

1 **A standardized quantitative analysis strategy for stable isotope probing**
2 **metagenomics**

3
4 Dariia Vyshenska^{*1}, Pranav Sampara^{*2}, Kanwar Singh¹, Andy Tomatsu¹, W. Berkeley Kauffman¹,
5 Erin E. Nuccio³, Steven J. Blazewicz³, Jennifer Pett-Ridge^{3,4}, Neha Varghese¹, Matthew Kellom¹,
6 Alicia Clum¹, Robert Riley¹, Simon Roux¹, Emiley A. Eloe-Fadrosh¹, Ryan M. Ziels^{*2}, Rex R.
7 Malmstrom⁺¹

8
9 ¹DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
10 ²Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada
11 ³Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore,
12 CA, USA
13 ⁴Life & Environmental Sciences Department, University of California Merced, Merced, CA, USA

14
15 *Dariia Vyshenska and Pranav Sampara contributed equally to this work.
16 [†]Ryan M. Ziels and Rex R. Malmstrom contributed equally to this work.

17
18 Correspondence for submission: rrmalmstrom@lbl.gov
19

20 **ABSTRACT**
21 Stable isotope probing (SIP) facilitates culture-independent identification of active
22 microbial populations within complex ecosystems through isotopic enrichment of nucleic
23 acids. Many SIP studies rely on 16S rRNA sequences to identify active taxa but
24 connecting these sequences to specific bacterial genomes is often challenging. Here, we
25 describe a standardized laboratory and analysis framework to quantify isotopic
26 enrichment on a per-genome basis using shotgun metagenomics instead of 16S rRNA
27 sequencing. To develop this framework, we explored various sample processing and
28 analysis approaches using a designed microbiome where the identity of labeled
29 genomes, and their level of isotopic enrichment, were experimentally controlled. With this
30 ground truth dataset, we empirically assessed the accuracy of different analytic models
31 for identifying active taxa, and examined how sequencing depth impacts the detection of
32 isotopically labeled genomes. We also demonstrate that using synthetic DNA internal
33 standards to measure absolute genome abundances in SIP density fractions improves

34 estimates of isotopic enrichment. In addition, our study illustrates the utility of internal
35 standards to reveal anomalies in sample handling that could negatively impact SIP
36 metagenomic analyses if left undetected. Finally, we present *SIPmg*, an R package to
37 facilitate the estimation of absolute abundances and perform statistical analyses for
38 identifying labeled genomes within SIP metagenomic data. This experimentally validated
39 analysis framework strengthens the foundation of DNA-SIP metagenomics as a tool for
40 accurately measuring the *in situ* activity of environmental microbial populations and
41 assessing their genomic potential.

42

43 **Importance:**

44 Answering the question of ‘*who is eating what?*’ within complex microbial communities is
45 paramount for our ability to model, predict, and modulate microbiomes for improved
46 human and planetary health. This question is often pursued using stable isotope probing
47 to track the incorporation of labeled compounds into cellular DNA during microbial growth.
48 However, with traditional stable isotope methods, it is challenging to establish links
49 between an active microorganism’s taxonomic identity and genome composition, while
50 providing quantitative estimates of the microorganism’s isotope incorporation rate. Here,
51 we report an experimental and analytical workflow that lays the foundation for improved
52 detection of metabolically active microorganisms and better quantitative estimates of
53 genome-resolved isotope incorporation, which can be used to further refine ecosystem-
54 scale models for carbon and nutrient fluxes within microbiomes.

55

56 **Keywords:** stable isotope probing, metagenomics, DNA-SIP, co-assembly, internal
57 standards, spike-ins

58

59 **INTRODUCTION**

60 The explosion of environmental sequencing data in the last decade has fueled a deeper
61 understanding of the role of microbiomes in shaping human health, ecosystem function,
62 and the Earth’s biogeochemical cycles (1). Further advancements in microbiome science
63 require improved experimental approaches that link genomes to their *in situ* activities.
64 Due to the limitations of culturing techniques, culture-independent methods that reveal *in*

65 *situ* functions and link them to taxonomic identities play a crucial role in advancing the
66 field of microbial ecology (2). Stable isotope probing (SIP) is a powerful cultivation-
67 independent tool that links metabolic activity and taxonomic identity of environmental
68 microbes (3). During a DNA-SIP experiment, compounds enriched with heavy stable
69 isotopes (e.g., ^{13}C , ^{15}N , and ^{18}O) are added to the microbial community of interest. The
70 labeled compound is metabolized by active members of the microbial community and
71 incorporated into cellular components, including DNA, during growth (4). As a result, the
72 DNA of these active microbes becomes increasingly isotopically labeled, and, therefore,
73 'heavier' compared to the non-labeled DNA from inactive microbes (4). Isotopically-
74 labeled DNA, referred to as 'labeled' from hereon, can be physically separated and
75 recovered via isopycnic centrifugation using a CsCl gradient (5). Thus, microbes
76 assimilating labeled compounds *in situ* can be identified through comparative sequence
77 analysis of the DNA collected at different buoyant densities (BD) along the gradient.

78 Traditional DNA-SIP studies use 16S rRNA gene sequencing to identify labeled
79 microorganisms (6, 7), and several analysis tools are available for 16S rRNA-based SIP
80 studies (8-10). In addition to identifying microbial groups as either labeled or unlabeled,
81 analysis tools such as quantitative SIP (qSIP) and delta BD (ΔBD) can also estimate the
82 extent of isotope assimilation as atom fraction excess (AFE), which is the increase in the
83 isotopic composition of DNA above background levels (11). Measurements of AFE can
84 inform *in situ* growth rate estimates for specific microbial populations, enabling modeling
85 of microbiome dynamics (12-14). Although 16S rRNA-based SIP analyses can
86 taxonomically classify labeled microbes, the full genomic potential of metabolically active
87 taxa are not always captured due to the difficulty in linking partial 16S rRNA gene
88 sequences to their corresponding genomes (15). Adapting SIP analysis tools for the
89 genomic level rather than the 16S rRNA gene level would enable genome-centric
90 metagenomic SIP studies and establish stronger links between genomic information and
91 *in situ* activity.

92 In recent years, multiple SIP studies have used metagenome sequencing in
93 addition to, or in place of, 16S rRNA gene amplicon sequencing (16-21). We refer to this
94 general approach as "SIP metagenomics" from here on to distinguish it from traditional
95 16S rRNA-based DNA-SIP. Some recent studies have applied the qSIP approach to

96 shotgun sequencing data to estimate the isotopic enrichment of soil metagenome
97 assembled genomes (MAGs) (22-24). While these represent exciting advancements in
98 the field, SIP metagenomics faces challenges related to data analysis and interpretation.
99 For example, estimates of isotopic enrichment depend on accurate measurements of
100 absolute genome abundance, but determining genome abundance from metagenomic
101 data is difficult due to its compositional nature (25-28). In addition, outstanding questions
102 remain regarding optimal assembly strategies and the specificity and sensitivity of
103 analysis tools given varying sequencing depth and genome coverage. Empirically
104 answering these questions requires a defined experiment where the identity of labeled
105 genomes and their level of isotopic enrichment is known *a priori*. To date, no such
106 empirical study for validating SIP metagenomic sample processing and analysis has been
107 published.

108 Here, we explore SIP metagenomic sample processing and analysis strategies
109 using a designed microbiome where the identity of labeled genomes, and their level of
110 enrichment, were experimentally controlled. We also investigated the utility of adding
111 internal standards to monitor the quality of density gradient separations and normalize
112 genome coverage levels. With this experimental design, we were able to: a) compare
113 assembly methods for optimal genome recovery; b) determine how sequencing depth and
114 genome coverage influence the detection of labeled genomes; c) examine how different
115 approaches for measuring genome abundance impact estimates of AFE; and d) compare
116 the sensitivity and specificity of different SIP analysis tools for accurately identifying
117 labeled genomes. Based on our findings, we describe an experimentally validated
118 strategy for SIP metagenomics and provide an R package (*SIPmg*) that adapts SIP
119 analysis tools for shotgun metagenome sequence data, estimates absolute genome
120 abundance within each fraction using internal standards, and identifies labeled genomes.
121

122 **RESULTS**

123 To create a ground truth dataset for assessing SIP metagenomics, we generated a
124 microbial community DNA sample where the identity of labeled genomes and their level
125 of enrichment were known *a priori* (Fig. 1). Specifically, we combined unlabeled DNA
126 extracted from a freshwater pond with aliquots of ¹³C-labeled *E. coli* DNA. We created

127 eight levels of *E. coli* labeling ranging from 0 to 36 atom% ^{13}C enrichment (Table S1). We
128 also added two sets of synthetic DNA oligos at two different stages of sample processing
129 to serve as internal standards (Fig. 1). The six “pre-centrifugation spike-in” standards had
130 different BDs, each reaching maximum abundance in a different and predictable region
131 of the density gradient (Table S2). Deviations from the expected distribution pattern
132 indicated possible problems, such as a disturbance of the density gradient, that might
133 compromise data quality from that sample (Fig. 2). The post-fractionation spike-ins,
134 referred to as “sequins” hereafter (28) (Data Set S1), were added to each fraction after
135 density separation (Fig. 1) to serve as internal calibration standards for calculating
136 absolute genome abundances (Fig. 2). This experimental design provided a controlled
137 dataset for answering questions regarding assembly strategies, genome abundance
138 measurements, the impact of sequencing depth, and the accuracy of various SIP analysis
139 methods.

140 To develop an empirically validated workflow for SIP metagenomics, we next
141 created the *SIPmg* R package, which was specifically designed to analyze shotgun
142 sequence data from SIP studies. *SIPmg* calculates absolute taxon abundances using
143 various methods, such as normalizing relative genome coverage to internal standards
144 (this study) or total DNA concentrations (22, 23). *SIPmg* feeds taxon abundance into the
145 HTS-SIP tool (29) where users can select different methods for identifying isotope
146 incorporators, including qSIP (30), high-resolution SIP (HR-SIP, (8)), and moving-window
147 high-resolution SIP (MW-HR-SIP, (9)). *SIPmg* also implements a version of the ΔBD
148 method for estimating isotopic enrichment levels (8). To take advantage of metagenomic
149 data, and similar to Greenlon et al. (23), *SIPmg* updates the qSIP model to use the
150 observed GC content of assembled genomes rather than the estimated GC content used
151 in qSIP analysis of 16S rRNA data (30). Finally, to correct for multiple comparisons, i.e.
152 testing for significant isotope enrichment in multiple MAGs, *SIPmg* can adjust the
153 confidence intervals around bootstrapped estimates of AFE using a variation of false
154 discovery rate correction (31). With the *SIPmg* package, we evaluated the performance
155 of different analysis approaches using our ground truth SIP metagenomics dataset.

156

157 **Maximizing recovery of metagenome-assembled genomes (MAGs) using individual
158 and combined assemblies**

159 In contrast to a typical metagenome sample, community DNA in a SIP experiment is
160 separated into multiple fractions based on BD prior to sequencing (Fig. 1). Differences in
161 GC content and levels of isotopic enrichment result in a non-random distribution of
162 microbial genomes across the density gradient and sequencing each density fraction
163 provides multiple options for assembly and binning. To determine the optimal strategy for
164 maximizing MAG recovery, we compared assembly of the intact unfractionated sample,
165 separate assemblies of each individual fraction, co-assembly of all fractions derived from
166 the same initial sample, and a massive combined assembly using MetaHipMer (32) of all
167 fractions from all samples. Each assembly was then independently binned using
168 MetaBAT2 (33). A total of 2,022 MAGs were generated across all assemblies, of which
169 248 were high-quality, 447 were medium-quality, and 1,327 were low-quality as defined
170 by the MIMAG reporting standards (34) (Data Set S2). The MetaHipMer assembly
171 produced more MAGs than any other strategy. A total of 235 MAGs were recovered from
172 the MetaHipMer assembly, of which 136 were medium- or high-quality (Fig. 3A).
173 However, estimates of average MAG completeness and contamination for each assembly
174 type were not substantially different (Fig. S1).

175 Next, we deduplicated all the medium- and high-quality MAGs recovered from all
176 assemblies to determine whether any approach generated unique MAGs that were not
177 present in other assembly types (Fig. 2B). We first grouped MAGs with average
178 nucleotide identities of ≥ 96.5 and alignment fractions of $\geq 30\%$ into a total of 148 unique
179 clusters (35), then selected a single representative MAG for each cluster. Of these, 120
180 MAG clusters were exclusively produced by MetaHipMer. Twelve MAG clusters did not
181 include any MetaHipMer-generated MAGs, and 11 of these clusters contained at least
182 one MAG generated from the assemblies of individual fractions (Fig. 3B). Assembly of
183 the intact unfractionated mock microbiome did not produce any unique MAGs (Fig. 3B).
184 The different assembly strategies also produced MAGs with different taxonomic
185 compositions. For example, MAGs derived from the MetaHipMer assembly accounted for

186 an additional nine classes that were not present in other assemblies (e.g., *Anaerolineae*,
187 *Andersenbacteria*, *Babeliae*, *Chlamydii*, among others) (Fig. 3C). Most MAGs that were
188 unique to the MetaHipMer co-assembly had lower coverage than MAGs recovered by
189 other assembly approaches (Fig. S2). This suggests the MetaHipMer co-assembly
190 captured more of the lower abundance MAGs in the samples than other assembly
191 approaches, possibly due to the higher coverage levels that resulted from combining
192 reads from all libraries (32). These results indicate that employing multiple assembly
193 strategies and de-replicating the resulting MAGs can maximize genome recovery in SIP
194 metagenomics studies.

195

196 **Anomalous sample detection using pre-centrifugation spike-in controls**

197 As part of the quality control process, we devised an approach for detecting anomalous
198 samples whose pre-centrifugation spike-in sequences displayed aberrant distributions
199 along the BD gradient (Fig. 2C). We added six synthetic spike-ins to our samples prior to
200 ultracentrifugation, and each spike-in had a different density based either on its GC
201 content or the artificial introduction of ¹³C-labeled nucleotides during oligo synthesis
202 (Table S2); therefore, each spike-in has a distinct and predictable peak in coverage along
203 the BD gradient. Deviations from the expected spike-in distribution patterns may indicate
204 events such as cross-contamination, library misidentification, or accidental disturbances
205 of the density gradient significant enough to distort the distribution of MAGs throughout
206 the gradient, all of which would introduce error into the downstream analysis. We
207 identified three biological replicates with anomalous spike-in distribution patterns (Fig.
208 S3), and these samples were removed from downstream analyses to avoid the
209 introduction of extraneous noise. This example illustrates the utility of internal standards
210 to illuminate quality control problems in SIP experiments that would otherwise go
211 undetected.

212

213 **Normalizing genome coverage to quantify DNA isotope incorporation**

214 Accurate abundance measurements are critical for determining levels of isotopic labeling.
215 Briefly, models such as qSIP and Δ BD estimate a taxon's AFE based on differences
216 between its weighted BD in unlabeled controls and isotope-amended treatments (8, 30)

217 (36), and weighted BD is calculated from the taxon's abundance within each density
218 fraction (see Methods equations 5 & 6). For amplicon-based qSIP studies, the relative
219 abundance of a taxon is normalized to the total number 16S rRNA gene sequences within
220 each fraction determined by qPCR (30). Estimating abundance in SIP metagenomic
221 studies is more complicated, since shotgun sequencing lacks an equivalent method to
222 16S rRNA gene qPCR for absolute abundance scaling. Previous SIP metagenomic
223 studies multiplied relative genome coverage with the total DNA concentration of each
224 fraction (22, 23), which is a reasonable approach, although it does not account for
225 potential variability introduced during DNA recovery, library creation, and sequencing of
226 each fraction (27, 28, 37). By adding sequins to density fractions before DNA precipitation
227 and recovery, we explored an alternative normalization strategy for measuring absolute
228 abundance that could also account for variability in the downstream processing steps
229 (22). In this approach, genome coverage within each fraction can be converted into
230 absolute abundances through normalization based on the known concentration and
231 observed coverage of the sequin internal standards. The AFE of each genome can then
232 be estimated from these abundance measurements.

233 Our experimental design, where isotopic enrichment levels were known *a priori*,
234 provided an opportunity to compare different approaches for calculating genome
235 abundances and determine their impact on estimates of taxon AFE (Table 1, Fig. S4).
236 More specifically, we compared the expected AFE values for labeled *E. coli* to AFE
237 estimates from the qSIP model, with different approaches for calculating abundance,
238 including: absolute abundance derived from normalization to sequins (Fig. 4A); absolute
239 abundance estimated by multiplying either relative abundance or relative coverage with
240 total DNA concentration (Fig. 4B and 4C, respectively); and relative coverage without
241 conversion to absolute abundance (Fig. 4D). Results from all of the abundance
242 normalization strategies we tested are provided in Fig. S4 and Table S3. Any genome
243 other than *E. coli* that was identified as labeled was considered a false positive, whereas
244 failure to identify *E. coli* as labeled was considered a false negative.

245 Abundance estimates derived from the sequin approach outperformed all other
246 approaches based on combinatorial assessment of specificity (lower false positives),
247 sensitivity (lower false negatives), and the Spearman correlation between expected and

248 predicted AFE values (Fig. 4, Table 1, Table S3). The two approaches using total DNA
249 concentrations did not produce statistically significant linear regressions (p -value > 0.05)
250 between expected and estimated AFEs (Fig. 4B, 4C, Table S3), although the sensitivity
251 for detecting labeled *E. coli* was the same or better than sensitivity using relative coverage
252 (Table 1). Relative coverage produced the highest specificity, although it had lower
253 sensitivity than the normalization approach using sequins (Fig. 4D and Table S3). These
254 results suggest that internal quantification standards can improve estimates of genome
255 abundance and AFE.

256

257 **Comparison of various SIP analysis method**

258 In addition to qSIP, other analysis methods such as Δ BD (8), high-resolution SIP (HR-
259 SIP, (8)), and moving-window high-resolution SIP (MW-HR-SIP, (9)) can identify labeled
260 taxa. We compared all four approaches for their ability to accurately identify isotope
261 incorporators in our defined SIP metagenomic dataset. We also compared estimates of
262 *E. coli* AFE predicted with the Δ BD and qSIP methods; HR-SIP and MW-HR-SIP do not
263 provide quantitative estimates of enrichment. For all methods, absolute genome
264 abundances were determined by normalization to sequins.

265 The qSIP method predicted the level of AFE for *E. coli* with greater accuracy than
266 the Δ BD method (Fig. 5). The qSIP approach also had higher specificity than the Δ BD
267 method, producing only 7 false positives across all conditions compared to 12 false
268 positives, respectively (Table S4). The MW-HR-SIP approach had the fewest false
269 positives, with only 4 across all conditions, while maintaining the same sensitivity as the
270 qSIP method (Table S4). The sensitivity and specificity of HR-SIP were lower than both
271 MW-HR-SIP and qSIP methods (Table S4). Based on these results, we selected qSIP
272 and MW-HR-SIP for further evaluation.

273

274 **Lower limits of genome coverage for reliable detection of isotope labeling**

275 Next, we examined how sequencing depth affected our ability to detect isotope
276 incorporation. As demonstrated above, the accuracy of abundance measurements
277 impacts the accuracy of AFE estimates, and these abundance measurements are derived
278 from genome sequence coverage. The relative abundance of microbial taxa comprising

279 complex communities can vary by orders of magnitude; thus, genome coverage within
280 sequencing libraries can vary similarly (38). This suggests that AFE estimates might be
281 less reliable for taxa with low coverage. To determine the lowest depth of coverage at
282 which an AFE could be accurately estimated, we performed qSIP and MW-HR-SIP
283 analyses after subsampling *E. coli* reads to 10%, 1%, 0.1%, 0.01%, and 0.001% of their
284 initial levels (Table S5). In the respective subsampled datasets, *E. coli* had an average
285 total coverage ranging from 0.01X to 1,400X coverage. Here, 'total coverage' refers to
286 the cumulative coverage across all density fractions of an individual sample.

287 The qSIP model consistently identified *E. coli* as labeled when mean total coverage
288 was $\geq 1X$ (Table S6). The correlation coefficient between actual and predicted AFEs was
289 0.8 within this coverage range (*p*-value <0.05 ; Fig. S6 and Table S7). However, at total
290 coverages $<1X$, qSIP failed to detect *E. coli* as labeled in several experimental conditions,
291 and the predicted AFEs were not significantly correlated to the expected AFEs (*p*-value
292 > 0.05) (Fig. S6 and Table S7). The MW-HR-SIP method was also less sensitive at lower
293 coverage levels, and at 100X mean total coverage, it only detected *E. coli* as labeled in 3
294 out of 7 experimental conditions (Table S6). These data suggest that estimates of isotope
295 enrichment are less reliable in general when genome coverage is low.

296

297 **Strategies to improve accuracy of detecting isotopically labeled genomes**

298 To improve the accuracy of SIP metagenomic analysis, we explored different strategies
299 to reduce the number of genomes incorrectly identified as labeled (i.e., false positives).
300 For example, the number of false negatives increased as coverage decreased; therefore
301 we tested whether implementing minimum genome coverage requirements could reduce
302 the number of false positives. Excluding genomes with mean total coverages $<10X$
303 reduced the total number of MAGs analyzed from 147 to 113, and reduced false positives
304 identified by qSIP from 7 to 4 without increasing false negatives (Tables S6 and S8). This
305 improved the balanced accuracy from 0.925 to 0.927. Raising the minimum mean total
306 coverage to 17X eliminated all false positives, yet reduced the number of remaining
307 MAGs analyzed to 68. We did not test coverage limits for MW-HR-SIP because the
308 method struggled to detect *E. coli* as labeled when coverage dropped below 100X (Table
309 S6) and applying a threshold of 100X would have limited our analysis to only 17 genomes

310 (Table S8). These results suggest that excluding genomes with low coverage can
311 decrease false positives and increase balanced accuracy. Although the definition of “low
312 coverage” will vary based on experimental conditions and individual assessments of the
313 tradeoffs between sensitivity and specificity, these results also suggest that confidence in
314 the identification of labeled genomes should decrease along with their coverage levels.

315 We also investigated if false positives could be reduced by implementing a
316 minimum level of isotopic enrichment necessary for a genome to be considered labeled.
317 That is, rather than simply requiring genomes to be significantly greater than 0% AFE,
318 which is the default setting of the qSIP approach (30), we examined different minimum
319 AFE thresholds ranging from 2% to 12.5% (Table S9). A genome was considered to be
320 labeled if the lower bound of its AFE 95% CI was greater than the minimum AFE
321 threshold. With AFE thresholds between 2% and 6%, total false positives dropped from
322 7 to 3 across all experimental treatments, but *E. coli* was no longer identified as labeled
323 in one experimental condition. The balanced accuracy was also reduced from 0.925
324 without AFE thresholds to 0.856 with a 6% AFE threshold (Table S9). False positives
325 were completely eliminated with a minimum AFE threshold of 12.5%, but sensitivity was
326 so poor (0.286) that *E. coli* was only identified as labeled in 2 out of 7 conditions (Table
327 S9). Minimum AFE limits could not be tested with MW-HR-SIP analysis because this
328 method does not estimate levels of isotopic enrichment. Together, these results illustrate
329 a trade-off between sensitivity and specificity when increasing the minimum AFE
330 threshold above zero, and suggest that false positives can be reduced by increasing the
331 AFE threshold at the potential cost of losing sensitivity for the detection of minimally
332 labeled taxa.

333 The number and identity of false positives varied across SIP analysis methods,
334 presumably due to differences in their underlying algorithms. Therefore, we hypothesized
335 that the number of false positives might be reduced by taking the consensus of different
336 analysis methods, i.e. requiring that two separate models predict a MAG is labeled. All
337 false positive MAGs found in qSIP analysis were also false positives in Δ BD analysis, and
338 thus taking the consensus of these two methods did not produce fewer false positives
339 than qSIP alone (Table S10). In contrast, there was no overlap in the identity of false
340 positive MAGs between the qSIP and MW-HR-SIP methods, and a union of their results

341 completely eliminated false positives without producing any false negatives (Table S10).
342 However, we found it more advantageous to apply MW-HR-SIP and qSIP sequentially
343 rather than independently. MW-HR-SIP had greater specificity than qSIP, therefore it was
344 used as a first-pass filter to detect putatively labeled genomes while minimizing false
345 positives. This subset of putatively labeled genomes was then re-analyzed with the qSIP
346 model. Only genomes first identified as labeled by MW-HR-SIP and later confirmed with
347 a significantly positive AFE by qSIP were labeled. Applying the tools in series reduced
348 the number of multiple hypotheses tested (e.g., MAGs tested for enrichment), which
349 subsequently increased the statistical power for AFE estimation. That is, without the initial
350 reduction in identified incorporators, the qSIP analysis would have otherwise included all
351 MAGs in its statistical comparisons between treatment groups, resulting in a smaller *p*-
352 value required for significance with multiple hypothesis testing. The increased statistical
353 power obtained by applying the models in series resulted in tighter confidence intervals
354 for the AFEs of *E. coli* (Table S11). These results indicate that using a combination of
355 analysis tools can reduce false-positive detection, although the tools used and their order
356 of application may vary depending on preferences for sensitivity versus specificity.

357

358 **DISCUSSION**

359 DNA-SIP has been an established method in microbial ecology for many years and has
360 primarily relied on 16S rRNA gene sequencing to identify active taxa (16, 30, 39, 40) (14).
361 With decreases in sequencing costs and increases in compute capacity, DNA-SIP studies
362 can now utilize shotgun metagenomic sequencing to establish links between population
363 genomes and *in situ* activities (22-24, 41-43). In addition, automated sample preparation
364 substantially increases the potential scale of SIP metagenomic studies and allows for
365 more biological replication (24). However, the growth of SIP metagenomics also depends
366 on adapting analysis tools to work with shotgun metagenomic data and validating their
367 performance. To this end, we designed a mock SIP metagenome that enabled empirical
368 testing of sample processing and data analysis strategies. Our results suggest some
369 potential best-practices for SIP metagenomic studies that can serve as a foundation for
370 future improvements.

371 Comparing assembly strategies for SIP metagenomic data was a key goal of our
372 study. Previous SIP studies have used different strategies, including assembling
373 unfractionated DNA, assembling individual SIP fractions, and co-assembling several
374 fractions (22-24, 44, 45). However, it was not clear which assembly strategy produces the
375 most medium- and high-quality MAGs. For instance, in computationally-simulated SIP
376 experiments, the co-assembly of multiple fractions improved MAG recovery compared to
377 the assembly of unfractionated DNA (45). In addition, the large amount of sequence data
378 used in co-assemblies can recover rare genomes that would otherwise be lost due to
379 insufficient coverage in smaller assemblies of individual datasets (32). Conversely,
380 individual assemblies can outperform co-assemblies in samples where high levels of
381 microdiversity impede contig formation (46-48). Here, we found that co-assembly of all
382 density fractions generated the most medium- and high-quality MAGs, which agrees with
383 two recent SIP metagenomics studies (23, 24). However, we also found that merging
384 binning results from individual fraction assemblies and larger co-assemblies via MAG de-
385 replication provided more medium- and high-quality MAGs than did co-assembly alone.
386 We posit that this approach reaps the benefits of both strategies: it provides higher read
387 recruitment for assembling rare genomes in co-assemblies and also leverages lower
388 microdiversity in individual fraction assemblies. Optimal assembly strategies may differ
389 for other environmental samples, and these strategies must be re-evaluated as
390 sequencing and assembly methods evolve, but our results suggest that SIP metagenomic
391 studies can benefit from employing multiple assembly approaches to maximize genome
392 recovery.

393 Processing DNA-SIP samples is laborious, but semi-automated protocols simplify
394 lab work and enable high-throughput SIP metagenomic studies (24). Indeed, increasing
395 the number of biological replicates, and sequencing more density fractions per replicate,
396 can improve the detection of labeled taxa (41). However, the opportunities for accidental
397 mistakes, such as cross-contamination, sample mixups, or clerical errors, also increase
398 when processing dozens of samples and hundreds of density fractions. In addition, slight
399 mishandling of ultracentrifuge tubes can disturb delicate CsCl gradients (7), and
400 potentially alter genome distributions along the gradient. If left undetected, these types of
401 accidents could produce inaccurate weighted BD estimates, adding extra noise to the

402 data analysis and even compromising results. In this study, we found that including pre-
403 centrifugation spike-ins, which had distinct and predictable distribution patterns along the
404 gradient, helped us identify and remove problematic samples before they negatively
405 impacted our analyses. Including internal standards can mitigate potential errors and
406 enhance the quality of large complex SIP studies with many replicates. Moreover, with
407 careful design and additional development, internal standards might someday correct for
408 variability introduced during sample processing (41) instead of simply flagging samples
409 for removal. Internal standards can be easily incorporated into automated SIP
410 metagenomics protocols (24), where they can improve the quality of SIP metagenomic
411 results, and if adopted broadly, potentially serve as consistent fiducial reference points
412 that facilitate inter-comparisons of different SIP studies.

413 Accurate measurements of genome abundance along the BD gradient are
414 essential for identifying labeled genomes and determining their level of isotopic
415 enrichment (30). However, the compositional nature of metagenomic data, and the
416 variability introduced during sample processing and sequencing, can hamper quantitative
417 estimates of genome abundance (25-28, 49). Internal quantification standards can
418 mitigate process variability and provide absolute abundance estimates of genes,
419 transcripts, and genomes from metagenome and metatranscriptome data (28, 37, 50-53).
420 Based on these findings, we hypothesized that adding internal standards to density
421 fractions (“sequins”) could improve abundance measurements and thereby improve
422 isotope enrichment measurements. Indeed, estimates of AFE in our study were more
423 accurate using absolute abundances derived from sequin normalization compared to AFE
424 estimates using other strategies.

425 Multiple factors could explain the more accurate estimates of isotopic labeling
426 enabled by internal quantification standards. For one, sequins may have mitigated any
427 variation introduced during library creation and sequencing (28). Additionally, sequins
428 may have corrected for differences in DNA recovery among fractions that would have
429 otherwise gone unnoticed and negatively impacted abundance measurements. That is,
430 after collecting CsCl fractions, each fraction separately undergoes PEG precipitation and
431 desalting before DNA concentrations are measured (24). Absolute abundances
432 calculated using DNA concentrations assume identical DNA recovery efficiencies (22,

433 23), so any stochastic or systematic variability in the percent of DNA recovered would
434 lead to errors in absolute abundance measurements. Conversely, sequins track and
435 mitigate variability in DNA recovery when they are added to fractions before the desalting
436 steps, as was performed here. Therefore, if DNA recovery efficiency varied among
437 fractions, then we would expect absolute abundances derived from sequins to be more
438 accurate than estimates derived from DNA concentration measurements. Without internal
439 standards, variability introduced during DNA recovery, library construction, and
440 sequencing is unknowingly propagated as noise into downstream SIP analyses. This
441 undetected variability can potentially lead to errors that impact predictions of isotope
442 enrichment.

443 The various SIP analysis methods examined in this study use different approaches
444 to detect labeled microorganisms, and these differences could impact the sensitivity and
445 specificity of their predictions. The accuracy of different SIP analysis methods has not
446 been assessed with metagenomic data until now, but *in silico* simulations of 16S rRNA-
447 based SIP data revealed that MW-HR-SIP had higher balanced accuracy than the other
448 analysis methods (29). The qSIP model also generated more accurate AFE estimates
449 than the Δ BD method in those simulations. We observed similar patterns by comparing
450 analysis methods using our experimentally-designed SIP microbiome. In addition, we
451 found that the consensus of multiple approaches, i.e., MW-HR-SIP and qSIP, produced
452 higher accuracy results than any single method alone. Future SIP metagenomic studies
453 might increase confidence in identifying isotope-incorporating taxa by employing these
454 two independent strategies, although the higher confidence in true positives might come
455 at the cost of missing labeled genomes with lower coverage. Regardless of the analysis
456 tools used, analyzing more biological replicates is another simple strategy to increase
457 accuracy (41). As SIP analysis methods evolve, reassessing their performance with
458 deeper sequencing, more replicates, and an improved mock microbiome (e.g. more
459 species at different AFE levels) will provide additional insights into their accuracy and
460 limitations.

461 Altogether, we used a first-of-its-kind mock SIP metagenome to assess the
462 performance of different analysis approaches, identified a set of current best practices,
463 and established an experimentally validated workflow for SIP metagenomics. The ‘wet-

464 'lab' aspects of the workflow include the addition of pre-centrifugation spike-ins for quality
465 control and post-fractionation sequins for genome quantitation along the BD gradient. The
466 'dry-lab' aspects entail absolute genome normalization in each density fraction, and a
467 modified qSIP model tailored to handle genome-resolved metagenomic datasets to
468 calculate AFE. We also explored strategies to more accurately identify isotope
469 incorporators, such as limiting analysis to taxa with coverage and isotope enrichment
470 levels above minimal thresholds and using the consensus of multiple SIP analysis tools
471 to detect labeling using our newly developed *SIPmg* package. These additional strategies
472 hold promise for improving the accuracy of SIP metagenomic results, although the
473 specifics of how and when to apply them will depend on the study design and individual
474 preferences regarding the tradeoffs between specificity and sensitivity. We believe this
475 validated analysis workflow will increase the reliability of SIP metagenomic findings,
476 enable standardization across studies, and facilitate the use of SIP data in modeling
477 microbially-mediated processes.

478

479 MATERIALS AND METHODS

480 DNA collection and mock community creation

481 To create a mock microbiome where the identity of labeled genomes and their level of
482 enrichment were known *a priori*, we first extracted DNA from bacterial isolates grown in
483 ^{13}C -labeled glucose. *Escherichia coli* K-12 wildtype cells were grown in M9 minimal salts
484 media (Teknova; M8005). Glucose was added at a final concentration of 20mM and was
485 the sole carbon source in both media. DNA with different levels of ^{13}C enrichment was
486 produced by varying the ratio of unlabeled glucose to uniformly-labeled $^{13}\text{C}_6\text{-D-glucose}$
487 (Cambridge Isotope Laboratories; CLM-1396; 99 atom %), e.g. DNA extracted from
488 cultures grown in a ratio of 4:1 of unlabeled:labeled glucose was assumed to have an
489 enrichment of approximately 20 atom %. Cultures grown overnight in LB were transferred
490 into labeled media at 5,000-fold dilution (i.e. 2ul into 10ml labeled media), grown at 37°C,
491 and harvested at mid-log phase. DNA was extracted using the Wizard genomic DNA
492 purification kit (Promega; A1120) and quantified using the QuantiT dsDNA High
493 Sensitivity Assay Kit (ThermoFisher; Q33120).

494 DNA from a complex microbial community was recovered from an outdoor, man-
495 made pond located at the Joint Genome Institute. Pond water was pre-filtered through a
496 5 um mesh before collection onto 0.2 um Supor filters (Pall; 47 mm dia.). DNA was
497 extracted from filters using a DNeasy PowerWater kit (Qiagen; 14900-50-NF).

498 Replicate samples were prepared for ultracentrifugation by combining 900 ng of
499 microbiome DNA with 50 ng DNA from each bacterial isolate. For samples with
500 isotopically labeled DNA, the ratio of unlabeled to labeled DNA for each isolate was
501 adjusted, e.g. 40 ng of unlabeled *E. coli* DNA was combined with 10 ng of 20% enriched
502 *E. coli* DNA. The specific ratios of unlabeled:labeled DNA are described in Table S1.

503

504 **Synthetic pre-centrifugation DNA spike-ins**

505 A set of six synthetic DNA fragments were added to mixtures of DNA from isolates and
506 the complex microbiome to track the ultracentrifugation and fraction collection steps.
507 These fragments were approximately 2 kbp in length with GC content of 37-63% (Table
508 S2). To change the distribution of fragments across the density gradient, some fragments
509 were artificially enriched with ¹³C through PCR by adjusting the ratio of unlabeled dNTPs
510 and uniformly-labeled ¹³C dNTPs (Silantes Gmhb; 120106100; >98 atom %) (Table S2).
511 Briefly, DNA was amplified for 30 cycles by adding 0.5ul Phusion High Fidelity DNA
512 Polymerase (NEB; M0530S), 10ul of 5X Phusion HF Buffer, 1ul of 10 mM dNTPs (final
513 conc. labeled/unlabeled mixture), 2.5 ul each 10 μ M Forward and Reverse Primer, and
514 31.5 ul of nuclease-free water. PCR products were purified using AMPure XP beads
515 (Beckman Coulter; 63880) and pooled in equimolar ratios to create a set of pre-
516 centrifugation DNA spike-ins. These pre-centrifugation spike-ins were added at 1% by
517 mass of the DNA mixture, e.g. 10 ng of synthetic fragment pool added to 1 ug of microbial
518 DNA mixture.

519

520 **Gradient separation, sequin addition, and fraction purification**

521 Following Nuccio and colleagues (24), samples were centrifuged at 44,000 RPM (190,600
522 g) for 120 hours at 20°C in a VTi 65.2 Rotor (Beckman Coulter; 362754). For each sample,
523 24 fractions of 220 μ L were collected into a 96-well plate using an Agilent 1260 fraction

524 collector running at flow rate 250 μ L/min while using mineral oil as the displacement fluid.
525 Fraction density was determined using a Reichert AR200 refractometer.

526 Before purifying DNA from CsCl fractions, an additional set of 80 synthetic DNA
527 fragments, or *sequins* (28), were added to each fraction as an internal standard for
528 subsequent quantitative metagenomic analysis. Lyophilized pellets of sequins were
529 obtained from the Garvan Institute of Medical Research
530 (<https://www.sequinstandards.com>). Pellets were resuspended in TE Buffer (10 mM Tris,
531 0.1 mM EDTA, pH 8.0), and the concentration was measured with QuantiT dsDNA High
532 Sensitivity Assay Kit (ThermoFisher; Q33120). Of the 24 BD fractions collected for each
533 sample, we selected 16 to move forward with library creation and sequencing based on
534 the range of BD they spanned. These 16 fractions were amended with sequins. To
535 compensate for expected differences in the amount of DNA recovered from different
536 densities, the middle 8 fractions received 300 pg of sequins while the 4 fractions on either
537 tail received 100 pg of sequins.

538 After sequin addition, DNA was recovered by adding a 250 μ l solution of 36% 6000
539 PEG and 1.6M NaCl to each fraction and incubating overnight in 4°C. Plates were
540 centrifuged at 3,214 $\times g$ for 1.5 hours at 20°C to pellet DNA. Pellets were washed with
541 300 μ l of 70% chilled ethanol, centrifuged at 3,214 $\times g$ for 45 minutes at 20°C, and
542 resuspended in 30 μ l of TE Buffer (10 mM Tris, 0.1 mM EDTA, pH 8.0). Purified DNA
543 was quantified using Quant-IT dsDNA High Sensitivity Assay Kit (ThermoFisher;
544 Q33120).

545 Sequins were added to each fraction before PEG precipitation and DNA
546 quantification steps; therefore the amount added was based on the expected sample DNA
547 concentrations. Tailoring sequin additions to actual sample DNA concentrations, as
548 opposed to estimates, is preferable to ensure optimal coverage in sequencing data. After
549 completing analysis of the mock microbiome, we sought to improve sequin additions by
550 measuring DNA levels before PEG precipitation when DNA was still in concentrated CsCl.
551 Additional details are provided in the Supplementary Materials.

552

553 **Library creation and sequencing**

554 Sequencing libraries were generated from the 16 middle fractions of each sample using
555 Nextera XT v2 chemistry (Illumina) with 12 PCR cycles. Concentrations and size
556 distributions of each library were determined on a Fragment Analyzer (Agilent). Libraries
557 were pooled at equal molar concentrations within the range of 400-800 bp, and the pool
558 was size selected to 400-800 bp using a Pippin Prep 1.5% agarose, dye-free, internal
559 marker gel cassette (Sage Science). For each library, 2X150 bp paired-end sequencing
560 was performed on the Illumina Novaseq platform using S4 flowcells (Table S7).

561

562 **Metagenome assembly and binning**

563 Raw reads were filtered and trimmed using RQCFilter2 software according to the
564 standard JGI procedures (<https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-user-guide/data-preprocessing/>). Then, one of the four strategies was used to
565 perform contigs assemblies: a) an assembly of unfractionated SIP sample with
566 metaSPAdes(v3.15.2) (54); b) a single fraction assembly with metaSPAdes (371
567 assemblies); c) a single sample co-assembly with metaSPAdes (co-assembly of all
568 fractions sequenced for a single SIP replicate sample, 24 assemblies); d) an experiment-
569 wise co-assembly with MetaHipMer(v.2.0.1.2) (assembly of all fractions across all
570 replicates) (32). Assembly and genome mapping parameters are reported in the
571 Supplementary Methods. We generated 397 assemblies in total. Quality assessment
572 metrics for each assembly were calculated using QUAST(v5.0.2) (MetaQUAST
573 mode)(Data Set S3) (55). Each assembly was then independently binned with
574 MetaBAT(v2.12.1) (56). For each generated MAG, we used GTDB-Tk(v2.0.0) (GTDB
575 R95) (57) to assign a taxonomic classification. To assess the quality of MAGs we used
576 CheckM(v1.1.3) (58) and QUAST(v5.0.2) (59). The MetaHipMer combined assembly was
577 annotated using the JGI metagenome annotation workflow (56) and is available through
578 IMG/M (60) under taxon identifier 3300045762.

580

581 **MAG deduplication and mean scaffold coverage calculations**

582 Medium- and high-quality MAGs recovered from all assembly strategies were
583 deduplicated to remove redundant versions of each draft genome (34). The genome-wide
584 ANI (gANI) and the alignment fraction (AF) were calculated for each possible MAG

585 pairwise comparison (35). Next, the lowest pairwise values of gANI and AF were utilized
586 for each MAG comparison, followed by clustering using single-linkage to group MAGs
587 based on species-level delineations (e.g., gANI \geq 96.5 and AF \geq 30) as defined by
588 Varghese and colleagues (35). MAGs that did not cluster with other MAGs were
589 considered singletons. Following clustering, we used completeness, contamination, and
590 total length values to select a single representative MAG for each cluster. Sequences of
591 all spike-ins and sequins were concatenated with the final set of MAG contigs, and this
592 contig set was then used as a reference for read mapping across all density fractions (see
593 Supplementary Methods). The average contig coverage of MAGs, spike-ins, and sequins
594 in each fraction was calculated and used in the downstream analysis.

595

596 **Quality control of SIP data using pre-centrifugation spike-ins**

597 Before performing SIP analysis, we first removed mishandled samples from our dataset.
598 For this purpose, we identified the peak of absolute concentration distributions across the
599 density gradient for each labeled pre-centrifugation spike-in. If the spike-in distribution
600 patterns did not match the expected order along the density based on the theoretical
601 estimated density of the spike-in (given its GC content and C¹³/C¹² ratio), then the sample
602 was considered potentially problematic and removed from the analysis.

603

604 **Estimating the absolute abundance of MAGs across density fractions**

605 To determine the extent of isotope incorporation into genomes, it is first necessary to
606 measure genome abundance across the density gradient. We explored several ways to
607 measure genome abundance in the SIP dataset, which are implemented as part of the
608 *SIPmg* R package (see Code Availability).

609 First, we obtained absolute concentrations of genomes across the density gradient
610 using the approach proposed by Hardwick and colleagues (28), in which sequins were
611 used as internal reference standards to scale coverages into absolute concentrations.
612 Briefly, the average MAG coverage within a given fraction (metagenome) was scaled into
613 units of molarity using regression analysis based on known molarity of 80 sequins and
614 their average coverages. Molar concentrations of the sequins in the added standard
615 mixture were obtained from the manufacturer (Garvan Institute of Medical Research). For

616 regression analyses, we first tested both ordinary least squares regression and robust
617 linear regression. When using ordinary least squares regression, we also tested Cook's
618 distance filtering to remove outliers at a threshold of Cook's distance $< n/4$ (n is the
619 number of datapoints in the regression analysis). A coefficient of variation threshold of
620 250 was employed as a quality control step in this scaling process. Due to the lower
621 number of false positives in the approach with ordinary least squares regression
622 combined with Cook's distance filtering, we continued with this approach for all analyses,
623 but also report the findings from using the robust linear regression analysis in the Table
624 S3. A detailed workflow for sequin normalization is provided in the vignette for the *SIPmg*
625 R package (<https://github.com/ZielsLab/SIPmg>).

626 In addition to sequin based normalization, we also explored genome abundance
627 estimation using: (1) unscaled coverage; (2) relative coverage; (3) absolute abundance
628 as per the approach of Greenlon and colleagues (23) and as the per approach of Starr
629 and colleagues (22). Unscaled coverages represented raw average MAG coverage
630 values that were directly used in the estimation of mean weighted BDs and AFE. Relative
631 coverage was estimated as: (coverage of a MAG within a fraction)/(sum of coverages of
632 all MAGs within a fraction).

633

634 **Estimating of atom fraction excess of MAGs**

635 The qSIP model (eq. 1) or Δ BD model (eq. 6) can be used to estimate the AFE of
636 genomes. Briefly, the AFE of organism i , can be quantified using the qSIP approach (30):
637

$$638 AFE_{C,i} = \frac{M_{Lab,i} - M_{Light,i}}{M_{Heavymax,i} - M_{Light,i}} \cdot (1 - 0.01111233) \quad (\text{eq. 1-A})$$

$$639 AFE_{O,i} = \frac{M_{Lab,i} - M_{Light,i}}{M_{Heavymax,i} - M_{Light,i}} \cdot (1 - 0.002000429) \quad (\text{eq. 1-B})$$

640 where: $A_{C,i}$ and $A_{O,i}$ are the estimated AFE with oxygen and carbon as the isotopic
641 substrate, respectively. M_{Light} is the molecular weight of a MAG (g/mole) in the control
642 condition (eq. 2), M_{Lab} is the molecular weight of a MAG (g/mole) in the treatment
643 condition (eq. 3), and $M_{Heavymax}$ is the theoretical maximum molecular weight of a MAG
644 (g/mole) due to the maximum labeling by the heavy isotope (eq. 4) in the treatment
645 condition:

646 $M_{Light} = 0.496 G_i + 307.691$ (eq. 2)

647 $M_{Lab} = M_{Light} \cdot \left(\frac{W_{Lab} - W_{Light}}{W_{Light}} + 1 \right)$ (eq. 3)

648 $M_{Heavymax} = M_{Light} + 9.974564 - 0.4987282 \cdot G_i$ (eq. 4)

649 where: G_i is the GC content of the MAG (ranging from 0 to 1). Here, we modified the qSIP
650 model to use the GC content values of MAGs provided from output of CheckM (58), rather
651 than inferring it using an empirical regression (30). W_{Light} and W_{Lab} are the mean weighted
652 buoyant densities across control and treatment conditions respectively.

653 The weighted average buoyant density (W_{ij}) is then estimated as:

654 $W_{ij} = \sum_{k=1}^k \rho_{jk} \cdot \frac{y_{ijk}}{y_{ij}}$ (eq. 5)

655 where: ρ_{jk} is the buoyant density of fraction k in replicate j , y_{ijk} is the absolute concentration
656 of taxon i in fraction k of replicate j , and y_{ij} is the sum total of absolute concentration of
657 taxon i in replicate j . Here, genome abundances were determined using either (1) sequin
658 normalization; (2) relative abundance per coverage and/or reads mapped multiplied by
659 total DNA concentrations; and (3) relative coverage.

660 The estimation of AFE based on the Δ BD model can be represented as:

661 $AFE_{\Delta BD} = \frac{W_{Lab} - W_{Light}}{I_{max}}$ (eq. 6)

662 where: I_{max} is the maximum linear shift in DNA BD (upon 100% labeling), as discussed by
663 Birnie and Rickwood (61). The weighted mean BDs were the same as estimated from eq.
664 5. This is a variant of Δ BD from the Pepe-Ranney and colleagues study (8), in which OTU
665 read counts were interpolated at specific points of the replicate BD gradients to estimate
666 weighted mean BDs. The above models for determining AFE were incorporated into the
667 SIPmg R package for application with SIP metagenomics datasets.

668

669 **Identifying isotope incorporators using HR-SIP and MW-HR-SIP**

670 To run the HR-SIP and MW-HR-SIP methods, we used the MAG abundances obtained
671 from the sequin normalization approach. Differential abundances based on absolute
672 abundance for MAGs in the heavy fractions in the treatment conditions were compared
673 to control conditions using HR-SIP and MW-HR-SIP using the HTSSIP R package (29).
674 For HR-SIP, a heavy BD window was set from 1.71 g/mL (as the theoretical peak of E .

675 *coli* would be at 1.709 g/mL based on a GC content of 0.504) to the maximum buoyant
676 density in every treatment condition. For MW-HR-SIP, the overlapping heavy buoyant
677 density windows chosen were 1.71 - 1.74 g/mL, 1.72 - 1.75 g/mL, and 1.73 - 1.76 g/mL.
678 In all cases, sparsity thresholds between 0% and 30% at 5% intervals were chosen (e.g.,
679 sparsity threshold of 25% maintains that MAGs must be present in >25% of fractions in
680 the testing windows). The sparsity threshold with the greatest number of rejected
681 hypotheses were selected for final inference of incorporator identity. The Benjamini-
682 Hochberg method was used to adjust for multiple testing with a threshold of *p*-value of
683 0.05 to identify incorporators.

684

685 **Subsampling of *E. coli* reads.** Reads that mapped to *E. coli* MAG were extracted from
686 .bam files and subsampled using samtools (v1.7) (htslib 1.7) at 10, 1, 0.1, 0.01, and 0.001
687 percentages. New *E. coli* MAG coverages for each fraction were then calculated (Table
688 S5) and used in SIP analysis to establish limitations that low coverage input may have on
689 the efficiency of bacterial incorporator identification.

690

691 **Data availability**

692 Raw metagenome sequencing reads have been deposited under BioProject Accession
693 PRJNA878529. The MetaHipMer combined assembly and annotated data is available
694 through IMG/M under taxon identifier 3300045762. Single-fraction and combined per-
695 sample assemblies, along with all MAGs and input files for qSIP analysis are available
696 via <https://portal.nersc.gov/dna/microbial/prokpubs/DVyshenska2022/>. A full list of
697 available data and associated NCBI accession numbers are available in Data Set S3.

698

699 **Code availability**

700 The code for the *SIPmg* R package is available for download, along with a vignette
701 describing all functions, at: <https://github.com/ZielsLab/SIPmg>. The *SIPmg* package
702 includes functions to calculate global scaling factors for genomes based on regression of
703 sequin coverage versus concentration using either ordinary least squares linear
704 regression or robust linear regression. The package can thereafter estimate AFE using
705 either qSIP model or Δ BD method. The package also outputs both FCR adjusted and

706 Bonferroni adjusted bootstrapped AFE confidence intervals for MAGs. The package can
707 also perform HR-SIP and MW-HR-SIP which were built using the HTS-SIP R package.

708

709 **ACKNOWLEDGMENTS**

710 The work (proposal: 10.46936/10.25585/60001104) conducted by the U.S. Department
711 of Energy Joint Genome Institute (<https://ror.org/04xm1d337>), a DOE Office of Science
712 User Facility, is supported by the Office of Science of the U.S. Department of Energy
713 under contract no. DE-AC02-05CH11231. P.S. was supported by a Discovery Grant to
714 R.Z. (RGPIN-2018-04585) from the Natural Sciences and Engineering Research Council
715 of Canada (NSERC). E.E.N., S.J.B. and J.P.R. were supported by a JGI Emerging
716 Technologies Opportunities Program award (DOI: 10.46936/10.25585/60008401) and
717 DOE award SWC1632. Work at Lawrence Livermore National Laboratory was conducted
718 under the auspices of the U.S. DOE under Contract DE-AC52-07NA27344. We thank Tim
719 Mercer at the Garvan Institute of Medical Research for providing sequins.

720

721 **AUTHOR CONTRIBUTIONS**

722 E.F., R.M., R.Z., E.E.N, S.J.B, J.P.R, and D.V. conceived the study. D.V. was in charge
723 of overall direction and planning. K.S., A.T., E.E.N., and W.B.K carried out laboratory
724 work. R.Z, P.S., and D.V. developed the analytical strategies for utilizing internal
725 standards for quantitative SIP metagenomics, and D.V and P.S performed the
726 computational analysis. P.S. developed *SIPmg* R-package. A.C. and R.R. performed
727 MetaHipMer co-assembly. N.V. performed metagenome binning and ANI-AF
728 computation. S.R. contributed to the interpretation of the results. M.K. supported
729 metagenome binning coverage analysis. D.V. and P.S. wrote the manuscript. E.F, R.M.,
730 and R.Z. supervised the study. All authors provided critical feedback and helped shape
731 the research, analysis, and manuscript.

732

733

734

735

736

737 **REFERENCES**

- 738 1. Falkowski PG, Fenchel T, Delong EF. 2008. The microbial engines that drive Earth's
739 biogeochemical cycles. *Science* 320:1034-9.
- 740 2. Rappé MS, Giovannoni SJ. 2003. The uncultured microbial majority. *Annu Rev Microbiol*
741 57:369-94.
- 742 3. Dumont MG, Murrell JC. 2005. Stable isotope probing - linking microbial identity to
743 function. *Nat Rev Microbiol* 3:499-504.
- 744 4. Radajewski S, Ineson P, Parekh NR, Murrell JC. 2000. Stable-isotope probing as a tool
745 in microbial ecology. *Nature* 403:646.
- 746 5. Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, Murrell JC.
747 2007. DNA stable-isotope probing. *Nat Protoc* 2:860-6.
- 748 6. Neufeld JD, Dumont MG, Vohra J, Murrell JC. 2007. Methodological considerations for
749 the use of stable isotope probing in microbial ecology. *Microb Ecol* 53:435-42.
- 750 7. Dunford EA, Neufeld JD. 2010. DNA stable-isotope probing (DNA-SIP). *J Vis Exp*.
- 751 8. Pepe-Ranney C, Campbell AN, Koechli CN, Berthrong S, Buckley DH. 2016. Unearthing
752 the Ecology of Soil Microorganisms Using a High Resolution DNA-SIP Approach to
753 Explore Cellulose and Xylose Metabolism in Soil. *Front Microbiol* 7:703.
- 754 9. Barnett SE, Youngblut ND, Buckley DH. 2019. Data Analysis for DNA Stable Isotope
755 Probing Experiments Using Multiple Window High-Resolution SIP. *Methods Mol Biol*
756 2046:109-128.
- 757 10. Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, Koch BJ, Liu
758 CM, McHugh TA, Marks JC, Morrissey EM, Price LB. 2015. Quantitative microbial
759 ecology through stable isotope probing. *Appl Environ Microbiol* 81:7570-81.
- 760 11. Buckley DH, Huangyutitham V, Hsu SF, Nelson TA. 2007. Stable isotope probing with
761 ¹⁵N achieved by disentangling the effects of genome G+C content and isotope
762 enrichment on DNA density. *Appl Environ Microbiol* 73:3189-95.
- 763 12. Long AM, Hou S, Ignacio-Espinoza JC, Fuhrman JA. 2021. Benchmarking microbial
764 growth rate predictions from metagenomes. *ISME J* 15:183-195.
- 765 13. Purcell AM, Dijkstra P, Finley B, Hayer M, Koch BJ, Mau RL, Morrissey E, Papp K,
766 Schwartz E, Stone BW, Hungate BA. 2020. Quantitative stable isotope probing with
767 H₂¹⁸O to measure taxon-specific microbial growth. *Soil Sci Soc Am J* 84:1503-1518.
- 768 14. Blazewicz SJ, Hungate BA, Koch BJ, Nuccio EE, Morrissey E, Brodie EL, Schwartz E,
769 Pett-Ridge J, Firestone MK. 2020. Taxon-specific microbial growth and mortality patterns
770 reveal distinct temporal population responses to rewetting in a California grassland soil.
771 *ISME J* 14:1520-1532.
- 772 15. Kapustina Ž, Medžiūnė J, Alzbutas G, Rokaitis I, Matjošaitis K, Mackevičius G, Žeimytė
773 S, Karpus L, Lubys A. 2021. High-resolution microbiome analysis enabled by linking of
774 16S rRNA gene sequences with adjacent genomic contexts. *Microb Genom*
775 7(9):000624.
- 776 16. Ziels RM, Sousa DZ, Stensel HD, Beck DAC. 2018. DNA-SIP based genome-centric
777 metagenomics identifies key long-chain fatty acid-degrading populations in anaerobic
778 digesters with different feeding frequencies. *ISME J* 12:112-123.
- 779 17. Thomas F, Corre E, Cébron A. 2019. Stable isotope probing and metagenomics
780 highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium
781 in polluted soil. *ISME J* 13:1814-1830.
- 782 18. Starr EP, Nuccio EE, Pett-Ridge J, Banfield JF, Firestone MK. 2019. Metatranscriptomic
783 reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil.
784 *Proc Natl Acad Sci USA* 116:25900-25908.
- 785 19. Wilhelm RC, DeRito CM, Shapleigh JP, Madsen EL, Buckley DH. 2021. Phenolic acid-
786 degrading *Paraburkholderia* prime decomposition in forest soil. *ISME Comms* 1:4.

787 20. Sieradzki ET, Morando M, Fuhrman JA. 2021. Metagenomics and Quantitative Stable
788 Isotope Probing Offer Insights into Metabolism of Polycyclic Aromatic Hydrocarbon
789 Degraders in Chronically Polluted Seawater. *mSystems* 6(3):e00245-21.
790 21. Yu J, Pavia MJ, Deem LM, Crow SE, Deenik JL, Penton CR. 2020. DNA-Stable Isotope
791 Probing Shotgun Metagenomics Reveals the Resilience of Active Microbial Communities
792 to Biochar Amendment in Oxisol Soil. *Front Microbiol* 11:587972.
793 22. Starr EP, Shi S, Blazewicz SJ, Koch BJ, Probst AJ, Hungate BA, Pett-Ridge J, Firestone
794 MK, Banfield JF. 2021. Stable-Isotope-Informed, Genome-Resolved Metagenomics
795 Uncovers Potential Cross-Kingdom Interactions in Rhizosphere Soil. *mSphere*
796 6:e0008521.
797 23. Greenlon A, Sieradzki E, Zablocki O, Koch BJ, Foley MM, Kimbrel JA, Hungate BA,
798 Blazewicz SJ, Nuccio EE, Sun CL, Chew A, Mancilla CJ, Sullivan MB, Firestone M, Pett-
799 Ridge J, Banfield JF. 2022. Quantitative Stable-Isotope Probing (qSIP) with
800 Metagenomics Links Microbial Physiology and Activity to Soil Moisture in Mediterranean-
801 Climate Grassland Ecosystems. *mSystems*:e0041722.
802 24. Nuccio EE, Blazewicz SJ, Lafler M, Campbell AN, Kakouridis A, Kimbrel JA, Wppard J,
803 Vyshenska D, Riley R, Tomatsu A, Hestrin R, Malmstrom RR, Firestone M, Pett-Ridge J.
804 2022. HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-
805 kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. *Microbiome*
806 10:199.
807 25. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. 2017. Microbiome Datasets
808 Are Compositional: And This Is Not Optional. *Front Microbiol* 8:2224.
809 26. McLaren MR, Willis AD, Callahan BJ. 2019. Consistent and correctable bias in
810 metagenomic sequencing experiments. *Elife* 8:e46923.
811 27. Nayfach S, Pollard KS. 2016. Toward Accurate and Quantitative Comparative
812 Metagenomics. *Cell* 166:1103-1116.
813 28. Hardwick SA, Chen WY, Wong T, Kanakamedala BS, Deveson IW, Ongley SE, Santini
814 NS, Marcellin E, Smith MA, Nielsen LK, Lovelock CE, Neilan BA, Mercer TR. 2018.
815 Synthetic microbe communities provide internal reference standards for metagenome
816 sequencing and analysis. *Nat Commun* 9:3096.
817 29. Youngblut ND, Barnett SE, Buckley DH. 2018. HTSSIP: An R package for analysis of
818 high throughput sequencing data from nucleic acid stable isotope probing (SIP)
819 experiments. *PLoS One* 13:e0189616.
820 30. Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, Koch BJ, Liu
821 CM, McHugh TA, Marks JC, Morrissey EM, Price LB. 2015. Quantitative microbial
822 ecology through stable isotope probing. *Appl Environ Microbiol* 81:7570-7581.
823 31. Benjamini Y, Yekutieli D. 2005. False Discovery Rate—Adjusted Multiple Confidence
824 Intervals for Selected Parameters. *J Am Stat Assoc* 100:71-81.
825 32. Hofmeyr S, Egan R, Georganas E, Copeland AC, Riley R, Clum A, Eloe-Fadrosh E,
826 Roux S, Gotsman E, Buluç A, Rokhsar D, Oliker L, Yelick K. 2020. Terabase-scale
827 metagenome coassembly with MetaHipMer. *Sci Rep* 10:10689.
828 33. Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. 2019. MetaBAT 2: an
829 adaptive binning algorithm for robust and efficient genome reconstruction from
830 metagenome assemblies. *PeerJ* 7:e7359.
831 34. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK,
832 Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A,
833 Clum A, Becroft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity
834 GM, Dodsworth JA, Yooseph S, Sutton G, Glockner FO, Gilbert JA, Nelson WC, Hallam
835 SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu WT, Baker BJ, Rattei T,
836 Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-
837 Mizrachi I, Tyson GW, Rinke C, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, et

838 al. 2017. Minimum information about a single amplified genome (MISAG) and a
839 metagenome-assembled genome (MIMAG) of bacteria and archaea. *Nat Biotechnol*
840 35:725-731.

841 35. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavromatis K, Kyrpides
842 NC, Pati A. 2015. Microbial species delineation using whole genome sequences. *Nucleic
843 Acids Res* 43(14):6761-71.

844 36. Koch BJ, McHugh TA, Hayer M, Schwartz E, Blazewicz SJ, Dijkstra P, van Gestel N,
845 Marks JC, Mau RL, Morrissey EM, Pett-Ridge J, Hungate BA. 2018. Estimating taxon-
846 specific population dynamics in diverse microbial communities. *Ecosphere* 9:e02090.

847 37. Satinsky BM, Gifford SM, Crump BC, Moran MA. 2013. Use of internal standards for
848 quantitative metatranscriptome and metagenome analysis. *Methods Enzymol* 531:237-
849 50.

850 38. Lynch MD, Neufeld JD. 2015. Ecology and exploration of the rare biosphere. *Nat Rev
851 Microbiol* 13:217-29.

852 39. Radajewski S, Ineson P, Parekh NR, Murrell JC. 2000. Stable-isotope probing as a tool
853 in microbial ecology. *Nature* 403:646-9.

854 40. Chen Y, Dumont MG, Neufeld JD, Bodrossy L, Stralis-Pavese N, McNamara NP, Ostle
855 N, Briones MJ, Murrell JC. 2008. Revealing the uncultivated majority: combining DNA
856 stable-isotope probing, multiple displacement amplification and metagenomic analyses
857 of uncultivated *Methylocystis* in acidic peatlands. *Environ Microbiol* 10:2609-22.

858 41. Sieradzki ET, Koch BJ, Greenlon A, Sachdeva R, Malmstrom RR, Mau RL, Blazewicz
859 SJ, Firestone MK, Hofmockel KS, Schwartz E, Hungate BA, Pett-Ridge J. 2020.
860 Measurement Error and Resolution in Quantitative Stable Isotope Probing: Implications
861 for Experimental Design. *mSystems* 5(4):e00151-20.

862 42. Sieradzki ET, Greenlon A, Nicolas AM, Firestone MK, Pett-Ridge J, Blazewicz SJ,
863 Banfield JF. 2022. Functional succession of actively growing soil microorganisms during
864 rewetting is shaped by precipitation history. *bioRxiv*:2022.06.28.498032.

865 43. Trubl G, Kimbrel JA, Liquet-Gonzalez J, Nuccio EE, Weber PK, Pett-Ridge J, Jansson
866 JK, Waldrop MP, Blazewicz SJ. 2021. Active virus-host interactions at sub-freezing
867 temperatures in Arctic peat soil. *Microbiome* 9:208.

868 44. Starr EP, Shi S, Blazewicz SJ, Probst AJ, Herman DJ, Firestone MK, Banfield JF. 2018.
869 Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria
870 utilize microbially-processed plant-derived carbon. *Microbiome* 6:122.

871 45. Barnett SE, Buckley DH. 2020. Simulating metagenomic stable isotope probing datasets
872 with MetaSIPSim. *BMC Bioinformatics* 21:37.

873 46. Olm MR, Brown CT, Brooks B, Banfield JF. 2017. dRep: a tool for fast and accurate
874 genomic comparisons that enables improved genome recovery from metagenomes
875 through de-replication. *ISME J* 11:2864-2868.

876 47. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Droege J, Gregor I, Majda S,
877 Fiedler J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Jorgensen TS, Shapiro N,
878 Blood PD, Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi R, Nagarajan N, Quince C,
879 Meyer F, Balvociute M, Hansen LH, Sorensen SJ, Chia BKH, Denis B, Froula JL, Wang
880 Z, Egan R, Don Kang D, Cook JJ, Deltel C, Beckstette M, Lemaitre C, Peterlongo P,
881 Rizk G, Lavenier D, Wu YW, Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P,
882 Barton MD, Lingner T, Lin HH, Liao YC, et al. 2017. Critical Assessment of Metagenome
883 Interpretation-a benchmark of metagenomics software. *Nat Methods* 14:1063-1071.

884 48. Meyer F, Fritz A, Deng ZL, Koslicki D, Lesker TR, Gurevich A, Robertson G, Alser M,
885 Antipov D, Beghini F, Bertrand D, Brito JJ, Brown CT, Buchmann J, Buluç A, Chen B,
886 Chikhi R, Clausen P, Cristian A, Dabrowski PW, Darling AE, Egan R, Eskin E,
887 Georganas E, Gotsman E, Gray MA, Hansen LH, Hofmeyr S, Huang P, Irber L, Jia H,
888 Jørgensen TS, Kieser SD, Klemetsen T, Kola A, Kolmogorov M, Korobeynikov A, Kwan

889 J, LaPierre N, Lemaitre C, Li C, Limasset A, Malcher-Miranda F, Mangul S, Marcelino
890 VR, Marchet C, Marijon P, Meleshko D, Mende DR, Milanese A, et al. 2022. Critical
891 Assessment of Metagenome Interpretation: the second round of challenges. *Nat*
892 *Methods* 19:429-440.

893 49. Quinn TP, Erb I, Gloor G, Notredame C, Richardson MF, Crowley TM. 2019. A field
894 guide for the compositional analysis of any-omics data. *Gigascience* 8(9):giz107.

895 50. Crossette E, Gumm J, Langenfeld K, Raskin L, Duhaime M, Wigginton K. 2021.
896 Metagenomic Quantification of Genes with Internal Standards. *mBio* 12(1):e03173-20.

897 51. Gifford SM, Sharma S, Rinta-Kanto JM, Moran MA. 2011. Quantitative analysis of a
898 deeply sequenced marine microbial metatranscriptome. *ISME J* 5:461-72.

899 52. Zaramela LS, Tjuanta M, Moyne O, Neal M, Zengler K. 2022. synDNA-a Synthetic DNA
900 Spike-in Method for Absolute Quantification of Shotgun Metagenomic Sequencing.
901 *mSystems*:e0044722.

902 53. Langenfeld K, Hegarty B, Vidaurri S, Crossette E, Duhaime M, Wigginton K. 2022. A
903 quantitative metagenomic approach to determine population concentrations with
904 examination of quantitative limitations. *bioRxiv*:2022.07.08.499345.

905 54. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new versatile
906 metagenomic assembler. *Genome Res* 27:824-834.

907 55. Mikheenko A, Saveliev V, Gurevich A. 2016. MetaQUAST: evaluation of metagenome
908 assemblies. *Bioinformatics* 32:1088-90.

909 56. Clum A, Huntemann M, Bushnell B, Foster B, Foster B, Roux S, Hajek PP, Varghese N,
910 Mukherjee S, Reddy TBK, Daum C, Yoshinaga Y, O'Malley R, Seshadri R, Kyrpides NC,
911 Eloe-Fadrosh EA, Chen IA, Copeland A, Ivanova NN. 2021. DOE JGI Metagenome
912 Workflow. *mSystems* 6(3):e00804-20.

913 57. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2022. GTDB-Tk v2: memory
914 friendly classification with the genome taxonomy database. *Bioinformatics* 38:5315-
915 5316.

916 58. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM:
917 assessing the quality of microbial genomes recovered from isolates, single cells, and
918 metagenomes. *Genome Res* 25:1043-55.

919 59. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. 2018. Versatile genome
920 assembly evaluation with QUAST-LG. *Bioinformatics* 34:i142-i150.

921 60. Chen I-MA, Chu K, Palaniappan K, Ratner A, Huang J, Huntemann M, Hajek P, Ritter
922 Stephan J, Webb C, Wu D, Varghese Neha J, Reddy TBK, Mukherjee S, Ovchinnikova
923 G, Nolan M, Seshadri R, Roux S, Visel A, Woyke T, Eloe-Fadrosh Emiley A, Kyrpides
924 Nikos C, Ivanova Natalia N. 2022. The IMG/M data management and analysis system
925 v.7: content updates and new features. *Nucleic Acids Res*: gkac976.

926 61. Summers WC. 1979. Centrifugal Separations in Molecular and Cell Biology. *Yale J Biol*
927 *Med* 52:491-2.

928

929

930

931

932

933

934

935

936

937 **Table 1:** Performance of different approaches for calculating genome abundance across density
938 fractions based on the results from spiking ^{13}C labeled *E. coli* DNA into background DNA of an
939 unlabeled freshwater community. AFE was predicted using the qSIP model. Specificity was
940 estimated as (true negatives)/(false positives + true negatives). Sensitivity was estimated as (true
941 positives)/(true positives + false negatives)

942

Method	Procedure	Specificity	Sensitivity	Spearman correlation between estimated & true AFE (<i>p</i> -values)
Absolute abundance using sequins	Regression using sequin coverage and concentration	0.993	0.857	0.85 (0.014)
Absolute abundance using total DNA concentration	Product of relative abundance and DNA concentration (23)	0.991	0.714	0.8 (0.031)
	Product of relative coverage and DNA concentration (22)	0.922	0.571	0.27 (0.55)
Relative coverage	Relative coverage of MAGs in each fraction	0.999	0.571	0.76 (0.046)

943

944

945

946

947

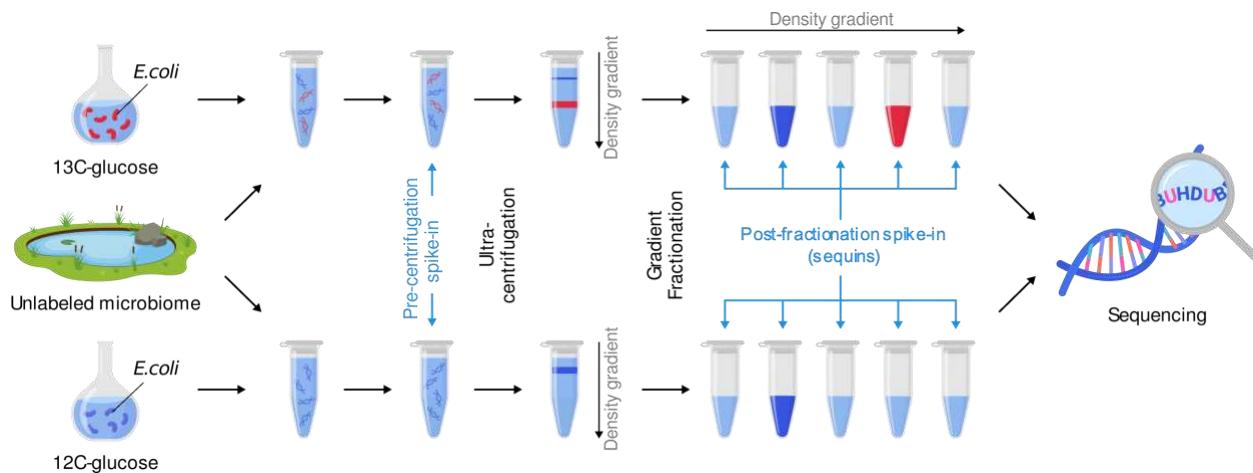
948

949

950

951

952



953

954

955 **Figure 1.** Experimental design and overview of laboratory steps in the SIP metagenomics
956 workflow. To create a defined SIP experimental sample, DNA extracted from an unlabeled
957 freshwater microbial community was amended with either labeled (¹³C) or unlabeled (¹²C) *E. coli*
958 DNA. Pre-centrifugation spike-ins were added to each sample prior to ultracentrifugation in a CsCl
959 gradient, and post-fractionation spike-ins (sequins) were added to each fraction after density
960 gradient fractionation and collection. These two sets of synthetic DNA oligos served as internal
961 standards to monitor the quality of density separations and normalize genome coverage levels.

962

963

964

965

966

967

968

969

970

971

972

973

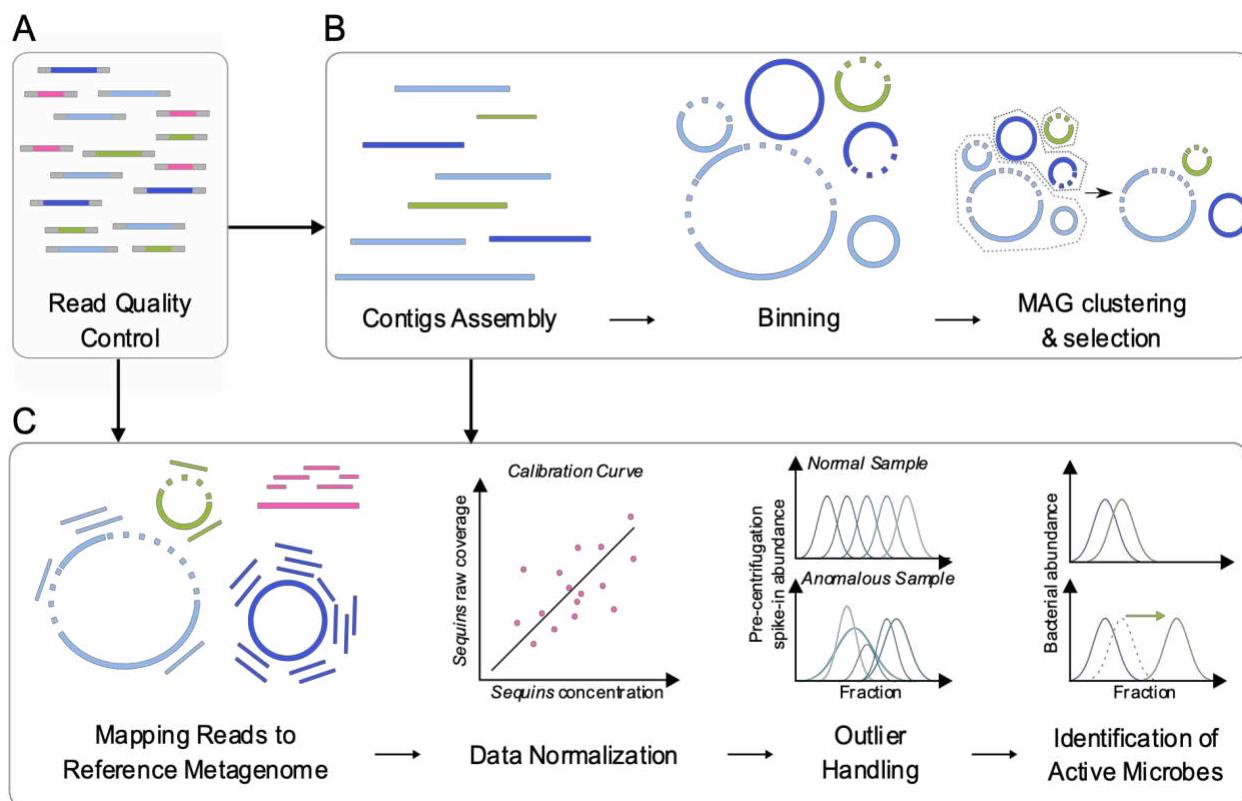
974

975

976

977

978



979

980 **Figure 2.** The workflow scheme for SIP metagenomic data analysis includes (A) quality filtering
981 of the raw reads and (B) generation of a unique set of medium and high quality MAGs used for
982 (C) quantification of absolute taxa abundances and identification of isotope incorporators. The
983 addition of sequins provides the means for calculating absolute bacterial abundances (C, Data
984 Normalization), and pre-centrifugation spike-ins aid in the detection of anomalous samples (C, Outlier
985 Handling).

986

987

988

989

990

991

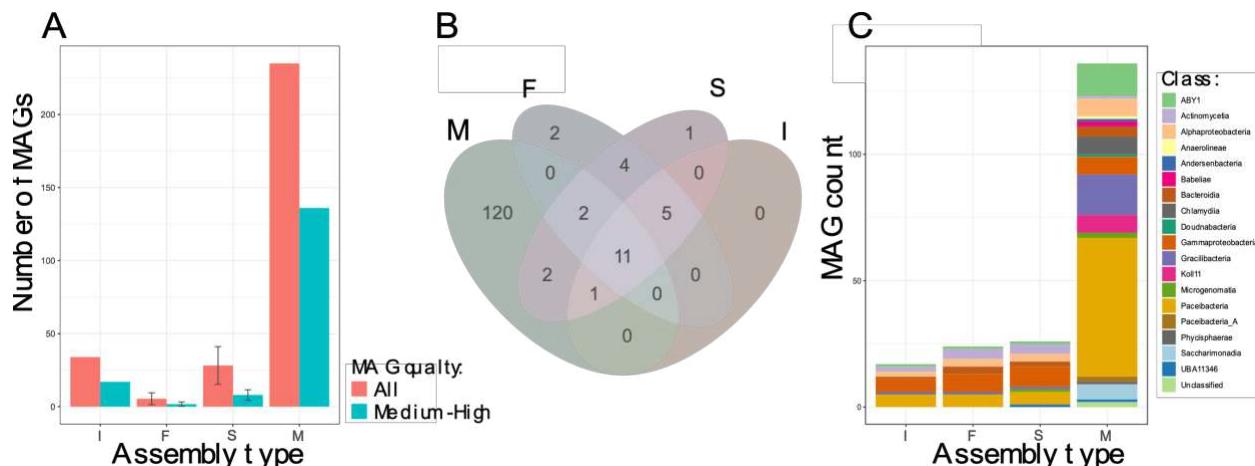
992

993

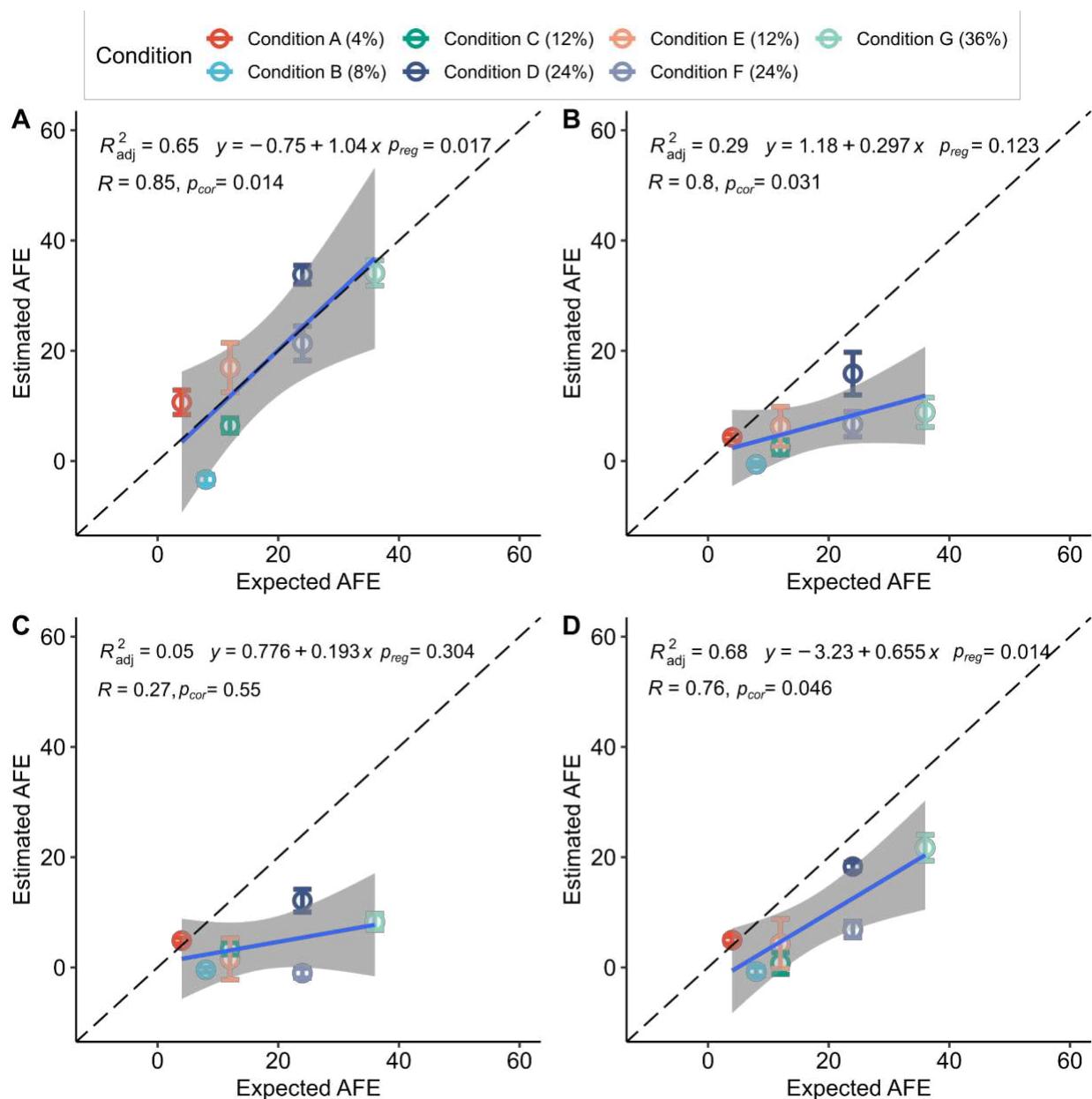
994

995

996



1022



1023

1024 **Figure 4:** Comparison of predicted atom fraction excess (AFE) versus the expected AFE of *E. coli* using different approaches for measuring genome abundance across the density gradient.
1025 The qSIP method was used to estimate AFE in all cases. Genome abundance in each density
1026 fraction was determined by (A) normalization to sequin internal standards, (B) multiplying relative
1027 abundance with DNA concentration following Greenlon et al. (23), (C) multiplying relative
1028 coverage with DNA concentration following Starr et al. (22), and (D) relative coverage without
1029 additional normalization. For all comparisons, please refer to Table S3. Error bars represent the
1030 standard deviation of AFE calculated using the qSIP method's bootstrapping approach. The
1031

1032 expected AFE for each condition is in parentheses, and additional details about conditions,
1033 including replicate numbers, are provided in Table S1. p_{cor} and p_{reg} correspond to the p -values for
1034 the Spearman correlation and the linear regression F-statistic, respectively. The intercepts
1035 determined by linear regression were not significantly different from zero (p -value > 0.05) in any
1036 method for estimating abundance.

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

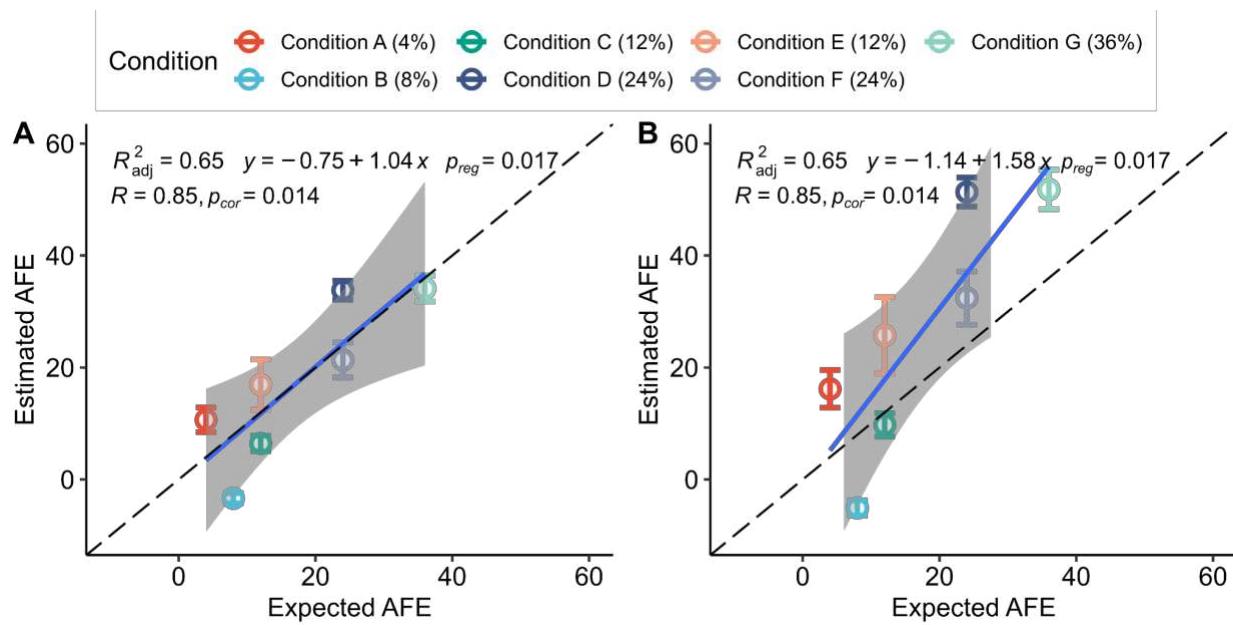
1063

1064

1065

1066

1067



1068

1069 **Figure 5:** Comparison of AFE estimates produced by the (A) qSIP and (B) Δ BD methods using
1070 the mock metagenome where levels of *E. coli* isotopic enrichment were known *a priori*. Both of
1071 these methods used sequin-based normalization for estimating genome abundance. Error bars
1072 represent the standard deviation of AFE calculated using the qSIP method's bootstrapping
1073 approach. The expected AFE of *E. coli* within each treatment condition is given in parentheses.
1074 p_{reg} and p_{cor} correspond to the p -values for the linear regression and Spearman correlation,
1075 respectively. The intercepts determined by linear regression for qSIP and AFE models were not
1076 significantly different from zero (p -value > 0.05).

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089 **SUPPLEMENTAL MATERIAL FILE LIST**

1090 **Table S1.** *E. coli* AFE (%) in each treatment condition.

1091 **Table S2.** Characteristics of pre-centrifugation spike-ins. To produce distinct distribution patterns
1092 along the density gradient, some spike-ins were artificially enriched with ^{13}C through PCR by
1093 adjusting the ratio of unlabeled dNTPs and uniformly-labeled ^{13}C dNTPs. Theoretical AFE values
1094 are reported based on the ratio of labeled dNTPs, but actual AFE values were not experimentally
1095 confirmed.

1096 **Table S3.** Comparison of various abundance estimation strategies. All results were derived from
1097 the qSIP analysis method. Sensitivity and specificity were averaged across the seven treatment
1098 conditions.

1099 **Table S4.** Comparison of methods to identify isotopically labeled genomes. Evaluations were
1100 based on absolute genome abundances obtained by normalizing coverage to internal sequin
1101 standards using the sequin approach. Specificity and sensitivity were averaged across the seven
1102 treatment conditions.

1103 **Table S5.** Average total coverage across all fractions for *E. coli* in different treatment conditions
1104 after subsampling from 100% to 0.001% of the original *E. coli* sequence reads.

1105 **Table S6.** Comparison of MW-HR-SIP and qSIP methods for detecting isotopic labeling of *E. coli*
1106 at different levels of total genome coverage across the density gradient. 'True' indicates *E. coli*
1107 was correctly identified to be isotopically labeled (true positive), and 'false' indicates *E. coli* was
1108 incorrectly identified as unlabeled (false negative). NA corresponds to the failure of the MW-HR-
1109 SIP algorithm with that dataset.

1110 **Table S7.** The impact of genome coverage levels on detecting isotope incorporation using the
1111 qSIP model.

1112 **Table S8.** Comparison of MAGs retained and the number of false positives detected using the
1113 qSIP method after applying different minimum genome coverage thresholds. MAGs were retained
1114 if their average total coverage in the unlabeled controls exceeded the coverage threshold. *E. coli*
1115 was the only true positive and had a coverage of 1029X, thus no false negatives were detected
1116 using the coverage thresholds below.

1117 **Table S9.** Comparison of specificity, sensitivity, and balanced accuracy of the qSIP method after
1118 applying minimum AFE thresholds. To be identified as isotopically labeled, the lower 95% CI
1119 interval of a genome's estimated AFE must be greater than the minimum AFE threshold.

1120 **Table S10.** Comparison of false positives MAGs identified by the MW-HR-SIP, qSIP, and ΔBD
1121 methods. Names of the false positive MAGs are listed in each column.

1122 **Table S11.** Comparison of *E. coli* AFE confidence intervals estimated using qSIP alone, qSIP
1123 after first applying MW-HR-SIP, and qSIP after first applying Δ BD method to identify a subset of
1124 putatively labeled MAGs. Condition B ("20pct_20ng") was removed as it *E. coli* was never
1125 identified as an isotope incorporator in this condition.

1126 **Figure S1.** Average completeness and average purity of MAGs grouped by assembly type (I -
1127 intact metagenome assembly with MetaSPAdes, F - separate fractions assembled with
1128 metaSPAdes, S - all fractions within each replicate co-assembled with metaSPAdes, M -
1129 combined assembly of all fractions using MetaHipMer(v.2.0.1.2))

1130 **Figure S2.** Average coverage across all fractions for each medium and high-quality MAG. Color-
1131 coding identifies MAGs found in multiple assembly types (Shared) or uniquely generated in one
1132 of the three different assembly types (F - separate fractions assembled with metaSPAdes, S - all
1133 fractions within each replicate co-assembled with metaSPAdes, M - combined assembly of all
1134 fractions using MetaHipMer). Assemblies of unfractionated DNA (Intact) with MetaSPAdes did
1135 not generate unique MAGs.

1136 **Figure S3.** Detecting anomalous samples using pre-centrifugation spike-ins. A) SIP sample
1137 displaying the expected spike-in distribution pattern based on relativized absolute coverage along
1138 the density gradient. B) An anomalous sample whose spike-in patterns do not match
1139 expectations, indicating possible problems in gradient collection and library creation.

1140 **Figure S4.** Linear regression parameters and Spearman correlations between estimated and
1141 expected AFEs obtained using the modified qSIP model from (a) raw coverage, (b) relative
1142 coverage, (c) multiplying relative abundance with DNA concentration following Greenlon and
1143 colleagues (23), (d) multiplying relative coverage with DNA concentration following Starr and
1144 colleagues (22), (e) Sequin approach with ordinary least squares regression without Cook's
1145 distance filtering (f) Sequin approach with ordinary least squares regression with Cook's distance
1146 filtering (g) Sequin approach with robust linear regression, and (h) Relativizing abundances per
1147 fraction (MAG abundance/sum of MAG abundances in each fraction) from sequin approach with
1148 robust linear regression. p_{reg} and p_{cor} correspond to the p -values for the linear regression and
1149 Spearman correlation. The intercepts determined by linear regression were not significantly
1150 different from zero (p -value > 0.05) in any method for estimating abundance.

1151 **Figure S5.** Linear regression parameters and Spearman correlations between estimated and
1152 expected AFEs obtained using the Δ BD method from (a) raw coverage, (b) relative coverage, (c)
1153 multiplying relative abundance with DNA concentration following Greenlon and colleagues (23),
1154 (d) multiplying relative coverage with DNA concentration following Starr and colleagues (22), (e)
1155 Sequin approach with ordinary least squares regression without Cook's distance filtering (f)

1156 Sequin approach with ordinary least squares regression with Cook's distance filtering (g) Sequin
1157 approach with robust linear regression, and (h) Relativizing abundances per fraction (MAG
1158 abundance/sum of MAG abundances in each fraction) from sequin approach with robust linear
1159 regression. p_{reg} and p_{cor} correspond to the p -values for the linear regression and Spearman
1160 correlation. The intercepts determined by linear regression were not significantly different from
1161 zero (p -value > 0.05) in any method for estimating abundance.

1162 **Figure S6.** Linear regression parameters and Spearman correlations between estimated and
1163 expected AFEs obtained using the qSIP method for subsampled data at mean cumulative
1164 coverages of (a) 0.01X, (b) 0.1X, (c) 1X, (d) 10X, (e) 100X, and (f) 1000X. p_{reg} and p_{cor} correspond
1165 to the p -values for the linear regression and Spearman correlation. The intercepts determined by
1166 linear regression were not significantly different from zero (p -value > 0.05) at any level of
1167 subsampling.

1168 **Figure S7.** Mean total coverage of MAGs across biological replicates in the unlabeled controls.
1169 False positive MAGs are indicated by blue bars (also indicated by arrows). The mean coverage
1170 threshold where false positives would be removed (17X) is indicated by a dashed horizontal line.
1171 A total of 68 MAGs had mean total coverages greater than this threshold. MAGs lower than this
1172 threshold are separated by a dashed vertical line.

1173 **Figure S8.** Mean specificity of delta BD, modified qSIP, and MW-HR-SIP methods to infer
1174 incorporators. The error bars indicate standard deviation of specificity across the seven treatment
1175 conditions. The annotations on the bars indicate the number of false positives out of 146 MAGs.

1176 **Figure S9.** Impact of SIP CsCl gradient solution on measurements of DNA concentrations made
1177 with the Quant-IT DNA High Sensitiviy Assay Kit. The error bars indicate standard deviation ($n=5$).
1178 The dashed line indicates a linear regression ($R^2=0.9875$; F-test p -value = 6.32×10^{-8}).

1179 **Data Set S1.** Internal calibration standards utilized in experimental design. A set of six synthetic
1180 DNA fragments (pre) were added to mixtures of DNA from isolates and the complex microbiome
1181 to track the ultracentrifugation and fraction collection steps. An additional set of 80 synthetic DNA
1182 fragments (post), or sequins, were added to each fraction as an internal standard for subsequent
1183 quantitative metagenomic analysis.

1184 **Data Set S2.** Metagenome-assembled genomes (MAGs) generated across assembly
1185 approaches and associated quality metrics. A total of 2,022 MAGs were generated across all
1186 assemblies, of which 248 were high-quality, 447 were medium-quality, and 1,327 were low-quality
1187 as defined by the MIMAG reporting standards. Bin identifiers and assembly identifiers are
1188 provided, along with CheckM metrics for estimates of completeness and contamination. Cluster

1189 representatives are denoted based on single-linkage clustering from average nucleotide identity
1190 values of ≥ 96.5 and alignment fractions of $\geq 30\%$.

1191 **Data Set S3.** Metagenome assembly types, metrics, and associated accessions for GOLD and
1192 NCBI.

1193