOR CONTRIBUTIONS**

379 F.C. performed experiments, analysed data and wrote the manuscript. D.N. and H.R.M.
380 performed experiments. Z.J. and I.A. performed bioinformatic analysis. R.N., L.P., C.B., F.P.
381 and J.K-C. isolated and provided human islets. C.L. performed $^1\text{H}, ^{13}\text{C}$ -HSQC NMR
382 experiments and analysis. G.G.L., D.T. and J.R. ran GC-MS on $^{13}\text{C}_6$ glucose labelled samples
383 and provided analysis. D.J.H. supervised the studies, provided analysis and wrote the
384 manuscript with contributions from C.L. and D.T. All authors read and approved the studies.

385 **ACKNOWLEDGEMENTS**

386 D.J.H. was supported by MRC (MR/N00275X/1 and MR/S025618/1) and Diabetes UK
387 (17/0005681) Project Grants, as well as a UKRI ERC Frontier Research Guarantee Grant
388 (EP/X026833/1). This project has received funding from the European Research Council
389 (ERC) under the European Union's Horizon 2020 research and innovation programme
390 (Starting Grant 715884 to D.J.H.). G.G.L. was supported by a Wellcome Trust Senior
391 Fellowship (104612/Z/14/Z). D.T. was supported by a Cancer Research UK Programme Grant
392 (C42109/A24747). The research was funded by the National Institute for Health Research
393 (NIHR) Oxford Biomedical Research Centre (BRC). The views expressed are those of the
394 author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. We
395 would like to acknowledge the support and resources of the Birmingham Metabolic Tracer
396 Analysis Core. We thank Dr. Matthew J. Merrins (University of Wisconsin) for critical
397 comments on the manuscript.

398 **DISCLOSURE STATEMENT**

399 D.J.H. receives licensing revenue from Celtryns Research.

400

401 **REFERENCES**

402

403 Aibar, S., Gonzalez-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., Hulselmans, G., Rambow, F., Marine, J.C., Geurts, P., Aerts, J., et al. (2017). SCENIC: single-cell regulatory network inference and clustering. *Nat Methods* 14, 1083-1086.

404

405 Ainscow, E.K., Zhao, C., and Rutter, G.A. (2000). Acute overexpression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion. *Diabetes* 49, 1149-1155.

406

407 Akerman, I., Kasaai, B., Bazarova, A., Sang, P.B., Peiffer, I., Artufel, M., Derelle, R., Smith, G., Rodriguez-Martinez, M., Romano, M., et al. (2020). A predictable conserved DNA base composition signature defines human core DNA replication origins. *Nat Commun* 11, 4826.

408

409 Akerman, I., Tu, Z., Beucher, A., Rolando, D.M.Y., Sauty-Colace, C., Benazra, M., Nakic, N., Yang, J., Wang, H., Pasquali, L., et al. (2017). Human Pancreatic beta Cell lncRNAs Control Cell-Specific Regulatory Networks. *Cell Metab* 25, 400-411.

410

411 Alves, T.C., Pongratz, R.L., Zhao, X., Yarborough, O., Sereda, S., Shirihai, O., Cline, G.W., Mason, G., and Kibbey, R.G. (2015). Integrated, Step-Wise, Mass-Isotopomeric Flux Analysis of the TCA Cycle. *Cell Metab* 22, 936-947.

412

413 Arda, H.E., Li, L., Tsai, J., Torre, E.A., Rosli, Y., Peiris, H., Spitale, R.C., Dai, C., Gu, X., Qu, K., et al. (2016). Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human beta Cell Function. *Cell Metab* 23, 909-920.

414

415 Benninger, R.K.P., and Hodson, D.J. (2018). New Understanding of β -Cell Heterogeneity and In Situ Islet Function. *Diabetes* 67, 537-547.

416

417 Benninger, R.K.P., and Kravets, V. (2021). The physiological role of β -cell heterogeneity in pancreatic islet function. *Nature Reviews Endocrinology*.

418

419 Bensellam, M., Jonas, J.C., and Laybutt, D.R. (2018). Mechanisms of beta-cell dedifferentiation in diabetes: recent findings and future research directions. *J Endocrinol* 236, R109-R143.

420

421 Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. *Nat Biotechnol* 34, 525-527.

422

423 Cabrera, O., Berman, D.M., Kenyon, N.S., Ricordi, C., Berggren, P.O., and Caicedo, A. (2006). The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. *Proceedings of the National Academy of Sciences of the United States of America* 103, 2334-2339.

424

425 Campbell, J.E., and Newgard, C.B. (2021). Mechanisms controlling pancreatic islet cell function in insulin secretion. *Nat Rev Mol Cell Biol* 22, 142-158.

426

427 Cline, G.W., Lepine, R.L., Papas, K.K., Kibbey, R.G., and Shulman, G.I. (2004). ^{13}C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells. *J Biol Chem* 279, 44370-44375.

428

429 Cline, G.W., Pongratz, R.L., Zhao, X., and Papas, K.K. (2011). Rates of insulin secretion in INS-1 cells are enhanced by coupling to anaplerosis and Kreb's cycle flux independent of ATP synthesis. *Biochem Biophys Res Commun* 415, 30-35.

430

431 Covarrubias, A.J., Perrone, R., Grozio, A., and Verdin, E. (2020). NAD $^+$ metabolism and its roles in cellular processes during ageing. *Nature Reviews Molecular Cell Biology* 22, 119-141.

432

433 De Vos, A., Heimberg, H., Quartier, E., Huypens, P., Bouwens, L., Pipeleers, D., and Schuit, F. (1995). Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. *Journal of Clinical Investigation* 96, 2489-2495.

434

435 Delaglio, F., Grzesiek, S., Vuister, G., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe: A multidimensional spectral processing system based on UNIX pipes. *Journal of Biomolecular NMR* 6.

436

437 Deng, H., Gao, Y., Trappetti, V., Hertig, D., Karatkevich, D., Losmanova, T., Urzi, C., Ge, H., Geest, G.A., Bruggmann, R., et al. (2022). Targeting lactate dehydrogenase B-dependent mitochondrial metabolism affects tumor initiating cells and inhibits tumorigenesis of non-small cell lung cancer by inducing mtDNA damage. *Cellular and Molecular Life Sciences* 79.

438

439 Enge, M., Arda, H.E., Mignardi, M., Beausang, J., Bottino, R., Kim, S.K., and Quake, S.R. (2017). Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns. *Cell* 171, 321-330 e314.

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456 Ferdaoussi, M., Dai, X., Jensen, M.V., Wang, R., Peterson, B.S., Huang, C., Ilkayeva, O.,
457 Smith, N., Miller, N., Hajmrle, C., et al. (2015). Isocitrate-to-SENP1 signaling amplifies insulin
458 secretion and rescues dysfunctional beta cells. *J Clin Invest* 125, 3847-3860.

459 Foster, H.R., Ho, T., Potapenko, E., Sdao, S.M., Huang, S.M., Lewandowski, S.L.,
460 VanDeusen, H.R., Davidson, S.M., Cardone, R.L., Prentki, M., et al. (2022). β -cell deletion of
461 the PKm1 and PKm2 isoforms of pyruvate kinase in mice reveals their essential role as
462 nutrient sensors for the KATP channel. *eLife* 11.

463 Henquin, J.C. (2000). Triggering and amplifying pathways of regulation of insulin secretion by
464 glucose. *Diabetes* 49, 1751-1760.

465 Ho, T., Potapenko, E., Davis, D.B., and Merrins, M.J. (2022). A plasma membrane-associated
466 glycolytic metabolon is functionally coupled to KATP channels in pancreatic α and β cells from
467 humans and mice. *bioRxiv*.

468 Hodson, D.J., Mitchell, R.K., Bellomo, E.A., Sun, G., Vinet, L., Meda, P., Li, D., Li, W.H.,
469 Bugliani, M., Marchetti, P., et al. (2013). Lipotoxicity disrupts incretin-regulated human beta
470 cell connectivity. *Journal of Clinical Investigation* 123, 4182-4194.

471 Kazimierczuk, K., and Orekhov, V.Y. (2011). Accelerated NMR Spectroscopy by Using
472 Compressed Sensing. *Angewandte Chemie International Edition* 50, 5556-5559.

473 Lawlor, N., George, J., Bolisetty, M., Kursawe, R., Sun, L., Sivakamasundari, V., Kycia, I.,
474 Robson, P., and Stitzel, M.L. (2017). Single-cell transcriptomes identify human islet cell
475 signatures and reveal cell-type-specific expression changes in type 2 diabetes. *Genome
476 Research* 27, 208-222.

477 Lemaire, K., Thorrez, L., and Schuit, F. (2016). Disallowed and Allowed Gene Expression:
478 Two Faces of Mature Islet Beta Cells. *Annu Rev Nutr* 36, 45-71.

479 Lewandowski, S.L., Cardone, R.L., Foster, H.R., Ho, T., Potapenko, E., Poudel, C.,
480 VanDeusen, H.R., Sdao, S.M., Alves, T.C., Zhao, X., et al. (2020). Pyruvate Kinase Controls
481 Signal Strength in the Insulin Secretory Pathway. *Cell Metabolism* 32, 736-750.e735.

482 Lu, Mulder, H., Zhao, P., Burgess, S.C., Jensen, M.V., Kamzolova, S., Newgard, C.B., and
483 Sherry, A.D. (2002a). ^{13}C NMR isotopomer analysis reveals a connection between pyruvate
484 cycling and glucose-stimulated insulin secretion (GSIS). *Proc Natl Acad Sci U S A* 99, 2708-
485 2713.

486 Lu, D., Mulder, H., Zhao, P., Burgess, S.C., Jensen, M.V., Kamzolova, S., Newgard, C.B., and
487 Sherry, A.D. (2002b). ^{13}C NMR isotopomer analysis reveals a connection between pyruvate
488 cycling and glucose-stimulated insulin secretion (GSIS). *Proc Natl Acad Sci U S A* 99, 2708-
489 2713.

490 Ludwig, C., and Günther, U.L. (2011). MetaboLab - advanced NMR data processing and
491 analysis for metabolomics. *BMC Bioinformatics* 12.

492 Malinowski, R.M., Ghiasi, S.M., Mandrup-Poulsen, T., Meier, S., Lerche, M.H., Ardenkjær-
493 Larsen, J.H., and Jensen, P.R. (2020). Pancreatic β -cells respond to fuel pressure with an
494 early metabolic switch. *Scientific Reports* 10.

495 Marselli, L., Piron, A., Suleiman, M., Colli, M.L., Yi, X., Khamis, A., Carrat, G.R., Rutter, G.A.,
496 Bugliani, M., Giusti, L., et al. (2020). Persistent or Transient Human β Cell Dysfunction Induced
497 by Metabolic Stress: Specific Signatures and Shared Gene Expression with Type 2 Diabetes.
498 *Cell Reports* 33.

499 Merrins, M.J., Corkey, B.E., Kibbey, R.G., and Prentki, M. (2022). Metabolic cycles and signals
500 for insulin secretion. *Cell Metabolism* 34, 947-968.

501 Moin, A.S.M., Cory, M., Gurlo, T., Saisho, Y., Rizza, R.A., Butler, P.C., and Butler, A.E. (2020).
502 Pancreatic alpha-cell mass across adult human lifespan. *Eur J Endocrinol* 182, 219-231.

503 Nam, K., Oh, S., and Shin, I. (2016). Ablation of CD44 induces glycolysis-to-oxidative
504 phosphorylation transition via modulation of the c-Src-Akt-LKB1-AMPKalpha pathway.
505 *Biochem J* 473, 3013-3030.

506 Nasteska, D., Fine, N.H.F., Ashford, F.B., Cuozzo, F., Viloria, K., Smith, G., Dahir, A., Dawson,
507 P.W.J., Lai, Y.-C., Bastidas-Ponce, A., et al. (2021). PDX1LOW MAFALOW β -cells contribute
508 to islet function and insulin release. *Nature Communications* 12, 674.

509 Otonkoski, T., Jiao, H., Kaminen-Ahola, N., Tapia-Paez, I., Ullah, M.S., Parton, L.E., Schuit,
510 F., Quintens, R., Sipila, I., Mayatepek, E., et al. (2007). Physical exercise-induced

511 hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic beta
512 cells. *American Journal of Human Genetics* 81, 467-474.

513 Pullen, T.J., Khan, A.M., Barton, G., Butcher, S.A., Sun, G., and Rutter, G.A. (2010).
514 Identification of genes selectively disallowed in the pancreatic islet. *Islets* 2, 89-95.

515 Pullen, T.J., and Rutter, G.A. (2013). When less is more: the forbidden fruits of gene
516 repression in the adult beta-cell. *Diabetes Obes Metab* 15, 503-512.

517 Pullen, T.J., Sylow, L., Sun, G., Halestrap, A.P., Richter, E.A., and Rutter, G.A. (2012).
518 Overexpression of Monocarboxylate Transporter-1 (Slc16a1) in Mouse Pancreatic beta-Cells
519 Leads to Relative Hyperinsulinism During Exercise. *Diabetes* 61, 1719-1725.

520 Rodriguez-Diaz, R., Dando, R., Jacques-Silva, M.C., Fachado, A., Molina, J., Abdulreda,
521 M.H., Ricordi, C., Roper, S.D., Berggren, P.O., and Caicedo, A. (2011). Alpha cells secrete
522 acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. *Nature
523 Medicine* 17, 888-892.

524 Rorsman, P., and Ashcroft, F.M. (2018). Pancreatic beta-Cell Electrical Activity and Insulin
525 Secretion: Of Mice and Men. *Physiol Rev* 98, 117-214.

526 Rutter, G.A., Pullen, T.J., Hodson, D.J., and Martinez-Sanchez, A. (2015). Pancreatic beta-
527 cell identity, glucose sensing and the control of insulin secretion. *Biochem J* 466, 203-218.

528 Sanchez, P.K.M., Khazaei, M., Gatineau, E., Geravandi, S., Lupse, B., Liu, H., Dringen, R.,
529 Wojtusciszyn, A., Gilon, P., Maedler, K., et al. (2021). LDHA is enriched in human islet alpha
530 cells and upregulated in type 2 diabetes. *Biochem Biophys Res Commun* 568, 158-166.

531 Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. (2015). Spatial reconstruction
532 of single-cell gene expression data. *Nat Biotechnol* 33, 495-502.

533 Schuit, F., Van Lommel, L., Granvik, M., Goyvaerts, L., de Faudeur, G., Schraenen, A., and
534 Lemaire, K. (2012). beta-cell-specific gene repression: a mechanism to protect against
535 inappropriate or maladjusted insulin secretion? *Diabetes* 61, 969-975.

536 Sdao, S.M., Ho, T., Poudel, C., Foster, H.R., De Leon, E.R., Adams, M.T., Lee, J.H., Blum,
537 B., Rane, S.G., and Merrins, M.J. (2021). CDK2 limits the highly energetic secretory program
538 of mature beta cells by restricting PEP cycle-dependent K(ATP) channel closure. *Cell Rep* 34,
539 108690.

540 Segerstolpe, Å., Palasantza, A., Eliasson, P., Andersson, E.-M., Andréasson, A.-C., Sun, X.,
541 Picelli, S., Sabirsh, A., Clausen, M., Bjursell, M.K., et al. (2016). Single-Cell Transcriptome
542 Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes. *Cell Metabolism* 24, 593-
543 607.

544 Sekine, N., Cirulli, V., Regazzi, R., Brown, L.J., Gine, E., Tamarit-Rodriguez, J., Girotti, M.,
545 Marie, S., MacDonald, M.J., Wollheim, C.B., et al. (1994). Low lactate dehydrogenase and
546 high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role
547 in nutrient sensing. *Journal of Biological Chemistry* 269, 4895-4902.

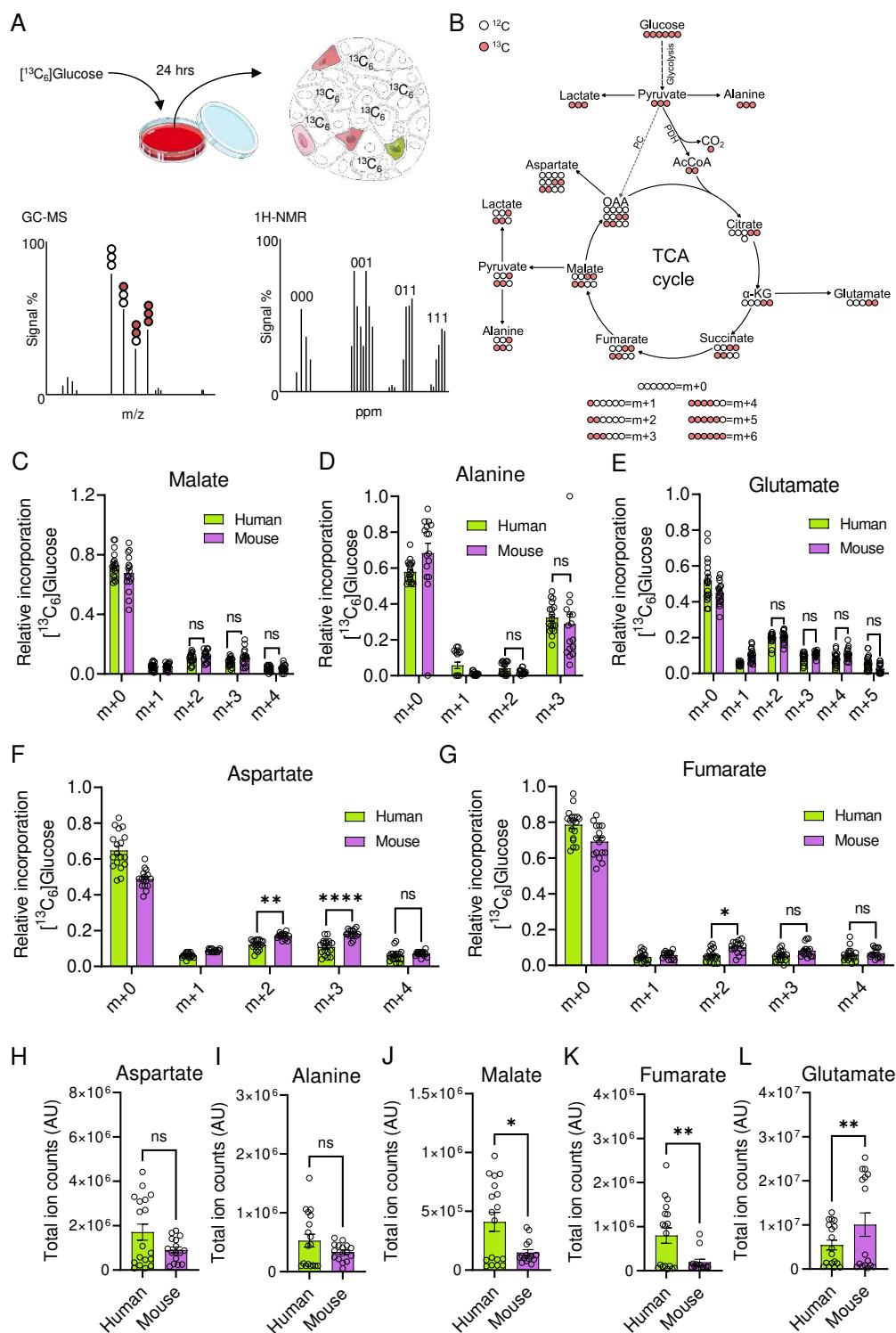
548 Simpson, N.E., Khokhlova, N., Oca-Cossio, J.A., and Constantinidis, I. (2006). Insights into
549 the role of anaplerosis in insulin secretion: A ¹³C NMR study. *Diabetologia* 49, 1338-1348.

550 Spegel, P., Sharoyko, V.V., Goehring, I., Danielsson, A.P., Malmgren, S., Nagorny, C.L.,
551 Andersson, L.E., Koeck, T., Sharp, G.W., Straub, S.G., et al. (2013). Time-resolved
552 metabolomics analysis of beta-cells implicates the pentose phosphate pathway in the control
553 of insulin release. *Biochem J* 450, 595-605.

554 Thorens, B., Sarkar, H.K., Kaback, H.R., and Lodish, H.F. (1988). Cloning and functional
555 expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and
556 beta-pancreatic islet cells. *Cell* 55, 281-290.

557 van Gurp, L., Fodoulian, L., Oropeza, D., Furuyama, K., Bru-Tari, E., Vu, A.N., Kaddis, J.S.,
558 Rodriguez, I., Thorel, F., and Herrera, P.L. (2022). Generation of human islet cell type-specific
559 identity genesets. *Nat Commun* 13, 2020.

560 Wallace, M., Whelan, H., and Brennan, L. (2013). Metabolomic analysis of pancreatic beta
561 cells following exposure to high glucose. *Biochimica et Biophysica Acta (BBA) - General
562 Subjects* 1830, 2583-2590.

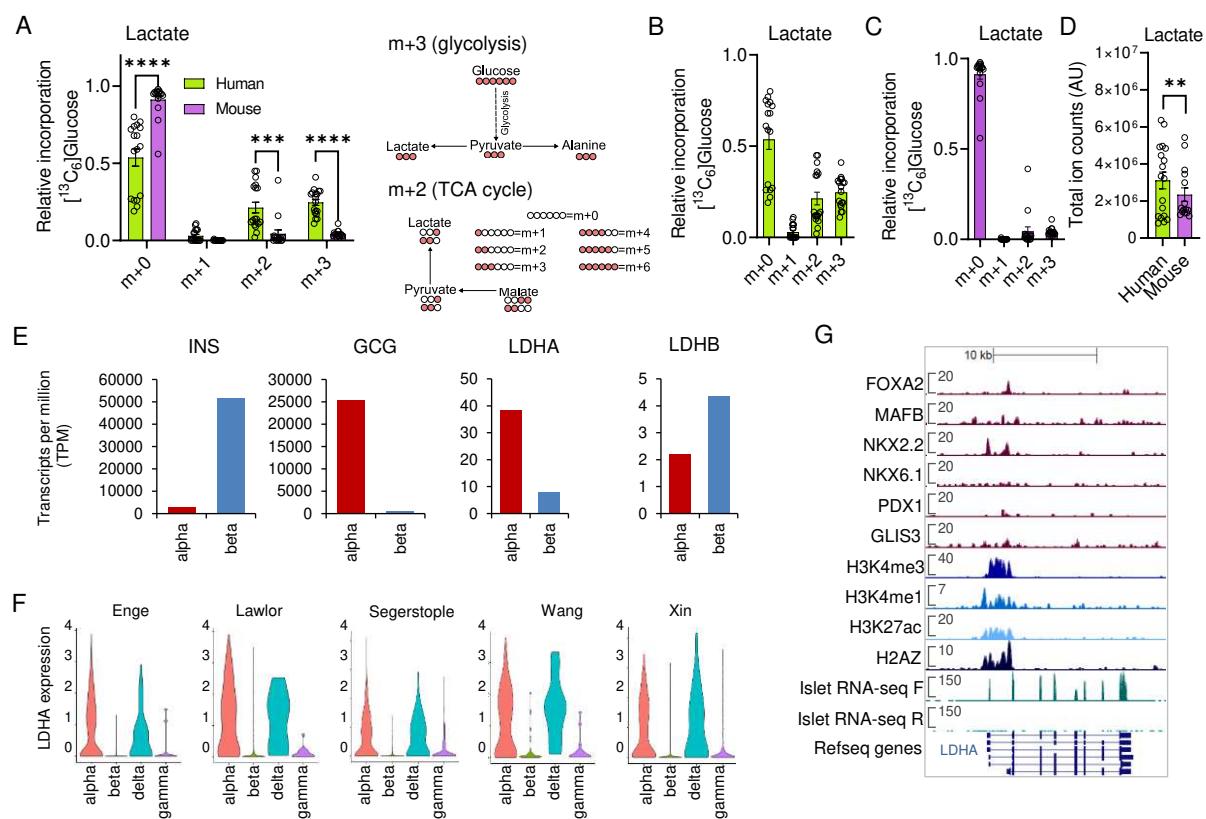

563 Wang, Y.J., Schug, J., Won, K.J., Liu, C., Naji, A., Avrahami, D., Golson, M.L., and Kaestner,
564 K.H. (2016). Single-Cell Transcriptomics of the Human Endocrine Pancreas. *Diabetes* 65,
565 3028-3038.

566 Xin, Y., Gutierrez, G.D., Okamoto, H., Kim, J., Lee, A.H., Adler, C., Ni, M., Yancopoulos, G.D.,
567 Murphy, A.J., and Gromada, J. (2018). Pseudotime Ordering of Single Human beta-Cells
568 Reveals States of Insulin Production and Unfolded Protein Response. *Diabetes*.
569 Zaborska, K.E., Dadi, P.K., Dickerson, M.T., Nakhe, A.Y., Thorson, A.S., Schaub, C.M., Graff,
570 S.M., Stanley, J.E., Kondapavuluru, R.S., Denton, J.S., et al. (2020). Lactate activation of
571 alpha-cell KATP channels inhibits glucagon secretion by hyperpolarizing the membrane
572 potential and reducing Ca^{2+} entry. *Mol Metab* 42, 101056.
573 Ždrálević, M., Brand, A., Di Ianni, L., Dettmer, K., Reinders, J., Singer, K., Peter, K., Schnell,
574 A., Bruss, C., Decking, S.-M., et al. (2018). Double genetic disruption of lactate
575 dehydrogenases A and B is required to ablate the “Warburg effect” restricting tumor growth to
576 oxidative metabolism. *Journal of Biological Chemistry* 293, 15947-15961.

577

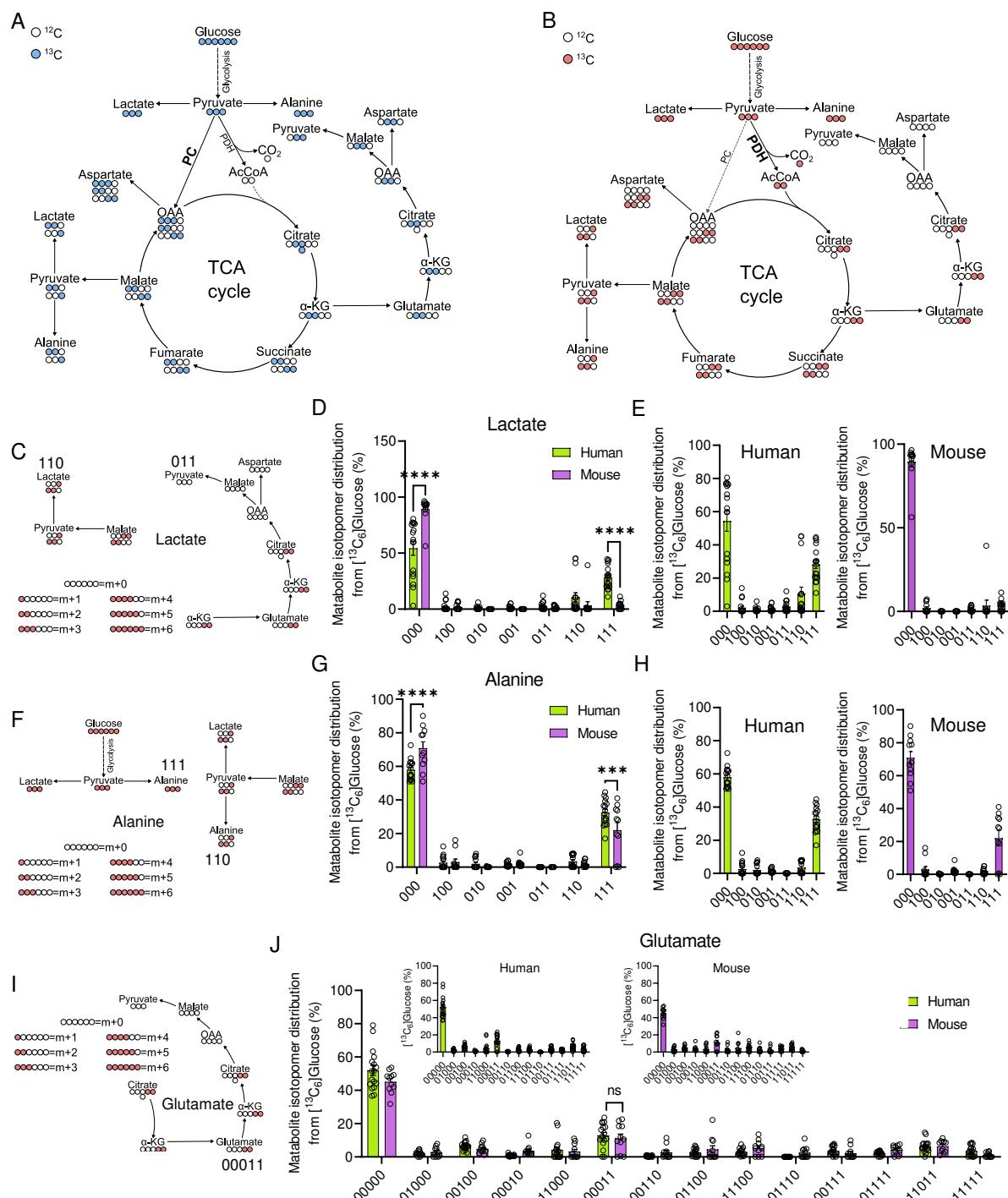
578

579 **FIGURES AND FIGURE LEGENDS**



580
581 **Figure 1: MID analysis of glucose fate in human and mouse islets. A)** Schematic showing
582 GC-MS and ¹H-NMR-based ¹³C₆ glucose-tracing protocol in primary islets. **B)** Schematic showing mass
583 isotopomer distribution (MID) analysis of ¹³C₆ glucose-tracing data. **C-E)** MID analysis showing similar incorporation of ¹³C from ¹³C₆ glucose into malate (C), alanine (D) and glutamate (E) in human and mouse islets. **F, G)** MID analysis showing increased incorporation of ¹³C from ¹³C₆ glucose into m+2 aspartate (F), and m+2 and m+3 fumarate (G) in mouse compared to human islets. **H, I)** Total amount of extracted aspartate (H) and alanine (I) is similar in human and mouse islets. **(J-L)** Total amount of extracted malate (J) and

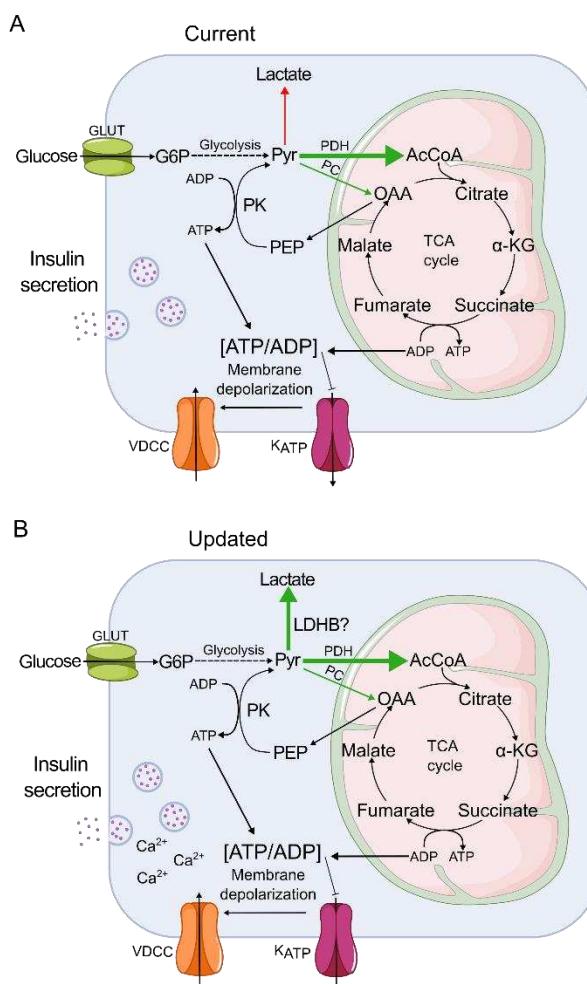
589 fumarate (K) is decreased in mouse relative to human islets, whereas glutamate (L) is
590 increased. For all data, n = 18 independent replicates from 9 human donors; n = 10 islet
591 preparations from 15 animals. C-G were analyzed using two-way ANOVA and Sidak's post-
592 hoc test. H-L were analyzed using Welch's test. Bar graphs show individual datapoints and
593 mean \pm SEM. AU = arbitrary unit.


594

595

596
597 **Figure 2: Human and mouse islets convert pyruvate to lactate. A-C)** MID analysis shows
598 detectable glucose incorporation into m+2 (TCA cycle) and m+3 (pyruvate conversion) lactate,
599 with more accumulation in human (A, B) versus mouse (A, C) islets. **D)** Total lactate production
600 is higher in human compared to mouse islets. **E)** Normalized mRNA levels (transcripts per
601 million, TPM) for *INS*, *GCG*, *LDHA* and *LDHB* genes in fluorescent-activated cell-sorted
602 (FACS) alpha and β cell samples (re-analysis of data from (Arda et al., 2016)). **F)** Normalized
603 LDHA expression in α, β, δ and γ cells from five independent human islet single cell RNA-
604 sequencing experiments (Enge et al., 2017; Lawlor et al., 2017; Segerstolpe et al., 2016;
605 Wang et al., 2016; Xin et al., 2018). Data from each study was subjected to re-assignment of
606 cell identity based upon strict criteria (see Methods). **G)** Genome browser snapshot of
607 transcription factor binding, histone modification (ChIP-seq, targets as indicated) and RNA-
608 sequencing experiments performed on human islets (Akerman et al., 2017). Scales represent
609 RPKM. For A-D, n = 18 independent replicates from 9 human donors; n = 10 islet preparations
610 from 15 animals. A was analyzed using two-way ANOVA and Sidak's post-hoc test. D was
611 analyzed using Welch's test. Bar graphs show individual datapoints and mean ± SEM. AU =
612 arbitrary unit.

613
614


615

616 **Figure 3: Incorporation of ¹³C from ¹³C₆ glucose into TCA cycle metabolites through**
 617 **PDH and PC.** **A)** White and blue circles, respectively, show the incorporation of ¹²C and ¹³C
 618 into TCA cycle metabolites arising from metabolism of pyruvate by PC. **B)** White and red
 619 circles, respectively, represent ¹²C and ¹³C atoms as incorporated from ¹³C₆ glucose into the
 620 TCA cycle through the conversion of pyruvate to acetyl-CoA by PDH. **C-E)** Lactate₀₀₀,
 621 lactate₁₁₁ and lactate₁₁₀ are the most abundant isotopomers (C) in both humans and mice (D),
 622 although the incorporation of ¹³C from ¹³C₆ glucose into lactate₁₁₁ is significantly higher in
 623 human than mouse islets (D, E). **F-H)** ¹³C incorporation into alanine isotopomers (F) is similar
 624 in human and mouse islets (G), with alanine₁₁₁ being the most represented labeled isotopomer
 625 (G, H). **I, J)** The distribution of labeling patterns for glutamate (I) are similar in human and

626 mouse islets (J), with glutamate₀₀₀₁₁ being the most abundant labeled isotopomer in both
627 species (J). For all data, n = 16-17 islet preparations, 9 human donors and n = 7-8 islet
628 preparations, 12-15 animals. Data were analyzed using 2-way ANOVA and Sidak's post-hoc
629 test. Bar graphs (scatter plot) show mean ± SEM. Bar graphs show individual datapoints and
630 mean ± SEM. AU = arbitrary unit.

631

632

633
634

635 **Figure 4: Schematic showing pyruvate management in human and mouse islets. A)** In
636 the current view (top) of β cell metabolism, glycolytically-derived pyruvate enters the TCA
637 through the actions of pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC). The
638 PEP cycle and extra-mitochondrial ADP makes a disproportionate contribution to K_{ATP} channel
639 regulation and the triggering phase of insulin secretion. Alternative fates for pyruvate (i.e.
640 production of lactate) are suppressed. **B)** The high-resolution view of β cell metabolism reveals
641 that some pyruvate is converted to lactate, before entering into the TCA predominantly through
642 the action of pyruvate dehydrogenase, likely to maintain REDOX and β cell housekeeping
643 functions.

644
645
646

647 **Table 1: Human islet donor characteristics.** BMI, body mass index. IFG, impaired fasting
648 glucose.

Unique identifier	Age group (years)	Gender	BMI (Kg/m ²)	Glycemia (mmol/L)* HbA1C (%)	History of diabetes**	Islet purity (%)	Islet culture duration (h)	Country of origin
HP1404	50-55	♂	29.4	7.8 mmol/L	No	80	18	Italy
HP1406	60-65	♂	26.1	N/A	No	90	96	Italy
HP1408	55-60	♀	19.0	N/A	No	90	18	Italy
HP1416	60-65	♂	31.1	N/A	No but IFG	75	20	Italy
HP1419	55-60	♂	22.8	7.3 mmol/L	No	90	18	Italy
HP1431	60-65	♀	26.9	8.0 mmol/L	No	90	18	Italy
HI1117	45-50	♂	24.0	5.4%	No	80	N/A	France
HI1120	50-55	♂	29.5	5.7%	No	90	N/A	France
HI1121	60-65	♂	32	5.5%	No	90	N/A	France

649