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Abstract

Background: Individual differences in functional brain connectivity can be used to predict both
the presence of psychiatric illness and variability in associated behaviors. However, despite
evidence for sex differences in functional network connectivity and in the prevalence,
presentation, and trajectory of psychiatric illnesses, the extent to which disorder-relevant
aspects of network connectivity are shared or unique across the sexes remains to be
determined.

Methods: In this work, we used predictive modelling approaches to evaluate whether shared or
unique functional connectivity correlates underlie the expression of psychiatric illness-linked
behaviors in males and females in data from the Adolescent Brain Cognitive Development study
(n=5260; 2571 females).

Results: We demonstrate that functional connectivity profiles predict individual differences in
externalizing behaviors in males and females, but only predict internalizing behaviors in
females. Furthermore, models trained to predict externalizing behaviors in males generalize to
predict internalizing behaviors in females, and models trained to predict internalizing behaviors
in females generalize to predict externalizing behaviors in males. Finally, the neurobiological
correlates of many behaviors are largely shared within and across sexes: functional connections
within and between heteromodal association networks including default, limbic, control, and
dorsal attention networks are associated with internalizing and externalizing behaviors as well
as attentional deficits.

Conclusions: Taken together, these findings suggest that shared neurobiological patterns may
manifest as distinct behaviors across the sexes. These results highlight the need to consider

factors beyond just neurobiology in the diagnosis and treatment of psychiatric illnesses.
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Introduction

A primary aim of research in psychiatry is to establish the neurobiological correlates of iliness-
relevant behaviors, facilitating iliness prediction, diagnosis, and treatment. Critical to this goal is
the consideration of associated demographic characteristics, for instance underlying sex
differences. Females are more likely to be diagnosed with affective and anxiety disorders, while
males are more likely to meet diagnostic criteria for antisocial and substance use disorders(1-3).
Relatedly, across cultures, females are more likely to express internalizing behaviors directed at
one-self (i.e., loneliness, unexplained physical symptoms) while males are more likely to exhibit
externalizing behaviors directed at others or the environment (i.e., aggression, hyperactivity)(3,
4). These differences emerge across childhood, become more evident during adolescence, and
persist throughout the lifespan(2). While sex differences in the prevalence and expression of
psychiatric illnesses have been extensively studied at the population-level(5), the underlying
neurobiological correlates are not yet fully understood. Genetics, hormones, immunology,
neurobiology, environment, and a host of psychosocial factors all likely contribute to expressed
behaviors and these contributions may vary across disorders and throughout the lifespan(2).
One possibility is that these factors uniquely contribute to distinct biological underpinnings and
associated behavioral expression patterns across the sexes. An alternative, but not mutually
exclusive possibility, is that shared biological features may link to dissociable behaviors across
the sexes. A thorough understanding of the sex differences that exist in the neurobiological
correlates of psychiatric illness-relevant behaviors will facilitate the development and
implementation of sex-specific and personalized preventative interventions, diagnostic

procedures, and therapeutic treatments.

Functional magnetic resonance imaging is a non-invasive neuroimaging technique that can be
used to estimate regional neural activation, as inferred though the detection of changes in blood
oxygenation levels. Temporal dependency patterns between these signals can subsequently be
used to quantify the functional coupling (or connectivity) between pairs of brain regions.
Functional connectivity profiles exhibit sex differences throughout the lifespan(6-11). Females
have greater within-network connectivity while males have greater between-network
connectivity(8). These differences are in part modulated by genetics(12) and hormonal
fluctuations(13-16), but also likely reflect other biological, social, and environmental influences.
Prior analyses have found that functional connections within and between heteromodal
networks, and particularly the default and frontoparietal control networks, are largely driving

these differences(9, 11). Intriguingly, functional disruptions within and between the default and
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control networks, along with the salience network, are also implicated in a wide range of
psychiatric phenotypes(17). While sex differences in functional connectivity have been
established, it is not yet known whether there are sex differences in the associations between

functional connectivity and psychiatric illness-linked behaviors.

Over the last decade, data-driven predictive modeling approaches have become increasingly
used to study brain-behavior relationships in healthy and clinical populations(18). These
approaches can be used to not only generate individual-level clinically informative predictions of
diagnosis, symptom profile, and treatment response but also to identify the underlying
neurobiology that is associated with distinct psychiatric illnesses and behaviors(18). Through
these approaches, functional connectivity can be used to predict individual differences in
cognition, personality, as well as psychiatric and behavioral problems(19-24). These models
have been used to establish the neurobiological correlates of attention(25, 26), memory(27),
anxiety(28), depression(29), psychosis(30), and substance abuse(31, 32). When developing
predictive models, it is crucial to ensure that they are not only accurate within circumscribed
groups but that they can also generalize to other populations. Prior work indicates that
predictions of cognitive and personality traits can fail to generalize across sexes(20, 33-35). To
circumvent these issues—and given the known sex differences in psychiatric illnesses and
behaviors—the use of sex-specific prediction models may yield more accurate and generalizable
predictions and provide insight into underlying sex differences in the neurobiological correlates
of psychiatric illnesses. Moreover, the examination of these brain-behavior relationships in
children can reveal whether sex differences emerge prior to adolescence when many of the

differences in psychiatric illness risk and presentation begin to become more evident.

Here, we sought to identify whether shared or unique neurobiological correlates underlie the
expression of distinct psychiatric behaviors across the sexes during childhood. To directly
address this open question, we quantified the functional connectivity correlates of 17 distinct
psychiatric illness-relevant behaviors in typically developing children from the Adolescent Brain
Cognitive Development (ABCD) dataset. First, by examining differences in predictive accuracy
across sexes and behaviors, we demonstrate that externalizing behaviors can be accurately
predicted in males and females, but internalizing behaviors can only be successfully predicted in
females. Next, evaluating the generalizability of predictive models across sexes and behaviors,
we determine that predictive models generalize within internalizing and externalizing domains

within sexes, but only generalize across domains between sexes. More specifically, models
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trained to predict externalizing behaviors in either sex generalize to predict other related
behaviors in both sexes. However, models trained to predict externalizing behaviors in males
also generalize to predict internalizing behaviors in females, and models trained to predict
internalizing behaviors in females generalize to predict externalizing behaviors in males. Finally,
investigating the network correlates of these behaviors, we reveal that functional connectivity
within and between shared heteromodal association networks are associated with internalizing
and externalizing behaviors, as well as attention deficits, and these brain-behavior correlates
are shared across the sexes. Collectively, these results suggest that shared aspects of
neurobiology may underlie distinct behaviors across the sexes. Based on these findings, we
encourage clinicians and researchers to consider sex when developing predictive models to

facilitate diagnosis, treatment, and research of psychiatric illnesses.
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Methods

An overview of our experimental workflow is shown in Figure 1.
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Figure 1: Experimental Workflow.

(A) Population: We included 5260 typically developing children (9-10 years old) from the
Adolescent Brain Cognitive Development (ABCD) dataset, including 2689 males (51%) and
2571 females (49%). (B) Behavioral Data: We included 17 behavioral scores from the Child
Behavior Checklist which includes syndrome scales and DSM-5 oriented scales. Syndrome
scales included measures of composite and individual internalizing behaviors (shown in blue),
composite and individual externalizing behaviors (shown in orange), other problems (shown in
green), and a summary score of total problems (red). DSM-5 Oriented Scales included scores
relating to affective, anxiety, somatic, oppositional defiant, conduct, and attention
deficit/hyperactivity (ADHD) disorders. (C) Parcellation: We used the Schaefer cortical
parcellation of 400 regions, and each region was assigned to one of 17 large-scale cortical
networks. Image reproduced under a CC BY 4.0 license:
https://doi.org/10.6084/m9.figshare.10062482.v1. We also included 19 subcortical regions in our
analyses, which were assigned to a subcortical network. Image reproduced under a CC BY 4.0
license: https://doi.org/10.6084/m9.figshare.10063016.v1. (D) Neuroimaging Data: For each
subject, we extracted their functional MRI time series data for the 400 cortical parcels and 19
subcortical parcels. Pairwise correlation was computed for all pairs of time series to obtain the
estimated functional connectivity. (E) Predictive Models: Linear ridge regression models were
trained to predict individual behavioral scores based on the upper triangular functional
connectivity matrix in a sex-specific manner. Data were split into training and test sets. For each
training set, a separate model was optimized and trained to predict each behavior. Once
optimized and trained, models were evaluated across sexes and across behaviors using the test
sets.
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Dataset

We included children from the Adolescent Brain Cognitive Development (ABCD) release(36).
The ABCD dataset is a large community-based sample of children and adolescents who were
assessed on a comprehensive set of neuroimaging, behavioral, developmental, and psychiatric
batteries. After pre-processing quality control of imaging data, as described in(22, 37), we
filtered participants based on availability of functional MRI scans and behavioral scores of
interest. As recommended by the ABCD consortium, we excluded individuals who were

scanned using Philips scanners due to incorrect preprocessing (https://github.com/ABCD-

STUDY/fMRI-cleanup). Finally, we excluded siblings to prevent unintended biases due to

inherent heritability in neurobiological and/or behavioral measures. Our final ABCD sample
(Figure 1A) comprised 5260 children (2689 males, 2571 females; 9-10 years old).

Behavioral Data

The Child Behavior Checklist is a widely used clinical scale for identifying problematic behaviors
in children and adolescents(38), and includes eight empirically-based syndrome scales:
Anxious/Depressed, Withdrawn/Depressed, Somatic Complaints, Social Problems, Thought
Problems, Attention Problems Rule-Breaking Behavior, and Aggressive Behavior. These scores
are further summarized into Internalizing, Externalizing, and Total Problems. The Internalizing
domain summarizes Anxious/Depressed, Withdrawn/Depressed, and Somatic Complaints. The
Externalizing domains summarizes Rule-Breaking and Aggressive Behaviors. Finally, the Total
Problems score is based on responses to all of the eight syndrome scales. The CBCL also
includes six Diagnostic and Statistical Manual of Mental Disorders (DSM)-oriented scales
consistent with DSM-5 categories: Affective (Depressive), Anxiety, Somatic, Oppositional
Defiant, Conduct, and Attention Deficit/Hyperactivity (ADHD) Disorders. In these analyses, we
included all eight syndrome scales, three summary scores, and six DSM-5 oriented scales for a
total of 17 behavioral scores for each participant (Figure 1B). We used non-parametric Mann-
Whitney U rank test to evaluate sex differences in each of the behavioral scores. All p-values
were corrected for multiple comparisons using the Benjamini-Hochberg False Discovery Rate
(q=0.05) procedure(39). We also computed non-parametric correlations between the behavioral
scores for each sex to evaluate any underlying relationships that may exist between the

behavioral scores and influence subsequent analyses.

Image Acquisition and Processing
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MR images were acquired across 21 sites in the United States using harmonized protocols for
GE and Siemens scanners. The functional MRI data were preprocessed as previously
described(22, 40) using a field-standard approach. Once processed, we extracted regional
functional MRI time series for 400 cortical(41) and 19 subcortical(42) parcels (Figure 1C). Full
correlations were then computed between those time series yielding a 419x419 pairwise

regional functional connectivity matrix for each participant (Figure 1D).

Predictive Modelling

Linear regression models and deep learning algorithms achieve comparable accuracies for
brain-based behavioral predictions(23), but linear models avoid overfitting, are more
interpretable, and are less computationally expensive(18). The predictive models used here rely
on a similar framework as those previously described(19, 20, 43) to perform novel analyses
addressing cross-behavioral model generalization within and across the sexes in the context of
psychiatric illness-linked behaviors. We used linear ridge regression models to predict each
behavioral score based on functional connectivity data (Figure 1E). For each sex, we split the
data into 100 distinct train and test sets (at approximately a 2:1 ratio) without replacement.
Imaging site was considered when splitting the data such that we placed all participants from a
given site either in the train or test set but not split across the two. Within each train set, we
optimized the regularization parameter using three-fold cross-validation while similarly
accounting for imaging site as in the initial train-test split. Once optimized, we evaluated models
on the corresponding test set. We repeated this process for each of 100 distinct train-test splits
to obtain a distribution of prediction accuracy. Prediction accuracy is defined as the correlation
between the true and predicted behavioral scores in the test set for each split. We computed
average accuracy by taking the mean across the 100 distinct train-test splits. Once models were
trained and tested within sexes and behaviors, we evaluated model generalizability across both
sexes and all 17 behavioral scores. Model generalizability is defined as the accuracy obtained
when a given model is evaluated on a population (i.e., sex) and/or behavioral score that is
unique from the population/behavioral score that the model was trained on. This is distinct from
model accuracy which is defined as the prediction accuracy obtained when evaluating the
model on the same populations (i.e., sex) and behavioral score (using a hold-out test set) that it

was trained on.

Model Significance
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We evaluated whether models performed better than chance levels using null distributions of
performance as previously described(44). For each set of predictive models, a corresponding
set of null models was generated as follows: the behavioral score was randomly permuted 1000
times, and each permutation was used to train and test a null model using a randomly selected
regularization parameter from the set of selected parameters from the original model. Prediction
accuracy from each of the null models was then compared to the average accuracy from the
corresponding distribution of model accuracies and model generalizabilities from the original
(true) models. The p-value for each model’s significance is defined as the proportion of null
models with prediction accuracies greater than or equal to corresponding average accuracy
from the original (true) distribution. All p-values were corrected for multiple comparisons across
all measures of model accuracy and generalizability (i.e., 17 train behaviors x 2 train sexes x 17
test behaviors x 2 test sexes = 1156 comparisons) using the Benjamini-Hochberg False

Discovery Rate (g=0.05) procedure(39).

Feature Weights

We used the Haufe transformation(45) to transform feature weights obtained from the linear
ridge regression models to increase their interpretability and reliability(22, 40, 46). For each train
split, we used feature weights obtained from the model, W, the covariance of the input data
(functional connectivity), £, and the covariance of the output data (behavioral score), £, to
compute the Haufe-transformed feature weights, A, as follows:

A=z, Wzt
We then averaged these Haufe-transformed feature weights across the 100 splits to obtain a
mean feature importance value. We computed full correlations between mean feature
importance obtained from the different models to evaluate whether they relied on shared or
unique features to predict the behavioral scores. For all models, we also summarized pairwise
regional feature importance at a network-level to support interpretability as previously
described(20). Briefly, cortical parcels were assigned to one of 17 networks from the Yeo 17-
network parcellation(47), and subcortical, brainstem, and cerebellar parcels were assigned to a
single subcortical network for convenience. Regional pairwise positive and negative feature
weights were separately averaged to yield network-level estimates of positive and negative

associations between functional connectivity and behavioral scores.

Data and Code Availability
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All ABCD data used are openly available and can be accessed directly via the NIMH Data
Archive (NDA). The processed FC matrices used here were generated as part of(40) and will be

uploaded to the NDA [link to be updated]. All code used to generate the results are available on
GitHub [link to be updated].
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Results

Males and females exhibit largely overlapping behaviors

The distributions of all behavioral scores included in this study are plotted for each sex in Figure
2A. While males and females exhibited largely overlapping distributions of behavioral scores,
there were statistically significant (corrected p<0.01) sex differences in somatic complaints,
externalizing, rule-breaking behavior, aggressive behavior, thought problems, attention
problems, total problems as measured by the syndrome scales, as well as affective, somatic,
oppositional defiant, conduct, and ADHD from the DSM-5 oriented scales. Males reported
greater externalizing, rule-breaking behavior, aggressive behavior, thought problems, attention
problems, and total problems as per the syndrome scales and greater affective, oppositional
defiant, conduct, and ADHD as per the DSM-5 oriented scales. Females reported greater
somatic complaints as per the syndrome scale and greater somatic problems as per the DSM-5

oriented scale.

Within each sex, behavioral scores were strongly correlated within behavioral domains.
Correlations between internalizing scores (internalizing, anxious/depressed,
withdrawn/depressed, somatic complaints, affective, anxiety, somatic) ranged from 0.27 to 0.91
in males, and between 0.28 and 0.92 in females. Correlations between externalizing scores
(externalizing, rule-breaking behavior, aggressive behavior, oppositional defiant, conduct)
ranged between 0.53 and 0.96 in males, and between 0.51 and 0.96 in females. Correlations
between attentional scores (thought problems, attention problems, social problems, ADHD)
ranged between 0.52 and 0.94 in males, and between 0.48 and 0.91 in females. Meanwhile,
correlations across behavioral domains were generally numerically weaker. Correlations
between internalizing and externalizing scores ranged between 0.23 and 0.55 in males, and
between 0.25 and 0.52 in females. Similar ranges of correlations were observed between

internalizing and attentional scores, as well as externalizing and attentional scores.

Here, we replicate prior findings demonstrating sex differences in the prevalence of behaviors
associated with an increased risk for illness onset and provide evidence suggesting that these
differences may emerge prior to adolescence. These findings also suggest that predictive
models may be more likely to generalize within sexes rather than across sexes. Additionally, we
observe similar relationships between psychiatric illness-linked behaviors in males and females.
These observed relationships suggest that models may be more likely to generalize within

behavioral domains rather than across behavioral domains.
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Figure 2: Males and females exhibit similar behavioral trends.

(A) Violin plots display the distribution of all behavioral scores for males (left) and females
(right). The shape of the violin plots indicates the entire distribution of values, dashed lines
indicate the median, and dotted lines indicate the interquartile range. (B) The 2D grids display
the correlation coefficient for each pair of behavioral scores for males (left) and females (right).
ADHD - Attention deficit/hyperactivity disorder.
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Brain-based predictive models predict psychiatric illness-linked behaviors

Linear ridge regression models were trained to predict 17 psychiatric behaviors in males and
females based on individual functional connectivity profiles. Once trained, model performance

was evaluated in comparison to null models. Model accuracies are shown in Figure 3A.

In males, models successfully predicted behaviors (corrected p<0.05) within the externalizing
domain (externalizing (r=0.12), rule-breaking (r=0.14), and aggressive (r=0.10) behaviors), as
well as attention (r=0.13), social (r=0.12), and total (r=0.11) problems from the syndrome scales.
Models also successfully predicted behaviors related to oppositional defiant (r=0.08), conduct
(0.13), and attention deficit/hyperactivity (ADHD; r=0.12) disorders from the DSM-5 oriented

scales in males.

In females, models successfully predicted behaviors (corrected p<0.05) within the internalizing
domain (withdrawn/depressed (r=0.09)) and the externalizing domain (externalizing (r=0.11),
rule-breaking (r=0.15), and aggressive (r=0.09) behaviors), as well as attention (r=0.11) and
social (r=0.07) problems from the syndrome scales. Models also successfully predicted
behaviors related to conduct disorders (r=0.14) and ADHD (r=0.08) from the DSM-5 oriented

scales.
In our prior work, we have observed that internalizing behaviors are more difficult to predict than

externalizing behaviors(22). Our results replicate these findings and further suggest that the

predictability of specific behaviors may differ across the sexes.
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Brain-based predictive models of psychiatric illness-linked behaviors generalize across

sexes and behaviors

Generalizability of linear ridge regression models trained in each sex to predict each of the 17
behaviors were evaluated across sexes and across behaviors. Generalizability is defined as the
prediction accuracy obtained when a given model is evaluated on a population and/or behavior

distinct from the population and/or behavior it was trained on. These are shown in Figure 3B.

Models trained in males (top row in Figure 3B) to predict externalizing syndromes (externalizing,
rule-breaking, and aggressive behaviors), and attention, social, and total problems, as well as
behaviors related to oppositional defiant and conduct disorders, and ADHD successfully
generalize (corrected p<0.05) across those behaviors in males and females. These models also
generalize (corrected p<0.05) to predict internalizing (withdrawn/depressed) syndromes and
behaviors related to affective disorders in females, but not in males (see dashed black boxes in
top row of Figure 3B). Additionally, models trained to predict internalizing syndromes
(internalizing and withdrawn/depressed behaviors) and affective behaviors generalize (corrected
p<0.05) to predict some externalizing syndromes as well as attention problems and behaviors

related to ADHD in males and females, albeit to a weaker extent.

Models trained in females (bottom row in Figure 3B) to predict externalizing syndromes
(externalizing, rule-breaking, and aggressive behaviors), attention and social problems, as well
as behaviors related to conduct disorders and ADHD successfully generalize (corrected p<0.05)
across those behaviors in males and females. Surprisingly, these models trained in females
exhibit generally greater generalizability in males (bottom left panel in Figure 3B) than in
females (bottom right panel in Figure 3B). In other words, models trained in females more
accurately predict behaviors in males than in females. Moreover, models trained to predict
internalizing syndromes (withdrawn/depressed) and affective behaviors generalize (corrected
p<0.05) to predict externalizing syndromes (externalizing and rule-breaking behaviors), thought,
attention, social, and total problems, and behaviors related to oppositional defiant and conduct
disorders, and ADHD in males (see dashed boxes in bottom row of Figure 3B). Similar results

are also observed when generalizing (corrected p<0.05) within females but to a lesser extent.

Taken together, these results suggest that brain-based predictive models trained in one domain

can generalize to predict other related behaviors within the same domain. These models may
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also generalize to predict behaviors in other unrelated domains and this generalizability may be

more evident across sexes rather than within sexes.
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Figure 3: Predictive models of psychiatric illness-linked behaviors are accurate and
generalizable across sexes and behaviors.

(A) Model Accuracy: Model prediction accuracy (correlation coefficient between true and
predicted scores) for all behaviors for males (left) and females (right). Black asterisks (*) denote
that model performed significantly better than chance (corrected p<0.05). The shape of the
violin plots indicates the entire distribution of values, dashed lines indicate the median, and
dotted lines indicate the interquartile range. (B) Model Generalizability: Model generalizability
across sexes and behaviors for all models. Results from models trained in males are shown at
the top, and models trained in females at the bottom. Results from models tested in males are
shown on the left, and models tested in females on the right. Prediction accuracy (correlation
coefficient between true and predicted scores) is shown for all predictions that performed better
than chance (corrected p<0.05) as per the color scale. For predictions that did not perform
better than chance, the corresponding space is left blank. Model accuracy is shown along the
diagonal for the male-trained male-tested and female-trained female-tested models
(corresponding violin plots shown in Figure 3A). Dashed black boxes highlight sex differences in
generalizability across behavioral domains.
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Functional correlates of psychiatric behaviors are shared across behaviors and sexes.

Pairwise regional feature weights used to predict psychiatric illness-linked behaviors were
extracted from the models and Haufe-transformed. Correlations between these Haufe-
transformed feature weights across both sexes and all behaviors were analyzed and are shown

in Figure 4.

Feature weights are strongly correlated across behaviors and sexes, and the strongest
correlations are observed within behavioral domains (see solid black boxes in Figure 4). One
notable exception is the features involved in the prediction of anxious/depressed behaviors and
somatic complaints, as well as anxiety and somatic diagnoses in males and females, both of
which exhibit generally weak correlations with features for all other predictions including those
within the internalizing domain, but strong positive correlations with each other (see rows and
columns depicting correlations for Anxious/Depressed, Somatic Complaints, Anxiety, and

Somatic).

In prior work, we have demonstrated that shared features predict a smaller subset of psychiatric
behaviors(22). Here, we replicate those findings and demonstrate that even though males and
females may exhibit behavioral differences, shared neurobiological features underlie the

expression of those behaviors.
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Figure 4: Shared functional connectivity features underlie distinct behaviors across the
sexes.

Correlation coefficient between Haufe-transformed pairwise regional feature weights from
distinct models. Models trained in males are shown at the top and on the left, models trained in
females are shown at the bottom and on the right. Warmer colors indicate a positive correlation
and cooler colors indicate a negative correlation. Solid black boxes highlight correlations
between feature weights within behavioral domains within and between sexes.
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Functional connectivity within and between different heteromodal association networks

predict psychiatric illness-linked behaviors

Regional pairwise feature weights were summarized to a network-level based on the Yeo 17-
network solution(47). Positive and negative feature weights were separately averaged to yield
positive and negative network-level associations between functional connectivity and psychiatric
behaviors. For simplicity, we show the corresponding figures for three behaviors
(withdrawn/depressed, rule-breaking, attention) characteristics of the three broader psychiatric
behavioral domains (internalizing, externalizing, attention) in Figures 5-7, respectively, and for
all other behaviors in the supplemental materials (Figures S1-S14). Correlations between these

network-level associations across the sexes are shown in Table S1.

Across both sexes, functional connectivity within and between the default and dorsal attention
networks are positively associated with withdrawn/depressed behaviors (Figure 5, top row).
Functional connections between the limbic network and the default, control, dorsal attention,
and somatomotor networks are also positively associated with withdrawn/depressed behaviors
(Figure 5, top row). Finally, functional connections between the visual network and the default
and dorsal attention networks are also positively associated with withdrawn/depressed
behaviors (Figure 5, top row), although to a slightly weaker extent in females than in males. In
males, functional connectivity within default and limbic networks, as well as between default and
temporal parietal, and default and dorsal attention networks were negatively associated with
withdrawn/depressed behaviors (Figure 5, bottom left). Widespread cortico-subcortical
connections were also negatively associated with withdrawn/depressed behaviors in males
(Figure 5, bottom left). In females, generally fewer negative associations were observed, and
those observed occurred between the temporal parietal network and the control and
somatomotor networks (Figure 5, bottom right). Positive and negative associations were largely

shared across the sexes (Iposiive=0.89, Inegative=0.72).

Functional connections that were associated with rule-breaking behaviors (Figure 6) were
largely similar to those associated with withdrawn/depressed behaviors with a few key
differences. Functional connections between the visual network and the default and dorsal
attention exhibited a slightly stronger association with rule-breaking behaviors in males than in
females (Figure 6, top row). Moreover, rather than widespread negative associations with
cortico-subcortical connections, subcortical connections to the default and dorsal attention

networks were most strongly negatively associated with rule-breaking behaviors (Figure 6,
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bottom row). These associations were also similar across the sexes (Iposiive=0.90 for positive,
and rnegati\/ezo.94).

Functional connections between the limbic network and the default, control, dorsal attention,
and somatomotor networks, as well as connections between the visual network and the default,
control, dorsal attention, and somatomotor networks were associated with attention problems in
males and females (Figure 7, top row). We do not observe any strong negative associations
between functional connectivity and attention problems (Figure 7, bottom row). Similar to the
observations for the withdrawn/depressed and rule-breaking behaviors, these associations were

shared across the sexes (Ipositive=0.95 for positive, regaive=0.95).

These findings are in line with prior work demonstrating that functional connections in
heteromodal association networks are largely implicated in a wide range of psychiatric
illnesses(48-51). We further demonstrate that shared functional connectivity correlates underlie
internalizing and externalizing behaviors across the sexes. Moreover, while there exist some
similarities in the networks associated with attention problems, there are also unique network
contributions observed within the attention domain. Altogether, these findings suggest that while
shared neurobiological correlates are likely to be observed across psychiatric behaviors and
illnesses, there are also distinct network signatures associations with different behavioral

domains.
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Figure 5: Shared network-level functional connections underlie withdrawn/depressed
behaviors in males and females.

Positive (top) and negative (bottom) associations between network-level functional connectivity
and rule-breaking behaviors in males (left) and females (right). Regional feature weights were
summarized to a network-level by assigning cortical regions to one of 17 Yeo networks, and
subcortical regions to a subcortical network. Colors next to the network labels along the vertical
and horizontal axes correspond to the network colors from Figure 1C. Warmer colors within the
heatmap indicate a positive association and cooler colors indicate a negative association. For
visualization, values within each matrix were divided by the absolute maximum value across the
positive and negative matrices for each sex. Correlations between positive associations across
sexes, losiive=0.89. Correlations between negative associations across sexes, Inegaive=0.72.
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Figure 6: Shared network-level functional connections underlie rule-breaking behaviors
in males and females.

Positive (top) and negative (bottom) associations between network-level functional connectivity
and rule-breaking behaviors in males (left) and females (right). Regional feature weights were
summarized to a network-level by assigning cortical regions to one of 17 Yeo networks, and
subcortical regions to a subcortical network. Colors next to the network labels along the vertical
and horizontal axes correspond to the network colors from Figure 1C. Warmer colors within the
heatmap indicate a positive association and cooler colors indicate a negative association. For
visualization, values within each matrix were divided by the absolute maximum value across the
positive and negative matrices for each sex. Correlations between positive associations across
sexes, losiive=0.90. Correlations between negative associations across sexes, Inegaive=0.94.
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Figure 7: Shared network-level functional connections underlie attention problems in
males and females.
Positive (top) and negative (bottom) associations between network-level functional connectivity
and attention problems in males (left) and females (right). Regional feature weights were

summarized to a network-level by assigning cortical regions to one of 17 Yeo networks, and
subcortical regions to a subcortical network. Colors next to the network labels along the vertical
and horizontal axes correspond to the network colors from Figure 1C. Warmer colors within the
heatmap indicate a positive association and cooler colors indicate a negative association. For

visualization, values within each matrix were divided by the absolute maximum value across the

Positive Network-Level Associations

Negative Network-Level Associations

positive and negative matrices for each sex. Correlations between positive associations across
sexes, losiive=0.95. Correlations between negative associations across sexes, Inegaive=0.94.
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Discussion

Brain-based predictive modeling has provided foundational insights into the neurobiological
correlates of psychiatric illness(18, 52-54). While associations between functional connectivity
and distinct psychiatric illnesses and behaviors have been studied extensively, prior work has
not yet addressed whether those relationships are shared across the sexes. Functional
connectivity profiles and the expression of psychiatric illnesses are both known to differ across
males and females, but it is not clear whether these differences map onto one another. Here,
we demonstrate in a large sample of 5260 children from the ABCD dataset that functional
connectivity profiles predict externalizing behaviors and attention deficits in males and females,
but internalizing behaviors are generally only predictable in females. Models trained to predict
externalizing behaviors and attention deficits generalize across those behavioral domains within
and between sexes. Moreover, models trained to predict externalizing behaviors in males can
also predict internalizing behaviors in females. Likewise, models trained to predict internalizing
behaviors in females can also predict externalizing behaviors in males. Across both males and
females, functional connections within and between heteromodal association networks underlie
the expression of internalizing and externalizing behaviors, as well as attentional deficits. Taken
together, these results reveal that shared disruptions in functional connectivity can manifest as

distinct psychiatric behaviors across the sexes.

Psychiatric diagnoses describe clusters of problematic behaviors that tend to overlap across
diagnoses(55), lack clear discernible boundaries(55), and exhibit high rates of comorbidity(56).
Consequently, it is extremely difficult to isolate disorder-specific biomarkers. To understand the
neurobiological processes that underlie distinct psychiatric illnesses, several different
approaches have been posited. The dimensional approach proposes that psychopathology can
be described along distinct dimensions of psychiatric illness(57, 58). An individual's vulnerability
to a particular psychiatric illness can be defined by how they score across different dimensions.
Similarly, the internalizing-externalizing model suggests that psychiatric illnesses are
manifestations of internalizing and externalizing dimensions(59), where internalizing dimensions
affect an individual's internal state and externalizing dimensions affect an individual’s external
response to the world(60). An alternative theory, the p-factor, suggests a single factor of
psychopathology makes individuals broadly vulnerable to psychiatric iliness and the specific
iliness they develop is determined by other factors(61). Regardless of how we characterize
distinct psychiatric illnesses and associated behaviors, an understanding of their underlying

associations with brain-based biomarkers is crucial for the development of personalized
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diagnostic approaches and treatment interventions. These present analyses suggest behavioral
prediction models may be broadly generalizable across dimensional measures and diagnosis-
based scales, increasing their clinical utility. Furthermore, by moving beyond the categorical
medical model and integrating dimensional measures, we can improve our understanding of the
range of psychiatric symptom profiles that may be associated with functional network

connectivity.

Our prior work suggests psychiatric illnesses and associated behaviors are generally harder to
predict than cognitive traits and exhibit weaker associations with neurobiological features(21,
22). Relatedly, brain-based models of internalizing behaviors and illnesses tend to achieve
weaker prediction accuracies than those of externalizing behaviors and illnesses(22). The
general lack of predictability of internalizing behaviors seen here and in prior work may be
related to individual differences in the signal-to-noise ratio in the associations between
functional connectivity and the behaviors themselves. Furthermore, the presence of significant
predictions of internalizing behaviors in females, but not in males, may be underscored by the
earlier development of functional networks, and especially the heteromodal association
networks, in females during childhood(7, 62). The delayed development of association
networks—which drive these behavioral predictions—paired with the lower levels of internalizing

behaviors observed in males, could in part explain the lower observed accuracies in males.

Prior and ongoing analyses of the neurobiological correlates of psychopathology suggest
functional disruptions in heteromodal association networks are implicated across dimensions
and disorders: affective and psychotic illnesses as well as symptoms associated with those
illnesses are related to frontoparietal control, limbic, default, and attention network
connectivity(22, 48-51). In this present study, we find functional connections within and between
those networks predict individual differences in psychiatric illness-linked behaviors. While
connections between limbic and frontoparietal networks are associated with all behaviors
analyzed, other distinct functional network signatures are associated with specific syndromes
and DSM-oriented traits. These findings suggest the existence of transdiagnostic and disorder-
specific functional signatures of psychiatric illnesses and illness-linked behaviors. Finally,
shared genetic and environmental influences have been shown to underlie the covariant
expression of negative affect, internalizing behaviors, and externalizing behaviors(63). Our
results further suggest these traits may also share neurobiological influences, which may in part

be driven by genetic and environmental influences on neurobiology itself.
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Sex differences in neurobiology and behavior are well established(2, 5-7, 64-77). More recently,
researchers have also begun to look at sex differences in brain-behavior relationships(20, 33,
34, 43, 78). To explain the underlying factors driving these differences in clinical populations,
sex-based and gender-based theories have been proposed. Sex-based theories posit that sex
chromosomes, brain structure, the hypothalamic-pituitary-adrenal axis, immune processes, and
gonadal hormones underlie sex differences in psychiatric illnesses, while gender-based theories
emphasize the contributions of parental expectations, gender socialization, gender roles, gender
identities, and diagnostic biases(3). In this present study, we demonstrate functional correlates
of psychiatric iliness-linked behaviors are largely shared across the sexes. Furthermore, shared
functional correlates are associated with the expression of internalizing and externalizing
behaviors, of which, internalizing are more prevalent in females and externalizing in males.
These findings suggest that differences observed in the expression of psychiatric illness-linked
behaviors across the sexes are not dependent on sex-specific functional connectivity profiles,

but we are not able to rule out the contributions of other sex- or gender- related factors.

The findings of this study are subject to several limitations. First, these analyses relied on a
large community-based sample of children between the ages of 9 and 10. As these children
undergo puberty and go through adolescence, there will likely exhibit changes in their
behavioral expressions and brain biology, particularly in the heteromodal association
networks(79-82). As such, the underlying brain-behavior relationships are subject to change
throughout the course of adolescence. Subsequent analyses investigating brain-behavior
relationships at the follow-up time points in the ABCD data could address this question. Second,
since the ABCD dataset does not include information about gender identity or fluidity, this study
only used information about each subject’s self-reported sex. Throughout the course of
development, males and females are exposed to gender-differentiated experiences and
enculturation. Given the lack of data pertaining to gender, we cannot disentangle whether the
observed sex differences are driven by inherent sex differences in neurobiology and/or behavior
a manifestation of gender-related differences, or a combination of the two such that innate
biological differences are further exaggerated by sociocultural and environmental factors(83).
Third, this study used a single dataset which was collected entirely in the United States. While
the dataset was acquired using different sites (and scanners) across the country suggesting
these results are somewhat generalizable, it does not represent the global extent of racial,

ethnical, or cultural diversity. As such, further research is needed to address whether these
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results are generalizable across populations(84, 85) with known differences in the expression,

diagnosis, and stigmatization of psychiatric illness-linked behaviors(86-88).
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