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Abstract 

 

Background: Individual differences in functional brain connectivity can be used to predict both 

the presence of psychiatric illness and variability in associated behaviors. However, despite 

evidence for sex differences in functional network connectivity and in the prevalence, 

presentation, and trajectory of psychiatric illnesses, the extent to which disorder-relevant 

aspects of network connectivity are shared or unique across the sexes remains to be 

determined.  

Methods: In this work, we used predictive modelling approaches to evaluate whether shared or 

unique functional connectivity correlates underlie the expression of psychiatric illness-linked 

behaviors in males and females in data from the Adolescent Brain Cognitive Development study 

(n=5260; 2571 females).  

Results: We demonstrate that functional connectivity profiles predict individual differences in 

externalizing behaviors in males and females, but only predict internalizing behaviors in 

females. Furthermore, models trained to predict externalizing behaviors in males generalize to 

predict internalizing behaviors in females, and models trained to predict internalizing behaviors 

in females generalize to predict externalizing behaviors in males. Finally, the neurobiological 

correlates of many behaviors are largely shared within and across sexes: functional connections 

within and between heteromodal association networks including default, limbic, control, and 

dorsal attention networks are associated with internalizing and externalizing behaviors as well 

as attentional deficits.  

Conclusions: Taken together, these findings suggest that shared neurobiological patterns may 

manifest as distinct behaviors across the sexes. These results highlight the need to consider 

factors beyond just neurobiology in the diagnosis and treatment of psychiatric illnesses.  
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Introduction 

A primary aim of research in psychiatry is to establish the neurobiological correlates of illness-

relevant behaviors, facilitating illness prediction, diagnosis, and treatment. Critical to this goal is 

the consideration of associated demographic characteristics, for instance underlying sex 

differences. Females are more likely to be diagnosed with affective and anxiety disorders, while 

males are more likely to meet diagnostic criteria for antisocial and substance use disorders(1-3). 

Relatedly, across cultures, females are more likely to express internalizing behaviors directed at 

one-self (i.e., loneliness, unexplained physical symptoms) while males are more likely to exhibit 

externalizing behaviors directed at others or the environment (i.e., aggression, hyperactivity)(3, 

4). These differences emerge across childhood, become more evident during adolescence, and 

persist throughout the lifespan(2). While sex differences in the prevalence and expression of 

psychiatric illnesses have been extensively studied at the population-level(5), the underlying 

neurobiological correlates are not yet fully understood. Genetics, hormones, immunology, 

neurobiology, environment, and a host of psychosocial factors all likely contribute to expressed 

behaviors and these contributions may vary across disorders and throughout the lifespan(2). 

One possibility is that these factors uniquely contribute to distinct biological underpinnings and 

associated behavioral expression patterns across the sexes. An alternative, but not mutually 

exclusive possibility, is that shared biological features may link to dissociable behaviors across 

the sexes. A thorough understanding of the sex differences that exist in the neurobiological 

correlates of psychiatric illness-relevant behaviors will facilitate the development and 

implementation of sex-specific and personalized preventative interventions, diagnostic 

procedures, and therapeutic treatments.  

 

Functional magnetic resonance imaging is a non-invasive neuroimaging technique that can be 

used to estimate regional neural activation, as inferred though the detection of changes in blood 

oxygenation levels. Temporal dependency patterns between these signals can subsequently be 

used to quantify the functional coupling (or connectivity) between pairs of brain regions. 

Functional connectivity profiles exhibit sex differences throughout the lifespan(6-11). Females 

have greater within-network connectivity while males have greater between-network 

connectivity(8). These differences are in part modulated by genetics(12) and hormonal 

fluctuations(13-16), but also likely reflect other biological, social, and environmental influences. 

Prior analyses have found that functional connections within and between heteromodal 

networks, and particularly the default and frontoparietal control networks, are largely driving 

these differences(9, 11). Intriguingly, functional disruptions within and between the default and 
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control networks, along with the salience network, are also implicated in a wide range of 

psychiatric phenotypes(17). While sex differences in functional connectivity have been 

established, it is not yet known whether there are sex differences in the associations between 

functional connectivity and psychiatric illness-linked behaviors.  

 

Over the last decade, data-driven predictive modeling approaches have become increasingly 

used to study brain-behavior relationships in healthy and clinical populations(18). These 

approaches can be used to not only generate individual-level clinically informative predictions of 

diagnosis, symptom profile, and treatment response but also to identify the underlying 

neurobiology that is associated with distinct psychiatric illnesses and behaviors(18). Through 

these approaches, functional connectivity can be used to predict individual differences in 

cognition, personality, as well as psychiatric and behavioral problems(19-24). These models 

have been used to establish the neurobiological correlates of attention(25, 26), memory(27), 

anxiety(28), depression(29), psychosis(30), and substance abuse(31, 32). When developing 

predictive models, it is crucial to ensure that they are not only accurate within circumscribed 

groups but that they can also generalize to other populations. Prior work indicates that 

predictions of cognitive and personality traits can fail to generalize across sexes(20, 33-35). To 

circumvent these issues–and given the known sex differences in psychiatric illnesses and 

behaviors–the use of sex-specific prediction models may yield more accurate and generalizable 

predictions and provide insight into underlying sex differences in the neurobiological correlates 

of psychiatric illnesses. Moreover, the examination of these brain-behavior relationships in 

children can reveal whether sex differences emerge prior to adolescence when many of the 

differences in psychiatric illness risk and presentation begin to become more evident.  

 

Here, we sought to identify whether shared or unique neurobiological correlates underlie the 

expression of distinct psychiatric behaviors across the sexes during childhood. To directly 

address this open question, we quantified the functional connectivity correlates of 17 distinct 

psychiatric illness-relevant behaviors in typically developing children from the Adolescent Brain 

Cognitive Development (ABCD) dataset. First, by examining differences in predictive accuracy 

across sexes and behaviors, we demonstrate that externalizing behaviors can be accurately 

predicted in males and females, but internalizing behaviors can only be successfully predicted in 

females. Next, evaluating the generalizability of predictive models across sexes and behaviors, 

we determine that predictive models generalize within internalizing and externalizing domains 

within sexes, but only generalize across domains between sexes. More specifically, models 
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trained to predict externalizing behaviors in either sex generalize to predict other related 

behaviors in both sexes. However, models trained to predict externalizing behaviors in males 

also generalize to predict internalizing behaviors in females, and models trained to predict 

internalizing behaviors in females generalize to predict externalizing behaviors in males. Finally, 

investigating the network correlates of these behaviors, we reveal that functional connectivity 

within and between shared heteromodal association networks are associated with internalizing 

and externalizing behaviors, as well as attention deficits, and these brain-behavior correlates 

are shared across the sexes. Collectively, these results suggest that shared aspects of 

neurobiology may underlie distinct behaviors across the sexes. Based on these findings, we 

encourage clinicians and researchers to consider sex when developing predictive models to 

facilitate diagnosis, treatment, and research of psychiatric illnesses.   
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Methods 

An overview of our experimental workflow is shown in Figure 1.  
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Figure 1: Experimental Workflow.  
(A) Population: We included 5260 typically developing children (9-10 years old) from the 
Adolescent Brain Cognitive Development (ABCD) dataset, including 2689 males (51%) and 
2571 females (49%). (B) Behavioral Data: We included 17 behavioral scores from the Child 
Behavior Checklist which includes syndrome scales and DSM-5 oriented scales. Syndrome 
scales included measures of composite and individual internalizing behaviors (shown in blue), 
composite and individual externalizing behaviors (shown in orange), other problems (shown in 
green), and a summary score of total problems (red). DSM-5 Oriented Scales included scores 
relating to affective, anxiety, somatic, oppositional defiant, conduct, and attention 
deficit/hyperactivity (ADHD) disorders. (C) Parcellation: We used the Schaefer cortical 
parcellation of 400 regions, and each region was assigned to one of 17 large-scale cortical 
networks. Image reproduced under a CC BY 4.0 license: 
https://doi.org/10.6084/m9.figshare.10062482.v1. We also included 19 subcortical regions in our 
analyses, which were assigned to a subcortical network. Image reproduced under a CC BY 4.0 
license: https://doi.org/10.6084/m9.figshare.10063016.v1. (D) Neuroimaging Data: For each 
subject, we extracted their functional MRI time series data for the 400 cortical parcels and 19 
subcortical parcels. Pairwise correlation was computed for all pairs of time series to obtain the 
estimated functional connectivity. (E) Predictive Models: Linear ridge regression models were 
trained to predict individual behavioral scores based on the upper triangular functional 
connectivity matrix in a sex-specific manner. Data were split into training and test sets. For each 
training set, a separate model was optimized and trained to predict each behavior. Once 
optimized and trained, models were evaluated across sexes and across behaviors using the test 
sets.  
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Dataset 

We included children from the Adolescent Brain Cognitive Development (ABCD) release(36).  

The ABCD dataset is a large community-based sample of children and adolescents who were 

assessed on a comprehensive set of neuroimaging, behavioral, developmental, and psychiatric 

batteries. After pre-processing quality control of imaging data, as described in(22, 37), we 

filtered participants based on availability of functional MRI scans and behavioral scores of 

interest. As recommended by the ABCD consortium, we excluded individuals who were 

scanned using Philips scanners due to incorrect preprocessing (https://github.com/ABCD-

STUDY/fMRI-cleanup). Finally, we excluded siblings to prevent unintended biases due to 

inherent heritability in neurobiological and/or behavioral measures. Our final ABCD sample 

(Figure 1A) comprised 5260 children (2689 males, 2571 females; 9-10 years old).  

 

Behavioral Data 

The Child Behavior Checklist is a widely used clinical scale for identifying problematic behaviors 

in children and adolescents(38), and includes eight empirically-based syndrome scales: 

Anxious/Depressed, Withdrawn/Depressed, Somatic Complaints, Social Problems, Thought 

Problems, Attention Problems Rule-Breaking Behavior, and Aggressive Behavior. These scores 

are further summarized into Internalizing, Externalizing, and Total Problems. The Internalizing 

domain summarizes Anxious/Depressed, Withdrawn/Depressed, and Somatic Complaints. The 

Externalizing domains summarizes Rule-Breaking and Aggressive Behaviors. Finally, the Total 

Problems score is based on responses to all of the eight syndrome scales. The CBCL also 

includes six Diagnostic and Statistical Manual of Mental Disorders (DSM)-oriented scales 

consistent with DSM-5 categories: Affective (Depressive), Anxiety, Somatic, Oppositional 

Defiant, Conduct, and Attention Deficit/Hyperactivity (ADHD) Disorders. In these analyses, we 

included all eight syndrome scales, three summary scores, and six DSM-5 oriented scales for a 

total of 17 behavioral scores for each participant (Figure 1B). We used non-parametric Mann-

Whitney U rank test to evaluate sex differences in each of the behavioral scores. All p-values 

were corrected for multiple comparisons using the Benjamini-Hochberg False Discovery Rate 

(q=0.05) procedure(39). We also computed non-parametric correlations between the behavioral 

scores for each sex to evaluate any underlying relationships that may exist between the 

behavioral scores and influence subsequent analyses. 

 

Image Acquisition and Processing 
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MR images were acquired across 21 sites in the United States using harmonized protocols for 

GE and Siemens scanners. The functional MRI data were preprocessed as previously 

described(22, 40) using a field-standard approach. Once processed, we extracted regional 

functional MRI time series for 400 cortical(41) and 19 subcortical(42) parcels (Figure 1C). Full 

correlations were then computed between those time series yielding a 419x419 pairwise 

regional functional connectivity matrix for each participant (Figure 1D).  

 

Predictive Modelling  

Linear regression models and deep learning algorithms achieve comparable accuracies for 

brain-based behavioral predictions(23), but linear models avoid overfitting, are more 

interpretable, and are less computationally expensive(18). The predictive models used here rely 

on a similar framework as those previously described(19, 20, 43) to perform novel analyses 

addressing cross-behavioral model generalization within and across the sexes in the context of 

psychiatric illness-linked behaviors. We used linear ridge regression models to predict each 

behavioral score based on functional connectivity data (Figure 1E). For each sex, we split the 

data into 100 distinct train and test sets (at approximately a 2:1 ratio) without replacement. 

Imaging site was considered when splitting the data such that we placed all participants from a 

given site either in the train or test set but not split across the two. Within each train set, we 

optimized the regularization parameter using three-fold cross-validation while similarly 

accounting for imaging site as in the initial train-test split. Once optimized, we evaluated models 

on the corresponding test set. We repeated this process for each of 100 distinct train-test splits 

to obtain a distribution of prediction accuracy. Prediction accuracy is defined as the correlation 

between the true and predicted behavioral scores in the test set for each split. We computed 

average accuracy by taking the mean across the 100 distinct train-test splits. Once models were 

trained and tested within sexes and behaviors, we evaluated model generalizability across both 

sexes and all 17 behavioral scores. Model generalizability is defined as the accuracy obtained 

when a given model is evaluated on a population (i.e., sex) and/or behavioral score that is 

unique from the population/behavioral score that the model was trained on. This is distinct from 

model accuracy which is defined as the prediction accuracy obtained when evaluating the 

model on the same populations (i.e., sex) and behavioral score (using a hold-out test set) that it 

was trained on.  

 

Model Significance 
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We evaluated whether models performed better than chance levels using null distributions of 

performance as previously described(44). For each set of predictive models, a corresponding 

set of null models was generated as follows: the behavioral score was randomly permuted 1000 

times, and each permutation was used to train and test a null model using a randomly selected 

regularization parameter from the set of selected parameters from the original model. Prediction 

accuracy from each of the null models was then compared to the average accuracy from the 

corresponding distribution of model accuracies and model generalizabilities from the original 

(true) models. The p-value for each model’s significance is defined as the proportion of null 

models with prediction accuracies greater than or equal to corresponding average accuracy 

from the original (true) distribution. All p-values were corrected for multiple comparisons across 

all measures of model accuracy and generalizability (i.e., 17 train behaviors x 2 train sexes x 17 

test behaviors x 2 test sexes = 1156 comparisons) using the Benjamini-Hochberg False 

Discovery Rate (q=0.05) procedure(39).  

 

Feature Weights 

We used the Haufe transformation(45) to transform feature weights obtained from the linear 

ridge regression models to increase their interpretability and reliability(22, 40, 46). For each train 

split, we used feature weights obtained from the model, �, the covariance of the input data 

(functional connectivity), Σ�, and the covariance of the output data (behavioral score), Σ�, to 

compute the Haufe-transformed feature weights, �, as follows:  

� �  Σ��Σ�
�� 

We then averaged these Haufe-transformed feature weights across the 100 splits to obtain a 

mean feature importance value. We computed full correlations between mean feature 

importance obtained from the different models to evaluate whether they relied on shared or 

unique features to predict the behavioral scores. For all models, we also summarized pairwise 

regional feature importance at a network-level to support interpretability as previously 

described(20). Briefly, cortical parcels were assigned to one of 17 networks from the Yeo 17-

network parcellation(47), and subcortical, brainstem, and cerebellar parcels were assigned to a 

single subcortical network for convenience. Regional pairwise positive and negative feature 

weights were separately averaged to yield network-level estimates of positive and negative 

associations between functional connectivity and behavioral scores.  

 

Data and Code Availability 
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All ABCD data used are openly available and can be accessed directly via the NIMH Data 

Archive (NDA). The processed FC matrices used here were generated as part of(40) and will be 

uploaded to the NDA [link to be updated]. All code used to generate the results are available on 

GitHub [link to be updated].   
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Results 

Males and females exhibit largely overlapping behaviors 

The distributions of all behavioral scores included in this study are plotted for each sex in Figure 

2A. While males and females exhibited largely overlapping distributions of behavioral scores, 

there were statistically significant (corrected p<0.01) sex differences in somatic complaints, 

externalizing, rule-breaking behavior, aggressive behavior, thought problems, attention 

problems, total problems as measured by the syndrome scales, as well as affective, somatic, 

oppositional defiant, conduct, and ADHD from the DSM-5 oriented scales. Males reported 

greater externalizing, rule-breaking behavior, aggressive behavior, thought problems, attention 

problems, and total problems as per the syndrome scales and greater affective, oppositional 

defiant, conduct, and ADHD as per the DSM-5 oriented scales. Females reported greater 

somatic complaints as per the syndrome scale and greater somatic problems as per the DSM-5 

oriented scale.  

 

Within each sex, behavioral scores were strongly correlated within behavioral domains. 

Correlations between internalizing scores (internalizing, anxious/depressed, 

withdrawn/depressed, somatic complaints, affective, anxiety, somatic) ranged from 0.27 to 0.91 

in males, and between 0.28 and 0.92 in females. Correlations between externalizing scores 

(externalizing, rule-breaking behavior, aggressive behavior, oppositional defiant, conduct) 

ranged between 0.53 and 0.96 in males, and between 0.51 and 0.96 in females. Correlations 

between attentional scores (thought problems, attention problems, social problems, ADHD) 

ranged between 0.52 and 0.94 in males, and between 0.48 and 0.91 in females. Meanwhile, 

correlations across behavioral domains were generally numerically weaker. Correlations 

between internalizing and externalizing scores ranged between 0.23 and 0.55 in males, and 

between 0.25 and 0.52 in females. Similar ranges of correlations were observed between 

internalizing and attentional scores, as well as externalizing and attentional scores.  

 

Here, we replicate prior findings demonstrating sex differences in the prevalence of behaviors 

associated with an increased risk for illness onset and provide evidence suggesting that these 

differences may emerge prior to adolescence. These findings also suggest that predictive 

models may be more likely to generalize within sexes rather than across sexes. Additionally, we 

observe similar relationships between psychiatric illness-linked behaviors in males and females. 

These observed relationships suggest that models may be more likely to generalize within 

behavioral domains rather than across behavioral domains.   
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Figure 2: Males and females exhibit similar behavioral trends.  
(A) Violin plots display the distribution of all behavioral scores for males (left) and females 
(right). The shape of the violin plots indicates the entire distribution of values, dashed lines 
indicate the median, and dotted lines indicate the interquartile range. (B) The 2D grids display 
the correlation coefficient for each pair of behavioral scores for males (left) and females (right). 
ADHD – Attention deficit/hyperactivity disorder.  
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Brain-based predictive models predict psychiatric illness-linked behaviors 

Linear ridge regression models were trained to predict 17 psychiatric behaviors in males and 

females based on individual functional connectivity profiles. Once trained, model performance 

was evaluated in comparison to null models. Model accuracies are shown in Figure 3A.   

 

In males, models successfully predicted behaviors (corrected p<0.05) within the externalizing 

domain (externalizing (r=0.12), rule-breaking (r=0.14), and aggressive (r=0.10) behaviors), as 

well as attention (r=0.13), social (r=0.12), and total (r=0.11) problems from the syndrome scales. 

Models also successfully predicted behaviors related to oppositional defiant (r=0.08), conduct 

(0.13), and attention deficit/hyperactivity (ADHD; r=0.12) disorders from the DSM-5 oriented 

scales in males.  

 

In females, models successfully predicted behaviors (corrected p<0.05) within the internalizing 

domain (withdrawn/depressed (r=0.09)) and the externalizing domain (externalizing (r=0.11), 

rule-breaking (r=0.15), and aggressive (r=0.09) behaviors), as well as attention (r=0.11) and 

social (r=0.07) problems from the syndrome scales. Models also successfully predicted 

behaviors related to conduct disorders (r=0.14) and ADHD (r=0.08) from the DSM-5 oriented 

scales.  

 

In our prior work, we have observed that internalizing behaviors are more difficult to predict than 

externalizing behaviors(22). Our results replicate these findings and further suggest that the 

predictability of specific behaviors may differ across the sexes.   
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Brain-based predictive models of psychiatric illness-linked behaviors generalize across 

sexes and behaviors 

Generalizability of linear ridge regression models trained in each sex to predict each of the 17 

behaviors were evaluated across sexes and across behaviors. Generalizability is defined as the 

prediction accuracy obtained when a given model is evaluated on a population and/or behavior 

distinct from the population and/or behavior it was trained on. These are shown in Figure 3B.  

 

Models trained in males (top row in Figure 3B) to predict externalizing syndromes (externalizing, 

rule-breaking, and aggressive behaviors), and attention, social, and total problems, as well as 

behaviors related to oppositional defiant and conduct disorders, and ADHD successfully 

generalize (corrected p<0.05) across those behaviors in males and females. These models also 

generalize (corrected p<0.05) to predict internalizing (withdrawn/depressed) syndromes and 

behaviors related to affective disorders in females, but not in males (see dashed black boxes in 

top row of Figure 3B). Additionally, models trained to predict internalizing syndromes 

(internalizing and withdrawn/depressed behaviors) and affective behaviors generalize (corrected 

p<0.05) to predict some externalizing syndromes as well as attention problems and behaviors 

related to ADHD in males and females, albeit to a weaker extent.  

 

Models trained in females (bottom row in Figure 3B) to predict externalizing syndromes 

(externalizing, rule-breaking, and aggressive behaviors), attention and social problems, as well 

as behaviors related to conduct disorders and ADHD successfully generalize (corrected p<0.05) 

across those behaviors in males and females. Surprisingly, these models trained in females 

exhibit generally greater generalizability in males (bottom left panel in Figure 3B) than in 

females (bottom right panel in Figure 3B). In other words, models trained in females more 

accurately predict behaviors in males than in females. Moreover, models trained to predict 

internalizing syndromes (withdrawn/depressed) and affective behaviors generalize (corrected 

p<0.05) to predict externalizing syndromes (externalizing and rule-breaking behaviors), thought, 

attention, social, and total problems, and behaviors related to oppositional defiant and conduct 

disorders, and ADHD in males (see dashed boxes in bottom row of Figure 3B). Similar results 

are also observed when generalizing (corrected p<0.05) within females but to a lesser extent.   

 

Taken together, these results suggest that brain-based predictive models trained in one domain 

can generalize to predict other related behaviors within the same domain. These models may 
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also generalize to predict behaviors in other unrelated domains and this generalizability may be 

more evident across sexes rather than within sexes.   
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Figure 3: Predictive models of psychiatric illness-linked behaviors are accurate and 
generalizable across sexes and behaviors.  
(A) Model Accuracy: Model prediction accuracy (correlation coefficient between true and 
predicted scores) for all behaviors for males (left) and females (right). Black asterisks (*) denote 
that model performed significantly better than chance (corrected p<0.05). The shape of the 
violin plots indicates the entire distribution of values, dashed lines indicate the median, and 
dotted lines indicate the interquartile range. (B) Model Generalizability: Model generalizability 
across sexes and behaviors for all models. Results from models trained in males are shown at 
the top, and models trained in females at the bottom. Results from models tested in males are 
shown on the left, and models tested in females on the right. Prediction accuracy (correlation 
coefficient between true and predicted scores) is shown for all predictions that performed better 
than chance (corrected p<0.05) as per the color scale. For predictions that did not perform 
better than chance, the corresponding space is left blank. Model accuracy is shown along the 
diagonal for the male-trained male-tested and female-trained female-tested models 
(corresponding violin plots shown in Figure 3A). Dashed black boxes highlight sex differences in 
generalizability across behavioral domains.   
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Functional correlates of psychiatric behaviors are shared across behaviors and sexes.  

Pairwise regional feature weights used to predict psychiatric illness-linked behaviors were 

extracted from the models and Haufe-transformed. Correlations between these Haufe-

transformed feature weights across both sexes and all behaviors were analyzed and are shown 

in Figure 4.  

 

Feature weights are strongly correlated across behaviors and sexes, and the strongest 

correlations are observed within behavioral domains (see solid black boxes in Figure 4). One 

notable exception is the features involved in the prediction of anxious/depressed behaviors and 

somatic complaints, as well as anxiety and somatic diagnoses in males and females, both of 

which exhibit generally weak correlations with features for all other predictions including those 

within the internalizing domain, but strong positive correlations with each other (see rows and 

columns depicting correlations for Anxious/Depressed, Somatic Complaints, Anxiety, and 

Somatic). 

 

In prior work, we have demonstrated that shared features predict a smaller subset of psychiatric 

behaviors(22). Here, we replicate those findings and demonstrate that even though males and 

females may exhibit behavioral differences, shared neurobiological features underlie the 

expression of those behaviors.  
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Figure 4: Shared functional connectivity features underlie distinct behaviors across the 
sexes.  
Correlation coefficient between Haufe-transformed pairwise regional feature weights from 
distinct models. Models trained in males are shown at the top and on the left, models trained in 
females are shown at the bottom and on the right. Warmer colors indicate a positive correlation 
and cooler colors indicate a negative correlation. Solid black boxes highlight correlations 
between feature weights within behavioral domains within and between sexes.  
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Functional connectivity within and between different heteromodal association networks 

predict psychiatric illness-linked behaviors  

Regional pairwise feature weights were summarized to a network-level based on the Yeo 17-

network solution(47). Positive and negative feature weights were separately averaged to yield 

positive and negative network-level associations between functional connectivity and psychiatric 

behaviors. For simplicity, we show the corresponding figures for three behaviors 

(withdrawn/depressed, rule-breaking, attention) characteristics of the three broader psychiatric 

behavioral domains (internalizing, externalizing, attention) in Figures 5-7, respectively, and for 

all other behaviors in the supplemental materials (Figures S1-S14). Correlations between these 

network-level associations across the sexes are shown in Table S1.  

 

Across both sexes, functional connectivity within and between the default and dorsal attention 

networks are positively associated with withdrawn/depressed behaviors (Figure 5, top row). 

Functional connections between the limbic network and the default, control, dorsal attention, 

and somatomotor networks are also positively associated with withdrawn/depressed behaviors 

(Figure 5, top row). Finally, functional connections between the visual network and the default 

and dorsal attention networks are also positively associated with withdrawn/depressed 

behaviors (Figure 5, top row), although to a slightly weaker extent in females than in males. In 

males, functional connectivity within default and limbic networks, as well as between default and 

temporal parietal, and default and dorsal attention networks were negatively associated with 

withdrawn/depressed behaviors (Figure 5, bottom left). Widespread cortico-subcortical 

connections were also negatively associated with withdrawn/depressed behaviors in males 

(Figure 5, bottom left). In females, generally fewer negative associations were observed, and 

those observed occurred between the temporal parietal network and the control and 

somatomotor networks (Figure 5, bottom right). Positive and negative associations were largely 

shared across the sexes (rpositive=0.89,  rnegative=0.72).  

 

Functional connections that were associated with rule-breaking behaviors (Figure 6) were 

largely similar to those associated with withdrawn/depressed behaviors with a few key 

differences. Functional connections between the visual network and the default and dorsal 

attention exhibited a slightly stronger association with rule-breaking behaviors in males than in 

females (Figure 6, top row). Moreover, rather than widespread negative associations with 

cortico-subcortical connections, subcortical connections to the default and dorsal attention 

networks were most strongly negatively associated with rule-breaking behaviors (Figure 6, 
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bottom row). These associations were also similar across the sexes (rpositive=0.90 for positive, 

and rnegative=0.94). 

 

Functional connections between the limbic network and the default, control, dorsal attention, 

and somatomotor networks, as well as connections between the visual network and the default, 

control, dorsal attention, and somatomotor networks were associated with attention problems in 

males and females (Figure 7, top row). We do not observe any strong negative associations 

between functional connectivity and attention problems (Figure 7, bottom row). Similar to the 

observations for the withdrawn/depressed and rule-breaking behaviors, these associations were 

shared across the sexes (rpositive=0.95 for positive, rnegative=0.95).  

 

These findings are in line with prior work demonstrating that functional connections in 

heteromodal association networks are largely implicated in a wide range of psychiatric 

illnesses(48-51). We further demonstrate that shared functional connectivity correlates underlie 

internalizing and externalizing behaviors across the sexes. Moreover, while there exist some 

similarities in the networks associated with attention problems, there are also unique network 

contributions observed within the attention domain. Altogether, these findings suggest that while 

shared neurobiological correlates are likely to be observed across psychiatric behaviors and 

illnesses, there are also distinct network signatures associations with different behavioral 

domains.  
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Figure 5: Shared network-level functional connections underlie withdrawn/depressed 
behaviors in males and females.  
Positive (top) and negative (bottom) associations between network-level functional connectivity 
and rule-breaking behaviors in males (left) and females (right). Regional feature weights were 
summarized to a network-level by assigning cortical regions to one of 17 Yeo networks, and 
subcortical regions to a subcortical network. Colors next to the network labels along the vertical 
and horizontal axes correspond to the network colors from Figure 1C. Warmer colors within the 
heatmap indicate a positive association and cooler colors indicate a negative association. For 
visualization, values within each matrix were divided by the absolute maximum value across the 
positive and negative matrices for each sex. Correlations between positive associations across 
sexes, rpositive=0.89. Correlations between negative associations across sexes, rnegative=0.72.  
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Figure 6: Shared network-level functional connections underlie rule-breaking behaviors 
in males and females.  
Positive (top) and negative (bottom) associations between network-level functional connectivity 
and rule-breaking behaviors in males (left) and females (right). Regional feature weights were 
summarized to a network-level by assigning cortical regions to one of 17 Yeo networks, and 
subcortical regions to a subcortical network. Colors next to the network labels along the vertical 
and horizontal axes correspond to the network colors from Figure 1C. Warmer colors within the 
heatmap indicate a positive association and cooler colors indicate a negative association. For 
visualization, values within each matrix were divided by the absolute maximum value across the 
positive and negative matrices for each sex. Correlations between positive associations across 
sexes, rpositive=0.90. Correlations between negative associations across sexes, rnegative=0.94.  
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Figure 7: Shared network-level functional connections underlie attention problems in 
males and females.  
Positive (top) and negative (bottom) associations between network-level functional connectivity 
and attention problems in males (left) and females (right). Regional feature weights were 
summarized to a network-level by assigning cortical regions to one of 17 Yeo networks, and 
subcortical regions to a subcortical network. Colors next to the network labels along the vertical 
and horizontal axes correspond to the network colors from Figure 1C. Warmer colors within the 
heatmap indicate a positive association and cooler colors indicate a negative association. For 
visualization, values within each matrix were divided by the absolute maximum value across the 
positive and negative matrices for each sex. Correlations between positive associations across 
sexes, rpositive=0.95. Correlations between negative associations across sexes, rnegative=0.94. 
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Discussion 

Brain-based predictive modeling has provided foundational insights into the neurobiological 

correlates of psychiatric illness(18, 52-54). While associations between functional connectivity 

and distinct psychiatric illnesses and behaviors have been studied extensively, prior work has 

not yet addressed whether those relationships are shared across the sexes. Functional 

connectivity profiles and the expression of psychiatric illnesses are both known to differ across 

males and females, but it is not clear whether these differences map onto one another. Here, 

we demonstrate in a large sample of 5260 children from the ABCD dataset that functional 

connectivity profiles predict externalizing behaviors and attention deficits in males and females, 

but internalizing behaviors are generally only predictable in females. Models trained to predict 

externalizing behaviors and attention deficits generalize across those behavioral domains within 

and between sexes. Moreover, models trained to predict externalizing behaviors in males can 

also predict internalizing behaviors in females. Likewise, models trained to predict internalizing 

behaviors in females can also predict externalizing behaviors in males. Across both males and 

females, functional connections within and between heteromodal association networks underlie 

the expression of internalizing and externalizing behaviors, as well as attentional deficits. Taken 

together, these results reveal that shared disruptions in functional connectivity can manifest as 

distinct psychiatric behaviors across the sexes.  

 

Psychiatric diagnoses describe clusters of problematic behaviors that tend to overlap across 

diagnoses(55), lack clear discernible boundaries(55), and exhibit high rates of comorbidity(56). 

Consequently, it is extremely difficult to isolate disorder-specific biomarkers. To understand the 

neurobiological processes that underlie distinct psychiatric illnesses, several different 

approaches have been posited. The dimensional approach proposes that psychopathology can 

be described along distinct dimensions of psychiatric illness(57, 58). An individual’s vulnerability 

to a particular psychiatric illness can be defined by how they score across different dimensions. 

Similarly, the internalizing-externalizing model suggests that psychiatric illnesses are 

manifestations of internalizing and externalizing dimensions(59), where internalizing dimensions 

affect an individual’s internal state and externalizing dimensions affect an individual’s external 

response to the world(60). An alternative theory, the p-factor, suggests a single factor of 

psychopathology makes individuals broadly vulnerable to psychiatric illness and the specific 

illness they develop is determined by other factors(61). Regardless of how we characterize 

distinct psychiatric illnesses and associated behaviors, an understanding of their underlying 

associations with brain-based biomarkers is crucial for the development of personalized 
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diagnostic approaches and treatment interventions. These present analyses suggest behavioral 

prediction models may be broadly generalizable across dimensional measures and diagnosis-

based scales, increasing their clinical utility. Furthermore, by moving beyond the categorical 

medical model and integrating dimensional measures, we can improve our understanding of the 

range of psychiatric symptom profiles that may be associated with functional network 

connectivity.  

 

Our prior work suggests psychiatric illnesses and associated behaviors are generally harder to 

predict than cognitive traits and exhibit weaker associations with neurobiological features(21, 

22). Relatedly, brain-based models of internalizing behaviors and illnesses tend to achieve 

weaker prediction accuracies than those of externalizing behaviors and illnesses(22). The 

general lack of predictability of internalizing behaviors seen here and in prior work may be 

related to individual differences in the signal-to-noise ratio in the associations between 

functional connectivity and the behaviors themselves. Furthermore, the presence of significant 

predictions of internalizing behaviors in females, but not in males, may be underscored by the 

earlier development of functional networks, and especially the heteromodal association 

networks, in females during childhood(7, 62). The delayed development of association 

networks–which drive these behavioral predictions–paired with the lower levels of internalizing 

behaviors observed in males, could in part explain the lower observed accuracies in males.  

 

Prior and ongoing analyses of the neurobiological correlates of psychopathology suggest 

functional disruptions in heteromodal association networks are implicated across dimensions 

and disorders: affective and psychotic illnesses as well as symptoms associated with those 

illnesses are related to frontoparietal control, limbic, default, and attention network 

connectivity(22, 48-51). In this present study, we find functional connections within and between 

those networks predict individual differences in psychiatric illness-linked behaviors. While 

connections between limbic and frontoparietal networks are associated with all behaviors 

analyzed, other distinct functional network signatures are associated with specific syndromes 

and DSM-oriented traits. These findings suggest the existence of transdiagnostic and disorder-

specific functional signatures of psychiatric illnesses and illness-linked behaviors. Finally, 

shared genetic and environmental influences have been shown to underlie the covariant 

expression of negative affect, internalizing behaviors, and externalizing behaviors(63). Our 

results further suggest these traits may also share neurobiological influences, which may in part 

be driven by genetic and environmental influences on neurobiology itself.  
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Sex differences in neurobiology and behavior are well established(2, 5-7, 64-77). More recently, 

researchers have also begun to look at sex differences in brain-behavior relationships(20, 33, 

34, 43, 78). To explain the underlying factors driving these differences in clinical populations, 

sex-based and gender-based theories have been proposed. Sex-based theories posit that sex 

chromosomes, brain structure, the hypothalamic-pituitary-adrenal axis, immune processes, and 

gonadal hormones underlie sex differences in psychiatric illnesses, while gender-based theories 

emphasize the contributions of parental expectations, gender socialization, gender roles, gender 

identities, and diagnostic biases(3). In this present study, we demonstrate functional correlates 

of psychiatric illness-linked behaviors are largely shared across the sexes. Furthermore, shared 

functional correlates are associated with the expression of internalizing and externalizing 

behaviors, of which, internalizing are more prevalent in females and externalizing in males. 

These findings suggest that differences observed in the expression of psychiatric illness-linked 

behaviors across the sexes are not dependent on sex-specific functional connectivity profiles, 

but we are not able to rule out the contributions of other sex- or gender- related factors.  

 

The findings of this study are subject to several limitations. First, these analyses relied on a 

large community-based sample of children between the ages of 9 and 10. As these children 

undergo puberty and go through adolescence, there will likely exhibit changes in their 

behavioral expressions and brain biology, particularly in the heteromodal association 

networks(79-82). As such, the underlying brain-behavior relationships are subject to change 

throughout the course of adolescence. Subsequent analyses investigating brain-behavior 

relationships at the follow-up time points in the ABCD data could address this question. Second, 

since the ABCD dataset does not include information about gender identity or fluidity, this study 

only used information about each subject’s self-reported sex. Throughout the course of 

development, males and females are exposed to gender-differentiated experiences and 

enculturation. Given the lack of data pertaining to gender, we cannot disentangle whether the 

observed sex differences are driven by inherent sex differences in neurobiology and/or behavior 

a manifestation of gender-related differences, or a combination of the two such that innate 

biological differences are further exaggerated by sociocultural and environmental factors(83). 

Third, this study used a single dataset which was collected entirely in the United States. While 

the dataset was acquired using different sites (and scanners) across the country suggesting 

these results are somewhat generalizable, it does not represent the global extent of racial, 

ethnical, or cultural diversity. As such, further research is needed to address whether these 
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results are generalizable across populations(84, 85) with known differences in the expression, 

diagnosis, and stigmatization of psychiatric illness-linked behaviors(86-88).   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.18.520947doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.18.520947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30

Acknowledgements 

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive 

Development SM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). 

This is a multisite, longitudinal study designed to recruit more than 10,000 children aged 9-10 

and follow them over 10 years into early adulthood. The ABCD Study® is supported by the 

National Institutes of Health and additional federal partners under award numbers 

U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, 

U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, 

U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, 

U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of 

supporters is available at abcdstudy.org/federal-partners.html. A list of participating sites and a 

complete list of the study investigators can be found at abcdstudy.org/consortium_members/. 

ABCD consortium investigators designed and implemented the study and/or provided data but 

did not necessarily participate in the analysis or writing of this report. This manuscript reflects 

the views of the authors and may not reflect the opinions or views of the NIH or ABCD 

consortium investigators. 

 

Funding Sources 

This work was supported by the National Institute of Mental Health (R01MH120080 and 

R01MH123245 to AJH) and the Kavli Institute for Neuroscience at Yale University (Postdoctoral 

Fellowship for Academic Diversity to ED and Summer Undergraduate Research Fellowship to 

EB). This work was also supported by the following awards to BTTY: the Singapore National 

Research Foundation (NRF) Fellowship (Class of 2017), the NUS Yong Loo Lin School of 

Medicine (NUHSRO/2020/124/TMR/LOA), the Singapore National Medical Research Council 

(NMRC) LCG (OFLCG19May-0035), and the NMRC STaR (STaR20nov-0003).  

Any opinions, findings and conclusions or recommendations expressed in this material are 

those of the authors and do not reflect the views of the funders.  

 

Financial Disclosures 

All authors reported no biomedical financial interests or potential conflicts of interest.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.18.520947doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.18.520947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31

References 

1. Eaton NR, Keyes KM, Krueger RF, Balsis S, Skodol AE, Markon KE, et al. (2012): An 
invariant dimensional liability model of gender differences in mental disorder prevalence: 
evidence from a national sample. Journal of abnormal psychology. 121:282. 
2. Green T, Flash S, Reiss AL (2019): Sex differences in psychiatric disorders: what we 
can learn from sex chromosome aneuploidies. Neuropsychopharmacology. 44:9-21. 
3. Christiansen DM, McCarthy MM, Seeman MV (2022): Where sex meets gender: How 
sex and gender come together to cause sex differences in mental illness. Frontiers in 
Psychiatry.1322. 
4. Lau TWI, Lim CG, Acharryya S, Lim-Ashworth N, Tan YR, Fung SSD (2021): Gender 
differences in externalizing and internalizing problems in Singaporean children and adolescents 
with attention-deficit/hyperactivity disorder. Child and adolescent psychiatry and mental health. 
15:1-11. 
5. Riecher-Rössler A (2017): Sex and gender differences in mental disorders. The Lancet 
Psychiatry. 4:8-9. 
6. Gong G, He Y, Evans AC (2011): Brain connectivity: gender makes a difference. 
Neuroscientist. 17:575-591. 
7. Gur RC, Gur RE (2017): Complementarity of sex differences in brain and behavior: From 
laterality to multimodal neuroimaging. J Neurosci Res. 95:189-199. 
8. Satterthwaite TD, Wolf DH, Roalf DR, Ruparel K, Erus G, Vandekar S, et al. (2015): 
Linked Sex Differences in Cognition and Functional Connectivity in Youth. Cereb Cortex. 
25:2383-2394. 
9. Weis S, Patil KR, Hoffstaedter F, Nostro A, Yeo BTT, Eickhoff SB (2019): Sex 
Classification by Resting State Brain Connectivity. Cereb Cortex. 
10. Wheelock MD, Hect JL, Hernandez-Andrade E, Hassan SS, Romero R, Eggebrecht AT, 
et al. (2019): Sex differences in functional connectivity during fetal brain development. Dev 
Cogn Neurosci. 36:100632. 
11. Zhang C, Dougherty CC, Baum SA, White T, Michael AM (2018): Functional connectivity 
predicts gender: Evidence for gender differences in resting brain connectivity. Hum Brain Mapp. 
39:1765-1776. 
12. Xie S, Yang J, Zhang Z, Zhao C, Bi Y, Zhao Q, et al. (2017): The effects of the X 
chromosome on intrinsic functional connectivity in the human brain: evidence from Turner 
syndrome patients. Cerebral Cortex. 27:474-484. 
13. Hjelmervik H, Hausmann M, Osnes B, Westerhausen R, Specht K (2014): Resting 
States Are Resting Traits - An fMRI Study of Sex Differences and Menstrual Cycle Effects in 
Resting State Cognitive Control Networks. Plos One. 9. 
14. Weis S, Hodgetts S, Hausmann M (2019): Sex differences and menstrual cycle effects in 
cognitive and sensory resting state networks. Brain Cognition. 131:66-73. 
15. Mueller JM, Pritschet L, Santander T, Taylor CM, Grafton ST, Jacobs EG, et al. (2020): 
Dynamic community detection reveals transient reorganization of functional brain networks 
across a female menstrual cycle. Network Neuroscience.1-28. 
16. Pritschet L, Santander T, Taylor CM, Layher E, Yu S, Miller MB, et al. (2020): Functional 
reorganization of brain networks across the human menstrual cycle. NeuroImage. 220:117091. 
17. Sha Z, Wager TD, Mechelli A, He Y (2019): Common dysfunction of large-scale 
neurocognitive networks across psychiatric disorders. Biol Psychiat. 85:379-388. 
18. Dhamala E, Yeo BT, Holmes AJ (2022): Methodological Considerations for Brain-Based 
Predictive Modelling in Psychiatry. Biol Psychiat. 
19. Dhamala E, Jamison KW, Jaywant A, Dennis S, Kuceyeski A (2021): Distinct functional 
and structural connections predict crystallised and fluid cognition in healthy adults. Hum Brain 
Mapp. 42:3102-3118. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.18.520947doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.18.520947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32

20. Dhamala E, Jamison KW, Jaywant A, Kuceyeski A (2022): Shared functional 
connections within and between cortical networks predict cognitive abilities in adult males and 
females. Hum Brain Mapp. 
21. Ooi LQR, Chen J, Shaoshi Z, Kong R, Tam A, Li J, et al. (2022): Comparison of 
individualized behavioral predictions across anatomical, diffusion and functional connectivity 
MRI. NeuroImage.119636. 
22. Chen J, Tam A, Kebets V, Orban C, Ooi LQR, Asplund CL, et al. (2022): Shared and 
unique brain network features predict cognitive, personality, and mental health scores in the 
ABCD study. Nat Commun. 13:2217. 
23. He T, Kong R, Holmes AJ, Nguyen M, Sabuncu MR, Eickhoff SB, et al. (2020): Deep 
neural networks and kernel regression achieve comparable accuracies for functional 
connectivity prediction of behavior and demographics. NeuroImage. 206:116276. 
24. Li JW, Kong R, Liegeois R, Orban C, Tan YR, Sun NB, et al. (2019): Global signal 
regression strengthens association between resting-state functional connectivity and behavior. 
Neuroimage. 196:126-141. 
25. Yoo K, Rosenberg MD, Hsu W-T, Zhang S, Li C-SR, Scheinost D, et al. (2018): 
Connectome-based predictive modeling of attention: Comparing different functional connectivity 
features and prediction methods across datasets. Neuroimage. 167:11-22. 
26. Rosenberg MD, Hsu W-T, Scheinost D, Todd Constable R, Chun MM (2018): 
Connectome-based models predict separable components of attention in novel individuals. 
Journal of Cognitive Neuroscience. 30:160-173. 
27. Barron DS, Gao S, Dadashkarimi J, Greene AS, Spann MN, Noble S, et al. (2021): 
Transdiagnostic, connectome-based prediction of memory constructs across psychiatric 
disorders. Cerebral Cortex. 31:2523-2533. 
28. Wang Z, Goerlich KS, Ai H, Aleman A, Luo Y-j, Xu P (2021): Connectome-based 
predictive modeling of individual anxiety. Cerebral Cortex. 31:3006-3020. 
29. Du Y, Fu Z, Sui J, Gao S, Xing Y, Lin D, et al. (2020): NeuroMark: An automated and 
adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders. 
NeuroImage: Clinical. 28:102375. 
30. Collin G, Nieto-Castanon A, Shenton ME, Pasternak O, Kelly S, Keshavan MS, et al. 
(2020): Brain functional connectivity data enhance prediction of clinical outcome in youth at risk 
for psychosis. Neuroimage Clin. 26:102108. 
31. Lichenstein SD, Scheinost D, Potenza MN, Carroll KM, Yip SW (2021): Dissociable 
neural substrates of opioid and cocaine use identified via connectome-based modelling. 
Molecular psychiatry. 26:4383-4393. 
32. Yip SW, Scheinost D, Potenza MN, Carroll KM (2019): Connectome-based prediction of 
cocaine abstinence. American Journal of Psychiatry. 176:156-164. 
33. Jiang R, Calhoun VD, Cui Y, Qi S, Zhuo C, Li J, et al. (2020): Multimodal data revealed 
different neurobiological correlates of intelligence between males and females. Brain imaging 
and behavior. 14:1979-1993. 
34. Jiang R, Calhoun VD, Fan L, Zuo N, Jung R, Qi S, et al. (2020): Gender differences in 
connectome-based predictions of individualized intelligence quotient and sub-domain scores. 
Cerebral Cortex. 30:888-900. 
35. Nostro AD, Müller VI, Varikuti DP, Pläschke RN, Hoffstaedter F, Langner R, et al. 
(2018): Predicting personality from network-based resting-state functional connectivity. Brain 
Structure and Function. 223:2699-2719. 
36. Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, et al. (2018): 
The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 
sites. Dev Cogn Neurosci. 32:43-54. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.18.520947doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.18.520947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33

37. Ooi LQR, Chen J, Zhang S, Kong R, Li J, Dhamala E, et al. (2022): Comparison of 
individualized behavioral predictions across anatomical, diffusion and functional connectivity 
MRI. BioRxiv. 
38. Achenbach TM (2001): Manual for ASEBA school-age forms & profiles. University of 
Vermont, Research Center for Children, Youth & Families. 
39. Benjamini Y, Hochberg Y (1995): Controlling the False Discovery Rate - a Practical and 
Powerful Approach to Multiple Testing. J R Stat Soc B. 57:289-300. 
40. Chen J, Ooi LQR, Li J, Asplund CL, Eickhoff SB, Bzdok D, et al. (2022): There is no 
fundamental trade-off between prediction accuracy and feature importance reliability. bioRxiv. 
41. Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo X-N, Holmes AJ, et al. (2018): 
Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. 
Cerebral cortex. 28:3095-3114. 
42. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. (2002): Whole 
brain segmentation: automated labeling of neuroanatomical structures in the human brain. 
Neuron. 33:341-355. 
43. Dhamala E, Ooi LQR, Chen J, Kong R, Anderson KM, Chin R, et al. (2022): Proportional 
intracranial volume correction differentially biases behavioral predictions across 
neuroanatomical features and populations. NeuroImage. 
44. Parkes L, Moore TM, Calkins ME, Cook PA, Cieslak M, Roalf DR, et al. (2021): 
Transdiagnostic dimensions of psychopathology explain individuals’ unique deviations from 
normative neurodevelopment in brain structure. Translational psychiatry. 11:1-13. 
45. Haufe S, Meinecke F, Görgen K, Dähne S, Haynes J-D, Blankertz B, et al. (2014): On 
the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage. 
87:96-110. 
46. Tian Y, Zalesky A (2021): Machine learning prediction of cognition from functional 
connectivity: Are feature weights reliable? bioRxiv. 
47. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. (2011): 
The organization of the human cerebral cortex estimated by intrinsic functional connectivity. 
Journal of neurophysiology. 106:1125-1165. 
48. Menon V (2011): Large-scale brain networks and psychopathology: a unifying triple 
network model. Trends in cognitive sciences. 15:483-506. 
49. Baker JT, Dillon DG, Patrick LM, Roffman JL, Brady RO, Pizzagalli DA, et al. (2019): 
Functional connectomics of affective and psychotic pathology. Proceedings of the National 
Academy of Sciences. 116:9050-9059. 
50. Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB, et al. (2015): 
Identification of a common neurobiological substrate for mental illness. JAMA psychiatry. 
72:305-315. 
51. Xia CH, Ma Z, Ciric R, Gu S, Betzel RF, Kaczkurkin AN, et al. (2018): Linked dimensions 
of psychopathology and connectivity in functional brain networks. Nat Commun. 9:3003. 
52. Scheinost D, Noble S, Horien C, Greene AS, Lake EM, Salehi M, et al. (2019): Ten 
simple rules for predictive modeling of individual differences in neuroimaging. NeuroImage. 
193:35-45. 
53. Shen X, Finn ES, Scheinost D, Rosenberg MD, Chun MM, Papademetris X, et al. 
(2017): Using connectome-based predictive modeling to predict individual behavior from brain 
connectivity. nature protocols. 12:506-518. 
54. Yip SW, Kiluk B, Scheinost D (2020): Toward addiction prediction: an overview of cross-
validated predictive modeling findings and considerations for future neuroimaging research. 
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 5:748-758. 
55. Hyman SE (2010): The diagnosis of mental disorders: the problem of reification. Annual 
review of clinical psychology. 6:155-179. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.18.520947doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.18.520947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34

56. Plana-Ripoll O, Pedersen CB, Holtz Y, Benros ME, Dalsgaard S, De Jonge P, et al. 
(2019): Exploring comorbidity within mental disorders among a Danish national population. 
JAMA psychiatry. 76:259-270. 
57. Kotov R, Krueger RF, Watson D, Achenbach TM, Althoff RR, Bagby RM, et al. (2017): 
The Hierarchical Taxonomy of Psychopathology (HiTOP): A dimensional alternative to 
traditional nosologies. Journal of abnormal psychology. 126:454. 
58. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. (2010): Research 
domain criteria (RDoC): toward a new classification framework for research on mental 
disorders. Am Psychiatric Assoc, pp 748-751. 
59. Krueger RF, Eaton NR (2015): Transdiagnostic factors of mental disorders. World 
Psychiatry. 14:27. 
60. Marshall M (2020): The hidden links between mental disorders. Nature. 581:19-22. 
61. Caspi A, Houts RM, Belsky DW, Goldman-Mellor SJ, Harrington H, Israel S, et al. 
(2014): The p factor: one general psychopathology factor in the structure of psychiatric 
disorders? Clinical psychological science. 2:119-137. 
62. Shanmugan S, Seidlitz J, Cui Z, Adebimpe A, Bassett DS, Bertolero MA, et al. (2022): 
Sex differences in the functional topography of association networks in youth. Proceedings of 
the National Academy of Sciences. 119:e2110416119. 
63. Mikolajewski AJ, Allan NP, Hart SA, Lonigan CJ, Taylor J (2013): Negative affect shares 
genetic and environmental influences with symptoms of childhood internalizing and externalizing 
disorders. Journal of abnormal child psychology. 41:411-423. 
64. Cosgrove KP, Mazure CM, Staley JK (2007): Evolving knowledge of sex differences in 
brain structure, function, and chemistry. Biol Psychiatry. 62:847-855. 
65. De Bellis MD, Keshavan MS, Beers SR, Hall J, Frustaci K, Masalehdan A, et al. (2001): 
Sex differences in brain maturation during childhood and adolescence. Cereb Cortex. 11:552-
557. 
66. De Vries GJ (2004): Minireview: Sex differences in adult and developing brains: 
compensation, compensation, compensation. Endocrinology. 145:1063-1068. 
67. Earls F (1987): Sex differences in psychiatric disorders: origins and developmental 
influences. Psychiatric developments. 5:1-23. 
68. Fairweather H (1976): Sex differences in cognition. Cognition. 4:231-280. 
69. Gur RE, Gur RC (2016): Sex differences in brain and behavior in adolescence: Findings 
from the Philadelphia Neurodevelopmental Cohort. Neurosci Biobehav Rev. 70:159-170. 
70. Ingalhalikar M, Smith A, Parker D, Satterthwaite TD, Elliott MA, Ruparel K, et al. (2014): 
Sex differences in the structural connectome of the human brain. Proc Natl Acad Sci U S A. 
111:823-828. 
71. Jäncke L (2018): Sex/gender differences in cognition, neurophysiology, and 
neuroanatomy. F1000Research. 7. 
72. Lenroot RK, Giedd JN (2010): Sex differences in the adolescent brain. Brain Cogn. 
72:46-55. 
73. Lenroot RK, Gogtay N, Greenstein DK, Wells EM, Wallace GL, Clasen LS, et al. (2007): 
Sexual dimorphism of brain developmental trajectories during childhood and adolescence. 
Neuroimage. 36:1065-1073. 
74. Ritchie SJ, Cox SR, Shen X, Lombardo MV, Reus LM, Alloza C, et al. (2018): Sex 
differences in the adult human brain: evidence from 5216 UK Biobank participants. Cerebral 
Cortex. 28:2959-2975. 
75. Rodriguez G, Warkentin S, Risberg J, Rosadini G (1988): Sex differences in regional 
cerebral blood flow. J Cereb Blood Flow Metab. 8:783-789. 
76. Sanchis-Segura C, Ibañez-Gual MV, Adrián-Ventura J, Aguirre N, Gómez-Cruz ÁJ, Avila 
C, et al. (2019): Sex differences in gray matter volume: how many and how large are they 
really? Biology of sex Differences. 10:1-19. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.18.520947doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.18.520947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35

77. Scheinost D, Finn ES, Tokoglu F, Shen X, Papademetris X, Hampson M, et al. (2015): 
Sex differences in normal age trajectories of functional brain networks. Human brain mapping. 
36:1524-1535. 
78. Greene AS, Gao S, Scheinost D, Constable RT (2018): Task-induced brain state 
manipulation improves prediction of individual traits. Nature communications. 9:1-13. 
79. Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM, et al. (2008): 
The maturing architecture of the brain's default network. Proc Natl Acad Sci U S A. 105:4028-
4032. 
80. Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, et al. (2009): 
Functional brain networks develop from a "local to distributed" organization. PLoS Comput Biol. 
5:e1000381. 
81. Fair DA, Dosenbach NU, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, et al. (2007): 
Development of distinct control networks through segregation and integration. Proc Natl Acad 
Sci U S A. 104:13507-13512. 
82. Power JD, Fair DA, Schlaggar BL, Petersen SE (2010): The development of human 
functional brain networks. Neuron. 67:735-748. 
83. Eliot L (2011): The trouble with sex differences. Neuron. 72:895-898. 
84. Li J, Bzdok D, Chen J, Tam A, Ooi LQR, Holmes AJ, et al. (2022): Cross-ethnicity/race 
generalization failure of behavioral prediction from resting-state functional connectivity. Science 
Advances. 8:eabj1812. 
85. Ricard JA, Parker TC, Dhamala E, Kwasa J, Allsop AS, Holmes AJ (Accepted): 
Confronting racially exclusionary practices in the acquisition and analyses of neuroimaging data. 
Nature Neuroscience. 
86. Krendl AC, Pescosolido BA (2020): Countries and cultural differences in the stigma of 
mental illness: the east–west divide. Journal of Cross-Cultural Psychology. 51:149-167. 
87. Chen JA, Stevens C, Wong SH, Liu CH (2019): Psychiatric symptoms and diagnoses 
among US college students: A comparison by race and ethnicity. Psychiatric services. 70:442-
449. 
88. Bailey RK, Mokonogho J, Kumar A (2019): Racial and ethnic differences in depression: 
current perspectives. Neuropsychiatric disease and treatment. 15:603. 
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.18.520947doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.18.520947
http://creativecommons.org/licenses/by-nc-nd/4.0/

