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ABSTRACT  20 

Stable isotope probing (SIP) facilitates culture-independent identification of active 21 

microbial populations within complex ecosystems through isotopic enrichment of nucleic 22 

acids. Many SIP studies rely on 16S rRNA sequences to identify active taxa but 23 

connecting these sequences to specific bacterial genomes is often challenging. Here, we 24 

describe a standardized laboratory and analysis framework to quantify isotopic 25 

enrichment on a per-genome basis using shotgun metagenomics instead of 16S rRNA 26 

sequencing. To develop this framework, we explored various sample processing and 27 

analysis approaches using a designed microbiome where the identity of labeled 28 

genomes, and their level of isotopic enrichment, were experimentally controlled. With this 29 

ground truth dataset, we empirically assessed the accuracy of different analytic models 30 

for identifying active taxa, and examined how sequencing depth impacts the detection of 31 

isotopically labeled genomes. We also demonstrate that using synthetic DNA internal 32 

standards to measure absolute genome abundances in SIP density fractions improves 33 
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estimates of isotopic enrichment. In addition, our study illustrates the utility of internal 34 

standards to reveal anomalies in sample handling that could negatively impact SIP 35 

metagenomic analyses if left undetected. Finally, we present SIPmg, an R package to 36 

facilitate the estimation of absolute abundances and perform statistical analyses for 37 

identifying labeled genomes within SIP metagenomic data. This experimentally validated 38 

analysis framework strengthens the foundation of DNA-SIP metagenomics as a tool for 39 

accurately measuring the in situ activity of environmental microbial populations and 40 

assessing their genomic potential. 41 

 42 

Importance:  43 

Answering the question of 8who is eating what?’ within complex microbial communities is 44 

paramount for our ability to model, predict, and modulate microbiomes for improved 45 

human and planetary health. This question is often pursued using stable isotope probing 46 

to track the incorporation of labeled compounds into cellular DNA during microbial growth. 47 

However, with traditional stable isotope methods, it is challenging to establish links 48 

between an active microorganism9s taxonomic identity and genome composition, while 49 

providing quantitative estimates of the microorganism9s isotope incorporation rate. Here, 50 

we report an experimental and analytical workflow that lays the foundation for improved 51 

detection of metabolically active microorganisms and better quantitative estimates of 52 

genome-resolved isotope incorporation, which can be used to further refine ecosystem-53 

scale models for carbon and nutrient fluxes within microbiomes.  54 

 55 

Keywords: stable isotope probing, metagenomics, DNA-SIP, co-assembly, internal 56 

standards, spike-ins 57 

 58 

INTRODUCTION 59 

The explosion of environmental sequencing data in the last decade has fueled a deeper 60 

understanding of the role of microbiomes in shaping human health, ecosystem function, 61 

and the Earth9s biogeochemical cycles (1). Further advancements in microbiome science 62 

require improved experimental approaches that link genomes to their in situ activities. 63 

Due to the limitations of culturing techniques, culture-independent methods that reveal in 64 
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situ functions and link them to taxonomic identities play a crucial role in advancing the 65 

field of microbial ecology (2). Stable isotope probing (SIP) is a powerful cultivation-66 

independent tool that links metabolic activity and taxonomic identity of environmental 67 

microbes (3). During a DNA-SIP experiment, compounds enriched with heavy stable 68 

isotopes (e.g., 13C, 15N, and 18O) are added to the microbial community of interest. The 69 

labeled compound is metabolized by active members of the microbial community and 70 

incorporated into cellular components, including DNA, during growth (4). As a result, the 71 

DNA of these active microbes becomes increasingly isotopically labeled, and, therefore, 72 

8heavier9 compared to the non-labeled DNA from inactive microbes (4). Isotopically-73 

labeled DNA, referred to as 8labeled9 from hereon, can be physically separated and 74 

recovered via isopycnic centrifugation using a CsCl gradient (5). Thus, microbes 75 

assimilating labeled compounds in situ can be identified through comparative sequence 76 

analysis of the DNA collected at different buoyant densities (BD) along the gradient.   77 

Traditional DNA-SIP studies use 16S rRNA gene sequencing to identify labeled 78 

microorganisms (6, 7), and several analysis tools are available for 16S rRNA-based SIP 79 

studies (8-10). In addition to identifying microbial groups as either labeled or unlabeled, 80 

analysis tools such as quantitative SIP (qSIP) and delta BD (ΔBD) can also estimate the 81 

extent of isotope assimilation as atom fraction excess (AFE), which is the increase in the 82 

isotopic composition of DNA above background levels (11). Measurements of AFE can 83 

inform in situ growth rate estimates for specific microbial populations, enabling modeling 84 

of microbiome dynamics (12-14). Although 16S rRNA-based SIP analyses can 85 

taxonomically classify labeled microbes, the full genomic potential of metabolically active 86 

taxa are not always captured due to the difficulty in linking partial 16S rRNA gene 87 

sequences to their corresponding genomes (15). Adapting SIP analysis tools for the 88 

genomic level rather than the 16S rRNA gene level would enable genome-centric 89 

metagenomic SIP studies and establish stronger links between genomic information and 90 

in situ activity.  91 

In recent years, multiple SIP studies have used metagenome sequencing in 92 

addition to, or in place of, 16S rRNA gene amplicon sequencing (16-21). We refer to this 93 

general approach as "SIP metagenomics" from here on to distinguish it from traditional 94 

16S rRNA-based DNA-SIP. Some recent studies have applied the qSIP approach to 95 
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shotgun sequencing data to estimate the isotopic enrichment of soil metagenome 96 

assembled genomes (MAGs) (22-24). While these represent exciting advancements in 97 

the field, SIP metagenomics faces challenges related to data analysis and interpretation. 98 

For example, estimates of isotopic enrichment depend on accurate measurements of 99 

absolute genome abundance, but determining genome abundance from metagenomic 100 

data is difficult due to its compositional nature (25-28). In addition, outstanding questions 101 

remain regarding optimal assembly strategies and the specificity and sensitivity of 102 

analysis tools given varying sequencing depth and genome coverage. Empirically 103 

answering these questions requires a defined experiment where the identity of labeled 104 

genomes and their level of isotopic enrichment is known a priori. To date, no such 105 

empirical study for validating SIP metagenomic sample processing and analysis has been 106 

published. 107 

Here, we explore SIP metagenomic sample processing and analysis strategies 108 

using a designed microbiome where the identity of labeled genomes, and their level of 109 

enrichment, were experimentally controlled. We also investigated the utility of adding 110 

internal standards to monitor the quality of density gradient separations and normalize 111 

genome coverage levels. With this experimental design, we were able to: a) compare 112 

assembly methods for optimal genome recovery; b) determine how sequencing depth and 113 

genome coverage influence the detection of labeled genomes; c) examine how different 114 

approaches for measuring genome abundance impact estimates of AFE; and d) compare 115 

the sensitivity and specificity of different SIP analysis tools for accurately identifying 116 

labeled genomes. Based on our findings, we describe an experimentally validated 117 

strategy for SIP metagenomics and provide an R package (SIPmg) that adapts SIP 118 

analysis tools for shotgun metagenome sequence data, estimates absolute genome 119 

abundance within each fraction using internal standards, and identifies labeled genomes. 120 

 121 

RESULTS 122 

To create a ground truth dataset for assessing SIP metagenomics, we generated a 123 

microbial community DNA sample where the identity of labeled genomes and their level 124 

of enrichment were known a priori (Fig. 1). Specifically, we combined unlabeled DNA 125 

extracted from a freshwater pond with aliquots of 13C-labeled E. coli DNA. We created 126 
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eight levels of E. coli labeling ranging from 0 to 36 atom% 13C enrichment (Table S1). We 127 

also added two sets of synthetic DNA oligos at two different stages of sample processing 128 

to serve as internal standards (Fig. 1). The six <pre-centrifugation spike-in= standards had 129 

different BDs, each reaching maximum abundance in a different and predictable region 130 

of the density gradient (Table S2). Deviations from the expected distribution pattern 131 

indicated possible problems, such as a disturbance of the density gradient, that might 132 

compromise data quality from that sample (Fig. 2). The post-fractionation spike-ins, 133 

referred to as <sequins'' hereafter (28) (Data Set S1), were added to each fraction after 134 

density separation (Fig. 1) to serve as internal calibration standards for calculating 135 

absolute genome abundances (Fig. 2). This experimental design provided a controlled 136 

dataset for answering questions regarding assembly strategies, genome abundance 137 

measurements, the impact of sequencing depth, and the accuracy of various SIP analysis 138 

methods. 139 

To develop an empirically validated workflow for SIP metagenomics, we next 140 

created the SIPmg R package, which was specifically designed to analyze shotgun 141 

sequence data from SIP studies. SIPmg calculates absolute taxon abundances using 142 

various methods, such as normalizing relative genome coverage to internal standards 143 

(this study) or total DNA concentrations (22, 23). SIPmg feeds taxon abundance into the 144 

HTS-SIP tool (29) where users can select different methods for identifying isotope 145 

incorporators, including qSIP (30), high-resolution SIP (HR-SIP, (8)), and moving-window 146 

high-resolution SIP (MW-HR-SIP, (9)). SIPmg also implements a version of the ΔBD 147 

method for estimating isotopic enrichment levels (8). To take advantage of metagenomic 148 

data, and similar to Greenlon et al. (23), SIPmg updates the qSIP model to use the 149 

observed GC content of assembled genomes rather than the estimated GC content used 150 

in qSIP analysis of 16S rRNA data (30). Finally, to correct for multiple comparisons, i.e. 151 

testing for significant isotope enrichment in multiple MAGs, SIPmg can adjust the 152 

confidence intervals around bootstrapped estimates of AFE using a variation of false 153 

discovery rate correction (31). With the SIPmg package, we evaluated the performance 154 

of different analysis approaches using our ground truth SIP metagenomics dataset. 155 

 156 
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Maximizing recovery of metagenome-assembled genomes (MAGs) using individual 157 

and combined assemblies 158 

In contrast to a typical metagenome sample, community DNA in a SIP experiment is 159 

separated into multiple fractions based on BD prior to sequencing (Fig. 1). Differences in 160 

GC content and levels of isotopic enrichment result in a non-random distribution of 161 

microbial genomes across the density gradient and sequencing each density fraction 162 

provides multiple options for assembly and binning. To determine the optimal strategy for 163 

maximizing MAG recovery, we compared assembly of the intact unfractionated sample, 164 

separate assemblies of each individual fraction, co-assembly of all fractions derived from 165 

the same initial sample, and a massive combined assembly using MetaHipMer (32) of all 166 

fractions from all samples. Each assembly was then independently binned using 167 

MetaBAT2 (33). A total of 2,022 MAGs were generated across all assemblies, of which 168 

248 were high-quality, 447 were medium-quality, and 1,327 were low-quality as defined 169 

by the MIMAG reporting standards (34) (Data Set S2). The MetaHipMer assembly 170 

produced more MAGs than any other strategy. A total of 235 MAGs were recovered from 171 

the MetaHipMer assembly, of which 136 were medium- or high-quality (Fig. 3A). 172 

However, estimates of average MAG completeness and contamination for each assembly 173 

type were not substantially different (Fig. S1). 174 

Next, we deduplicated all the medium- and high-quality MAGs recovered from all 175 

assemblies to determine whether any approach generated unique MAGs that were not 176 

present in other assembly types (Fig. 2B). We first grouped MAGs with average 177 

nucleotide identities of ≥ 96.5 and alignment fractions of ≥ 30% into a total of 148 unique 178 

clusters (35), then selected a single representative MAG for each cluster. Of these, 120 179 

MAG clusters were exclusively produced by MetaHipMer. Twelve MAG clusters did not 180 

include any MetaHipMer-generated MAGs, and 11 of these clusters contained at least 181 

one MAG generated from the assemblies of individual fractions (Fig. 3B). Assembly of 182 

the intact unfractionated mock microbiome did not produce any unique MAGs (Fig. 3B). 183 

The different assembly strategies also produced MAGs with different taxonomic 184 

compositions. For example, MAGs derived from the MetaHipMer assembly accounted for 185 
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an additional nine classes that were not present in other assemblies (e.g., Anaerolineae, 186 

Andersenbacteria, Babeliae, Chlamydiia, among others) (Fig. 3C). Most MAGs that were 187 

unique to the MetaHipMer co-assembly had lower coverage than MAGs recovered by 188 

other assembly approaches (Fig. S2). This suggests the MetaHipMer co-assembly 189 

captured more of the lower abundance MAGs in the samples than other assembly 190 

approaches, possibly due to the higher coverage levels that resulted from combining 191 

reads from all libraries (32). These results indicate that employing multiple assembly 192 

strategies and de-replicating the resulting MAGs can maximize genome recovery in SIP 193 

metagenomics studies. 194 

 195 

Anomalous sample detection using pre-centrifugation spike-in controls 196 

As part of the quality control process, we devised an approach for detecting anomalous 197 

samples whose pre-centrifugation spike-in sequences displayed aberrant distributions 198 

along the BD gradient (Fig. 2C). We added six synthetic spike-ins to our samples prior to 199 

ultracentrifugation, and each spike-in had a different density based either on its GC 200 

content or the artificial introduction of 13C-labeled nucleotides during oligo synthesis 201 

(Table S2); therefore, each spike-in has a distinct and predictable peak in coverage along 202 

the BD gradient. Deviations from the expected spike-in distribution patterns may indicate 203 

events such as cross-contamination, library misidentification, or accidental disturbances 204 

of the density gradient significant enough to distort the distribution of MAGs throughout 205 

the gradient, all of which would introduce error into the downstream analysis. We 206 

identified three biological replicates with anomalous spike-in distribution patterns (Fig. 207 

S3), and these samples were removed from downstream analyses to avoid the 208 

introduction of extraneous noise. This example illustrates the utility of internal standards 209 

to illuminate quality control problems in SIP experiments that would otherwise go 210 

undetected. 211 

 212 

Normalizing genome coverage to quantify DNA isotope incorporation 213 

Accurate abundance measurements are critical for determining levels of isotopic labeling. 214 

Briefly, models such as qSIP and ΔBD estimate a taxon's AFE based on differences 215 

between its weighted BD in unlabeled controls and isotope-amended treatments (8, 30) 216 
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(36), and weighted BD is calculated from the taxon9s abundance within each density 217 

fraction (see Methods equations 5 & 6). For amplicon-based qSIP studies, the relative 218 

abundance of a taxon is normalized to the total number 16S rRNA gene sequences within 219 

each fraction determined by qPCR (30). Estimating abundance in SIP metagenomic 220 

studies is more complicated, since shotgun sequencing lacks an equivalent method to 221 

16S rRNA gene qPCR for absolute abundance scaling. Previous SIP metagenomic 222 

studies multiplied relative genome coverage with the total DNA concentration of each 223 

fraction (22, 23), which is a reasonable approach, although it does not account for 224 

potential variability introduced during DNA recovery, library creation, and sequencing of 225 

each fraction (27, 28, 37). By adding sequins to density fractions before DNA precipitation 226 

and recovery, we explored an alternative normalization strategy for measuring absolute 227 

abundance that could also account for variability in the downstream processing steps 228 

(22). In this approach, genome coverage within each fraction can be converted into 229 

absolute abundances through normalization based on the known concentration and 230 

observed coverage of the sequin internal standards. The AFE of each genome can then 231 

be estimated from these abundance measurements. 232 

Our experimental design, where isotopic enrichment levels were known a priori, 233 

provided an opportunity to compare different approaches for calculating genome 234 

abundances and determine their impact on estimates of taxon AFE (Table 1, Fig. S4). 235 

More specifically, we compared the expected AFE values for labeled E. coli to AFE 236 

estimates from the qSIP model, with different approaches for calculating abundance, 237 

including: absolute abundance derived from normalization to sequins (Fig. 4A); absolute 238 

abundance estimated by multiplying either relative abundance or relative coverage with 239 

total DNA concentration (Fig. 4B and 4C, respectively); and relative coverage without 240 

conversion to absolute abundance (Fig. 4D). Results from all of the abundance 241 

normalization strategies we tested are provided in Fig. S4 and Table S3. Any genome 242 

other than E. coli that was identified as labeled was considered a false positive, whereas 243 

failure to identify E. coli as labeled was considered a false negative.  244 

Abundance estimates derived from the sequin approach outperformed all other 245 

approaches based on combinatorial assessment of specificity (lower false positives), 246 

sensitivity (lower false negatives), and the Spearman correlation between expected and 247 
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predicted AFE values (Fig. 4, Table 1, Table S3). The two approaches using total DNA 248 

concentrations did not produce statistically significant linear regressions (p-value > 0.05) 249 

between expected and estimated AFEs (Fig. 4B, 4C, Table S3), although the sensitivity 250 

for detecting labeled E. coli was the same or better than sensitivity using relative coverage 251 

(Table 1). Relative coverage produced the highest specificity, although it had lower 252 

sensitivity than the normalization approach using sequins (Fig. 4D and Table S3). These 253 

results suggest that internal quantification standards can improve estimates of genome 254 

abundance and AFE.  255 

 256 

Comparison of various SIP analysis method 257 

In addition to qSIP, other analysis methods such as ΔBD (8), high-resolution SIP (HR-258 

SIP, (8)), and moving-window high-resolution SIP (MW-HR-SIP, (9)) can identify labeled 259 

taxa. We compared all four approaches for their ability to accurately identify isotope 260 

incorporators in our defined SIP metagenomic dataset. We also compared estimates of 261 

E. coli AFE predicted with the ΔBD and qSIP methods; HR-SIP and MW-HR-SIP do not 262 

provide quantitative estimates of enrichment. For all methods, absolute genome 263 

abundances were determined by normalization to sequins.   264 

The qSIP method predicted the level of AFE for E. coli with greater accuracy than 265 

the ΔBD method (Fig. 5). The qSIP approach also had higher specificity than the ΔBD 266 

method, producing only 7 false positives across all conditions compared to 12 false 267 

positives, respectively (Table S4). The MW-HR-SIP approach had the fewest false 268 

positives, with only 4 across all conditions, while maintaining the same sensitivity as the 269 

qSIP method (Table S4). The sensitivity and specificity of HR-SIP were lower than both 270 

MW-HR-SIP and qSIP methods (Table S4). Based on these results, we selected qSIP 271 

and MW-HR-SIP for further evaluation. 272 

 273 

Lower limits of genome coverage for reliable detection of isotope labeling 274 

Next, we examined how sequencing depth affected our ability to detect isotope 275 

incorporation. As demonstrated above, the accuracy of abundance measurements 276 

impacts the accuracy of AFE estimates, and these abundance measurements are derived 277 

from genome sequence coverage. The relative abundance of microbial taxa comprising 278 
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complex communities can vary by orders of magnitude; thus, genome coverage within 279 

sequencing libraries can vary similarly (38). This suggests that AFE estimates might be 280 

less reliable for taxa with low coverage. To determine the lowest depth of coverage at 281 

which an AFE could be accurately estimated, we performed qSIP and MW-HR-SIP 282 

analyses after subsampling E. coli reads to 10%, 1%, 0.1%, 0.01%, and 0.001% of their 283 

initial levels (Table S5). In the respective subsampled datasets, E. coli had an average 284 

total coverage ranging from 0.01X to 1,400X coverage. Here, 8total coverage9 refers to 285 

the cumulative coverage across all density fractions of an individual sample.  286 

The qSIP model consistently identified E. coli as labeled when mean total coverage 287 

was ≥ 1X (Table S6). The correlation coefficient between actual and predicted AFEs was 288 

0.8 within this coverage range (p-value <0.05; Fig. S6 and Table S7). However, at total 289 

coverages <1X, qSIP failed to detect E. coli as labeled in several experimental conditions, 290 

and the predicted AFEs were not significantly correlated to the expected AFEs (p-value 291 

> 0.05) (Fig. S6 and Table S7). The MW-HR-SIP method was also less sensitive at lower 292 

coverage levels, and at 100X mean total coverage, it only detected E. coli as labeled in 3 293 

out of 7 experimental conditions (Table S6). These data suggest that estimates of isotope 294 

enrichment are less reliable in general when genome coverage is low. 295 

 296 

Strategies to improve accuracy of detecting isotopically labeled genomes 297 

To improve the accuracy of SIP metagenomic analysis, we explored different strategies 298 

to reduce the number of genomes incorrectly identified as labeled (i.e., false positives). 299 

For example, the number of false negatives increased as coverage decreased; therefore 300 

we tested whether implementing minimum genome coverage requirements could reduce 301 

the number of false positives. Excluding genomes with mean total coverages <10X 302 

reduced the total number of MAGs analyzed from 147 to 113, and reduced false positives 303 

identified by qSIP from 7 to 4 without increasing false negatives (Tables S6 and S8). This 304 

improved the balanced accuracy from 0.925 to 0.927. Raising the minimum mean total 305 

coverage to 17X eliminated all false positives, yet reduced the number of remaining 306 

MAGs analyzed to 68. We did not test coverage limits for MW-HR-SIP because the 307 

method struggled to detect E. coli as labeled when coverage dropped below 100X (Table 308 

S6) and applying a threshold of 100X would have limited our analysis to only 17 genomes 309 
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(Table S8). These results suggest that excluding genomes with low coverage can 310 

decrease false positives and increase balanced accuracy. Although the definition of <low 311 

coverage= will vary based on experimental conditions and individual assessments of the 312 

tradeoffs between sensitivity and specificity, these results also suggest that confidence in 313 

the identification of labeled genomes should decrease along with their coverage levels.  314 

We also investigated if false positives could be reduced by implementing a 315 

minimum level of isotopic enrichment necessary for a genome to be considered labeled. 316 

That is, rather than simply requiring genomes to be significantly greater than 0% AFE, 317 

which is the default setting of the qSIP approach (30), we examined different minimum 318 

AFE thresholds ranging from 2% to 12.5% (Table S9). A genome was considered to be 319 

labeled if the lower bound of its AFE 95% CI was greater than the minimum AFE 320 

threshold. With AFE thresholds between 2% and 6%, total false positives dropped from 321 

7 to 3 across all experimental treatments, but E. coli was no longer identified as labeled 322 

in one experimental condition. The balanced accuracy was also reduced from 0.925 323 

without AFE thresholds to 0.856 with a 6% AFE threshold (Table S9). False positives 324 

were completely eliminated with a minimum AFE threshold of 12.5%, but sensitivity was 325 

so poor (0.286) that E. coli was only identified as labeled in 2 out of 7 conditions (Table 326 

S9). Minimum AFE limits could not be tested with MW-HR-SIP analysis because this 327 

method does not estimate levels of isotopic enrichment. Together, these results illustrate 328 

a trade-off between sensitivity and specificity when increasing the minimum AFE 329 

threshold above zero, and suggest that false positives can be reduced by increasing the 330 

AFE threshold at the potential cost of losing sensitivity for the detection of minimally 331 

labeled taxa.  332 

The number and identity of false positives varied across SIP analysis methods, 333 

presumably due to differences in their underlying algorithms. Therefore, we hypothesized 334 

that the number of false positives might be reduced by taking the consensus of different 335 

analysis methods, i.e. requiring that two separate models predict a MAG is labeled. All 336 

false positive MAGs found in qSIP analysis were also false positives in ΔBD analysis, and 337 

thus taking the consensus of these two methods did not produce fewer false positives 338 

than qSIP alone (Table S10). In contrast, there was no overlap in the identity of false 339 

positive MAGs between the qSIP and MW-HR-SIP methods, and a union of their results 340 
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completely eliminated false positives without producing any false negatives (Table S10). 341 

However, we found it more advantageous to apply MW-HR-SIP and qSIP sequentially 342 

rather than independently. MW-HR-SIP had greater specificity than qSIP, therefore it was 343 

used as a first-pass filter to detect putatively labeled genomes while minimizing false 344 

positives. This subset of putatively labeled genomes was then re-analyzed with the qSIP 345 

model. Only genomes first identified as labeled by MW-HR-SIP and later confirmed with 346 

a significantly positive AFE by qSIP were labeled. Applying the tools in series reduced 347 

the number of multiple hypotheses tested (e.g., MAGs tested for enrichment), which 348 

subsequently increased the statistical power for AFE estimation. That is, without the initial 349 

reduction in identified incorporators, the qSIP analysis would have otherwise included all 350 

MAGs in its statistical comparisons between treatment groups, resulting in a smaller p-351 

value required for significance with multiple hypothesis testing. The increased statistical 352 

power obtained by applying the models in series resulted in tighter confidence intervals 353 

for the AFEs of E. coli (Table S11). These results indicate that using a combination of 354 

analysis tools can reduce false-positive detection, although the tools used and their order 355 

of application may vary depending on preferences for sensitivity versus specificity. 356 

 357 

DISCUSSION  358 

DNA-SIP has been an established method in microbial ecology for many years and has 359 

primarily relied on 16S rRNA gene sequencing to identify active taxa (16, 30, 39, 40) (14). 360 

With decreases in sequencing costs and increases in compute capacity, DNA-SIP studies 361 

can now utilize shotgun metagenomic sequencing to establish links between population 362 

genomes and in situ activities (22-24, 41-43). In addition, automated sample preparation 363 

substantially increases the potential scale of SIP metagenomic studies and allows for 364 

more biological replication (24). However, the growth of SIP metagenomics also depends 365 

on adapting analysis tools to work with shotgun metagenomic data and validating their 366 

performance. To this end, we designed a mock SIP metagenome that enabled empirical 367 

testing of sample processing and data analysis strategies. Our results suggest some 368 

potential best-practices for SIP metagenomic studies that can serve as a foundation for 369 

future improvements. 370 
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Comparing assembly strategies for SIP metagenomic data was a key goal of our 371 

study. Previous SIP studies have used different strategies, including assembling 372 

unfractionated DNA, assembling individual SIP fractions, and co-assembling several 373 

fractions (22-24, 44, 45). However, it was not clear which assembly strategy produces the 374 

most medium- and high-quality MAGs. For instance, in computationally-simulated SIP 375 

experiments, the co-assembly of multiple fractions improved MAG recovery compared to 376 

the assembly of unfractionated DNA (45). In addition, the large amount of sequence data 377 

used in co-assemblies can recover rare genomes that would otherwise be lost due to 378 

insufficient coverage in smaller assemblies of individual datasets (32). Conversely, 379 

individual assemblies can outperform co-assemblies in samples where high levels of 380 

microdiversity impede contig formation (46-48). Here, we found that co-assembly of all 381 

density fractions generated the most medium- and high-quality MAGs, which agrees with 382 

two recent SIP metagenomics studies (23, 24). However, we also found that merging 383 

binning results from individual fraction assemblies and larger co-assemblies via MAG de-384 

replication provided more medium- and high-quality MAGs than did co-assembly alone. 385 

We posit that this approach reaps the benefits of both strategies: it provides higher read 386 

recruitment for assembling rare genomes in co-assemblies and also leverages lower 387 

microdiversity in individual fraction assemblies. Optimal assembly strategies may differ 388 

for other environmental samples, and these strategies must be re-evaluated as 389 

sequencing and assembly methods evolve, but our results suggest that SIP metagenomic 390 

studies can benefit from employing multiple assembly approaches to maximize genome 391 

recovery. 392 

Processing DNA-SIP samples is laborious, but semi-automated protocols simplify 393 

lab work and enable high-throughput SIP metagenomic studies (24). Indeed, increasing 394 

the number of biological replicates, and sequencing more density fractions per replicate, 395 

can improve the detection of labeled taxa (41). However, the opportunities for accidental 396 

mistakes, such as cross-contamination, sample mixups, or clerical errors, also increase 397 

when processing dozens of samples and hundreds of density fractions. In addition, slight 398 

mishandling of ultracentrifuge tubes can disturb delicate CsCl gradients (7), and 399 

potentially alter genome distributions along the gradient. If left undetected, these types of 400 

accidents could produce inaccurate weighted BD estimates, adding extra noise to the 401 
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data analysis and even compromising results. In this study, we found that including pre-402 

centrifugation spike-ins, which had distinct and predictable distribution patterns along the 403 

gradient, helped us identify and remove problematic samples before they negatively 404 

impacted our analyses. Including internal standards can mitigate potential errors and 405 

enhance the quality of large complex SIP studies with many replicates. Moreover, with 406 

careful design and additional development, internal standards might someday correct for 407 

variability introduced during sample processing (41) instead of simply flagging samples 408 

for removal. Internal standards can be easily incorporated into automated SIP 409 

metagenomics protocols (24), where they can improve the quality of SIP metagenomic 410 

results, and if adopted broadly, potentially serve as consistent fiducial reference points 411 

that facilitate inter-comparisons of different SIP studies.  412 

Accurate measurements of genome abundance along the BD gradient are 413 

essential for identifying labeled genomes and determining their level of isotopic 414 

enrichment (30). However, the compositional nature of metagenomic data, and the 415 

variability introduced during sample processing and sequencing, can hamper quantitative 416 

estimates of genome abundance (25-28, 49). Internal quantification standards can 417 

mitigate process variability and provide absolute abundance estimates of genes, 418 

transcripts, and genomes from metagenome and metatranscriptome data (28, 37, 50-53). 419 

Based on these findings, we hypothesized that adding internal standards to density 420 

fractions (<sequins=) could improve abundance measurements and thereby improve 421 

isotope enrichment measurements. Indeed, estimates of AFE in our study were more 422 

accurate using absolute abundances derived from sequin normalization compared to AFE 423 

estimates using other strategies.  424 

Multiple factors could explain the more accurate estimates of isotopic labeling 425 

enabled by internal quantification standards. For one, sequins may have mitigated any 426 

variation introduced during library creation and sequencing (28). Additionally,  sequins 427 

may have corrected for differences in DNA recovery among fractions that would have 428 

otherwise gone unnoticed and negatively impacted abundance measurements. That is, 429 

after collecting CsCl fractions, each fraction separately undergoes PEG precipitation and 430 

desalting before DNA concentrations are measured (24). Absolute abundances 431 

calculated using DNA concentrations assume identical DNA recovery efficiencies (22, 432 
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23), so any stochastic or systematic variability in the percent of DNA recovered would 433 

lead to errors in absolute abundance measurements. Conversely, sequins track and 434 

mitigate variability in DNA recovery when they are added to fractions before the desalting 435 

steps, as was performed here. Therefore, if DNA recovery efficiency varied among 436 

fractions, then we would expect absolute abundances derived from sequins to be more 437 

accurate than estimates derived from DNA concentration measurements. Without internal 438 

standards, variability introduced during DNA recovery, library construction, and 439 

sequencing is unknowingly propagated as noise into downstream SIP analyses. This 440 

undetected variability can potentially lead to errors that impact predictions of isotope 441 

enrichment. 442 

The various SIP analysis methods examined in this study use different approaches 443 

to detect labeled microorganisms, and these differences could impact the sensitivity and 444 

specificity of their predictions. The accuracy of different SIP analysis methods has not 445 

been assessed with metagenomic data until now, but in silico simulations of 16S rRNA-446 

based SIP data revealed that MW-HR-SIP had higher balanced accuracy than the other 447 

analysis methods (29). The qSIP model also generated more accurate AFE estimates 448 

than the ΔBD method in those simulations. We observed similar patterns by comparing 449 

analysis methods using our experimentally-designed SIP microbiome. In addition, we 450 

found that the consensus of multiple approaches, i.e., MW-HR-SIP and qSIP, produced 451 

higher accuracy results than any single method alone. Future SIP metagenomic studies 452 

might increase confidence in identifying isotope-incorporating taxa by employing these 453 

two independent strategies, although the higher confidence in true positives might come 454 

at the cost of missing labeled genomes with lower coverage. Regardless of the analysis 455 

tools used, analyzing more biological replicates is another simple strategy to increase 456 

accuracy (41). As SIP analysis methods evolve, reassessing their performance with 457 

deeper sequencing, more replicates, and an improved mock microbiome (e.g. more 458 

species at different AFE levels) will provide additional insights into their accuracy and 459 

limitations. 460 

Altogether, we used a first-of-its-kind mock SIP metagenome to assess the 461 

performance of different analysis approaches, identified a set of current best practices, 462 

and established an experimentally validated workflow for SIP metagenomics. The 8wet-463 
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lab9 aspects of the workflow include the addition of pre-centrifugation spike-ins for quality 464 

control and post-fractionation sequins for genome quantitation along the BD gradient. The 465 

8dry-lab9 aspects entail absolute genome normalization in each density fraction, and a 466 

modified qSIP model tailored to handle genome-resolved metagenomic datasets to 467 

calculate AFE. We also explored strategies to more accurately identify isotope 468 

incorporators, such as limiting analysis to taxa with coverage and isotope enrichment 469 

levels above minimal thresholds and using the consensus of multiple SIP analysis tools 470 

to detect labeling using our newly developed SIPmg package. These additional strategies 471 

hold promise for improving the accuracy of SIP metagenomic results, although the 472 

specifics of how and when to apply them will depend on the study design and individual 473 

preferences regarding the tradeoffs between specificity and sensitivity. We believe this 474 

validated analysis workflow will increase the reliability of SIP metagenomic findings, 475 

enable standardization across studies, and facilitate the use of SIP data in modeling 476 

microbially-mediated processes. 477 

 478 

MATERIALS AND METHODS 479 

DNA collection and mock community creation 480 

To create a mock microbiome where the identity of labeled genomes and their level of 481 

enrichment were known a priori, we first extracted DNA from bacterial isolates grown in 482 

13C-labeled glucose. Escherichia coli K-12 wildtype cells were grown in M9 minimal salts 483 

media (Teknova; M8005). Glucose was added at a final concentration of 20mM and was 484 

the sole carbon source in both media. DNA with different levels of 13C enrichment was 485 

produced by varying the ratio of unlabeled glucose to uniformly-labeled 13C₆-D-glucose 486 

(Cambridge Isotope Laboratories; CLM-1396; 99 atom %), e.g. DNA extracted from 487 

cultures grown in a ratio of 4:1 of unlabeled:labeled glucose was assumed to have an 488 

enrichment of approximately 20 atom %. Cultures grown overnight in LB were transferred 489 

into labeled media at 5,000-fold dilution (i.e. 2ul into 10ml labeled media), grown at 37°C, 490 

and harvested at mid-log phase. DNA was extracted using the Wizard genomic DNA 491 

purification kit (Promega; A1120) and quantified using the QuantIT dsDNA High 492 

Sensitivity Assay Kit (ThermoFisher; Q33120). 493 
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DNA from a complex microbial community was recovered from an outdoor, man-494 

made pond located at the Joint Genome Institute. Pond water was pre-filtered through a 495 

5 um mesh before collection onto 0.2 um Supor filters (Pall; 47 mm dia.). DNA was 496 

extracted from filters using a DNeasy PowerWater kit (Qiagen; 14900-50-NF).   497 

Replicate samples were prepared for ultracentrifugation by combining 900 ng of 498 

microbiome DNA with 50 ng DNA from each bacterial isolate. For samples with 499 

isotopically labeled DNA, the ratio of unlabeled to labeled DNA for each isolate was 500 

adjusted, e.g. 40 ng of unlabeled E. coli DNA was combined with 10 ng of 20% enriched 501 

E. coli DNA. The specific ratios of unlabeled:labeled DNA are described in Table S1.   502 

 503 

Synthetic pre-centrifugation DNA spike-ins 504 

A set of six synthetic DNA fragments were added to mixtures of DNA from isolates and 505 

the complex microbiome to track the ultracentrifugation and fraction collection steps. 506 

These fragments were approximately 2 kbp in length with GC content of 37-63% (Table 507 

S2). To change the distribution of fragments across the density gradient, some fragments 508 

were artificially enriched with 13C through PCR by adjusting the ratio of unlabeled dNTPs 509 

and uniformly-labeled 13C dNTPs (Silantes Gmhb; 120106100; >98 atom %) (Table S2).  510 

Briefly, DNA was amplified for 30 cycles by adding 0.5ul Phusion High Fidelity DNA 511 

Polymerase (NEB; M0530S), 10ul of 5X Phusion HF Buffer, 1ul of 10 mM dNTPs (final 512 

conc. labeled/unlabeled mixture), 2.5 ul each 10 µM Forward and Reverse Primer, and 513 

31.5 ul of nuclease-free water. PCR products were purified using AMPure XP beads 514 

(Beckman Coulter; 63880) and pooled in equimolar ratios to create a set of pre-515 

centrifugation DNA spike-ins. These pre-centrifugation spike-ins were added at 1% by 516 

mass of the DNA mixture, e.g. 10 ng of synthetic fragment pool added to 1 ug of microbial 517 

DNA mixture. 518 

 519 

Gradient separation, sequin addition, and fraction purification 520 

Following Nuccio and colleagues (24), samples were centrifuged at 44,000 RPM (190,600 521 

g) for 120 hours at 20°C in a VTi 65.2 Rotor (Beckman Coulter; 362754). For each sample, 522 

24 fractions of 220 uL were collected into a 96-well plate using an Agilent 1260 fraction 523 
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collector running at flow rate 250 uL/min while using mineral oil as the displacement fluid. 524 

Fraction density was determined using a Reichert AR200 refractometer. 525 

Before purifying DNA from CsCl fractions, an additional set of 80 synthetic DNA 526 

fragments, or sequins (28), were added to each fraction as an internal standard for 527 

subsequent quantitative metagenomic analysis. Lyophilized pellets of sequins were 528 

obtained from the Garvan Institute of Medical Research 529 

(https://www.sequinstandards.com).  Pellets were resuspended in TE Buffer (10 mM Tris, 530 

0.1 mM EDTA, pH 8.0), and the concentration was measured with QuantIT dsDNA High 531 

Sensitivity Assay Kit (ThermoFisher; Q33120). Of the 24 BD fractions collected for each 532 

sample, we selected 16 to move forward with library creation and sequencing based on 533 

the range of BD they spanned. These 16 fractions were amended with sequins. To 534 

compensate for expected differences in the amount of DNA recovered from different 535 

densities, the middle 8 fractions received 300 pg of sequins while the 4  fractions on either 536 

tail received 100 pg of sequins.  537 

After sequin addition, DNA was recovered by adding a 250 ul solution of 36% 6000 538 

PEG and 1.6M NaCl to each fraction and incubating overnight in 4°C.  Plates were 539 

centrifuged at 3,214 xg for 1.5 hours at 20°C to pellet DNA.  Pellets were washed with 540 

300 ul of 70% chilled ethanol, centrifuged at 3,214 xg for 45 minutes at 20°C, and 541 

resuspended in 30 ul of TE Buffer (10 mM Tris, 0.1 mM EDTA, pH 8.0).  Purified DNA 542 

was quantified using Quant-IT dsDNA High Sensitivity Assay Kit (ThermoFisher; 543 

Q33120).  544 

Sequins were added to each fraction before PEG precipitation and DNA 545 

quantification steps; therefore the amount added was based on the expected sample DNA 546 

concentrations. Tailoring sequin additions to actual sample DNA concentrations, as 547 

opposed to estimates, is preferable to ensure optimal coverage in sequencing data. After 548 

completing analysis of the mock microbiome, we sought to improve sequin additions by 549 

measuring DNA levels before PEG precipitation when DNA was still in concentrated CsCl.  550 

Additional details are provided in the Supplementary Materials.  551 

 552 

Library creation and sequencing 553 
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Sequencing libraries were generated from the 16 middle fractions of each sample using 554 

Nextera XT v2 chemistry (Illumina) with 12 PCR cycles. Concentrations and size 555 

distributions of each library were determined on a Fragment Analyzer (Agilent). Libraries 556 

were pooled at equal molar concentrations within the range of 400-800 bp, and the pool 557 

was size selected to 400-800 bp using a Pippin Prep 1.5% agarose, dye-free, internal 558 

marker gel cassette (Sage Science). For each library, 2X150 bp paired-end sequencing 559 

was performed on the Illumina Novaseq platform using S4 flowcells (Table S7). 560 

 561 

Metagenome assembly and binning 562 

Raw reads were filtered and trimmed using RQCFilter2 software according to the 563 

standard JGI procedures (https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-564 

tools-user-guide/data-preprocessing/). Then, one of the four strategies was used to 565 

perform contigs assemblies: a) an assembly of unfractionated SIP sample with 566 

metaSPAdes(v3.15.2)  (54); b) a single fraction assembly with metaSPAdes (371 567 

assemblies); c) a single sample co-assembly with metaSPAdes (co-assembly of all 568 

fractions sequenced for a single SIP replicate sample, 24 assemblies); d) an experiment-569 

wise co-assembly with MetaHipMer(v.2.0.1.2) (assembly of all fractions across all 570 

replicates) (32). Assembly and genome mapping parameters are reported in the 571 

Supplementary Methods. We generated 397 assemblies in total. Quality assessment 572 

metrics for each assembly were calculated using QUAST(v5.0.2) (MetaQUAST 573 

mode)(Data Set S3) (55). Each assembly was then independently binned with 574 

MetaBAT(v2.12.1) (56). For each generated MAG, we used GTDB-Tk(v2.0.0) (GTDB 575 

R95) (57) to assign a taxonomic classification. To assess the quality of MAGs we used 576 

CheckM(v1.1.3) (58) and QUAST(v5.0.2) (59). The MetaHipMer combined assembly was 577 

annotated using the JGI metagenome annotation workflow (56) and is available through 578 

IMG/M (60) under taxon identifier 3300045762. 579 

 580 

MAG deduplication and mean scaffold coverage calculations 581 

Medium- and high-quality MAGs recovered from all assembly strategies were 582 

deduplicated to remove redundant versions of each draft genome (34). The genome-wide 583 

ANI (gANI) and the alignment fraction (AF) were calculated for each possible MAG 584 
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pairwise comparison (35). Next, the lowest pairwise values of gANI and AF were utilized 585 

for each MAG comparison, followed by clustering using single-linkage to group MAGs 586 

based on species-level delineations (e.g., gANI >= 96.5 and AF >= 30) as defined by 587 

Varghese and colleagues (35). MAGs that did not cluster with other MAGs were 588 

considered singletons. Following clustering, we used completeness, contamination, and 589 

total length values to select a single representative MAG for each cluster. Sequences of 590 

all spike-ins and sequins were concatenated with the final set of MAG contigs, and this 591 

contig set was then used as a reference for read mapping across all density fractions (see 592 

Supplementary Methods). The average contig coverage of MAGs, spike-ins, and sequins 593 

in each fraction was calculated and used in the downstream analysis. 594 

 595 

Quality control of SIP data using pre-centrifugation spike-ins 596 

Before performing SIP analysis, we first removed mishandled samples from our dataset. 597 

For this purpose, we identified the peak of absolute concentration distributions across the 598 

density gradient for each labeled pre-centrifugation spike-in. If the spike-in distribution 599 

patterns did not match the expected order along the density based on the theoretical 600 

estimated density of the spike-in (given its GC content and C13/C12 ratio), then the sample 601 

was considered potentially problematic and removed from the analysis. 602 

 603 

Estimating the absolute abundance of MAGs across density fractions 604 

To determine the extent of isotope incorporation into genomes, it is first necessary to 605 

measure genome abundance across the density gradient. We explored several ways to 606 

measure genome abundance in the SIP dataset, which are implemented as part of the 607 

SIPmg R package (see Code Availability). 608 

First, we obtained absolute concentrations of genomes across the density gradient 609 

using the approach proposed by Hardwick and colleagues (28), in which sequins were 610 

used as internal reference standards to scale coverages into absolute concentrations. 611 

Briefly, the average MAG coverage within a given fraction (metagenome) was scaled into 612 

units of molarity using regression analysis based on known molarity of 80 sequins and 613 

their average coverages. Molar concentrations of the sequins in the added standard 614 

mixture were obtained from the manufacturer (Garvan Institute of Medical Research). For 615 
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regression analyses, we first tested both ordinary least squares regression and robust 616 

linear regression. When using ordinary least squares regression, we also tested Cook9s 617 

distance filtering to remove outliers at a threshold of Cook9s distance < n/4 (n is the 618 

number of datapoints in the regression analysis). A coefficient of variation threshold of 619 

250 was employed as a quality control step in this scaling process. Due to the lower 620 

number of false positives in the approach with ordinary least squares regression 621 

combined with Cook9s distance filtering, we continued with this approach for all analyses, 622 

but also report the findings from using the robust linear regression analysis in the Table 623 

S3. A detailed workflow for sequin normalization is provided in the vignette for the SIPmg 624 

R package (https://github.com/ZielsLab/SIPmg). 625 

In addition to sequin based normalization, we also explored genome abundance 626 

estimation using: (1) unscaled coverage; (2) relative coverage; (3) absolute abundance 627 

as per the approach of Greenlon and colleagues (23) and as the per approach of Starr 628 

and colleagues (22). Unscaled coverages represented raw average MAG coverage 629 

values that were directly used in the estimation of mean weighted BDs and AFE. Relative 630 

coverage was estimated as: (coverage of a MAG within a fraction)/(sum of coverages of 631 

all MAGs within a fraction).  632 

 633 

Estimating of atom fraction excess of MAGs  634 

The qSIP model (eq. 1) or ΔBD model (eq. 6) can be used to estimate the AFE of 635 

genomes. Briefly, the AFE of organism i, can be quantified using the qSIP approach (30): 636 

 637 �þýþ,ÿ =  Ā�ÿĀ,ÿ 2 Ā�ÿý/�,ÿĀ��ÿ�þ�ÿý,ÿ 2 Ā�ÿý/�,ÿ . (1 2  0.01111233)           (eq. 1-A) 638 �þý�,ÿ =  Ā�ÿĀ,ÿ 2 Ā�ÿý/�,ÿĀ��ÿ�þ�ÿý,ÿ 2 Ā�ÿý/�,ÿ . (1 2  0.002000429)            (eq. 1-B) 639 

where: AC,i and AO,i are the estimated AFE with oxygen and carbon as the isotopic 640 

substrate, respectively. MLight is the molecular weight of a MAG (g/mole) in the control 641 

condition (eq. 2), MLab is the molecular weight of a MAG (g/mole) in the treatment 642 

condition (eq. 3), and MHeavymax is the theoretical maximum molecular weight of a MAG 643 

(g/mole) due to the maximum labeling by the heavy isotope (eq. 4) in the treatment 644 

condition: 645 
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�ÿÿý/� =  0.496 ÿÿ + 307.691                   (eq. 2) 646 �ÿÿĀ =  �ÿÿý/� . (��ÿĀ2 ��ÿý/���ÿý/� + 1)                  (eq. 3) 647 �ÿ�ÿ�þ�ÿý =  �ÿÿý/� +  9.974564 2  0.4987282. ÿÿ               (eq. 4) 648 

where: Gi is the GC content of the MAG (ranging from 0 to 1). Here, we modified the qSIP 649 

model to use the GC content values of MAGs provided from output of CheckM (58), rather 650 

than inferring it using an empirical regression (30). WLight and WLab are the mean weighted 651 

buoyant densities across control and treatment conditions respectively. 652 

The weighted average buoyant density (Wij) is then estimated as:  653 �ÿĀ  =  ∑ �Āāāā=1 .  þÿĀāþÿĀ                     (eq. 5) 654 

where: ρjk is the buoyant density of fraction k in replicate j, yijk is the absolute concentration 655 

of taxon i in fraction k of replicate j, and yij is the sum total of absolute concentration of 656 

taxon i in replicate j. Here, genome abundances were determined using either (1) sequin 657 

normalization; (2) relative abundance per coverage and/or reads mapped multiplied by 658 

total DNA concentrations; and (3) relative coverage.  659 

The estimation of AFE based on the ΔBD model can be represented as: 660 �þý�ýÿ  =  ��ÿĀ2 ��ÿý/�Ā�ÿý                 (eq. 6) 661 

where: Imax is the maximum linear shift in DNA BD (upon 100% labeling), as discussed by 662 

Birnie and Rickwood (61). The weighted mean BDs were the same as estimated from eq. 663 

5. This is a variant of ΔBD from the Pepe-Ranney and colleagues study (8), in which OTU 664 

read counts were interpolated at specific points of the replicate BD gradients to estimate 665 

weighted mean BDs. The above models for determining AFE were incorporated into the 666 

SIPmg R package for application with SIP metagenomics datasets.  667 

 668 

Identifying isotope incorporators using HR-SIP and MW-HR-SIP  669 

To run the HR-SIP and MW-HR-SIP methods, we used the MAG abundances obtained 670 

from the sequin normalization approach. Differential abundances based on absolute 671 

abundance for MAGs in the heavy fractions in the treatment conditions were compared 672 

to control conditions using HR-SIP and MW-HR-SIP using the HTSSIP R package (29). 673 

For HR-SIP, a heavy BD window was set from 1.71 g/mL (as the theoretical peak of E. 674 
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coli would be at 1.709 g/mL based on a GC content of 0.504) to the maximum buoyant 675 

density in every treatment condition. For MW-HR-SIP, the overlapping heavy buoyant 676 

density windows chosen were 1.71 - 1.74 g/mL, 1.72 - 1.75 g/mL, and 1.73 - 1.76 g/mL. 677 

In all cases, sparsity thresholds between 0% and 30% at 5% intervals were chosen (e.g., 678 

sparsity threshold of 25% maintains that MAGs must be present in >25% of fractions in 679 

the testing windows). The sparsity threshold with the greatest number of rejected 680 

hypotheses were selected for final inference of incorporator identity. The Benjamini-681 

Hochberg method was used to adjust for multiple testing with a threshold of p-value of 682 

0.05 to identify incorporators. 683 

 684 

Subsampling of E. coli reads. Reads that mapped to E. coli MAG were extracted from 685 

.bam files and subsampled using samtools (v1.7) (htslib 1.7) at 10, 1, 0.1, 0.01, and 0.001 686 

percentages. New E. coli MAG coverages for each fraction were then calculated (Table 687 

S5) and used in SIP analysis to establish limitations that low coverage input may have on 688 

the efficiency of bacterial incorporator identification. 689 

 690 

Data availability  691 

Raw metagenome sequencing reads have been deposited under BioProject Accession 692 

PRJNA878529. The MetaHipMer combined assembly and annotated data is available 693 

through IMG/M under taxon identifier 3300045762. Single-fraction and combined per-694 

sample assemblies, along with all MAGs and input files for qSIP analysis are available 695 

via https://portal.nersc.gov/dna/microbial/prokpubs/DVyshenska2022/. A full list of 696 

available data and associated NCBI accession numbers are available in Data Set S3. 697 

 698 

Code availability 699 

The code for the SIPmg R package is available for download, along with a vignette 700 

describing all functions, at: https://github.com/ZielsLab/SIPmg. The SIPmg package 701 

includes functions to calculate global scaling factors for genomes based on regression of 702 

sequin coverage versus concentration using either ordinary least squares linear 703 

regression or robust linear regression. The package can thereafter estimate AFE using 704 

either qSIP model or ΔBD method. The package also outputs both FCR adjusted and 705 
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Bonferroni adjusted bootstrapped AFE confidence intervals for MAGs. The package can 706 

also perform HR-SIP and MW-HR-SIP which were built using the HTS-SIP R package. 707 
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 936 

Table 1: Performance of different approaches for calculating genome abundance across density 937 

fractions based on the results from spiking 13C labeled E. coli DNA into background DNA of an 938 

unlabeled freshwater community. AFE was predicted using the qSIP model. Specificity was 939 

estimated as (true negatives)/(false positives + true negatives). Sensitivity was estimated as (true 940 

positives)/(true positives + false negatives) 941 

 942 

Method Procedure Specificity Sensitivity Spearman correlation 

between estimated & true 

AFE (p-values) 

Absolute 

abundance 

using sequins  

Regression using sequin 

coverage and 

concentration 

0.993 0.857 0.85 (0.014) 

Absolute 

abundance 

using total DNA 

concentration 

 

Product of relative 

abundance and DNA 

concentration (23) 

0.991 0.714 0.8 (0.031) 

Product of relative 

coverage and DNA 

concentration (22) 

0.922 0.571 0.27 (0.55) 

Relative 

coverage 

Relative coverage of MAGs 

in each fraction 

0.999 0.571 0.76 (0.046) 

 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 

 951 
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 952 

 953 

 954 

Figure 1. Experimental design and overview of laboratory steps in the SIP metagenomics 955 

workflow.  To create a defined SIP experimental sample, DNA extracted from an unlabeled 956 

freshwater microbial community was amended with either labeled (13C) or unlabeled (12C) E. coli 957 

DNA. Pre-centrifugation spike-ins were added to each sample prior to ultracentrifugation in a CsCl 958 

gradient, and post-fractionation spike-ins (sequins) were added to each fraction after density 959 

gradient fractionation and collection. These two sets of synthetic DNA oligos served as internal 960 

standards to monitor the quality of density separations and normalize genome coverage levels.  961 

 962 
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 978 

 979 

Figure 2. The workflow scheme for SIP metagenomic data analysis includes (A) quality filtering 980 

of the raw reads and (B) generation of a unique set of medium and high quality MAGs used for 981 

(C) quantification of absolute taxa abundances and identification of isotope incorporators. The 982 

addition of sequins provides the means for calculating absolute bacterial abundances (C, Data 983 

Normalization), and pre-centrifugation spike-ins aid in the detection of anomalous samples (C, 984 

Outlier Handling). 985 
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 996 

 997 

Figure 3. Comparison of metagenome assembly approaches for the SIP metagenome dataset 998 

generated from spiking E. coli into background unlabeled DNA from a freshwater microbiome. (A) 999 

Average number of medium- and high-quality MAGs recovered from different assembly 1000 

approaches. (B) Venn diagram showing the number of unique and shared MAG clusters. (C) 1001 

Compositional differences at the Class level recovered from different types of assemblies (I - 1002 

intact metagenome assembly with MetaSPAdes, F - separate fractions assembled with 1003 

metaSPAdes (n = 371 assemblies), S - all fractions within each replicate co-assembled with 1004 

metaSPAdes (co-assembly of all fractions sequenced for a single SIP replicate sample, n = 24 1005 

assemblies), M - combined assembly of all fractions using MetaHipMer; for F and S the average 1006 

number of MAGs was calculated, whiskers represent standard deviation across assembly type). 1007 

 1008 

 1009 
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 1011 

 1012 

 1013 
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 1022 

 1023 

Figure 4:  Comparison of predicted atom fraction excess (AFE) versus the expected AFE of E. 1024 

coli using different approaches for measuring genome abundance across the density gradient. 1025 

The qSIP method was used to estimate AFE in all cases. Genome abundance in each density 1026 

fraction was determined by (A) normalization to sequin internal standards, (B) multiplying relative 1027 

abundance with DNA concentration following Greenlon et al. (23), (C) multiplying relative 1028 

coverage with DNA concentration following Starr et al.  (22), and (D) relative coverage without 1029 

additional normalization. For all comparisons, please refer to Table S3. Error bars represent the 1030 

standard deviation of AFE calculated using the qSIP method9s bootstrapping approach. The 1031 
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expected AFE for each condition is in parentheses, and additional details about conditions, 1032 

including replicate numbers, are provided in Table S1. pcor and preg
 correspond to the p-values for 1033 

the Spearman correlation and the linear regression F-statistic, respectively. The intercepts 1034 

determined by linear regression were not significantly different from zero (p-value > 0.05) in any 1035 

method for estimating abundance. 1036 

 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

 1043 

 1044 

 1045 

 1046 

 1047 

 1048 

 1049 

 1050 

 1051 

 1052 

 1053 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 

 1060 

 1061 

 1062 

 1063 

 1064 

 1065 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2022. ; https://doi.org/10.1101/2022.12.20.521340doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.20.521340
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

 1066 

 1067 

 1068 

Figure 5: Comparison of AFE estimates produced by the (A) qSIP and (B) ΔBD methods using 1069 

the mock metagenome where levels of E. coli isotopic enrichment were known a priori. Both of 1070 

these methods used sequin-based normalization for estimating genome abundance. Error bars 1071 

represent the standard deviation of AFE calculated using the qSIP method9s bootstrapping 1072 

approach. The expected AFE of E. coli within each treatment condition is given in parentheses. 1073 

preg
 and pcor correspond to the p-values for the linear regression and Spearman correlation, 1074 

respectively. The intercepts determined by linear regression for qSIP and AFE models were not 1075 

significantly different from zero (p-value > 0.05). 1076 
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 1088 

SUPPLEMENTAL MATERIAL FILE LIST 1089 

Table S1. E. coli AFE (%) in each treatment condition.  1090 

Table S2. Characteristics of pre-centrifugation spike-ins.  To produce distinct distribution patterns 1091 

along the density gradient, some spike-ins were artificially enriched with 13C through PCR by 1092 

adjusting the ratio of unlabeled dNTPs and uniformly-labeled 13C dNTPs.  Theoretical AFE values 1093 

are reported based on the ratio of labeled dNTPs, but actual AFE values were not experimentally 1094 

confirmed.  1095 

Table S3. Comparison of various abundance estimation strategies. All results were derived from 1096 

the qSIP analysis method.  Sensitivity and specificity were averaged across the seven treatment 1097 

conditions. 1098 

Table S4. Comparison of methods to identify isotopically labeled genomes. Evaluations were 1099 

based on absolute genome abundances obtained by normalizing coverage to internal sequin 1100 

standards using the sequin approach. Specificity and sensitivity were averaged across the seven 1101 

treatment conditions. 1102 

Table S5. Average total coverage across all fractions for E. coli in different treatment conditions 1103 

after subsampling from 100% to 0.001% of the original E. coli sequence reads. 1104 

Table S6. Comparison of MW-HR-SIP and qSIP methods for detecting isotopic labeling of E. coli 1105 

at different levels of total genome coverage across the density gradient. 8True9 indicates E. coli 1106 

was correctly identified to be isotopically labeled (true positive), and 8false9 indicates E. coli was 1107 

incorrectly identified as unlabeled (false negative). NA corresponds to the failure of the MW-HR-1108 

SIP algorithm with that dataset.  1109 

Table S7. The impact of genome coverage levels on detecting isotope incorporation using the 1110 

qSIP model. 1111 

Table S8. Comparison of MAGs retained and the number of false positives detected using the 1112 

qSIP method after applying different minimum genome coverage thresholds. MAGs were retained 1113 

if their average total coverage in the unlabeled controls exceeded the coverage threshold. E. coli 1114 

was the only true positive and had a coverage of 1029X, thus no false negatives were detected 1115 

using the coverage thresholds below. 1116 

Table S9. Comparison of specificity, sensitivity, and balanced accuracy of the qSIP method after 1117 

applying minimum AFE thresholds. To be identified as isotopically labeled, the lower 95% CI 1118 

interval of a genome9s estimated AFE must be greater than the minimum AFE threshold. 1119 

Table S10. Comparison of false positives MAGs identified by the MW-HR-SIP, qSIP, and ΔBD 1120 

methods.  Names of the false positive MAGs are listed in each column. 1121 
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Table S11. Comparison of E. coli AFE confidence intervals estimated using qSIP alone, qSIP 1122 

after first applying MW-HR-SIP, and qSIP after first applying ΔBD method to identify a subset of 1123 

putatively labeled MAGs. Condition B (<20pct_20ng=) was removed as it E coli was never 1124 

identified as an isotope incorporator in this condition. 1125 

Figure S1. Average completeness and average purity of MAGs grouped by assembly type (I - 1126 

intact metagenome assembly with MetaSPAdes, F - separate fractions assembled with 1127 

metaSPAdes, S - all fractions within each replicate co-assembled with metaSPAdes, M - 1128 

combined assembly of all fractions using MetaHipMer(v.2.0.1.2)) 1129 

Figure S2. Average coverage across all fractions for each medium and high-quality MAG. Color-1130 

coding identifies MAGs found in multiple assembly types (Shared) or uniquely generated in one 1131 

of the three different assembly types (F - separate fractions assembled with metaSPAdes, S - all 1132 

fractions within each replicate co-assembled with metaSPAdes, M - combined assembly of all 1133 

fractions using MetaHipMer). Assemblies of unfractionated DNA (Intact) with MetaSPAdes did  1134 

not generate unique MAGs. 1135 

Figure S3. Detecting anomalous samples using pre-centrifugation spike-ins. A) SIP sample 1136 

displaying the expected spike-in distribution pattern based on relativized absolute coverage along 1137 

the density gradient. B) An anomalous sample whose spike-in patterns do not match 1138 

expectations, indicating possible problems in gradient collection and library creation. 1139 

Figure S4. Linear regression parameters and Spearman correlations between estimated and 1140 

expected AFEs obtained using the modified qSIP model from (a) raw coverage, (b) relative 1141 

coverage, (c) multiplying relative abundance with DNA concentration following Greenlon and 1142 

colleagues  (23), (d) multiplying relative coverage with DNA concentration following Starr and 1143 

colleagues  (22), (e) Sequin approach with ordinary least squares regression without Cook9s 1144 

distance filtering (f) Sequin approach with ordinary least squares regression with Cook9s distance 1145 

filtering (g) Sequin approach with robust linear regression, and (h) Relativizing abundances per 1146 

fraction (MAG abundance/sum of MAG abundances in each fraction) from sequin approach with 1147 

robust linear regression. preg
 and pcor correspond to the p-values for the linear regression and 1148 

Spearman correlation. The intercepts determined by linear regression were not significantly 1149 

different from zero (p-value > 0.05) in any method for estimating abundance. 1150 

Figure S5. Linear regression parameters and Spearman correlations between estimated and 1151 

expected AFEs obtained using the ΔBD method from (a) raw coverage, (b) relative coverage, (c) 1152 

multiplying relative abundance with DNA concentration following Greenlon and colleagues  (23), 1153 

(d) multiplying relative coverage with DNA concentration following Starr and colleagues  (22), (e) 1154 

Sequin approach with ordinary least squares regression without Cook9s distance filtering (f) 1155 
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Sequin approach with ordinary least squares regression with Cook9s distance filtering (g) Sequin 1156 

approach with robust linear regression, and (h) Relativizing abundances per fraction (MAG 1157 

abundance/sum of MAG abundances in each fraction) from sequin approach with robust linear 1158 

regression. preg
 and pcor correspond to the p-values for the linear regression and Spearman 1159 

correlation. The intercepts determined by linear regression were not significantly different from 1160 

zero (p-value > 0.05) in any method for estimating abundance. 1161 

Figure S6. Linear regression parameters and Spearman correlations between estimated and 1162 

expected AFEs obtained using the qSIP method for subsampled data at mean cumulative 1163 

coverages of (a) 0.01X, (b) 0.1X, (c) 1X, (d) 10X, (e) 100X, and (f) 1000X. preg
 and pcor correspond 1164 

to the p-values for the linear regression and Spearman correlation. The intercepts determined by 1165 

linear regression were not significantly different from zero (p-value > 0.05) at any level of 1166 

subsampling. 1167 

Figure S7. Mean total coverage of MAGs across biological replicates in the unlabeled controls. 1168 

False positive MAGs are indicated by blue bars (also indicated by arrows). The mean coverage 1169 

threshold where false positives would be removed (17X) is indicated by a dashed horizontal line. 1170 

A total of 68 MAGs had mean total coverages greater than this threshold. MAGs lower than this 1171 

threshold are separated by a dashed vertical line. 1172 

Figure S8. Mean specificity of delta BD, modified qSIP, and MW-HR-SIP methods to infer 1173 

incorporators. The error bars indicate standard deviation of specificity across the seven treatment 1174 

conditions. The annotations on the bars indicate the number of false positives out of 146 MAGs.  1175 

Figure S9. Impact of SIP CsCl gradient solution on measurements of DNA concentrations made 1176 

with the Quant-IT DNA High Sensitiviy Assay Kit. The error bars indicate standard deviation (n=5). 1177 

The dashed line indicates a linear regression (R2=0.9875; F-test p-value = 6.32 X 10-8). 1178 

Data Set S1. Internal calibration standards utilized in experimental design. A set of six synthetic 1179 

DNA fragments (pre) were added to mixtures of DNA from isolates and the complex microbiome 1180 

to track the ultracentrifugation and fraction collection steps. An additional set of 80 synthetic DNA 1181 

fragments (post), or sequins, were added to each fraction as an internal standard for subsequent 1182 

quantitative metagenomic analysis. 1183 

Data Set S2. Metagenome-assembled genomes (MAGs) generated across assembly 1184 

approaches and associated quality metrics. A total of 2,022 MAGs were generated across all 1185 

assemblies, of which 248 were high-quality, 447 were medium-quality, and 1,327 were low-quality 1186 

as defined by the MIMAG reporting standards. Bin identifiers and assembly identifiers are 1187 

provided, along with CheckM metrics for estimates of completeness and contamination. Cluster 1188 
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representatives are denoted based on single-linkage clustering from average nucleotide identity 1189 

values of ≥ 96.5 and alignment fractions of ≥ 30%. 1190 

Data Set S3. Metagenome assembly types, metrics, and associated accessions for GOLD and 1191 

NCBI. 1192 

 1193 
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