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ABSTRACT

Stable isotope probing (SIP) facilitates culture-independent identification of active
microbial populations within complex ecosystems through isotopic enrichment of nucleic
acids. Many SIP studies rely on 16S rRNA sequences to identify active taxa but
connecting these sequences to specific bacterial genomes is often challenging. Here, we
describe a standardized laboratory and analysis framework to quantify isotopic
enrichment on a per-genome basis using shotgun metagenomics instead of 16S rRNA
sequencing. To develop this framework, we explored various sample processing and
analysis approaches using a designed microbiome where the identity of labeled
genomes, and their level of isotopic enrichment, were experimentally controlled. With this
ground truth dataset, we empirically assessed the accuracy of different analytic models
for identifying active taxa, and examined how sequencing depth impacts the detection of
isotopically labeled genomes. We also demonstrate that using synthetic DNA internal

standards to measure absolute genome abundances in SIP density fractions improves
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estimates of isotopic enrichment. In addition, our study illustrates the utility of internal
standards to reveal anomalies in sample handling that could negatively impact SIP
metagenomic analyses if left undetected. Finally, we present SIPmg, an R package to
facilitate the estimation of absolute abundances and perform statistical analyses for
identifying labeled genomes within SIP metagenomic data. This experimentally validated
analysis framework strengthens the foundation of DNA-SIP metagenomics as a tool for
accurately measuring the in situ activity of environmental microbial populations and

assessing their genomic potential.

Importance:

Answering the question of ‘who is eating what?’ within complex microbial communities is
paramount for our ability to model, predict, and modulate microbiomes for improved
human and planetary health. This question is often pursued using stable isotope probing
to track the incorporation of labeled compounds into cellular DNA during microbial growth.
However, with traditional stable isotope methods, it is challenging to establish links
between an active microorganism’s taxonomic identity and genome composition, while
providing quantitative estimates of the microorganism’s isotope incorporation rate. Here,
we report an experimental and analytical workflow that lays the foundation for improved
detection of metabolically active microorganisms and better quantitative estimates of
genome-resolved isotope incorporation, which can be used to further refine ecosystem-

scale models for carbon and nutrient fluxes within microbiomes.

Keywords: stable isotope probing, metagenomics, DNA-SIP, co-assembly, internal
standards, spike-ins

INTRODUCTION

The explosion of environmental sequencing data in the last decade has fueled a deeper
understanding of the role of microbiomes in shaping human health, ecosystem function,
and the Earth’s biogeochemical cycles (1). Further advancements in microbiome science
require improved experimental approaches that link genomes to their in situ activities.
Due to the limitations of culturing techniques, culture-independent methods that reveal in
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situ functions and link them to taxonomic identities play a crucial role in advancing the
field of microbial ecology (2). Stable isotope probing (SIP) is a powerful cultivation-
independent tool that links metabolic activity and taxonomic identity of environmental
microbes (3). During a DNA-SIP experiment, compounds enriched with heavy stable
isotopes (e.g., '3C, N, and '80) are added to the microbial community of interest. The
labeled compound is metabolized by active members of the microbial community and
incorporated into cellular components, including DNA, during growth (4). As a result, the
DNA of these active microbes becomes increasingly isotopically labeled, and, therefore,
‘heavier’ compared to the non-labeled DNA from inactive microbes (4). Isotopically-
labeled DNA, referred to as ‘labeled’ from hereon, can be physically separated and
recovered via isopycnic centrifugation using a CsCI gradient (5). Thus, microbes
assimilating labeled compounds in situ can be identified through comparative sequence
analysis of the DNA collected at different buoyant densities (BD) along the gradient.

Traditional DNA-SIP studies use 16S rRNA gene sequencing to identify labeled
microorganisms (6, 7), and several analysis tools are available for 16S rRNA-based SIP
studies (8-10). In addition to identifying microbial groups as either labeled or unlabeled,
analysis tools such as quantitative SIP (qSIP) and delta BD (ABD) can also estimate the
extent of isotope assimilation as atom fraction excess (AFE), which is the increase in the
isotopic composition of DNA above background levels (11). Measurements of AFE can
inform in situ growth rate estimates for specific microbial populations, enabling modeling
of microbiome dynamics (12-14). Although 16S rRNA-based SIP analyses can
taxonomically classify labeled microbes, the full genomic potential of metabolically active
taxa are not always captured due to the difficulty in linking partial 16S rRNA gene
sequences to their corresponding genomes (15). Adapting SIP analysis tools for the
genomic level rather than the 16S rRNA gene level would enable genome-centric
metagenomic SIP studies and establish stronger links between genomic information and
in situ activity.

In recent years, multiple SIP studies have used metagenome sequencing in
addition to, or in place of, 16S rRNA gene amplicon sequencing (16-21). We refer to this
general approach as "SIP metagenomics" from here on to distinguish it from traditional
16S rRNA-based DNA-SIP. Some recent studies have applied the gqSIP approach to
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96 shotgun sequencing data to estimate the isotopic enrichment of soil metagenome
97 assembled genomes (MAGs) (22-24). While these represent exciting advancements in
98 the field, SIP metagenomics faces challenges related to data analysis and interpretation.
99 For example, estimates of isotopic enrichment depend on accurate measurements of
100 absolute genome abundance, but determining genome abundance from metagenomic
101  data is difficult due to its compositional nature (25-28). In addition, outstanding questions
102 remain regarding optimal assembly strategies and the specificity and sensitivity of
103 analysis tools given varying sequencing depth and genome coverage. Empirically
104  answering these questions requires a defined experiment where the identity of labeled
105 genomes and their level of isotopic enrichment is known a priori. To date, no such
106  empirical study for validating SIP metagenomic sample processing and analysis has been
107  published.

108 Here, we explore SIP metagenomic sample processing and analysis strategies
109 using a designed microbiome where the identity of labeled genomes, and their level of
110  enrichment, were experimentally controlled. We also investigated the utility of adding
111 internal standards to monitor the quality of density gradient separations and normalize
112  genome coverage levels. With this experimental design, we were able to: a) compare
113 assembly methods for optimal genome recovery; b) determine how sequencing depth and
114 genome coverage influence the detection of labeled genomes; c) examine how different
115  approaches for measuring genome abundance impact estimates of AFE; and d) compare
116  the sensitivity and specificity of different SIP analysis tools for accurately identifying
117  labeled genomes. Based on our findings, we describe an experimentally validated
118  strategy for SIP metagenomics and provide an R package (S/Pmg) that adapts SIP
119 analysis tools for shotgun metagenome sequence data, estimates absolute genome
120  abundance within each fraction using internal standards, and identifies labeled genomes.
121

122 RESULTS

123  To create a ground truth dataset for assessing SIP metagenomics, we generated a
124 microbial community DNA sample where the identity of labeled genomes and their level
125  of enrichment were known a priori (Fig. 1). Specifically, we combined unlabeled DNA
126  extracted from a freshwater pond with aliquots of '3C-labeled E. coli DNA. We created
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127  eight levels of E. colilabeling ranging from 0 to 36 atom% '3C enrichment (Table S1). We
128  also added two sets of synthetic DNA oligos at two different stages of sample processing
129  to serve as internal standards (Fig. 1). The six “pre-centrifugation spike-in” standards had
130 different BDs, each reaching maximum abundance in a different and predictable region
131 of the density gradient (Table S2). Deviations from the expected distribution pattern
132  indicated possible problems, such as a disturbance of the density gradient, that might
133 compromise data quality from that sample (Fig. 2). The post-fractionation spike-ins,
134  referred to as “sequins” hereafter (28) (Data Set S1), were added to each fraction after
135 density separation (Fig. 1) to serve as internal calibration standards for calculating
136 absolute genome abundances (Fig. 2). This experimental design provided a controlled
137 dataset for answering questions regarding assembly strategies, genome abundance
138 measurements, the impact of sequencing depth, and the accuracy of various SIP analysis
139  methods.

140 To develop an empirically validated workflow for SIP metagenomics, we next
141  created the SIPmg R package, which was specifically designed to analyze shotgun
142  sequence data from SIP studies. SIPmg calculates absolute taxon abundances using
143  various methods, such as normalizing relative genome coverage to internal standards
144  (this study) or total DNA concentrations (22, 23). SIPmg feeds taxon abundance into the
145 HTS-SIP tool (29) where users can select different methods for identifying isotope
146  incorporators, including gSIP (30), high-resolution SIP (HR-SIP, (8)), and moving-window
147  high-resolution SIP (MW-HR-SIP, (9)). SIPmg also implements a version of the ABD
148  method for estimating isotopic enrichment levels (8). To take advantage of metagenomic
149 data, and similar to Greenlon et al. (23), SIPmg updates the gSIP model to use the
150 observed GC content of assembled genomes rather than the estimated GC content used
151  in gSIP analysis of 16S rRNA data (30). Finally, to correct for multiple comparisons, i.e.
152  testing for significant isotope enrichment in multiple MAGs, SIPmg can adjust the
153  confidence intervals around bootstrapped estimates of AFE using a variation of false
154  discovery rate correction (31). With the SIPmg package, we evaluated the performance
155  of different analysis approaches using our ground truth SIP metagenomics dataset.

156
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157  Maximizing recovery of metagenome-assembled genomes (MAGs) using individual
158 and combined assemblies

159 In contrast to a typical metagenome sample, community DNA in a SIP experiment is
160  separated into multiple fractions based on BD prior to sequencing (Fig. 1). Differences in
161 GC content and levels of isotopic enrichment result in a non-random distribution of
162  microbial genomes across the density gradient and sequencing each density fraction
163  provides multiple options for assembly and binning. To determine the optimal strategy for
164  maximizing MAG recovery, we compared assembly of the intact unfractionated sample,
165  separate assemblies of each individual fraction, co-assembly of all fractions derived from
166  the same initial sample, and a massive combined assembly using MetaHipMer (32) of all
167  fractions from all samples. Each assembly was then independently binned using
168 MetaBAT2 (33). A total of 2,022 MAGs were generated across all assemblies, of which
169 248 were high-quality, 447 were medium-quality, and 1,327 were low-quality as defined
170 by the MIMAG reporting standards (34) (Data Set S2). The MetaHipMer assembly
171 produced more MAGs than any other strategy. A total of 235 MAGs were recovered from
172  the MetaHipMer assembly, of which 136 were medium- or high-quality (Fig. 3A).
173  However, estimates of average MAG completeness and contamination for each assembly
174  type were not substantially different (Fig. S1).

175 Next, we deduplicated all the medium- and high-quality MAGs recovered from all
176  assemblies to determine whether any approach generated unique MAGs that were not
177  present in other assembly types (Fig. 2B). We first grouped MAGs with average

178  nucleotide identities of = 96.5 and alignment fractions of = 30% into a total of 148 unique

179  clusters (35), then selected a single representative MAG for each cluster. Of these, 120
180 MAG clusters were exclusively produced by MetaHipMer. Twelve MAG clusters did not
181 include any MetaHipMer-generated MAGs, and 11 of these clusters contained at least
182 one MAG generated from the assemblies of individual fractions (Fig. 3B). Assembly of
183  the intact unfractionated mock microbiome did not produce any unique MAGs (Fig. 3B).
184 The different assembly strategies also produced MAGs with different taxonomic

185  compositions. For example, MAGs derived from the MetaHipMer assembly accounted for


https://doi.org/10.1101/2022.12.20.521340
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521340; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

186  an additional nine classes that were not present in other assemblies (e.g., Anaerolineae,
187  Andersenbacteria, Babeliae, Chlamydiia, among others) (Fig. 3C). Most MAGs that were
188  unique to the MetaHipMer co-assembly had lower coverage than MAGs recovered by
189 other assembly approaches (Fig. S2). This suggests the MetaHipMer co-assembly
190 captured more of the lower abundance MAGs in the samples than other assembly
191  approaches, possibly due to the higher coverage levels that resulted from combining
192  reads from all libraries (32). These results indicate that employing multiple assembly
193  strategies and de-replicating the resulting MAGs can maximize genome recovery in SIP
194  metagenomics studies.

195

196 Anomalous sample detection using pre-centrifugation spike-in controls

197  As part of the quality control process, we devised an approach for detecting anomalous
198 samples whose pre-centrifugation spike-in sequences displayed aberrant distributions
199  along the BD gradient (Fig. 2C). We added six synthetic spike-ins to our samples prior to
200 ultracentrifugation, and each spike-in had a different density based either on its GC
201  content or the artificial introduction of '3C-labeled nucleotides during oligo synthesis
202 (Table S2); therefore, each spike-in has a distinct and predictable peak in coverage along
203 the BD gradient. Deviations from the expected spike-in distribution patterns may indicate
204  events such as cross-contamination, library misidentification, or accidental disturbances
205 of the density gradient significant enough to distort the distribution of MAGs throughout
206 the gradient, all of which would introduce error into the downstream analysis. We
207 identified three biological replicates with anomalous spike-in distribution patterns (Fig.
208 S3), and these samples were removed from downstream analyses to avoid the
209 introduction of extraneous noise. This example illustrates the utility of internal standards
210 to illuminate quality control problems in SIP experiments that would otherwise go
211 undetected.

212

213  Normalizing genome coverage to quantify DNA isotope incorporation

214  Accurate abundance measurements are critical for determining levels of isotopic labeling.
215  Briefly, models such as qSIP and ABD estimate a taxon's AFE based on differences

216  between its weighted BD in unlabeled controls and isotope-amended treatments (8, 30)
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217  (36), and weighted BD is calculated from the taxon’s abundance within each density
218 fraction (see Methods equations 5 & 6). For amplicon-based qSIP studies, the relative
219  abundance of a taxon is normalized to the total number 16S rRNA gene sequences within
220 each fraction determined by qPCR (30). Estimating abundance in SIP metagenomic
221  studies is more complicated, since shotgun sequencing lacks an equivalent method to
222  16S rRNA gene gPCR for absolute abundance scaling. Previous SIP metagenomic
223  studies multiplied relative genome coverage with the total DNA concentration of each
224  fraction (22, 23), which is a reasonable approach, although it does not account for
225 potential variability introduced during DNA recovery, library creation, and sequencing of
226  each fraction (27, 28, 37). By adding sequins to density fractions before DNA precipitation
227 and recovery, we explored an alternative normalization strategy for measuring absolute
228 abundance that could also account for variability in the downstream processing steps
229 (22). In this approach, genome coverage within each fraction can be converted into
230 absolute abundances through normalization based on the known concentration and
231  observed coverage of the sequin internal standards. The AFE of each genome can then
232  be estimated from these abundance measurements.

233 Our experimental design, where isotopic enrichment levels were known a priori,
234  provided an opportunity to compare different approaches for calculating genome
235 abundances and determine their impact on estimates of taxon AFE (Table 1, Fig. S4).
236  More specifically, we compared the expected AFE values for labeled E. coli to AFE
237 estimates from the gSIP model, with different approaches for calculating abundance,
238 including: absolute abundance derived from normalization to sequins (Fig. 4A); absolute
239 abundance estimated by multiplying either relative abundance or relative coverage with
240 total DNA concentration (Fig. 4B and 4C, respectively); and relative coverage without
241  conversion to absolute abundance (Fig. 4D). Results from all of the abundance
242 normalization strategies we tested are provided in Fig. S4 and Table S3. Any genome
243  other than E. coli that was identified as labeled was considered a false positive, whereas
244  failure to identify E. coli as labeled was considered a false negative.

245 Abundance estimates derived from the sequin approach outperformed all other
246  approaches based on combinatorial assessment of specificity (lower false positives),
247  sensitivity (lower false negatives), and the Spearman correlation between expected and
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248 predicted AFE values (Fig. 4, Table 1, Table S3). The two approaches using total DNA
249  concentrations did not produce statistically significant linear regressions (p-value > 0.05)
250 between expected and estimated AFEs (Fig. 4B, 4C, Table S3), although the sensitivity
251  fordetecting labeled E. coliwas the same or better than sensitivity using relative coverage
252 (Table 1). Relative coverage produced the highest specificity, although it had lower
253  sensitivity than the normalization approach using sequins (Fig. 4D and Table S3). These
254  results suggest that internal quantification standards can improve estimates of genome
255 abundance and AFE.

256

257 Comparison of various SIP analysis method

258 In addition to qSIP, other analysis methods such as ABD (8), high-resolution SIP (HR-
259  SIP, (8)), and moving-window high-resolution SIP (MW-HR-SIP, (9)) can identify labeled
260 taxa. We compared all four approaches for their ability to accurately identify isotope
261 incorporators in our defined SIP metagenomic dataset. We also compared estimates of
262  E. coli AFE predicted with the ABD and gSIP methods; HR-SIP and MW-HR-SIP do not
263  provide quantitative estimates of enrichment. For all methods, absolute genome
264  abundances were determined by normalization to sequins.

265 The gSIP method predicted the level of AFE for E. coli with greater accuracy than
266 the ABD method (Fig. 5). The qSIP approach also had higher specificity than the ABD
267 method, producing only 7 false positives across all conditions compared to 12 false
268  positives, respectively (Table S4). The MW-HR-SIP approach had the fewest false
269  positives, with only 4 across all conditions, while maintaining the same sensitivity as the
270  gSIP method (Table S4). The sensitivity and specificity of HR-SIP were lower than both
271 MW-HR-SIP and gSIP methods (Table S4). Based on these results, we selected qSIP
272  and MW-HR-SIP for further evaluation.

273

274  Lower limits of genome coverage for reliable detection of isotope labeling

275 Next, we examined how sequencing depth affected our ability to detect isotope
276  incorporation. As demonstrated above, the accuracy of abundance measurements
277  impacts the accuracy of AFE estimates, and these abundance measurements are derived
278 from genome sequence coverage. The relative abundance of microbial taxa comprising
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279 complex communities can vary by orders of magnitude; thus, genome coverage within
280 sequencing libraries can vary similarly (38). This suggests that AFE estimates might be
281 less reliable for taxa with low coverage. To determine the lowest depth of coverage at
282 which an AFE could be accurately estimated, we performed gSIP and MW-HR-SIP
283 analyses after subsampling E. coli reads to 10%, 1%, 0.1%, 0.01%, and 0.001% of their
284 initial levels (Table S5). In the respective subsampled datasets, E. coli had an average
285 total coverage ranging from 0.01X to 1,400X coverage. Here, ‘total coverage’ refers to
286 the cumulative coverage across all density fractions of an individual sample.

287 The gSIP model consistently identified E. coli as labeled when mean total coverage

288 was = 1X (Table S6). The correlation coefficient between actual and predicted AFEs was

289 0.8 within this coverage range (p-value <0.05; Fig. S6 and Table S7). However, at total
290 coverages <1X, gSIP failed to detect E. coli as labeled in several experimental conditions,
291 and the predicted AFEs were not significantly correlated to the expected AFEs (p-value
292 >0.05) (Fig. S6 and Table S7). The MW-HR-SIP method was also less sensitive at lower
293 coverage levels, and at 100X mean total coverage, it only detected E. coli as labeled in 3
294  out of 7 experimental conditions (Table S6). These data suggest that estimates of isotope
295 enrichment are less reliable in general when genome coverage is low.

296

297  Strategies to improve accuracy of detecting isotopically labeled genomes

298 To improve the accuracy of SIP metagenomic analysis, we explored different strategies
299 to reduce the number of genomes incorrectly identified as labeled (i.e., false positives).
300 For example, the number of false negatives increased as coverage decreased; therefore
301  we tested whether implementing minimum genome coverage requirements could reduce
302 the number of false positives. Excluding genomes with mean total coverages <10X
303 reduced the total number of MAGs analyzed from 147 to 113, and reduced false positives
304 identified by qSIP from 7 to 4 without increasing false negatives (Tables S6 and S8). This
305 improved the balanced accuracy from 0.925 to 0.927. Raising the minimum mean total
306 coverage to 17X eliminated all false positives, yet reduced the number of remaining
307 MAGs analyzed to 68. We did not test coverage limits for MW-HR-SIP because the
308 method struggled to detect E. coli as labeled when coverage dropped below 100X (Table
309 S6) and applying a threshold of 100X would have limited our analysis to only 17 genomes

10
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310 (Table S8). These results suggest that excluding genomes with low coverage can
311 decrease false positives and increase balanced accuracy. Although the definition of “low
312  coverage” will vary based on experimental conditions and individual assessments of the
313 tradeoffs between sensitivity and specificity, these results also suggest that confidence in
314  the identification of labeled genomes should decrease along with their coverage levels.
315 We also investigated if false positives could be reduced by implementing a
316 minimum level of isotopic enrichment necessary for a genome to be considered labeled.
317 That is, rather than simply requiring genomes to be significantly greater than 0% AFE,
318  which is the default setting of the gSIP approach (30), we examined different minimum
319  AFE thresholds ranging from 2% to 12.5% (Table S9). A genome was considered to be
320 labeled if the lower bound of its AFE 95% CIl was greater than the minimum AFE
321  threshold. With AFE thresholds between 2% and 6%, total false positives dropped from
322 7 to 3 across all experimental treatments, but E. coli was no longer identified as labeled
323 in one experimental condition. The balanced accuracy was also reduced from 0.925
324  without AFE thresholds to 0.856 with a 6% AFE threshold (Table S9). False positives
325 were completely eliminated with a minimum AFE threshold of 12.5%, but sensitivity was
326 so poor (0.286) that E. coli was only identified as labeled in 2 out of 7 conditions (Table
327  S9). Minimum AFE limits could not be tested with MW-HR-SIP analysis because this
328 method does not estimate levels of isotopic enrichment. Together, these results illustrate
329 a trade-off between sensitivity and specificity when increasing the minimum AFE
330 threshold above zero, and suggest that false positives can be reduced by increasing the
331  AFE threshold at the potential cost of losing sensitivity for the detection of minimally
332 labeled taxa.

333 The number and identity of false positives varied across SIP analysis methods,
334 presumably due to differences in their underlying algorithms. Therefore, we hypothesized
335 that the number of false positives might be reduced by taking the consensus of different
336 analysis methods, i.e. requiring that two separate models predict a MAG is labeled. All
337 false positive MAGs found in qSIP analysis were also false positives in ABD analysis, and
338 thus taking the consensus of these two methods did not produce fewer false positives
339 than qSIP alone (Table S10). In contrast, there was no overlap in the identity of false
340 positive MAGs between the qSIP and MW-HR-SIP methods, and a union of their results

11
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341  completely eliminated false positives without producing any false negatives (Table S10).
342 However, we found it more advantageous to apply MW-HR-SIP and gSIP sequentially
343 rather than independently. MW-HR-SIP had greater specificity than qSIP, therefore it was
344 used as a first-pass filter to detect putatively labeled genomes while minimizing false
345 positives. This subset of putatively labeled genomes was then re-analyzed with the qSIP
346  model. Only genomes first identified as labeled by MW-HR-SIP and later confirmed with
347  a significantly positive AFE by qSIP were labeled. Applying the tools in series reduced
348 the number of multiple hypotheses tested (e.g., MAGs tested for enrichment), which
349  subsequently increased the statistical power for AFE estimation. That is, without the initial
350 reduction in identified incorporators, the qSIP analysis would have otherwise included all
351  MAG:s in its statistical comparisons between treatment groups, resulting in a smaller p-
352  value required for significance with multiple hypothesis testing. The increased statistical
353 power obtained by applying the models in series resulted in tighter confidence intervals
354 for the AFEs of E. coli (Table S11). These results indicate that using a combination of
355 analysis tools can reduce false-positive detection, although the tools used and their order
356 of application may vary depending on preferences for sensitivity versus specificity.

357

358 DISCUSSION

359 DNA-SIP has been an established method in microbial ecology for many years and has
360 primarily relied on 16S rRNA gene sequencing to identify active taxa (16, 30, 39, 40) (14).
361  With decreases in sequencing costs and increases in compute capacity, DNA-SIP studies
362 can now utilize shotgun metagenomic sequencing to establish links between population
363 genomes and in situ activities (22-24, 41-43). In addition, automated sample preparation
364 substantially increases the potential scale of SIP metagenomic studies and allows for
365 more biological replication (24). However, the growth of SIP metagenomics also depends
366 on adapting analysis tools to work with shotgun metagenomic data and validating their
367 performance. To this end, we designed a mock SIP metagenome that enabled empirical
368 testing of sample processing and data analysis strategies. Our results suggest some
369 potential best-practices for SIP metagenomic studies that can serve as a foundation for

370 future improvements.
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371 Comparing assembly strategies for SIP metagenomic data was a key goal of our
372 study. Previous SIP studies have used different strategies, including assembling
373 unfractionated DNA, assembling individual SIP fractions, and co-assembling several
374  fractions (22-24, 44, 45). However, it was not clear which assembly strategy produces the
375 most medium- and high-quality MAGs. For instance, in computationally-simulated SIP
376  experiments, the co-assembly of multiple fractions improved MAG recovery compared to
377 the assembly of unfractionated DNA (45). In addition, the large amount of sequence data
378 used in co-assemblies can recover rare genomes that would otherwise be lost due to
379 insufficient coverage in smaller assemblies of individual datasets (32). Conversely,
380 individual assemblies can outperform co-assemblies in samples where high levels of
381  microdiversity impede contig formation (46-48). Here, we found that co-assembly of all
382 density fractions generated the most medium- and high-quality MAGs, which agrees with
383 two recent SIP metagenomics studies (23, 24). However, we also found that merging
384  binning results from individual fraction assemblies and larger co-assemblies via MAG de-
385 replication provided more medium- and high-quality MAGs than did co-assembly alone.
386 We posit that this approach reaps the benefits of both strategies: it provides higher read
387 recruitment for assembling rare genomes in co-assemblies and also leverages lower
388 microdiversity in individual fraction assemblies. Optimal assembly strategies may differ
389 for other environmental samples, and these strategies must be re-evaluated as
390 sequencing and assembly methods evolve, but our results suggest that SIP metagenomic
391  studies can benefit from employing multiple assembly approaches to maximize genome
392 recovery.

393 Processing DNA-SIP samples is laborious, but semi-automated protocols simplify
394 lab work and enable high-throughput SIP metagenomic studies (24). Indeed, increasing
395 the number of biological replicates, and sequencing more density fractions per replicate,
396 can improve the detection of labeled taxa (41). However, the opportunities for accidental
397 mistakes, such as cross-contamination, sample mixups, or clerical errors, also increase
398 when processing dozens of samples and hundreds of density fractions. In addition, slight
399 mishandling of ultracentrifuge tubes can disturb delicate CsCl gradients (7), and
400 potentially alter genome distributions along the gradient. If left undetected, these types of
401 accidents could produce inaccurate weighted BD estimates, adding extra noise to the
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402 data analysis and even compromising results. In this study, we found that including pre-
403 centrifugation spike-ins, which had distinct and predictable distribution patterns along the
404 gradient, helped us identify and remove problematic samples before they negatively
405 impacted our analyses. Including internal standards can mitigate potential errors and
406 enhance the quality of large complex SIP studies with many replicates. Moreover, with
407  careful design and additional development, internal standards might someday correct for
408 variability introduced during sample processing (41) instead of simply flagging samples
409 for removal. Internal standards can be easily incorporated into automated SIP
410 metagenomics protocols (24), where they can improve the quality of SIP metagenomic
411  results, and if adopted broadly, potentially serve as consistent fiducial reference points
412  that facilitate inter-comparisons of different SIP studies.

413 Accurate measurements of genome abundance along the BD gradient are
414 essential for identifying labeled genomes and determining their level of isotopic
415 enrichment (30). However, the compositional nature of metagenomic data, and the
416  variability introduced during sample processing and sequencing, can hamper quantitative
417 estimates of genome abundance (25-28, 49). Internal quantification standards can
418 mitigate process variability and provide absolute abundance estimates of genes,
419 transcripts, and genomes from metagenome and metatranscriptome data (28, 37, 50-53).
420 Based on these findings, we hypothesized that adding internal standards to density
421  fractions (“sequins”) could improve abundance measurements and thereby improve
422  isotope enrichment measurements. Indeed, estimates of AFE in our study were more
423  accurate using absolute abundances derived from sequin normalization compared to AFE
424  estimates using other strategies.

425 Multiple factors could explain the more accurate estimates of isotopic labeling
426 enabled by internal quantification standards. For one, sequins may have mitigated any
427  variation introduced during library creation and sequencing (28). Additionally, sequins
428 may have corrected for differences in DNA recovery among fractions that would have
429 otherwise gone unnoticed and negatively impacted abundance measurements. That is,
430 after collecting CsCl fractions, each fraction separately undergoes PEG precipitation and
431 desalting before DNA concentrations are measured (24). Absolute abundances
432 calculated using DNA concentrations assume identical DNA recovery efficiencies (22,
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433 23), so any stochastic or systematic variability in the percent of DNA recovered would
434 lead to errors in absolute abundance measurements. Conversely, sequins track and
435 mitigate variability in DNA recovery when they are added to fractions before the desalting
436 steps, as was performed here. Therefore, if DNA recovery efficiency varied among
437 fractions, then we would expect absolute abundances derived from sequins to be more
438 accurate than estimates derived from DNA concentration measurements. Without internal
439 standards, variability introduced during DNA recovery, library construction, and
440 sequencing is unknowingly propagated as noise into downstream SIP analyses. This
441  undetected variability can potentially lead to errors that impact predictions of isotope
442  enrichment.

443 The various SIP analysis methods examined in this study use different approaches
444  to detect labeled microorganisms, and these differences could impact the sensitivity and
445  gpecificity of their predictions. The accuracy of different SIP analysis methods has not
446  been assessed with metagenomic data until now, but in silico simulations of 16S rRNA-
447  based SIP data revealed that MW-HR-SIP had higher balanced accuracy than the other
448  analysis methods (29). The gSIP model also generated more accurate AFE estimates
449  than the ABD method in those simulations. We observed similar patterns by comparing
450 analysis methods using our experimentally-designed SIP microbiome. In addition, we
451  found that the consensus of multiple approaches, i.e., MW-HR-SIP and qSIP, produced
452  higher accuracy results than any single method alone. Future SIP metagenomic studies
453  might increase confidence in identifying isotope-incorporating taxa by employing these
454  two independent strategies, although the higher confidence in true positives might come
455  at the cost of missing labeled genomes with lower coverage. Regardless of the analysis
456 tools used, analyzing more biological replicates is another simple strategy to increase
457 accuracy (41). As SIP analysis methods evolve, reassessing their performance with
458 deeper sequencing, more replicates, and an improved mock microbiome (e.g. more
459  species at different AFE levels) will provide additional insights into their accuracy and
460 limitations.

461 Altogether, we used a first-of-its-kind mock SIP metagenome to assess the
462 performance of different analysis approaches, identified a set of current best practices,

463 and established an experimentally validated workflow for SIP metagenomics. The ‘wet-
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464 lab’ aspects of the workflow include the addition of pre-centrifugation spike-ins for quality
465  control and post-fractionation sequins for genome quantitation along the BD gradient. The
466 ‘dry-lab’ aspects entail absolute genome normalization in each density fraction, and a
467 modified gqSIP model tailored to handle genome-resolved metagenomic datasets to
468 calculate AFE. We also explored strategies to more accurately identify isotope
469 incorporators, such as limiting analysis to taxa with coverage and isotope enrichment
470 levels above minimal thresholds and using the consensus of multiple SIP analysis tools
471  to detect labeling using our newly developed SIPmg package. These additional strategies
472  hold promise for improving the accuracy of SIP metagenomic results, although the
473  specifics of how and when to apply them will depend on the study design and individual
474  preferences regarding the tradeoffs between specificity and sensitivity. We believe this
475 validated analysis workflow will increase the reliability of SIP metagenomic findings,
476  enable standardization across studies, and facilitate the use of SIP data in modeling
477  microbially-mediated processes.

478

479 MATERIALS AND METHODS

480 DNA collection and mock community creation

481  To create a mock microbiome where the identity of labeled genomes and their level of
482  enrichment were known a priori, we first extracted DNA from bacterial isolates grown in
483  '3C-labeled glucose. Escherichia coli K-12 wildtype cells were grown in M9 minimal salts
484 media (Teknova; M8005). Glucose was added at a final concentration of 20mM and was
485 the sole carbon source in both media. DNA with different levels of '3C enrichment was
486  produced by varying the ratio of unlabeled glucose to uniformly-labeled '*C¢-D-glucose
487 (Cambridge Isotope Laboratories; CLM-1396; 99 atom %), e.g. DNA extracted from
488 cultures grown in a ratio of 4:1 of unlabeled:labeled glucose was assumed to have an
489 enrichment of approximately 20 atom %. Cultures grown overnight in LB were transferred
490 into labeled media at 5,000-fold dilution (i.e. 2ul into 10ml labeled media), grown at 37°C,
491  and harvested at mid-log phase. DNA was extracted using the Wizard genomic DNA
492 purification kit (Promega; A1120) and quantified using the QuantlT dsDNA High
493  Sensitivity Assay Kit (ThermoFisher; Q33120).
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494 DNA from a complex microbial community was recovered from an outdoor, man-
495 made pond located at the Joint Genome Institute. Pond water was pre-filtered through a
496 5 um mesh before collection onto 0.2 um Supor filters (Pall; 47 mm dia.). DNA was
497  extracted from filters using a DNeasy PowerWater kit (Qiagen; 14900-50-NF).

498 Replicate samples were prepared for ultracentrifugation by combining 900 ng of
499 microbiome DNA with 50 ng DNA from each bacterial isolate. For samples with
500 isotopically labeled DNA, the ratio of unlabeled to labeled DNA for each isolate was
501 adjusted, e.g. 40 ng of unlabeled E. coli DNA was combined with 10 ng of 20% enriched
502 E. coliDNA. The specific ratios of unlabeled:labeled DNA are described in Table S1.
503

504 Synthetic pre-centrifugation DNA spike-ins

505 A set of six synthetic DNA fragments were added to mixtures of DNA from isolates and
506 the complex microbiome to track the ultracentrifugation and fraction collection steps.
507 These fragments were approximately 2 kbp in length with GC content of 37-63% (Table
508 S2). To change the distribution of fragments across the density gradient, some fragments
509 were artificially enriched with 13C through PCR by adjusting the ratio of unlabeled dNTPs
510 and uniformly-labeled '3C dNTPs (Silantes Gmhb; 120106100; >98 atom %) (Table S2).
511  Briefly, DNA was amplified for 30 cycles by adding 0.5ul Phusion High Fidelity DNA
512 Polymerase (NEB; M0530S), 10ul of 5X Phusion HF Buffer, 1ul of 10 mM dNTPs (final
513 conc. labeled/unlabeled mixture), 2.5 ul each 10 uM Forward and Reverse Primer, and
514  31.5 ul of nuclease-free water. PCR products were purified using AMPure XP beads
515 (Beckman Coulter; 63880) and pooled in equimolar ratios to create a set of pre-
516  centrifugation DNA spike-ins. These pre-centrifugation spike-ins were added at 1% by
517 mass of the DNA mixture, e.g. 10 ng of synthetic fragment pool added to 1 ug of microbial
518 DNA mixture.

519

520 Gradient separation, sequin addition, and fraction purification

521  Following Nuccio and colleagues (24), samples were centrifuged at 44,000 RPM (190,600
522 g)for 120 hours at 20°C in a VTi 65.2 Rotor (Beckman Coulter; 362754). For each sample,

523 24 fractions of 220 uL were collected into a 96-well plate using an Agilent 1260 fraction
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524  collector running at flow rate 250 uL/min while using mineral oil as the displacement fluid.
525  Fraction density was determined using a Reichert AR200 refractometer.

526 Before purifying DNA from CsCl fractions, an additional set of 80 synthetic DNA
527 fragments, or sequins (28), were added to each fraction as an internal standard for
528 subsequent quantitative metagenomic analysis. Lyophilized pellets of sequins were
529  obtained from the Garvan Institute of Medical Research
530 (https://www.sequinstandards.com). Pellets were resuspended in TE Buffer (10 mM Tris,
531 0.1 mM EDTA, pH 8.0), and the concentration was measured with QuantlT dsDNA High
532  Sensitivity Assay Kit (ThermoFisher; Q33120). Of the 24 BD fractions collected for each
533 sample, we selected 16 to move forward with library creation and sequencing based on

534 the range of BD they spanned. These 16 fractions were amended with sequins. To
535 compensate for expected differences in the amount of DNA recovered from different
536 densities, the middle 8 fractions received 300 pg of sequins while the 4 fractions on either
537 tail received 100 pg of sequins.

538 After sequin addition, DNA was recovered by adding a 250 ul solution of 36% 6000
539 PEG and 1.6M NaCl to each fraction and incubating overnight in 4°C. Plates were
540 centrifuged at 3,214 xg for 1.5 hours at 20°C to pellet DNA. Pellets were washed with
541 300 ul of 70% chilled ethanol, centrifuged at 3,214 xg for 45 minutes at 20°C, and
542  resuspended in 30 ul of TE Buffer (10 mM Tris, 0.1 mM EDTA, pH 8.0). Purified DNA
543 was quantified using Quant-IT dsDNA High Sensitivity Assay Kit (ThermoFisher;
544  Q33120).

545 Sequins were added to each fraction before PEG precipitation and DNA
546  quantification steps; therefore the amount added was based on the expected sample DNA
547  concentrations. Tailoring sequin additions to actual sample DNA concentrations, as
548 opposed to estimates, is preferable to ensure optimal coverage in sequencing data. After
549 completing analysis of the mock microbiome, we sought to improve sequin additions by
550 measuring DNA levels before PEG precipitation when DNA was still in concentrated CsCl.
551  Additional details are provided in the Supplementary Materials.

552

553 Library creation and sequencing
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554  Sequencing libraries were generated from the 16 middle fractions of each sample using
555 Nextera XT v2 chemistry (lllumina) with 12 PCR cycles. Concentrations and size
556  distributions of each library were determined on a Fragment Analyzer (Agilent). Libraries
557  were pooled at equal molar concentrations within the range of 400-800 bp, and the pool
558 was size selected to 400-800 bp using a Pippin Prep 1.5% agarose, dye-free, internal
559  marker gel cassette (Sage Science). For each library, 2X150 bp paired-end sequencing
560 was performed on the lllumina Novaseq platform using S4 flowcells (Table S7).

561

562 Metagenome assembly and binning

563 Raw reads were filtered and trimmed using RQCFilter2 software according to the
564 standard JGI procedures (https:/jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-
565 tools-user-guide/data-preprocessing/). Then, one of the four strategies was used to
566 perform contigs assemblies: a) an assembly of unfractionated SIP sample with
567 metaSPAdes(v3.15.2) (54); b) a single fraction assembly with metaSPAdes (371
568 assemblies); c) a single sample co-assembly with metaSPAdes (co-assembly of all
569 fractions sequenced for a single SIP replicate sample, 24 assemblies); d) an experiment-
570 wise co-assembly with MetaHipMer(v.2.0.1.2) (assembly of all fractions across all
571 replicates) (32). Assembly and genome mapping parameters are reported in the
572  Supplementary Methods. We generated 397 assemblies in total. Quality assessment
573 metrics for each assembly were calculated using QUAST(v5.0.2) (MetaQUAST
574 ~mode)(Data Set S3) (55). Each assembly was then independently binned with
575 MetaBAT(v2.12.1) (56). For each generated MAG, we used GTDB-Tk(v2.0.0) (GTDB
576  R95) (57) to assign a taxonomic classification. To assess the quality of MAGs we used
577 CheckM(v1.1.3) (58) and QUAST(v5.0.2) (59). The MetaHipMer combined assembly was
578 annotated using the JGI metagenome annotation workflow (56) and is available through
579 IMG/M (60) under taxon identifier 3300045762.

580

581 MAG deduplication and mean scaffold coverage calculations

582 Medium- and high-quality MAGs recovered from all assembly strategies were
583 deduplicated to remove redundant versions of each draft genome (34). The genome-wide
584 ANI (gANI) and the alignment fraction (AF) were calculated for each possible MAG
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585 pairwise comparison (35). Next, the lowest pairwise values of gANI and AF were utilized
586 for each MAG comparison, followed by clustering using single-linkage to group MAGs
587 based on species-level delineations (e.g., gANI >= 96.5 and AF >= 30) as defined by
588 Varghese and colleagues (35). MAGs that did not cluster with other MAGs were
589 considered singletons. Following clustering, we used completeness, contamination, and
590 total length values to select a single representative MAG for each cluster. Sequences of
591 all spike-ins and sequins were concatenated with the final set of MAG contigs, and this
592  contig set was then used as a reference for read mapping across all density fractions (see
593 Supplementary Methods). The average contig coverage of MAGs, spike-ins, and sequins
594  in each fraction was calculated and used in the downstream analysis.

595

596 Quality control of SIP data using pre-centrifugation spike-ins

597  Before performing SIP analysis, we first removed mishandled samples from our dataset.
598 Forthis purpose, we identified the peak of absolute concentration distributions across the
599 density gradient for each labeled pre-centrifugation spike-in. If the spike-in distribution
600 patterns did not match the expected order along the density based on the theoretical
601 estimated density of the spike-in (given its GC content and C'3/C'? ratio), then the sample
602 was considered potentially problematic and removed from the analysis.

603

604 Estimating the absolute abundance of MAGs across density fractions

605 To determine the extent of isotope incorporation into genomes, it is first necessary to
606 measure genome abundance across the density gradient. We explored several ways to
607 measure genome abundance in the SIP dataset, which are implemented as part of the
608 SIPmg R package (see Code Availability).

609 First, we obtained absolute concentrations of genomes across the density gradient
610 using the approach proposed by Hardwick and colleagues (28), in which sequins were
611 used as internal reference standards to scale coverages into absolute concentrations.
612  Briefly, the average MAG coverage within a given fraction (metagenome) was scaled into
613 units of molarity using regression analysis based on known molarity of 80 sequins and
614 their average coverages. Molar concentrations of the sequins in the added standard
615 mixture were obtained from the manufacturer (Garvan Institute of Medical Research). For
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616 regression analyses, we first tested both ordinary least squares regression and robust
617 linear regression. When using ordinary least squares regression, we also tested Cook’s
618 distance filtering to remove outliers at a threshold of Cook’s distance < n/4 (n is the
619 number of datapoints in the regression analysis). A coefficient of variation threshold of
620 250 was employed as a quality control step in this scaling process. Due to the lower
621 number of false positives in the approach with ordinary least squares regression
622 combined with Cook’s distance filtering, we continued with this approach for all analyses,
623  but also report the findings from using the robust linear regression analysis in the Table
624  S3. A detailed workflow for sequin normalization is provided in the vignette for the SIPmg
625 R package (https:/github.com/ZielsLab/SIPmg).

626 In addition to sequin based normalization, we also explored genome abundance
627 estimation using: (1) unscaled coverage; (2) relative coverage; (3) absolute abundance
628 as per the approach of Greenlon and colleagues (23) and as the per approach of Starr
629 and colleagues (22). Unscaled coverages represented raw average MAG coverage
630 values that were directly used in the estimation of mean weighted BDs and AFE. Relative
631 coverage was estimated as: (coverage of a MAG within a fraction)/(sum of coverages of
632 all MAGs within a fraction).

633

634 Estimating of atom fraction excess of MAGs

635 The gSIP model (eq. 1) or ABD model (eq. 6) can be used to estimate the AFE of
636 genomes. Briefly, the AFE of organism /i, can be quantified using the gSIP approach (30):
637

638 AFE;; = —tabiZMiiohti (3 _ 0 01111233) (€g. 1-A)

MHeavymax,i - MLight,i

639 AFE,; = —LebiZMLiohel (4 _ 0 002000429) (eq. 1-B)

MHeavymax,i - MLight,i

640 where: Aci and Ao, are the estimated AFE with oxygen and carbon as the isotopic
641  substrate, respectively. MLign: is the molecular weight of a MAG (g/mole) in the control
642 condition (eq. 2), MLa is the molecular weight of a MAG (g/mole) in the treatment
643 condition (eq. 3), and Mkeawymax is the theoretical maximum molecular weight of a MAG
644  (g/mole) due to the maximum labeling by the heavy isotope (eq. 4) in the treatment
645 condition:
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646 Mg = 0.496 G; + 307.691 (€q. 2)

647 MLab = MLight . (% + 1) (eq 3)
Light

648  Mycapymax = Myigne + 9.974564 — 0.4987282.G; (eq. 4)

649 where: Giis the GC content of the MAG (ranging from 0 to 1). Here, we modified the gSIP
650 model to use the GC content values of MAGs provided from output of CheckM (58), rather
651  thaninferring it using an empirical regression (30). Weiignt and Weiab are the mean weighted
652 buoyant densities across control and treatment conditions respectively.

653 The weighted average buoyant density (Wi) is then estimated as:

vij
654 W, = Yi_1pjk- y—j]k (eq. 5)

655 where: pjkis the buoyant density of fraction kin replicate j, yixis the absolute concentration
656 of taxon /in fraction k of replicate j, and yj is the sum total of absolute concentration of
657 taxon iin replicate j. Here, genome abundances were determined using either (1) sequin
658 normalization; (2) relative abundance per coverage and/or reads mapped multiplied by
659 total DNA concentrations; and (3) relative coverage.

660 The estimation of AFE based on the ABD model can be represented as:

661 AFEuq, = - TLight (eq. 6)

Imax

662  where: Imaxis the maximum linear shift in DNA BD (upon 100% labeling), as discussed by
663  Birnie and Rickwood (61). The weighted mean BDs were the same as estimated from eq.
664 5. Thisis a variant of ABD from the Pepe-Ranney and colleagues study (8), in which OTU
665 read counts were interpolated at specific points of the replicate BD gradients to estimate
666 weighted mean BDs. The above models for determining AFE were incorporated into the
667  SIPmg R package for application with SIP metagenomics datasets.

668

669 Identifying isotope incorporators using HR-SIP and MW-HR-SIP

670  To run the HR-SIP and MW-HR-SIP methods, we used the MAG abundances obtained
671 from the sequin normalization approach. Differential abundances based on absolute

672 abundance for MAGs in the heavy fractions in the treatment conditions were compared
673  to control conditions using HR-SIP and MW-HR-SIP using the HTSSIP R package (29).
674 For HR-SIP, a heavy BD window was set from 1.71 g/mL (as the theoretical peak of E.

22


https://doi.org/10.1101/2022.12.20.521340
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521340; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

675 coliwould be at 1.709 g/mL based on a GC content of 0.504) to the maximum buoyant
676 density in every treatment condition. For MW-HR-SIP, the overlapping heavy buoyant
677  density windows chosen were 1.71 - 1.74 g¢/mL, 1.72 - 1.75 g/mL, and 1.73 - 1.76 g/mL.
678 In all cases, sparsity thresholds between 0% and 30% at 5% intervals were chosen (e.g.,
679  sparsity threshold of 25% maintains that MAGs must be present in >25% of fractions in
680 the testing windows). The sparsity threshold with the greatest number of rejected
681  hypotheses were selected for final inference of incorporator identity. The Benjamini-
682 Hochberg method was used to adjust for multiple testing with a threshold of p-value of
683  0.05 to identify incorporators.

684

685 Subsampling of E. coli reads. Reads that mapped to E. coli MAG were extracted from
686 .bam files and subsampled using samtools (v1.7) (htslib 1.7) at 10, 1, 0.1, 0.01, and 0.001

687 percentages. New E. coli MAG coverages for each fraction were then calculated (Table

688 S5) and used in SIP analysis to establish limitations that low coverage input may have on
689 the efficiency of bacterial incorporator identification.

690

691  Data availability

692 Raw metagenome sequencing reads have been deposited under BioProject Accession
693 PRJNA878529. The MetaHipMer combined assembly and annotated data is available
694  through IMG/M under taxon identifier 3300045762. Single-fraction and combined per-
695 sample assemblies, along with all MAGs and input files for qSIP analysis are available
696 via hitps:/portal.nersc.gov/dna/microbial/prokpubs/DVyshenska2022/. A full list of

697 available data and associated NCBI accession numbers are available in Data Set S3.
698

699 Code availability
700 The code for the SIPmg R package is available for download, along with a vignette

701 describing all functions, at: https:/github.com/ZielsLab/SIPmg. The SIPmg package
702 includes functions to calculate global scaling factors for genomes based on regression of
703 sequin coverage versus concentration using either ordinary least squares linear
704  regression or robust linear regression. The package can thereafter estimate AFE using
705 either qSIP model or ABD method. The package also outputs both FCR adjusted and
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706  Bonferroni adjusted bootstrapped AFE confidence intervals for MAGs. The package can
707  also perform HR-SIP and MW-HR-SIP which were built using the HTS-SIP R package.
708
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936

937 Table 1: Performance of different approaches for calculating genome abundance across density
938 fractions based on the results from spiking '°C labeled E. coli DNA into background DNA of an
939 unlabeled freshwater community. AFE was predicted using the gSIP model. Specificity was
940 estimated as (true negatives)/(false positives + true negatives). Sensitivity was estimated as (true
941  positives)/(true positives + false negatives)

942
Method Procedure Specificity | Sensitivity | Spearman correlation
between estimated & true
AFE (p-values)
Absolute Regression using sequin | 0.993 0.857 0.85 (0.014)
abundance coverage and
using sequins concentration
Product of relative | 0.991 0.714 0.8 (0.031)
DNA
Absolute abundance and
concentration (23
abundance fon (23)
using total DNA
concentration Product of relative | 0.922 0.571 0.27 (0.55)
coverage and DNA
concentration (22)
Relative Relative coverage of MAGs | 0.999 0.571 0.76 (0.046)
coverage in each fraction
943
944
945
946
947
948
949
950
951
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955 Figure 1. Experimental design and overview of laboratory steps in the SIP metagenomics
956  workflow. To create a defined SIP experimental sample, DNA extracted from an unlabeled
957  freshwater microbial community was amended with either labeled ('C) or unlabeled (2C) E. coli
958 DNA. Pre-centrifugation spike-ins were added to each sample prior to ultracentrifugation in a CsCl
959 gradient, and post-fractionation spike-ins (sequins) were added to each fraction after density
960 gradient fractionation and collection. These two sets of synthetic DNA oligos served as internal
961 standards to monitor the quality of density separations and normalize genome coverage levels.
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Figure 2. The workflow scheme for SIP metagenomic data analysis includes (A) quality filtering
of the raw reads and (B) generation of a unique set of medium and high quality MAGs used for
(C) quantification of absolute taxa abundances and identification of isotope incorporators. The
addition of sequins provides the means for calculating absolute bacterial abundances (C, Data
Normalization), and pre-centrifugation spike-ins aid in the detection of anomalous samples (C,
Outlier Handling).
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Figure 3. Comparison of metagenome assembly approaches for the SIP metagenome dataset
generated from spiking E. coli into background unlabeled DNA from a freshwater microbiome. (A)
Average number of medium- and high-quality MAGs recovered from different assembly
approaches. (B) Venn diagram showing the number of unique and shared MAG clusters. (C)
Compositional differences at the Class level recovered from different types of assemblies (I -
intact metagenome assembly with MetaSPAdes, F - separate fractions assembled with
metaSPAdes (n = 371 assemblies), S - all fractions within each replicate co-assembled with
metaSPAdes (co-assembly of all fractions sequenced for a single SIP replicate sample, n = 24
assemblies), M - combined assembly of all fractions using MetaHipMer; for F and S the average
number of MAGs was calculated, whiskers represent standard deviation across assembly type).
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Figure 4. Comparison of predicted atom fraction excess (AFE) versus the expected AFE of E.

coli using different approaches for measuring genome abundance across the density gradient.

The gSIP method was used to estimate AFE in all cases. Genome abundance in each density

fraction was determined by (A) normalization to sequin internal standards, (B) multiplying relative

abundance with DNA concentration following Greenlon et al. (23), (C) multiplying relative

coverage with DNA concentration following Starr et al. (22), and (D) relative coverage without

additional normalization. For all comparisons, please refer to Table S3. Error bars represent the

standard deviation of AFE calculated using the gSIP method’s bootstrapping approach. The
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1032 expected AFE for each condition is in parentheses, and additional details about conditions,
1033  including replicate numbers, are provided in Table S1. pcor and preg correspond to the p-values for
1034 the Spearman correlation and the linear regression F-statistic, respectively. The intercepts
1035 determined by linear regression were not significantly different from zero (p-value > 0.05) in any
1036  method for estimating abundance.
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1069  Figure 5: Comparison of AFE estimates produced by the (A) gSIP and (B) ABD methods using
1070  the mock metagenome where levels of E. coli isotopic enrichment were known a priori. Both of
1071  these methods used sequin-based normalization for estimating genome abundance. Error bars
1072  represent the standard deviation of AFE calculated using the qSIP method’s bootstrapping
1073  approach. The expected AFE of E. coli within each treatment condition is given in parentheses.
1074  preg and peor correspond to the p-values for the linear regression and Spearman correlation,
1075  respectively. The intercepts determined by linear regression for qSIP and AFE models were not
1076  significantly different from zero (p-value > 0.05).
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1088

1089 SUPPLEMENTAL MATERIAL FILE LIST

1090 Table S1. E. coli AFE (%) in each treatment condition.

1091  Table S2. Characteristics of pre-centrifugation spike-ins. To produce distinct distribution patterns
1092 along the density gradient, some spike-ins were artificially enriched with '*C through PCR by
1093  adjusting the ratio of unlabeled dNTPs and uniformly-labeled *C dNTPs. Theoretical AFE values
1094  are reported based on the ratio of labeled dNTPs, but actual AFE values were not experimentally
1095  confirmed.

1096 Table S3. Comparison of various abundance estimation strategies. All results were derived from
1097 the gSIP analysis method. Sensitivity and specificity were averaged across the seven treatment
1098  conditions.

1099 Table S4. Comparison of methods to identify isotopically labeled genomes. Evaluations were
1100 based on absolute genome abundances obtained by normalizing coverage to internal sequin
1101 standards using the sequin approach. Specificity and sensitivity were averaged across the seven
1102  treatment conditions.

1103  Table S5. Average total coverage across all fractions for E. coli in different treatment conditions
1104  after subsampling from 100% to 0.001% of the original E. coli sequence reads.

1105 Table S6. Comparison of MW-HR-SIP and gSIP methods for detecting isotopic labeling of E. coli
1106  at different levels of total genome coverage across the density gradient. ‘True’ indicates E. coli
1107  was correctly identified to be isotopically labeled (true positive), and ‘false’ indicates E. coli was
1108 incorrectly identified as unlabeled (false negative). NA corresponds to the failure of the MW-HR-
1109  SIP algorithm with that dataset.

1110 Table S7. The impact of genome coverage levels on detecting isotope incorporation using the
1111 gSIP model.

1112  Table S8. Comparison of MAGs retained and the number of false positives detected using the
1113  gSIP method after applying different minimum genome coverage thresholds. MAGs were retained
1114  if their average total coverage in the unlabeled controls exceeded the coverage threshold. E. coli
1115  was the only true positive and had a coverage of 1029X, thus no false negatives were detected
1116  using the coverage thresholds below.

1117  Table S9. Comparison of specificity, sensitivity, and balanced accuracy of the qSIP method after
1118  applying minimum AFE thresholds. To be identified as isotopically labeled, the lower 95% CI
1119  interval of a genome’s estimated AFE must be greater than the minimum AFE threshold.

1120 Table S10. Comparison of false positives MAGs identified by the MW-HR-SIP, gSIP, and ABD
1121 methods. Names of the false positive MAGs are listed in each column.
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1122  Table S11. Comparison of E. coli AFE confidence intervals estimated using gqSIP alone, gSIP
1123  after first applying MW-HR-SIP, and gSIP after first applying ABD method to identify a subset of
1124  putatively labeled MAGs. Condition B (“20pct_20ng”) was removed as it E coli was never
1125 identified as an isotope incorporator in this condition.

1126  Figure S1. Average completeness and average purity of MAGs grouped by assembly type (I -
1127 intact metagenome assembly with MetaSPAdes, F - separate fractions assembled with
1128 metaSPAdes, S - all fractions within each replicate co-assembled with metaSPAdes, M -
1129  combined assembly of all fractions using MetaHipMer(v.2.0.1.2))

1130  Figure S2. Average coverage across all fractions for each medium and high-quality MAG. Color-
1131  coding identifies MAGs found in multiple assembly types (Shared) or uniquely generated in one
1132  of the three different assembly types (F - separate fractions assembled with metaSPAdes, S - all
1133  fractions within each replicate co-assembled with metaSPAdes, M - combined assembly of all
1134  fractions using MetaHipMer). Assemblies of unfractionated DNA (Intact) with MetaSPAdes did
1135  not generate unique MAGs.

1136  Figure S3. Detecting anomalous samples using pre-centrifugation spike-ins. A) SIP sample
1137  displaying the expected spike-in distribution pattern based on relativized absolute coverage along
1138 the density gradient. B) An anomalous sample whose spike-in patterns do not match
1139  expectations, indicating possible problems in gradient collection and library creation.

1140  Figure S4. Linear regression parameters and Spearman correlations between estimated and
1141 expected AFEs obtained using the modified gSIP model from (a) raw coverage, (b) relative
1142  coverage, (c) multiplying relative abundance with DNA concentration following Greenlon and
1143  colleagues (23), (d) multiplying relative coverage with DNA concentration following Starr and
1144  colleagues (22), (e) Sequin approach with ordinary least squares regression without Cook’s
1145  distance filtering (f) Sequin approach with ordinary least squares regression with Cook’s distance
1146  filtering (g) Sequin approach with robust linear regression, and (h) Relativizing abundances per
1147  fraction (MAG abundance/sum of MAG abundances in each fraction) from sequin approach with
1148  robust linear regression. preg and pcor correspond to the p-values for the linear regression and
1149  Spearman correlation. The intercepts determined by linear regression were not significantly
1150  different from zero (p-value > 0.05) in any method for estimating abundance.

1151 Figure S5. Linear regression parameters and Spearman correlations between estimated and
1152  expected AFEs obtained using the ABD method from (a) raw coverage, (b) relative coverage, (c)
1153  multiplying relative abundance with DNA concentration following Greenlon and colleagues (23),
1154  (d) multiplying relative coverage with DNA concentration following Starr and colleagues (22), (e)

1155  Sequin approach with ordinary least squares regression without Cook’s distance filtering (f)
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1156  Sequin approach with ordinary least squares regression with Cook’s distance filtering (g) Sequin
1157  approach with robust linear regression, and (h) Relativizing abundances per fraction (MAG
1158  abundance/sum of MAG abundances in each fraction) from sequin approach with robust linear
1159  regression. preg and per correspond to the p-values for the linear regression and Spearman
1160  correlation. The intercepts determined by linear regression were not significantly different from
1161  zero (p-value > 0.05) in any method for estimating abundance.

1162  Figure S6. Linear regression parameters and Spearman correlations between estimated and
1163  expected AFEs obtained using the gSIP method for subsampled data at mean cumulative
1164  coverages of (a) 0.01X, (b) 0.1X, (c) 1X, (d) 10X, (e) 100X, and (f) 1000X. pregand pcor correspond
1165  to the p-values for the linear regression and Spearman correlation. The intercepts determined by
1166 linear regression were not significantly different from zero (p-value > 0.05) at any level of
1167  subsampling.

1168  Figure S7. Mean total coverage of MAGs across biological replicates in the unlabeled controls.
1169  False positive MAGs are indicated by blue bars (also indicated by arrows). The mean coverage
1170  threshold where false positives would be removed (17X) is indicated by a dashed horizontal line.
1171  Atotal of 68 MAGs had mean total coverages greater than this threshold. MAGs lower than this
1172  threshold are separated by a dashed vertical line.

1173  Figure S8. Mean specificity of delta BD, modified qSIP, and MW-HR-SIP methods to infer
1174  incorporators. The error bars indicate standard deviation of specificity across the seven treatment
1175  conditions. The annotations on the bars indicate the number of false positives out of 146 MAGs.
1176  Figure S9. Impact of SIP CsCl gradient solution on measurements of DNA concentrations made
1177  with the Quant-IT DNA High Sensitiviy Assay Kit. The error bars indicate standard deviation (n=>5).
1178  The dashed line indicates a linear regression (R2=0.9875; F-test p-value = 6.32 X 108).

1179  Data Set S1. Internal calibration standards utilized in experimental design. A set of six synthetic
1180 DNA fragments (pre) were added to mixtures of DNA from isolates and the complex microbiome
1181  to track the ultracentrifugation and fraction collection steps. An additional set of 80 synthetic DNA
1182  fragments (post), or sequins, were added to each fraction as an internal standard for subsequent
1183  quantitative metagenomic analysis.

1184 Data Set S2. Metagenome-assembled genomes (MAGs) generated across assembly
1185  approaches and associated quality metrics. A total of 2,022 MAGs were generated across all
1186  assemblies, of which 248 were high-quality, 447 were medium-quality, and 1,327 were low-quality
1187 as defined by the MIMAG reporting standards. Bin identifiers and assembly identifiers are
1188  provided, along with CheckM metrics for estimates of completeness and contamination. Cluster
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1189  representatives are denoted based on single-linkage clustering from average nucleotide identity
1190  values of 2 96.5 and alignment fractions of = 30%.

1191 Data Set S3. Metagenome assembly types, metrics, and associated accessions for GOLD and
1192  NCBI.

1193
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